Zastosowanie testu CAPM do nieprecyzyjnego określenia efektywności papieru wartościowego

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zastosowanie testu CAPM do nieprecyzyjnego określenia efektywności papieru wartościowego"

Transkrypt

1 1 Krzysztof Piasecki Akademia Ekonomiczna w Poznaniu Zastosowanie testu CAPM do nieprecyzyjnego określenia ektywności papieru wartościowego Problem badawczy W klasycznym ujęciu instrument finansowy nazywamy ektywnym, jeśli oczekiwana stopa zwrotu z tego instrumentu jest maksymalną stopą zwrotu możliwą do osiągnięcia przy zadanym poziomie ryzyka. Oczywistym jest, że racjonalnie zachowujący się inwestorzy powinni inwestować jedynie w ektywne instrumenty finansowe. W praktyce jednak tak nie jest. Inwestorzy inwestują wielokrotnie w takie instrumenty finansowe, które są jedynie zbliżone do ektywnych. W [KP5] wskazano, że wyjaśnieniem takiej sytuacji może być nieprecyzyjne określenie samego pojęcia ektywności instrumentu finansowego. Do opisu tej nieprecyzji zasugerowano tam zastosować teorię podzbiorów rozmytych. Sugestia ta została uzasadniona w oparciu o przesłanki formalne. Następnie w [KP6] zaproponowaną pewną ekonometryczną metodę wyznaczania funkcji przynależności rozmytego podzbioru ektywnych instrumentów finansowych. Wykorzystano tam adaptację pochodzącej od Markowitz a klasycznej dinicji ektywnego instrumentu finansowego. W niniejszej pracy zostanie zaproponowana kolejna ekonometryczna metoda wyznaczania rozmytego podzbioru ektywnych instrumentów finansowych. Tym razem wykorzystana zostanie znana relacja pomiędzy ektywnością instrumentu finansowego, a faktem istnienia modelu CAPM opisującego zmienność oczekiwanej stopy zwrotu z tego instrumentu. 1. Wybrane pojęcia teorii zbiorów rozmytych. pojęcia Rozważania nasze ograniczymy do rodziny 0,1 R wszystkich podzbiorów rozmytych w przestrzeni liczb rozmytych. Dowolny rozmyty podzbiór A ~ 0, 1 R reprezentować będziemy przy pomocy jego funkcji przynależności A : R 0,1. W całej pracy zakładać będziemy, że działania sumy, iloczynu i dopełnienia zbiorów rozmytych zostały określone w sposób zaproponowany pierwotnie przez L. A. Zadeha.

2 2 Liczbą rozmytą (Dubois, Prade, 1979) nazywamy każdy podzbiór ~ rozmyty M 0, 1 R spełniający dodatkowo warunki, (1) x, z R : y min x, z y. (2) M Niech będzie dana ustalona przestrzeń probabilistyczna,, P. Wtedy dowolny probabilistyczny zbiór (Hirota, 1981) liczb rzeczywistych Ĥ jest dany jako rodzina zbiorów rozmytych ~ R H 0,1 : indeksowana przez zdarzenia elementarne. H ~ przynależności Każdy zbiór rozmyty jest reprezentowany przy pomocy funkcji, : R 0,1. Oznacza to, że zbiór probabilistyczny H Ĥ jest reprezentowany jednoznacznie przez indeksowaną rodzinę funkcji, : R 0,1. Stopień przynależenia dowolnej przynależności H liczby rzeczywistej do zbioru probabilistycznego Ĥ określamy wtedy jako funkcję H x, : 0,1. Dodatkowo zakładamy tutaj, że stopień przynależenia dowolnej liczby rzeczywistej do zbioru probabilistycznego jest zmienną losową na ciele zdarzeń losowych. W szczególnym przypadku także dowolną zmienną losowej : R na możemy jednoznacznie opisać przy pomocy zbioru probabilistycznego reprezentowanego przez poniższą rodzinę funkcji przynależności M 1 x, : x, (3) 0 x. Oczekiwaniami zbioru probabilistycznego Ĥ nazywamy zbiór ~ Hˆ 0, 1 reprezentowany w jednoznaczny sposób przez : R 0,1 określoną przy pomocy rozmyty R funkcję przynależności tożsamości H, dp (4) H x H x M

