ROZMYTA OPTYMALIZCJA DZIAŁALNOCI DYSTRYBUTORA

Wielkość: px
Rozpocząć pokaz od strony:

Download "ROZMYTA OPTYMALIZCJA DZIAŁALNOCI DYSTRYBUTORA"

Transkrypt

1 ROZYTA OPTYALIZCJA DZIAŁALOCI DYSTRYBUTORA arek Dolata, Ludmiła Dymowa, Janusz Grabara, Instytut Informatyki Teoretycznej i Stosowanej ul. Dbrowskiego 73, Czstochowa Streszczenie. W zagadnieniu optymalizacji działalnoci dystrybutora uwzgldniono nie tylko koszty transportu ale ograniczenia zwizane z moliwoci spełnienia kontraktu zawartego pomidzy dystrybutorem i odbiorcami oraz midzy dystrybutorem i dostawcami. W odrónieniu do podej klasycznych do formalizacji istniejcych niepewnoci za pomoc metod probabilistycznych uyte zostały elementy teorii zbiorów rozmytych pozwalajce na uwzgldnienie nie tylko obiektywnych informacji otrzymanych za pomoc statystycznej obróbki danych ale wiedzy i intuicji specjalistów z dziedziny oraz decydentów. Dla rozwizania problemu uyto rozmytego uogólnienia tradycyjnej metody programowania liniowego simplex za pomoc programowania obiektowego. Przy tym w realizacji operacji arytmetycznych na liczbach rozmytych uyto procedury ich przedstawienia w postaci sieci α-przekrojów. Istotnym problemem w realizacji tego podejcia jest porównywanie liczb rozmytych, dlatego uywano oryginalnej procedury opartej na probabilistycznej interpretacji przedziałów ostrych i rozmytych. Rezultaty testów porównywano z analogicznymi otrzymanymi za pomoc procedury losowania onte-carlo. Ciekawym wynikiem zastosowania podejcia onte-carlo jest niejednoznaczno rezultatów co sprawia problemy interpretacji wyników. Udowodniono, e jednoznaczna interpretacja tego wyniku moe by uzyskana za pomoc podejcia rozmyto-przedziałowego. Kluczowe słowa: Problem dystrybutora; programowanie liniowe rozmyte; problem transportowy romyty; metoda onte-carlo.. Wprowadzenie Zagadnienie optymalizacji działalnoci dystrybutora moe by sformułowane jako uogólnienie klasycznego problemu transportowego. Konwencjonalny problem transportowy jest specjalnym typem programowania liniowego gdzie sam problem jak i ograniczenia s opisane szczególn matematyczn struktur. ródłem dostaw moe by producent, magazyn itp. dla którego mamy przypisane odpowiednie parametry, podobnie jak dla celu dostaw; dodatkowo znane s koszty transportu na danych trasach. W klasycznym podejciu chodzi o minimalizacj kosztów poniesionych przez porednika podczas transportowania towaru od producentów do konsumentów, w opisywanym podejciu postanowiono dokona maksymalizacji zysku dystrybutora przy tych samych warunkach. W 979, Isermann [] przedstawił algorytm, dla rozwizywania problemu, przy pomocy którego został wyliczony komplet wszystkich skutecznych rozwiza. Ringuest i Rinks [2] proponowali dwa algorytmy iteracyjne dla rozwizywania liniowego wielokryterialnego problemu transportowego. Podobne rozwizanie zaproponowane w [3]. Róne efektywne algorytmy zostały opracowane dla tego problemu transportowego ale z uwzgldnieniem stałych parametrów zadania opisanych w postaci liczb rzeczywistych. Jednake takie warunki s spełnione rzadko albo niemale nigdy ze wzgldu na wahania parametrów; przykładowo ciko ustali stały koszt dla okrelonej trasy. W pracy [4] taki problem był rozwizany w warunkach przedziałowej niepewnoci kosztów transportowych. W pracach S.Chanasa i D. Kuchty [5, 6] rozwinito podejcie oparte na rozmyto-przedziałowym przedstawieniu niepewnych parametrów modelu. Rozwój tego podejcia przedstawiony jest w pracy [7]. Ogóln charakterystyk omówionych prac jest wprowadzenie ogranicze dotyczcych formy funkcji przynalenoci. To pozwala autorom przekształci pierwotny problem rozmytego programowania liniowego

2 w sie zwykłych zada programowania liniowego za pomoc procedur analitycznych. W praktyce jednak funkcje przynalenoci opisujce parametry niepewne uywanych modeli mog mie do skomplikowane formy, oprócz tego istotnym momentem opracowania algorytmów programowania rozmytego jest niezbdno porównywania liczb rozmytych. Istnieje wiele podej do tego ale bdziemy uywali podejcia probabilistycznego [8, 9] pozwalajcego za pomoc tylko jednego zupełnie naturalnego załoenia stwierdzajcego, e przedział jest przedziałem liczby losowej ze stał gstoci prawdopodobiestwa, otrzyma cały zbiór operacji porównywania przedziałów ostrych, przedziałów rozmytych (z uyciem α- przekrojów) oraz przedziałów i liczb rzeczywistych. Proponowane podejcie pozwala na bezporednie rozmyte rozszerzenie klasycznego algorytmu simplex z implementacj metody za pomoc programowania obiektowego. 2. Posta matematyczna problemu Problem dystrybutora mona zdefiniowa przyjmujc, e porednik zaopatruje si u producentów i dostarcza towar do konsumentów Rys. Rys.. Graficzna prezentacja problemu dystrybutora Załoono, e wiadome s maksymalne moliwoci producentów dotyczce iloci wyprodukowanego surowca wynoszce a i,(,2,..., ) i maksymalne zdolnoci odbioru towarów przez konsumentów b j, (, 2,..., ). Dystrybutor posiada informacj o cenach za jednostk towaru który kupuje u kadego producenta i o cenach sprzeday dla kadego konsumenta. Wiadomo, e straty na dostarczenie jednostki towaru od i-tego producenta do j-tego konsumenta s równe c, (,2,..., ;, 2,...,). Zgodnie z zawartymi umowami dystrybutor jest zobowizany kupowa u i-tego producenta minimum p i jednostek towaru po cenie t i za jednostk oraz gwarantowa dostarczenie j-temu konsumentowi minimum q j jednostek tego towaru po cenie s j za jednostk. Cał ilo towaru powyej omówionej w kontrakcie wartoci p i, dystrybutor kupuje po cenie promocyjnej k i za jednostk. Z kolei konsument kupuje cał ilo towaru powyej q j take po cenie promocyjnej r j za jednostk. Rozwizaniem problemu s optymalizowane iloci towaru kupowanego u kadego i-tego producenta oraz dostarczonego i sprzedanego j-temu konsumentowi x (,2,..., ;, 2,...,) w warunkach ogranicze zwizanych z podpisanymi umowami z producentami i konsumentami dotyczcymi iloci kupna i sprzeday.