3 3 i nazywaną dalej rozkładem oczekiwań. Jeśli zbiór probabilistyczny ˆ reprezentuje zmienna losową : R, to wtedy rozkład jego oczekiwań jest identyczny z funkcją gęstości rozkładu zmiennej losowej. Założenie, że zbiór probabilistyczny Ĥ jest reprezentowany przez indeksowaną rodzinę liczb rozmytych nie jest warunkiem dostatecznym na to, aby oczekiwania ~ H były liczbą rozmytą. Dla dowolnego podzbioru rozmytego A ~ 0, 1 R wprowadzamy pojęcie wartości przeciętnej A ~ zdiniowanej w następujący sposób ~ A x R A x dx. (5) Jeśli zbiór probabilistyczny ˆ reprezentuje zmienna losową ~ : R, to wtedy wartość przeciętna jego oczekiwań ˆ jest identyczna z wartością oczekiwaną zmiennej losowej. Stanowi to przesłankę do uogólnienia pojęcia wartości oczekiwanej do przypadku dowolnego probabilistycznego zbioru Ĥ liczb rzeczywistych. Wartością oczekiwaną probabilistycznego zbioru Ĥ liczb rzeczywistych daną przy pomocy zależności nazywamy liczbę Ĥ ~ H H ˆ x x, ˆ dpdx. (6) R H Przyjęcie powyższej dinicji oznacza, że wartość oczekiwaną identyfikujemy z wartością przeciętną oczekiwań. Posługiwanie się wartością oczekiwaną zamiast posługiwaniem się oczekiwaniami jest co prawda prostsze, ale oznacza rezygnację z dużej części dostępnej wiedzy. Dlatego wartym zalecenia jest zawsze poszerzenie analizy opartej na wartościach oczekiwanych o analizę opartą o rozkłady oczekiwań. 2.Model reprezentacji instrumentu finansowego Niech będzie dany zbiór elementarnych stanów rynku finansowego obejmujących też stany wiedzy ekspertów i inwestorów o tymże rynku finansowym. Dla pewnego ciała zdarzeń losowych

4 4 2 znany jest rozkład prawdopodobieństwa P : 0,1. Jeśli posiadane informacje o rynku finansowym nie pozwalają na sprecyzowanie takiego rozkładu, to wtedy możemy się posłużyć zasadą totalnej ignorancji Walda. Rozważamy ekty zainwestowania w pewien ustalony instrument finansowy na zadany okres czasu. Każdemu elementarnemu stanowi przypisujemy elementarną prognozę stopy zwrotu z tego instrumentu daną jako liczba rozmyta r~ reprezentowana przez funkcję przynależności, : R 0,1. W ten sposób otrzymujemy probabilistyczny zbiór R ˆ ~ r : nazywany dalej prognozą stopy zwrotu. Zakładamy tutaj, że dla dowolnej liczby rzeczywistej R x, przynależności do prognozy stopy x jej stopień zwrotu Rˆ jest zmienna losową. Korzystają teraz kolejno z (4) i (6) wyznaczamy rozkład oczekiwań stopy zwrotu : R 0,1 dany przy pomocy tożsamości x x, dp, (7) oraz oczekiwaną stopę zwrotu r R x x, dpdx. (8) Każdą z wartości rozkładu oczekiwań x interpretujemy jako ocenianą w ujęciu logiki wielowartościowej wartość logiczną zdania Stopa zwrotu osiągnie wartość x. Zauważmy tutaj, że zastąpienie porównywania oczekiwanych stóp zwrotu poprzez porównywanie rozkładów oczekiwań prowadzi do uogólnienia kryterium dominacji stochastycznej (Bava,1975) do przypadku rozmytej relacji określonej na zbiorze stóp zwrotu prognozowanych przy pomocy zbiorów probabilistycznych. Korzystanie z prognozy stopy zwrotu przy zarządzaniu inwestycjami finansowymi jest między innymi obarczone ryzykiem niepewności wynikającym z niewiedzy na temat przyszłego stanu 0 świata finansowego. Cechy tego ryzyka zwyczajowo określa się przy pomocy analizy właściwości kwadratu różnicy pomiędzy poszczególnymi prognozami stopy zwrotu a oczekiwana stopą zwrotu. W

5 5 przypadku prognoz stopy zwrotu danych jako liczby rozmyte, dla dowolnego stanu kwadrat różnicy elementarnej rozmytej prognozy stopy zwrotu r~ i oczekiwanej stopy zwrotu r jest liczbą rozmyta opisaną przy pomocy funkcji przynależności max r x,, r x, x, x 0, (9) 0 x 0. W ten sposób kwadrat różnicy prognozy stopy zwrotu Rˆ i oczekiwanej stopy zwrotu r został przedstawiony jako probabilistyczny zbiór ˆ jednoznacznie określony przez rodzinę funkcji przynależności (9) nazywany dalej kwadratem residuum stopy zwrotu. W [KP5] pokazano, że w przypadku rozpatrywania stopy zwrotu danej jako zbiór 2 probabilistyczny Rˆ, wariancja stopy zwrotu jest zdiniowana jako oczekiwany kwadrat residuum stopy zwrotu wyznaczany za pomocą zależności R 2 x x, dpdx. (10) 2 Wyznaczona w ten sposób wariancja może być wykorzystana jako ocena ryzyka niepewności. W ten sposób dowolny portfel dopuszczalny 2 w teorii Markowitza może być reprezentowany przez parę r, R lub przez parę, 0, 1 R R. W przypadku pierwszej pary zbiór portfeli ektywnych jest górna gałęzią krzywej Markowitza. Rodzi to pewne trudności aplikacyjne, gdyż inwestorzy inwestują na ogół w portfele lezące poniżej gałęzi portfeli ektywnych, a więc z punktu widzenia tej teorii w portfele nieektywne. Natomiast w przypadku, kiedy stopa zwrotu jest opisana przy pomocy swego rozkładu, zbiór portfeli ektywnych staje się podzbiorem rozmytym o nośniku rozpiętym nad zbiorem wszystkich portfeli niezdominowanych. W praktyce oznacza to, ze prawie każdy dostępny na rynku portfel dopuszczalny jest w pewnym stopniu portfelem ektywnym. Opis taki może służyć wyjaśnieniu sposobu działania inwestorów, którzy zawsze działają w mniej lub bardziej ektywny sposób. Oznacza to, że oparcie teorii Markowitza na

6 6 parze, 0, 1 R R pozwala stworzyć modele formalne bliższych realiom rynku finansowego. 3.Nieprecyjnie określony zbiór ektywnych instrumentów finansowych model normatywny Symbolem oznaczmy zbiór wszystkich dopuszczalnych instrumentów finansowych. Dowolny dopuszczalny instrument finansowy R 1 jest reprezentowany przez parę, 0, R. Niech będzie dana 0, 1 R opisująca rozkład oczekiwań stopy 0, 0 ustalona para R zwrotu i wariancję instrumentu finansowego 0 W przypadku klasycznej teorii Markowitz a, zbiór dopuszczalnych instrumentów finansowych ograniczany jest do zbioru zawierającego wszystkie dopuszczalne instrumenty finansowe reprezentowane przez pary. Wtedy zbiór instrumentów ektywnych diniujemy jako zbiór instrumentów finansowych o maksymalnej stopie zwrotu dla danej wariancji i opisujemy jako krzywą r, : r max r :,. (11). Zbiór ten jest identyczny z krzywą wyznaczoną przez tożsamość (12) Korzystając z zasady rozszerzenia Zadeha, dla przypadku zbioru dopuszczalnych instrumentów finansowych, zbiór ektywnych instrumentów finansowych zapisujemy jako parametryzowaną wartościami odchylenia standardowego rodzinę podzbiorów rozmytych opisanych przy pomocy : R 0,1 danej w następujący sposób funkcji przynależności z min max x: z x:,. (13) x Jeśli wartość z R opisuje precyzyjne oszacowanie stopy zwrotu z dopuszczalnego instrumentu finansowego z,, to wartość z jest