3 W wyniku dochód dystrybutora D moe by przedstawiony przez wyraenie D ( ) ( ) ( )+ = q s j p ti c + x j q j i * r j x p * i k i () x ograniczeniach: W rezultacie zadanie redukuje si do znalezienia wszystkich x maksymalizujcych dochód D przy - dotyczcych górnych granic popytu i poday x ( i.. ); a i = x b j = j (.. ); (2) - dotyczcych dolnych granic popytu i poday x ( i =.. ); p i x ( j =.. ); q j (3) Sformułowany problem mona rozwiza jako zadanie programowania liniowego przy wykorzystaniu algorytmów programowania liniowego np. simplex. Uwzgldniajc, e wszystkie parametry w ()-(3) s danymi niepewnymi bdziemy przedstawiali je za pomoc liczb rozmytych o trapezoidalnej formie. Wtedy zagadnienie optymalizacji działalnoci dystrybutora moe by przedstawione w formie: ( zˆ xˆ ) max D ˆ = (4) - ograniczenia dotyczce górnych granic popytu i poday ˆ x ( i =.. ); ai ˆ x ( j =.. ); b j (5) - ograniczenia dotyczcych dolnych granic popytu i poday ˆ x ( i =.. ); p i ˆ x ( j =.. ); q j (6) Gdzie zˆ = rˆ kˆ cˆ dla kadego..,... j i W wyraeniach (4)-(6) Dˆ, zˆ, aˆ, bˆ, qˆ, pˆ s liczbami rozmytymi. W rezultacie otrzymamy zagadnienie maksymalizacji rozmytego dochodu (4) w warunkach ogranicze (5) i (6).

4 W praktyce czsto mamy problem zwizany z rónymi dokładnociami przedstawienia danych niepewnych np. cz opisanych powyej parametrów moe by przedstawiona w postaci trapezoidalnych liczb rozmytych na podstawie opinii ekspertów. Druga cz moe mie posta np. histogramu lub gstoci prawdopodobiestwa w do skomplikowanej formie otrzyman w wyniku bada statystycznych. W tych wypadkach zasady ogólno metodologiczne sugeruj przekształcenie wszystkich danych do formy o najmniejszym poziomie dokładnoci. Z tego tez wzgldu istnieje potrzeba transformacji danych przedstawionych w postaci rozkładu prawdopodobiestwa lub histogramu do funkcji przynalenoci do liczby rozmyto-przedziałowej. Aby uzyska dane wejciowe w postaci liczb rozmyto-przedziałowych naley najpierw zastosowa algorytm budujcy funkcj przynalenoci na podstawie gstoci zmiennych losowych, jeeli takie istniej lub bezporednio na podstawie histogramu. ajczstsz spotykan w praktyce form przedstawiania niepewnoci zwizanej z jakim parametrem decyzyjnym jest podanie wartoci redniej i odchylenia standardowego σ, które to parametry łatwo przedstawi w postaci rozkładu prawdopodobiestwa. W opisywanym przypadku zastosowano algorytm, który pozwala na przejcie od wartoci podanej w postaci dowolnego histogram lub rozkładu gstoci zmiennej losowej do liczby rozmytoprzedziałowej. Otrzymana w wyniku liczba jest przedstawiona w postaci czwórki liczb reprezentujcych liczb rozmyto-przedziałow w formie trapezu. Dla rozkładu prawdopodobiestwa zmiennej losowej przedstawionego na rysunku Rys. 2 wykonujemy nastpujce kroki algorytmu: Rys. 2 Rozkład gstoci zmiennej losowej.

5 Krok. Rozpoczynajc od najmniejszej wartoci x min (w naszym przykładzie x min =50) dc do wartoci maksymalnej x max =5 obliczamy warto funkcji F(x i ) równ polu powierzchni pod krzyw od x min do aktualnego x i ; w wyniku otrzymujemy funkcj skumulowan przedstawion na Rys. 3. Wiadomo, e funkcja skumulowana F(x i ) faktycznie jest prawdopodobiestwem tego, e x<x i. Krok 2. ajc wyznaczon funkcj skumulowan naley wyznaczy w sposób subiektywny zaleny od decydenta i od rozpatrywanego problemu cztery wartoci F(x i ) dla 0,..3, które okrelaj po zrzutowaniu na o odcitych dolne i górne przedziały ufnoci dla liczby rozmytej. Dla przedstawianego przypadku dobrano wartoci zgodnie z rysunkiem Rys. 4. W rezultacie na Rys. 4 przedział [95, 05] odpowiada prawdopodobiestwu 30%; przedział [78, 20] prawdopodobiestwu 90% Rys 3. Realizacja przejcia od funkcji skumulowanej do liczby rozmytej.

6 Krok 3. Wyznaczone po zrzutowaniu wartoci z osi odcitych zapisujemy jako liczb rozmyto-przedziałow w postaci uporzdkowanej czwórki liczb. Dla przykładu: â =[78, 95, 05, 20] Z rysunku Rys. 3 dodatkowo mona oceni poprawno odwzorowania rozkładu gstoci zmiennej losowej na liczb rozmyto-przedziałow. ona stwierdzi, e dokładno tego odwzorowania zaley od doboru odpowiednich wartoci dla funkcji skumulowanej F(x i ) dla 0,..3 okrelajcych przedziały ufnoci liczby rozmyto-przedziałowej. Trzeba take zauway, e ze wzgldu na to, i teoretycznie krzywa reprezentujca rozkład gstoci zmiennej losowej zawiera si od + do - to naley wybra punkty, wzgldem których ograniczamy dolny przedział ufnoci liczby rozmyto-przedziałowe. Wartoci F(x i ) okrelajce górny i dolny przedział ufnoci zostały wybrane symetrycznie wzgldem rodka krzywej skumulowanej. Ich rozpito jest zalena od decydenta, dobrana jednak tak aby jak najdokładniej odwzorowa funkcj przedstawiajc rozkład gstoci zmiennej losowej i ustali odpowiedni szeroko dla przedziału o najwikszym stopniu ufnoci. Opisana metoda pozwala przedstawi wszystkie dane niepewne w jednolitej formie trapezoidalnych liczb rozmytych. Proponowana metoda rozwizania zagadnienia programowania rozmytego (4)-(6) realizowana za pomoc przedstawienia wszystkich liczb rozmytych w postaci zbiorów odpowiednich α-przekrojów, faktycznie redukuje zagadnienie rozmyte w sie zagadnie programowania ostro-przedziałowego z wykorzystaniem probabilistycznej metody porównywania przedziałów [8, 9]. 3. Przykład numeryczny. Dla uproszczenia i przejrzystoci rezultatów przypumy e mamy tylko trzech producentów i trzech producentów =3; =3. W celu umoliwienia porównywania wyników programowania rozmytego z rezultatami otrzymanymi za pomoc tradycyjnej procedury onte-carlo bdziemy uywali parametrów niepewnych w pierwotnej postaci gstoci prawdopodobiestwa Gaussa z wartociami oczekiwanymi przedstawionymi w abstrakcyjnych jednostkach miary, j.m., w tablicy. Przy tym w celu uproszczenia odchylenie standardowe σ dla wszystkich gstoci przyjto równe 0 j.m. Tablica Wartoci oczekiwane rozkładów Gaussa niepewnych parametrów zagadnienia. a =460 b =40 p =440 q =390 t =600 s =000 k =590 r =990 a 2 = 460 b 2 =50 p 2 =440 q 2 =490 t 2 =49 s 2 =30 k 2 =480 r 2 =00 a 3 = 60 b 3 =60 p 3 =590 q 3 =590 t 3 =58 s 3 =97 k 3 =570 r 3 =80 c =00 c 2 =30 c 3 =00 c 2 =0 c 22 =36 c 23 =405