7 7 interpretowana jako stopień, w jakim ten portfel jest ektywny. Takie pojmowanie ektywności pozwoli wyjaśniać zachowania inwestorów, którzy werbalnie deklarując zamiar ektywnego inwestowania nie inwestują w portfele dopuszczalne lezące na krzywej portfeli ektywnych. Obiektywne przyczyny takiego stanu rzeczy opisuje liczna literatura przedmiotu. Wtedy jednak kryterium ektywności inwestowania możemy opisać, jako kryterium maksymalizacji stopnia ektywności inwestycji. Wartym podkreślenia jest fakt, że ostateczny kształt kryterium maksymalizacji stopnia ektywności portfela : R 0,1 jest zależny od postaci zbiorów probabilistycznych Hiroto opisujących stopy zwrotu z poszczególnych dopuszczalnych instrumentów finansowych. W ten naturalny sposób metodę optymalizacji inwestycji uzależniliśmy od precyzji postrzegania instrumentów finansowych składających się na rynek finansowy. Ze względu na formalne przesłanki leżące u podstaw konstrukcji tego modelu ektywności portfela, nazywamy go modelem normatywnym. Z drugiej strony nie sposób pominąć tutaj problemu złożoności obliczeniowej modelu normatywnego. Jest to cena, jaka płacimy za brak założeń szczegółowych specyfikujących model stopy zwrotu, to jest za niską złożoność logiczną tego modelu. Niska złożoność logiczna jest jednak zaletą tego modelu i z tej przyczyny model normatywny wydaje się być wart dalszych studiów. Tej wysokiej złożoności obliczeniowej przeciwstawiamy odmienny modele ektywności portfela oparte na przesłankach ekonometrycznych. 4. Nieprecyzyjnie określony zbiór ektywnych instrumentów finansowych modele ekonometryczne W [KP5] zaproponowano określenie stopnia ektywności dopuszczalnego instrumentu finansowego z, jako stopień podobieństwa tego instrumentu do ektywnego instrumentu postaci r,. Zgodnie z klasyczną ekonometryczną metodologią stopień podobieństwa pomiędzy dwoma instrumentami finansowymi będzie wzrastał wraz ze zmniejszaniem się odległości pomiędzy tymi portfelami. Do oszacowania tej odległości w [KP5] wykorzystano unormowana metrykę wyznaczoną przez metrykę Euklidesa. : R 0,1 zbioru ektywnych Dzięki temu funkcję przynależności instrumentów finansowych została określona przez tożsamość z 1 r 1. (14) z

8 8 W [KP6] do skonstruowania funkcji przynależności zbioru podstawowych wykorzystano koncepcję dyskretnego modelu Markowitz a. Niech będzie dany skończony zbiór dopuszczalnych instrumentów finansowych (15) Każdy dopuszczalny instrument finansowy stopę zwrotu ex post a j a rˆ i wariancję ex ante 2 j był tam reprezentowany przez. Informacje te są dostępne w momencie zainwestowania w dany instrument. Koszt zainwestowania w instrument finansowy identyfikujemy z ryzykiem obciążającym ten instrument. Postulat zgodnego z kryterium minimalizacji kosztów wyboru instrumentu finansowego prowadzi do określenia na zbiorze instrumentów finansowych preporządku zdiniowanego za pomocą zależności M j M k a 2 a 2 j k j. (16) Ponadto, po pewnym czasie od zainwestowania, każdemu dopuszczalnemu instrumentowi finansowemu przypisujemy stopę zwrotu ex post. Zysk uzyskany z instrumentu finansowego identyfikujemy ze stopą zwrotu ex post. Postulat zgodnego z kryterium maksymalizacji zysku wyboru instrumentu finansowego prowadzi do określenia na zbiorze instrumentów preporządku zdiniowanego za pomocą zależności r M j M rˆ rˆ (17) r k p j p k W tej sytuacji zadanie wyznaczania ektywnych instrumentów finansowych jest równoważne zadaniu równoczesnej minimalizacji kosztu i maksymalizacji zysku. Prowadzi nas to do uznania instrumentu finansowego za ektywny wtedy, jeśli jest on elementem optimum Pareto wyznaczonego przez porównanie wielokryterialne r. Jedynie wielokrotne wyznaczanie optimum Pareto w różnych momentach historii rynku kapitałowego może pozwolić na wyłonienie takich instrumentów finansowych, które możemy uznać za trwale ektywne. Studium przypadku przeprowadzone w [KP6} wykazało jednak niemożność zastosowania tutaj zasady generalizacji historycznej. Powstaje oczywiście