7 c 3 =20 c 32 =48 c 33 = Za pomoc procedury opisanej w rozdziale 2 gstoci prawdopodobiestwa przekształcone zostały w trapezoidalne przedziały rozmyte, które przedstawione s w formie cztero punktowej w tablicy 2 Tablica 2 Posta rozmyto-przedziałowa parametrów zagadnienia (4)-(6) â =[437, 455, 464, 479], â 2 =[437, 455, 464, 479], â 3 =[587, 605, 64, 629], pˆ =[47, 435, 444, 459], pˆ 2=[47, 435, 444, 459], pˆ 3=[567, 585, 594, 609], bˆ =[387, 405, 44, 429], bˆ 2=[487, 505, 54, 529], bˆ 3=[587, 605, 64, 629], qˆ =[367, 385, 394, 409], qˆ 2=[467, 485, 494, 509], qˆ 3=[567, 585, 594, 609], ĉ =[277, 295, 304, 39], ĉ 2 =[457, 475, 484, 499], ĉ 3 =[467, 485, 494, 509], ĉ 3 =[277, 295, 304, 39], ĉ 32 =[359, 377, 386, 40], ĉ 33 =[576, 594, 603, 68], ĉ 2 =[377, 395, 404, 49], ĉ 22 =[56, 579, 588, 603], ĉ 23 =[272, 290, 299, 34], Oprócz zagadnienia rozmyto-przedziałowego (4)-(6) zastosowano take tradycyjn procedur onte-carlo dla wartoci parametrów zagadnienia pierwotnego ()-(3) wylosowanych w zgodnoci z rozkładami prawdopodobiestwa Gaussa z wartociami oczekiwanymi przedstawionymi w tablicy i odchyleniami standardowymi σ =0. iektóre rezultaty porównywania wyników przedstawione s na rysunkach 4-8 Rys. 4 Graficzna reprezentacja optymalizowanego xˆ Rys. 5 Graficzna reprezentacja optymalizowanego xˆ 2

8 Rys. 6 Graficzna reprezentacja optymalizowanego xˆ 22 Rys. 7 Graficzna reprezentacja optymalizowanego xˆ Rys. 8 Graficzna reprezentacja optymalizowanego dochodu D: -metoda onte-carlo dla losowa; 2- metoda onte-carlo dla losowa; 3- metoda rozmytoprzedziałowa Widzimy, e w wyniku uywania procedury onte-carlo otrzymamy rezultaty niejednoznaczne: optymalizowane gstoci prawdopodobiestwa optymalizowanych ilo towaru kupowana u i tego producenta i sprzedawana j temu konsumentowi. x przedstawione s przez funkcj dwuekstremalne co sprawia pewne trudnoci w interpretacji rezultatów optymalizacji. Wyniki optymalizacji rozmytej s bliskie tym otrzymanym za pomoc procedury onte-carlo ale do zrozumiałe i jednoznaczne. Szeroko przedziałów rozmytych wynikowych jest wiksza ni wizualna szeroko gstoci prawdopodobiestwo jest rezultatem uwzgldnienia w procedurze rozmyto-przedziałowej nawet tych wartoci, których prawdopodobiestwo w zwykłym sensie jest prawie równe zero. Z rysunku 8 wynika, e dla otrzymania do gładkich funkcji prawdopodobiestwa gstoci dochodu potrzeba zbyt wielu losowa co faktycznie przekrela uywanie metody onte-carlo w praktyce.

9 Wszystko to wiadczy o skutecznoci i wystarczajcej dokładnoci proponowanego podejcia do rozmytoprzedziałowego problemu optymalizacji działalnoci dystrybutora. LITERATURA [] H. Isermann, The enumeration of all efficient solution for a linear multiple-objective transportation problem, aval Research Logistics Quarterly 26 (979) 23-39; [2] J.L. Ringuest, D.B. Rinks, Interactive solutions for the linear multiobjective transportation problem, European Journal of Operational Research 32 (987) [3] A.K. Bit,.P. Biswal, S.S. Alam, Fuzzy programming approach to multicriteria decision making transportation problem, Fuzzy Sets and Systems 50 (992) [4] S.K. Das, A. Goswami, S.S. Alam, ultiobjective transportation problem with interval cost, source and destination parameters, European Journal of Operational Research 7 (999) 00-2 [5] S. Chanas,. Delgado, J.L Verdegay and.a. Vila, Interval and fuzzy extensions of classical transportation problems, Transportation Planning Technol. 7(993) [6] S. Chanas, D. Kuchta, Fuzzy integer transportation problem, Fuzzy Sets and Systems 98 (998) [7] Waiel F. Abd El-Wahed, A multi-objective transportation problem under fuzziness, Fuzzy Sets and Systems 7 (200) [8] P. Sewastianow, P. Róg, K. Karczewski, A Probabilistic ethod for Ordering Group of Intervals, Informatyka teoretyczna i stosowana/computer Science. Politechnika Czstochowska, Rocznik 2, 2 (2002), [9] P. Sewastianow, P. Róg, A Probability Approach to Fuzzy and Crisp Intervals Ordering, Task Quarterly 7 o (2003), 47-56, Politechnika Czstochowska

OTYMALIZCJA DYSTRYBUCJI W WARUNKACH NIEPEWNOCI PROBABILISTYCZNEJ.

OTYMALIZCJA DYSTRYBUCJI W WARUNKACH NIEPEWNOCI PROBABILISTYCZNEJ. OTYALIZCJA DYSTRYBUCJI W WARUKACH IEPEWOCI PROBABILISTYCZEJ. arek Dolata, Aleksandra Ptak marek@zapr.com.pl Instytut Informatyki Teoretycznej i Stosowanej ul. Dbrowskiego 73, 42-200 Czstochowa Streszczenie.

Bardziej szczegółowo

WIELOKRYTERIALNA ROZMYTA OPTYMALIZCJA DYSTRYBUCJI W WARUNKACH NIEPEWNOCI

WIELOKRYTERIALNA ROZMYTA OPTYMALIZCJA DYSTRYBUCJI W WARUNKACH NIEPEWNOCI WIELOKRYTERIALA ROZYTA OPTYALIZCJA DYSTRYBUCJI W WARUKACH IEPEWOCI Ludmiła Dymowa, arek Dolata dymowa@icis.pcz.czest.pl, mailto:marek@zapr.pl Instytut Informatyki Teoretycznej i Stosowanej, Politechnika

Bardziej szczegółowo

WIELOKRYTERIALNA OPTYMALIZCJA DZIAŁALNOCI DYSTRYBUTORA W WARUNKACH NIEPEWNOCI

WIELOKRYTERIALNA OPTYMALIZCJA DZIAŁALNOCI DYSTRYBUTORA W WARUNKACH NIEPEWNOCI WIELOKRYTERIALA OPTYALIZCJA DZIAŁALOCI DYSTRYBUTORA W WARUKACH IEPEWOCI arek Dolata marek@zapr.com.pl Instytut Informatyki Teoretycznej i Stosowanej ul. Dbrowskiego 73, 42-200 Czstochowa Streszczenie.

Bardziej szczegółowo

WIELOKRYTERIALNE PORZĄDKOWANIE METODĄ PROMETHEE ODPORNE NA ZMIANY WAG KRYTERIÓW

WIELOKRYTERIALNE PORZĄDKOWANIE METODĄ PROMETHEE ODPORNE NA ZMIANY WAG KRYTERIÓW Uniwersytet Ekonomiczny we Wrocławiu WIELOKRYTERIALNE PORZĄDKOWANIE METODĄ PROMETHEE ODPORNE NA ZMIANY WAG KRYTERIÓW Wprowadzenie Wrażliwość wyników analizy wielokryterialnej na zmiany wag kryteriów, przy

Bardziej szczegółowo

Projektowanie i analiza zadaniowa interfejsu na przykładzie okna dialogowego.

Projektowanie i analiza zadaniowa interfejsu na przykładzie okna dialogowego. Projektowanie i analiza zadaniowa interfejsu na przykładzie okna dialogowego. Jerzy Grobelny Politechnika Wrocławska Projektowanie zadaniowe jest jednym z podstawowych podej do racjonalnego kształtowania

Bardziej szczegółowo

stopie szaro ci piksela ( x, y)

stopie szaro ci piksela ( x, y) I. Wstp. Jednym z podstawowych zada analizy obrazu jest segmentacja. Jest to podział obrazu na obszary spełniajce pewne kryterium jednorodnoci. Jedn z najprostszych metod segmentacji obrazu jest progowanie.

Bardziej szczegółowo

Optymalizacja procesów odlewania cigłego i walcowania tam w walcach-krystalizatorach

Optymalizacja procesów odlewania cigłego i walcowania tam w walcach-krystalizatorach Materiały. Konferencji Informatyka w Technologii Metali KomPlasTech24 Zakopane -4 stycznia 24 Optymalizacja procesów odlewania cigłego i walcowania tam w walcach-krystalizatorach P. Sewastjanow, L. Dymowa

Bardziej szczegółowo

Standardowe zadanie programowania liniowego. Gliwice 1

Standardowe zadanie programowania liniowego. Gliwice 1 Standardowe zadanie programowania liniowego 1 Standardowe zadanie programowania liniowego Rozważamy proces, w którym zmiennymi są x 1, x 2,, x n. Proces poddany jest m ograniczeniom, zapisanymi w postaci

Bardziej szczegółowo

Estymacja punktowa i przedziałowa

Estymacja punktowa i przedziałowa Temat: Estymacja punktowa i przedziałowa Kody znaków: żółte wyróżnienie nowe pojęcie czerwony uwaga kursywa komentarz 1 Zagadnienia 1. Statystyczny opis próby. Idea estymacji punktowej pojęcie estymatora

Bardziej szczegółowo

MODELOWANIE PROCESÓW EKSPLOATACJI MASZYN

MODELOWANIE PROCESÓW EKSPLOATACJI MASZYN Akademia Techniczno Rolnicza w Bydgoszczy Wojskowy Instytut Techniki Pancernej i Samochodowej MODELOWANIE PROCESÓW EKSPLOATACJI MASZYN BYDGOSZCZ SULEJÓWEK, 2002. 2 Akademia Techniczno Rolnicza w Bydgoszczy

Bardziej szczegółowo

Planowanie adresacji IP dla przedsibiorstwa.

Planowanie adresacji IP dla przedsibiorstwa. Planowanie adresacji IP dla przedsibiorstwa. Wstp Przy podejciu do planowania adresacji IP moemy spotka si z 2 głównymi przypadkami: planowanie za pomoc adresów sieci prywatnej przypadek, w którym jeeli

Bardziej szczegółowo

Temat: Problem najkrótszych cieek w grafach waonych, cz. I: Algorytmy typu label - setting.

Temat: Problem najkrótszych cieek w grafach waonych, cz. I: Algorytmy typu label - setting. Temat: Problem najkrótszych cieek w grafach waonych, cz. I: Algorytmy typu label - setting.. Oznaczenia i załoenia Oznaczenia G = - graf skierowany z funkcj wagi s wierzchołek ródłowy t wierzchołek

Bardziej szczegółowo

CAŠKOWANIE METODAMI MONTE CARLO Janusz Adamowski

CAŠKOWANIE METODAMI MONTE CARLO Janusz Adamowski III. CAŠKOWAIE METODAMI MOTE CARLO Janusz Adamowski 1 1 azwa metody Podstawowym zastosowaniem w zyce metody Monte Carlo (MC) jest opis zªo-»onych ukªadów zycznych o du»ej liczbie stopni swobody. Opis zªo»onych

Bardziej szczegółowo

KONKURENCJA DOSKONA!A

KONKURENCJA DOSKONA!A KONKURENCJA OSKONA!A Bez wzgl"du na rodzaj konkurencji, w jakiej uczestniczy firma, jej celem gospodarowania jest maksymalizacja zysku (minimalizacja straty) w krótkim okresie i maksymalizacja warto"ci

Bardziej szczegółowo

Plan. Zakres badań teorii optymalizacji. Teoria optymalizacji. Teoria optymalizacji a badania operacyjne. Badania operacyjne i teoria optymalizacji

Plan. Zakres badań teorii optymalizacji. Teoria optymalizacji. Teoria optymalizacji a badania operacyjne. Badania operacyjne i teoria optymalizacji Badania operacyjne i teoria optymalizacji Instytut Informatyki Poznań, 2011/2012 1 2 3 Teoria optymalizacji Teoria optymalizacji a badania operacyjne Teoria optymalizacji zajmuje się badaniem metod optymalizacji

Bardziej szczegółowo

PROBABILISTYKA I STATYSTYKA - Zadania do oddania

PROBABILISTYKA I STATYSTYKA - Zadania do oddania PROBABILISTYKA I STATYSTYKA - Zadania do oddania Parametr k = liczba trzycyfrowa, dwie ostatnie cyfry to dwie ostatnie cyfry numeru indeksu, pierwsza cyfra to pierwsza cyfra liczby liter pierwszego imienia.

Bardziej szczegółowo

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)

Bardziej szczegółowo

ZL - STATYSTYKA - Zadania do oddania

ZL - STATYSTYKA - Zadania do oddania ZL - STATYSTYKA - Zadania do oddania Parametr = liczba trzycyfrowa dwie ostatnie cyfry to dwie ostatnie cyfry numeru indesu pierwsza cyfra to pierwsza cyfra liczby liter pierwszego imienia. Poszczególne

Bardziej szczegółowo

Wymierne korzyci wynikajce z analizy procesów

Wymierne korzyci wynikajce z analizy procesów Wymierne korzyci wynikajce z analizy procesów Analiza procesu jest narzdziem do osignicia wyszej efektywnoci organizacji (midzy innymi). Wymaga ona zbudowania modelu procesu biznesowego bdcego opisem funkcjonowania

Bardziej szczegółowo

Definicja problemu programowania matematycznego

Definicja problemu programowania matematycznego Definicja problemu programowania matematycznego minimalizacja lub maksymalizacja funkcji min (max) f(x) gdzie: x 1 x R n x 2, czyli: x = [ ] x n przy ograniczeniach (w skrócie: p.o.) p.o. g i (x) = b i

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,

Bardziej szczegółowo

Problem decyzyjny naley do klasy NP. (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM.