9 9 naturalne pytanie, czy specyfika rynku kapitałowego pozwoli w ogóle na taka aplikację zasady generalizacji historycznej. W tej sytuacji wyróżniamy ciąg momentów czasowych obserwacji. Każdej parze przypisujemy parę stopy zwrotu ex post i odchylenia standardowego ex ante reprezentujące w momencie czasowym dopuszczalny instrument finansowy. Następnie, stosując preporządki (16) i (17), dla każdego momentu czasowego wyznaczamy optimum Pareto. Stopień, w jakim instrument finansowy jest uważany za ektywny, identyfikujemy z częstotliwością zaliczania tego instrumentu do ciągu wyznaczanych kolejno optimum Pareto. W ten sposób w zbiorze instrumentów finansowych wyróżniamy podzbiór rozmyty ektywnych instrumentów : 0,1 danej w finansowych opisanych przez funkcję przynależności następujący sposób. (18) Wyróżniony w ten sposób zbiór ektywnych instrumentów finansowych ma jednak charakter względny, gdyż wyróżnione instrumenty finansowe są ektywne jedynie wobec zbioru rozpatrywanych instrumentów finansowych. Może to być zarówno wada, jak i zaletą zaproponowanej metody nieprecyzyjnego określania ektywności. W tej sytuacji jednak, w pierwszym rzędzie należy jednak zbudować uniwersalną metodę wyróżniania ektywnych instrumentów finansowych. Formalną podstawą takiej metody może być uniwersalne twierdzenie: Jeśli instrument finansowy jest ektywny, to istnieje model CAPM opisujący zmienność stopy zwrotu z tego instrumentu ( porównaj na przykład [KP str.332]. Rozważmy dowolny instrument finansowy. Każdemu momentowi czasowemu przypisujemy szeregi czasowe obserwowanych stopy zwrotu z badanego instrumentu finansowego, rynkowej stopy zwrotu i stopy zwrotu wolnej od ryzyka. Szeregi te służą nam do weryfikacji hipotezy zerowej Różnica nie jest skorelowana liniowo z różnicą której przeciwstawiamy hipotezę alternatywną:

10 10 Różnica nie jest skorelowana liniowo z różnicą Każdorazowy brak podstaw do odrzucenie hipotezy zerowej na rzecz hipotezy alternatywnej jest identyczne ze stwierdzeniem, że nie istnieje model CAPM. W tej sytuacji stopień, w jakim instrument finansowy jest uważany za ektywny, identyfikujemy z częstotliwością odrzucania hipotezy zerowej na rzecz hipotezy alternatywnej. W ten sposób w zbiorze wszystkich dopuszczalnych instrumentów finansowych wyróżniamy podzbiór rozmyty ektywnych instrumentów finansowych opisanych przez : 0,1 danej w następujący sposób funkcję przynależności. (19) Jakości informacji reprezentowanych przez rozmyty podzbiór ektywnych instrumentów finansowych oceniać będziemy z punktu widzenia jej nieprecyzji. W obrazie nieprecyzji pojedynczej informacji wyróżnia się niewyrazistość informacji oraz niejednoznaczność informacji. Niewyrazistość informacji interpretujemy, jako brak jednoznacznego rozróżnienia pomiędzy daną informacją i jej zaprzeczeniem. Oceniamy ją za pomocą miary entropowej [3] tutaj danej przez zależność. (20) Niejednoznaczność informacji interpretujemy, jako brak jednoznacznego wyróżnienia pomiędzy wieloma wskazanymi alternatywami jednej rekomendowanej alternatywy. Oceniamy je za pomocą miary energetycznej [10] tutaj danej przez zależność. (21) Pożądanym jest korzystanie z informacji o możliwie niskiej entropii i możliwie niskiej energii. Zastosowanie tych kryteriów pozwoli na wybór zbioru ektywnych instrumentów finansowych uzyskanych za pomocą różnych wariantów zbiorów danych wykorzystywanych w analizie ekonometrycznej..