Problem decyzyjny naley do klasy NP. (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM. WYKŁAD : Teoria NP-zupełnoci. Problem decyzyjny naley do klasy P (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM. (przynaleno ta jest zachowana równie dla

Bardziej szczegółowo

Wielokryterialna optymalizacja procesu odlewania cigłego z jednoczesnym walcowaniem tamy z chlorku miedzi

Wielokryterialna optymalizacja procesu odlewania cigłego z jednoczesnym walcowaniem tamy z chlorku miedzi Materiały. Konferencji Informatyka w Technologii Metali KomPlasTech24 Zakopane -4 stycznia 24 Wielokryterialna optymalizacja procesu odlewania cigłego z jednoczesnym walcowaniem tamy z chlorku miedzi L.

Bardziej szczegółowo

WYKŁAD 4 PLAN WYKŁADU. Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania. Metody uczenia sieci: Zastosowania

WYKŁAD 4 PLAN WYKŁADU. Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania. Metody uczenia sieci: Zastosowania WYKŁAD 4 Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania PLAN WYKŁADU Metody uczenia sieci: Uczenie perceptronu Propagacja wsteczna Zastosowania Sterowanie (powtórzenie) Kompresja obrazu Rozpoznawanie

Bardziej szczegółowo

Bazy danych Podstawy teoretyczne

Bazy danych Podstawy teoretyczne Pojcia podstawowe Baza Danych jest to zbiór danych o okrelonej strukturze zapisany w nieulotnej pamici, mogcy zaspokoi potrzeby wielu u!ytkowników korzystajcych z niego w sposóbs selektywny w dogodnym

Bardziej szczegółowo

Program Sprzeda wersja 2011 Korekty rabatowe

Program Sprzeda wersja 2011 Korekty rabatowe Autor: Jacek Bielecki Ostatnia zmiana: 14 marca 2011 Wersja: 2011 Spis treci Program Sprzeda wersja 2011 Korekty rabatowe PROGRAM SPRZEDA WERSJA 2011 KOREKTY RABATOWE... 1 Spis treci... 1 Aktywacja funkcjonalnoci...

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa

Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa Jacek Skorupski pok. 251 tel. 234-7339 jsk@wt.pw.edu.pl http://skorupski.waw.pl/mmt prezentacje ogłoszenia konsultacje: poniedziałek 16 15-18, sobota zjazdowa 9 40-10 25 Udział w zajęciach Kontrola wyników

Bardziej szczegółowo

Szacowanie ryzyka z wykorzystaniem zmiennej losowej o pramatkach rozmytych w oparciu o język BPFPRAL

Szacowanie ryzyka z wykorzystaniem zmiennej losowej o pramatkach rozmytych w oparciu o język BPFPRAL Szacowanie ryzyka z wykorzystaniem zmiennej losowej o pramatkach rozmytych w oparciu o język BPFPRAL Mgr inż. Michał Bętkowski, dr inż. Andrzej Pownuk Wydział Budownictwa Politechnika Śląska w Gliwicach

Bardziej szczegółowo

Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2

Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2 Document: Exercise*02*-*manual ---2014/11/12 ---8:31---page1of8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 Wybrane zagadnienia z

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji

Bardziej szczegółowo

Zarzdzanie i Inynieria Produkcji Studia drugiego stopnia o profilu: A P. Wykład 15 wiczenia 30 Laboratorium Projekt

Zarzdzanie i Inynieria Produkcji Studia drugiego stopnia o profilu: A P. Wykład 15 wiczenia 30 Laboratorium Projekt Podstawy optymalizacja w ach wytwarzania WM Zarzdzanie i Inynieria Produkcji Studia drugiego stopnia o profilu: A P Przedmiot: Optymalizacja w ach wytwarzania Status przedmiotu: obowizkowy Kod: ZIP S 0

Bardziej szczegółowo

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Zastosowanie eliptycznych równa«ró»niczkowych

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Zastosowanie eliptycznych równa«ró»niczkowych Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdziaª 9 RÓWNANIA ELIPTYCZNE 9.1 Zastosowanie eliptycznych równa«ró»niczkowych cz stkowych 9.1.1 Problemy z warunkami brzegowymi W przestrzeni dwuwymiarowej

Bardziej szczegółowo

Projektowanie algorytmów rekurencyjnych

Projektowanie algorytmów rekurencyjnych C9 Projektowanie algorytmów rekurencyjnych wiczenie 1. Przeanalizowa działanie poniszego algorytmu dla parametru wejciowego n = 4 (rysunek 9.1): n i i

Bardziej szczegółowo

Statyczna próba skrcania

Statyczna próba skrcania Laboratorium z Wytrzymałoci Materiałów Statyczna próba skrcania Instrukcja uzupełniajca Opracował: Łukasz Blacha Politechnika Opolska Katedra Mechaniki i PKM Opole, 2011 2 Wprowadzenie Do celów wiczenia

Bardziej szczegółowo

Ustalenie optymalnego układu lokalizacyjnodystrybucyjnego

Ustalenie optymalnego układu lokalizacyjnodystrybucyjnego 10.02.2005 r. Optymalizacja lokalizacji i rejonizacji w sieciach dystrybucji. cz. 2. Ustalenie optymalnego układu lokalizacyjnodystrybucyjnego dla wielu uczestników Przyczyn rozwizywania problemu wielu

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

PROGRAMOWANIE DYNAMICZNE W ROZMYTYM OTOCZENIU DO STEROWANIA STATKIEM

PROGRAMOWANIE DYNAMICZNE W ROZMYTYM OTOCZENIU DO STEROWANIA STATKIEM Mostefa Mohamed-Seghir Akademia Morska w Gdyni PROGRAMOWANIE DYNAMICZNE W ROZMYTYM OTOCZENIU DO STEROWANIA STATKIEM W artykule przedstawiono propozycję zastosowania programowania dynamicznego do rozwiązywania

Bardziej szczegółowo

Metody numeryczne i statystyka dla in»ynierów

Metody numeryczne i statystyka dla in»ynierów Kierunek: Automatyka i Robotyka, II rok Wprowadzenie PWSZ Gªogów, 2009 Plan wykªadów Wprowadzenie, podanie zagadnie«, poj cie metody numerycznej i algorytmu numerycznego, obszar zainteresowa«i stosowalno±ci

Bardziej szczegółowo

Statystyka. Wykład 4. Magdalena Alama-Bućko. 19 marca Magdalena Alama-Bućko Statystyka 19 marca / 33

Statystyka. Wykład 4. Magdalena Alama-Bućko. 19 marca Magdalena Alama-Bućko Statystyka 19 marca / 33 Statystyka Wykład 4 Magdalena Alama-Bućko 19 marca 2018 Magdalena Alama-Bućko Statystyka 19 marca 2018 1 / 33 Analiza struktury zbiorowości miary położenia ( miary średnie) miary zmienności (rozproszenia,

Bardziej szczegółowo

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Marcin Zajenkowski Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Krzywa normalna, krzywa Gaussa, rozkład normalny Rozkłady liczebności wielu pomiarów fizycznych, biologicznych

Bardziej szczegółowo

Metody Informatyczne w Budownictwie Metoda Elementów Skoczonych ZADANIE NR 1

Metody Informatyczne w Budownictwie Metoda Elementów Skoczonych ZADANIE NR 1 Metody Informatyczne w Budownictwie Metoda Elementów Skoczonych ZADANIE NR 1 Wyznaczy wektor sił i przemieszcze wzłowych dla układu elementów przedstawionego na rysunku poniej (rysunek nie jest w skali!).