11 11 Każdy model ekonometryczny może być wykorzystany, jako funkcjonał w kryterium maksymalizacji stopnia ektywności. 5. Studium przypadku Bibliografia 1. Buckley I.J., The fuzzy mathematics of finance, Fuzzy Sets and Systems 1987, Nr Calzi M.L. (1990), Towards a general setting for the fuzzy mathematics of finance, Fuzzy Sets and Systems 1990, Nr35. Czogała E., Gottwald S., Pedrycz W., On the concepts of measures of fuzziness and their application in decision making, 8 th Trenniol World Congress IFAC, Kyoto. 3. Hirota K., Concepts of probabilistic sets, Fuzzy Sets and Systems 1981, Nr Piasecki K., Trójwymiarowy obraz ryzyka, [w:] Metody ilościowe w ekonomii, red. Hozer J., Zeszyty Naukowe Uniwersytetu Szczecińskiego Nr 450, Szczecin 2007,. 6. Piasecki K., Obraz ryzyka w rozmytych przestrzeniach probabilistycznych, [w:] Matematyczne i ekonometryczne metody oceny ryzyka finansowego, red. Chrzan P., Prace Naukowe Akademii Ekonomicznej w Katowicach, Katowice Piasecki K. Modele matematyki finansowej. Instrumenty podstawowe, Wydawnictwo Naukowe PWN, Warszawa Piasecki K., Tomasik E., O sposobie nieprecyzyjnego określenia rozkładu stopy zwrotu [w:] Rynek kapitałowy, skuteczne inwestowanie, red. Tarczyński W. Uniwersytet Szczeciński, Studia i Prace Wydziału Nauk Ekonomicznych i Zarządzania nr 9, Szczecin Dubois J., Prade H., Fuzzy real algebra: some results, Fuzzy Sets and Systems 1979, Nr2. 9. Klir G.J. (1993), Developments in uncertainty-based information, [w:] Advances in Computers 36, red. Yovits M.1993,.

12 de Luca A., Termini S., Entropy and energy measures of fuzzy sets, [w:] Advances in Fuzzy Set Theory and Application Gupta M.M., Ragade R.K., Yager R.R. (red.): 1987, North Holand Amsterdam. KP5 Piasecki K., Rozmyta ektywność portfela [w;] Innowacje w finansach i ubezpieczeniach. Metody matematyczne, ekonometryczne i informatyczne 2006, Chrzan P. red. (praca przyjęta do druku) KP6 Piasecki K., O sposobie poszukiwania dobrej metody inwestowania na giełdzie, [w;] Innowacje w finansach i ubezpieczeniach. Metody matematyczne, ekonometryczne i informatyczne 2007, Chrzan P. red. (praca przyjęta do druku) Bawa V.(1975), Optimal rules for ordering uncertain prospects, Journal of Financial Economics 2, s Buckley I.J.(1987), The fuzzy mathematics of finance, Fuzzy Sets and Systems 21, s Podsumowanie W pracy zwrócono uwagę na możliwości tkwiące w braku precyzji w określeniu portfela ektywnego. Stworzenie obrazu tej nieprecyzji na gruncie teorii podzbiorów rozmytych wprzęga aparat formalny tej teorii do analizy rynku kapitałowego. Zaprezentowane wyniki należy rozumieć jedynie jako sygnał o możliwościach tkwiących w zastosowaniu teorii podzbiorów rozmytych w matematyce finansowej czy też finansometrii. Sygnał ten rodzi też doniosłe pytania o teoretyczne przesłanki rozmytych modeli finansów skwantyfikowanych. Naturalnym jest tutaj pytanie o dobór logiki wielowartościowej właściwej do opisu mechanizmów rynku finansowego. Na odpowiedź oczekuje też pytanie o minimalne zestawy dodatkowych założeń specyfikujących ogólny model normatywny postaci (11). Wprowadzenie nieprecyzyjnie określonej krzywej portfeli ektywnych pociąga za sobą problem nieprecyzyjnego określenia linii rynku kapitałowego oraz wyznaczenia modelu CAPM adekwatnego do wspomnianej krzywej. Rozwiązanie tego ostatniego problemu może stworzyć teoretyczne przesłanki do przypisania modelu CAPM dowolnemu portfelowi dopuszczalnemu charakteryzującemu się przecież zawsze pewnym stopniem ektywności. Tak więc obszar rozmytej matematyki finansowej i rozmytej finansometrii można uznać za obiecujący obszar badawczy. Skupienie badań na tym obszarze powinno prędzej, czy później przynieść dla praktyki analizy rynku finansowego określone ekty pozytywne.