Bardziej szczegółowo

Projekt okablowania strukturalnego dla I semestru Akademii CISCO we WSIZ Copernicus we Wrocławiu

Projekt okablowania strukturalnego dla I semestru Akademii CISCO we WSIZ Copernicus we Wrocławiu Przygotował: mgr in. Jarosław Szybiski Projekt okablowania strukturalnego dla I semestru Akademii CISCO we WSIZ Copernicus we Wrocławiu 1. Wstp Okablowanie strukturalne to pojcie, którym okrela si specyficzne

Bardziej szczegółowo

Wielokryteriowa optymalizacja liniowa

Wielokryteriowa optymalizacja liniowa Wielokryteriowa optymalizacja liniowa 1. Przy decyzjach złożonych kierujemy się zwykle więcej niż jednym kryterium. Postępowanie w takich sytuacjach nie jest jednoznaczne. Pojawiło się wiele sposobów dochodzenia

Bardziej szczegółowo

Statystyka. Wykład 4. Magdalena Alama-Bućko. 13 marca Magdalena Alama-Bućko Statystyka 13 marca / 41

Statystyka. Wykład 4. Magdalena Alama-Bućko. 13 marca Magdalena Alama-Bućko Statystyka 13 marca / 41 Statystyka Wykład 4 Magdalena Alama-Bućko 13 marca 2017 Magdalena Alama-Bućko Statystyka 13 marca 2017 1 / 41 Na poprzednim wykładzie omówiliśmy następujace miary rozproszenia: Wariancja - to średnia arytmetyczna

Bardziej szczegółowo

Ekonometria Bayesowska

Ekonometria Bayesowska Ekonometria Bayesowska Wykªad 9: Metody numeryczne: MCMC Andrzej Torój 1 / 17 Plan wykªadu Wprowadzenie 1 Wprowadzenie 3 / 17 Plan prezentacji Wprowadzenie 1 Wprowadzenie 3 3 / 17 Zastosowanie metod numerycznych

Bardziej szczegółowo

E2 - PROBABILISTYKA - Zadania do oddania

E2 - PROBABILISTYKA - Zadania do oddania E - PROBABILISTYKA - Zadania do oddania Parametr k = liczba trzycyfrowa dwie ostatnie cyfry to dwie ostatnie cyfry numeru indeksu pierwsza cyfra to pierwsza cyfra liczby liter pierwszego imienia. Poszczególne

Bardziej szczegółowo

Zrównowaona technologia elementem współczesnych metod zarzdzania produkcj

Zrównowaona technologia elementem współczesnych metod zarzdzania produkcj AMME 2001 10th JUBILEE INTERNATIONAL SC IENTIFIC CONFERENCE Zrównowaona technologia elementem współczesnych metod zarzdzania produkcj R. Nowosielski, M. Spilka Zakład Materiałów Nanokrystalicznych i Funkcjonalnych

Bardziej szczegółowo

Plan wykładu. Reguły asocjacyjne. Przykłady asocjacji. Reguły asocjacyjne. Jeli warunki to efekty. warunki efekty

Plan wykładu. Reguły asocjacyjne. Przykłady asocjacji. Reguły asocjacyjne. Jeli warunki to efekty. warunki efekty Plan wykładu Reguły asocjacyjne Marcin S. Szczuka Wykład 6 Terminologia dla reguł asocjacyjnych. Ogólny algorytm znajdowania reguł. Wyszukiwanie czstych zbiorów. Konstruowanie reguł - APRIORI. Reguły asocjacyjne

Bardziej szczegółowo

Rozwiązanie Ad 1. Model zadania jest następujący:

Rozwiązanie Ad 1. Model zadania jest następujący: Przykład. Hodowca drobiu musi uzupełnić zawartość dwóch składników odżywczych (A i B) w produktach, które kupuje. Rozważa cztery mieszanki: M : M, M i M. Zawartość składników odżywczych w poszczególnych

Bardziej szczegółowo

OGNIWO PALIWOWE W UKŁADACH ZASILANIA POTRZEB WŁASNYCH

OGNIWO PALIWOWE W UKŁADACH ZASILANIA POTRZEB WŁASNYCH Antoni DMOWSKI, Politechnika Warszawska, Instytut Elektroenergetyki Bartłomiej KRAS, APS Energia OGNIWO PALIWOWE W UKŁADACH ZASILANIA POTRZEB WŁASNYCH 1. Wstp Obecne rozwizania podtrzymania zasilania obwodów

Bardziej szczegółowo

Cloud Computing - czego wymaga od dostawcy usług w zakresie bezpieczestwa. Telekomunikacja Polska S.A. Andrzej Karpiski Łukasz Pisarczyk

Cloud Computing - czego wymaga od dostawcy usług w zakresie bezpieczestwa. Telekomunikacja Polska S.A. Andrzej Karpiski Łukasz Pisarczyk Cloud Computing - czego wymaga od dostawcy usług w zakresie bezpieczestwa Telekomunikacja Polska S.A. Andrzej Karpiski Łukasz Pisarczyk 1 AGENDA Wprowadzenie Aspekty bezpieczestwa usługi Cloud Computing

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.

Bardziej szczegółowo

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskiego 8, 04-703 Warszawa tel. (0)

Bardziej szczegółowo

Aproksymacja funkcji a regresja symboliczna

Aproksymacja funkcji a regresja symboliczna Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą

Bardziej szczegółowo

Cash flow projektu zakładajcego posiadanie własnego magazynu oraz posiłkowanie si magazynem obcym w przypadku sezonowych zwyek

Cash flow projektu zakładajcego posiadanie własnego magazynu oraz posiłkowanie si magazynem obcym w przypadku sezonowych zwyek Optymalizacja zaangaowania kapitałowego 4.01.2005 r. w decyzjach typu make or buy. Magazyn czy obcy cz. 2. Cash flow projektu zakładajcego posiadanie własnego magazynu oraz posiłkowanie si magazynem obcym

Bardziej szczegółowo

Teraz bajty. Informatyka dla szkół ponadpodstawowych. Zakres rozszerzony. Część 1.

Teraz bajty. Informatyka dla szkół ponadpodstawowych. Zakres rozszerzony. Część 1. Teraz bajty. Informatyka dla szkół ponadpodstawowych. Zakres rozszerzony. Część 1. Grażyna Koba MIGRA 2019 Spis treści (propozycja na 2*32 = 64 godziny lekcyjne) Moduł A. Wokół komputera i sieci komputerowych

Bardziej szczegółowo

Amortyzacja rodków trwałych

Amortyzacja rodków trwałych Amortyzacja rodków trwałych Wydawnictwo Podatkowe GOFIN http://www.gofin.pl/podp.php/190/665/ Dodatek do Zeszytów Metodycznych Rachunkowoci z dnia 2003-07-20 Nr 7 Nr kolejny 110 Warto pocztkow rodków trwałych

Bardziej szczegółowo

Liczby rzeczywiste poziom Arkusz podstawowy

Liczby rzeczywiste poziom Arkusz podstawowy Liczby rzeczywiste poziom Arkusz podstawowy I Egzamin maturalny z matematyki 7 Zadanie 6. (6 Zadanie. (6 Źródło: CKE 5 (PP), zad. 6. Dane s zbiory liczb rzeczywistych: A : B : 8 6 Zapisz w postaci przedziaów

Bardziej szczegółowo

Metody ilociowe w zarzdzaniu

Metody ilociowe w zarzdzaniu Metody ilociowe w zarzdzaniu WZ Zarzdzanie i Inynieria Produkcji Studia I stopnia o profilu: A P P1rzedmiot: Metody ilociowe w zarzdzaniu Kod przedmiotu ZIP 1 S 07 64-0 -0 Status przedmiotu: Przedmiot

Bardziej szczegółowo

ROZPORZDZENIE KOMISJI (WE) NR 69/2001. z dnia 12 stycznia 2001 r.

ROZPORZDZENIE KOMISJI (WE) NR 69/2001. z dnia 12 stycznia 2001 r. ROZPORZDZENIE KOMISJI (WE) NR 69/2001 z dnia 12 stycznia 2001 r. w sprawie zastosowania art. 87 i 88 Traktatu WE w odniesieniu do pomocy w ramach zasady de minimis KOMISJA WSPÓLNOT EUROPEJSKICH, uwzgldniajc

Bardziej szczegółowo

PREZENTACJA DZIAŁANIA KLASYCZNEGO ALGORYTMU GENETYCZNEGO

PREZENTACJA DZIAŁANIA KLASYCZNEGO ALGORYTMU GENETYCZNEGO Piotr Borowiec PREZENTACJA DZIAŁANIA KLASYCZNEGO ALGORYTMU GENETYCZNEGO Sporód wielu metod sztucznej inteligencji obliczeniowej algorytmy genetyczne doczekały si wielu implementacji. Mona je wykorzystywa

Bardziej szczegółowo

DDK-076-115/04/VP Warszawa, 02 czerwca 2004 r.

DDK-076-115/04/VP Warszawa, 02 czerwca 2004 r. Korespondencja w sprawie wystpienia Odpowied Prezesa Urzdu Ochrony Konkurencji i Konsumentów na wystpienie Generalnego Inspektora Ochrony Danych Osobowych. PREZES URZDU OCHRONY KONKURENCJI I KONSUMENTÓW

Bardziej szczegółowo

IV Powiatowy Konkurs Matematyka, Fizyka i Informatyka w Technice Etap finałowy 1 kwietnia 2016

IV Powiatowy Konkurs Matematyka, Fizyka i Informatyka w Technice Etap finałowy 1 kwietnia 2016 IV Powiatowy Konkurs Matematyka, Fizyka i Informatyka w Technice Etap finałowy 1 kwietnia 2016 (imi i nazwisko uczestnika) (nazwa szkoły) Arkusz zawiera 8 zada. Zadania 1 i 2 bd oceniane dla kadego uczestnika,

Bardziej szczegółowo

Objanienia dotyczce sposobu wypełniania tabel

Objanienia dotyczce sposobu wypełniania tabel INSTRUKCJA WYPEŁNIANIA TABEL W PEŁNYM PLANIE PROJEKTU DZIAŁANIE UŁATWIANIE STARTU MŁODYM ROLNIKOM SEKTOROWEGO PROGRAMU OPERACYJNEGO "RESTRUKTURYZACJA I MODERNIZACJA SEKTORA YWNOCIOWEGO ORAZ ROZWÓJ OBSZARÓW

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. 1. x y x y

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. 1. x y x y Nr zadania Nr czynnoci Przykadowy zestaw zada nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Etapy rozwizania zadania. Podanie dziedziny funkcji f: 6, 8.. Podanie wszystkich

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Aleksandra Ki±lak-Malinowska akis@uwm.edu.pl http://wmii.uwm.edu.pl/ akis/ Czym zajmuje si statystyka? Statystyka zajmuje si opisywaniem i analiz zjawisk masowych otaczaj cej czªowieka

Bardziej szczegółowo

Ekonometria. wiczenia 7 Modele nieliniowe. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej

Ekonometria. wiczenia 7 Modele nieliniowe. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej Ekonometria wiczenia 7 Modele nieliniowe (7) Ekonometria 1 / 19 Plan wicze«1 Nieliniowo± : co to zmienia? 2 Funkcja produkcji Cobba-Douglasa 3 Nieliniowa MNK (7) Ekonometria 2 / 19 Plan prezentacji 1 Nieliniowo±

Bardziej szczegółowo

Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie

Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie OPIS ZAGADNIENIA Zagadnienie transportowe służy głównie do obliczania najkorzystniejszego

Bardziej szczegółowo

Temat: Technika zachłanna. Przykłady zastosowania. Własno wyboru zachłannego i optymalnej podstruktury.

Temat: Technika zachłanna. Przykłady zastosowania. Własno wyboru zachłannego i optymalnej podstruktury. Temat: Technika zachłanna. Przykłady zastosowania. Własno wyboru zachłannego i optymalnej podstruktury. Algorytm zachłanny ( ang. greedy algorithm) wykonuje zawsze działanie, które wydaje si w danej chwili

Bardziej szczegółowo

Dyskretyzacja sygnałów cigłych.

Dyskretyzacja sygnałów cigłych. POLITECHNIKA LSKA WYDZIAŁ INYNIERII RODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZDZE ENERGETYCZNYCH LABORATORIUM METROLOGII Dyskretyzacja sygnałów cigłych. (M 15) www.imiue.polsl.pl/~wwwzmiape Opracował:

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy

Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy

Bardziej szczegółowo

Sposoby przekazywania parametrów w metodach.

Sposoby przekazywania parametrów w metodach. Temat: Definiowanie i wywoływanie metod. Zmienne lokalne w metodach. Sposoby przekazywania parametrów w metodach. Pojcia klasy i obiektu wprowadzenie. 1. Definiowanie i wywoływanie metod W dotychczas omawianych

Bardziej szczegółowo

Rozkład Gaussa i test χ2

Rozkład Gaussa i test χ2 Rozkład Gaussa jest scharakteryzowany dwoma parametramiwartością oczekiwaną rozkładu μ oraz dyspersją σ: METODA 2 (dokładna) polega na zmianie zmiennych i na obliczeniu pk jako różnicy całek ze standaryzowanego

Bardziej szczegółowo

ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ

ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ Zalety: nie wprowadzają żadnych ograniczeń na sformułowanie problemu optymalizacyjnego. Funkcja celu może być wielowartościowa i nieciągła, obszar

Bardziej szczegółowo

In»ynierskie zastosowania statystyki wiczenia

In»ynierskie zastosowania statystyki wiczenia Uwagi: 27012014 poprawiono kilka literówek, zwi zanych z przedziaªami ufno±ci dla wariancji i odchylenia standardowego In»ynierskie zastosowania statystyki wiczenia Przedziaªy wiarygodno±ci, testowanie

Bardziej szczegółowo

Ekonometria Bayesowska

Ekonometria Bayesowska Ekonometria Bayesowska Wykªad 6: Bayesowskie ª czenie wiedzy (6) Ekonometria Bayesowska 1 / 21 Plan wykªadu 1 Wprowadzenie 2 Oczekiwana wielko± modelu 3 Losowanie próby modeli 4 wiczenia w R (6) Ekonometria

Bardziej szczegółowo

WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH

WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH Dobrze przygotowane sprawozdanie powinno zawierać następujące elementy: 1. Krótki wstęp - maksymalnie pół strony. W krótki i zwięzły

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X.

STATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X. STATYSTYKA MATEMATYCZNA WYKŁAD 4 WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X. Wysuwamy hipotezy: zerową (podstawową H ( θ = θ i alternatywną H, która ma jedną z

Bardziej szczegółowo

Jeśli X jest przestrzenią o nieskończonej liczbie elementów:

Jeśli X jest przestrzenią o nieskończonej liczbie elementów: Logika rozmyta 2 Zbiór rozmyty może być formalnie zapisany na dwa sposoby w zależności od tego z jakim typem przestrzeni elementów mamy do czynienia: Jeśli X jest przestrzenią o skończonej liczbie elementów

Bardziej szczegółowo

Zadania ze statystyki, cz.6

Zadania ze statystyki, cz.6 Zadania ze statystyki, cz.6 Zad.1 Proszę wskazać, jaką część pola pod krzywą normalną wyznaczają wartości Z rozkładu dystrybuanty rozkładu normalnego: - Z > 1,25 - Z > 2,23 - Z < -1,23 - Z > -1,16 - Z

Bardziej szczegółowo

Inteligentna analiza danych

Inteligentna analiza danych Numer indeksu 150946 Michał Moroz Imię i nazwisko Numer indeksu 150875 Grzegorz Graczyk Imię i nazwisko kierunek: Informatyka rok akademicki: 2010/2011 Inteligentna analiza danych Ćwiczenie I Wskaźniki

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1. Matematyka poziom podstawowy Wyznaczanie wartoci funkcji dla danych argumentów i jej miejsca zerowego. Zdajcy

Bardziej szczegółowo

Metody numeryczne w przykładach

Metody numeryczne w przykładach Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 1

INSTRUKCJA DO ĆWICZENIA NR 1 L01 ---2014/10/17 ---10:52---page1---#1 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 1 PRZEDMIOT TEMAT Wybrane zagadnienia z optymalizacji elementów

Bardziej szczegółowo

Rozdział 1 Przepisy ogólne

Rozdział 1 Przepisy ogólne ROZPORZDZENIE MINISTRA FINANSÓW z dnia 17 listopada 1998 r. w sprawie ogólnych warunków obowizkowego ubezpieczenia odpowiedzialnoci cywilnej podmiotu przyjmujcego zamówienie na wiadczenia zdrowotne za

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

Spis treści 377 379 WSTĘP... 9

Spis treści 377 379 WSTĘP... 9 Spis treści 377 379 Spis treści WSTĘP... 9 ZADANIE OPTYMALIZACJI... 9 PRZYKŁAD 1... 9 Założenia... 10 Model matematyczny zadania... 10 PRZYKŁAD 2... 10 PRZYKŁAD 3... 11 OPTYMALIZACJA A POLIOPTYMALIZACJA...

Bardziej szczegółowo

I Powiatowy Konkurs Matematyka, Fizyka i Informatyka w Technice Etap finałowy 10 kwietnia 2013 grupa elektryczno-elektroniczna

I Powiatowy Konkurs Matematyka, Fizyka i Informatyka w Technice Etap finałowy 10 kwietnia 2013 grupa elektryczno-elektroniczna I Powiatowy Konkurs Matematyka, Fizyka i Informatyka w Technice Etap finałowy 10 kwietnia 2013 grupa elektryczno-elektroniczna (imi i nazwisko uczestnika) (nazwa szkoły) Arkusz zawiera 6 zada. Zadania

Bardziej szczegółowo

wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. Metodyka bada«do±wiadczalnych dr hab. in». Sebastian Skoczypiec Cel wiczenia Zaªo»enia

wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. Metodyka bada«do±wiadczalnych dr hab. in». Sebastian Skoczypiec Cel wiczenia Zaªo»enia wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. wiczenia 1 2 do wiczenia 3 4 Badanie do±wiadczalne 5 pomiarów 6 7 Cel Celem wiczenia jest zapoznanie studentów z etapami przygotowania i

Bardziej szczegółowo

IMPLIKACJE ZASTOSOWANIA KODOWANIA OPARTEGO NA LICZBACH CAŁKOWITYCH W ALGORYTMIE GENETYCZNYM

IMPLIKACJE ZASTOSOWANIA KODOWANIA OPARTEGO NA LICZBACH CAŁKOWITYCH W ALGORYTMIE GENETYCZNYM IMPLIKACJE ZASTOSOWANIA KODOWANIA OPARTEGO NA LICZBACH CAŁKOWITYCH W ALGORYTMIE GENETYCZNYM Artykuł zawiera opis eksperymentu, który polegał na uyciu algorytmu genetycznego przy wykorzystaniu kodowania

Bardziej szczegółowo

1. W cz ci SKOK FIO Aktywny Zmiennej Alokacji, w pkt 1.1.b) skre lono s owa: Katarzyna Uniwersa Wiceprezes Zarz du,

1. W cz ci SKOK FIO Aktywny Zmiennej Alokacji, w pkt 1.1.b) skre lono s owa: Katarzyna Uniwersa Wiceprezes Zarz du, Przytoczenie zmian w prospekcie informacyjnym Funduszy: SKOK Fundusz Inwestycyjny Otwarty Aktywny Zmiennej Alokacji, SKOK Fundusz Inwestycyjny Otwarty Stabilny Zmiennej Alokacji. I. Strona tytuowa: W ostatnim

Bardziej szczegółowo

CZY WARTO MIE AUTO NA SPÓŁK Z PRACODAWC?

CZY WARTO MIE AUTO NA SPÓŁK Z PRACODAWC? CZY WARTO MIE AUTO NA SPÓŁK Z PRACODAWC? Artykuł omawia zalety podatkowe umownego ustanowienia pomidzy pracodawc i pracownikiem współwłasnoci samochodu osobowego Cel słubowy, cel prywatny droga pod górk

Bardziej szczegółowo

PROCEDURY REGULACYJNE STEROWNIKÓW PROGRAMOWALNYCH (PLC)

PROCEDURY REGULACYJNE STEROWNIKÓW PROGRAMOWALNYCH (PLC) PROCEDURY REGULACYJNE STEROWNIKÓW PROGRAMOWALNYCH (PLC) W dotychczasowych systemach automatyki przemysłowej algorytm PID był realizowany przez osobny regulator sprztowy - analogowy lub mikroprocesorowy.

Bardziej szczegółowo

INFORMACJA-PORÓWNANIE

INFORMACJA-PORÓWNANIE INFORMACJA-PORÓWNANIE WODOMIERZE WPROWADZANE NA RYNEK W OPARCIU O DYREKTYW 2004/22/EC MID (MEASURING INSTRUMENTS DIRECTIVE) / a wodomierze produkowane wg poprzedniej regulacji prawnej (GUM) WPROWADZENIE

Bardziej szczegółowo

Miary statystyczne w badaniach pedagogicznych

Miary statystyczne w badaniach pedagogicznych Miary statystyczne w badaniach pedagogicznych Szeregi statystyczne Szczegółowy - gdzie materiał uporządkowany jest rosnąco lub malejąco Rozdzielczy - gdzie poszczególnym wariantom zmiennej przyporządkowane

Bardziej szczegółowo