13 13 Streszczenie Artykuł jest poświęcony problemowi nieprecyzyjnego określenia pojęcia ektywności papieru wartościowego. Wykorzystywane jest tutaj twierdzenie głoszące, że jeśli dany papier wartościowy jest ektywnym instrumentem finansowym, to istnieje model CAPM opisujący zmienność stopy zwrotu z tego instrumentu. Zastosowano tutaj podejście ekonometryczne. Istnienie takiego modelu CAPM weryfikowano przy pomocy testu statystycznego wyznaczonego przez współczynnik korelacji. Stopień, w jakim dany papier wartościowy jest ektywny identyfikowano z częstotliwością, z jaką była odrzucana hipoteza zerowa zakładająca wartość współczynnika korelacji równą zero. W ten sposób, w zbiorze rozpatrywanych akcji wyznacza się rozmyty podzbiór ektywnych papierów wartościowych. Zaproponowaną metodę zilustrowano obszernym studium przypadku związanym z Warszawską Giełdą Papierów Wartościowych. Application of CAPM test for imprecise description of stock fectiveness Summary There is studied the problem of imprecision qualification considered securities as fective. There is used the thesis that if given securities are an fective financial instrument, then there exists CAPM model describing variability of its return rate. An econometric attempt was applied. The existence of such a CAPM model is verified by means of the statistical test delimited by the coficient of correlation. The degree, in which given securities are fective was being identified with the frequency, with which there was rejected null hypothesis assuming correlation coficient value equal to zero. In this way, the fuzzy subset of fective securities is distinguish in the space of all considered one. The suggested method is illustrated with comprehensive case study related with the Warsaw Stock Exchange.

14 14 1. Tekst artykułu należy przesłać w formie elektronicznej na adres w terminie do , ponadto wersję wydrukowaną należy przekazać organizatorom w momencie przybycia na należy unikać nadmiernych wyróżnień w tekście, Tabele 1. Tabele powinny być zamieszczone w tekście jak najbliżej miejsca powołania się na nie. 2. Przy każdej cytowanej tabeli należy podać źródło lub informację opracowanie na podstawie". 3. W tabelach należy stosować czcionkę Times New Roman, wielkość 9p. 4. Tabele należy ponumerować (wyrównać do prawej) 5. Tytuł tabeli należy wyśrodkować Przykład: Tabela 1 Stopy zwrotu dla utworzonych portfeli Źródło: Opracowanie własne

Stopa zwrotu obarczona ryzykiem nieprecyzji

Stopa zwrotu obarczona ryzykiem nieprecyzji Krzysztof Piasecki * Stopa zwrotu obarczona ryzykiem nieprecyzji Wstęp Zazwyczaj analiza właściwości dowolnego papieru wartościowe jest prowadzona, jako analiza własności jego stopy zwrotu. Dowolna stopa

Bardziej szczegółowo

PORTFEL DWUSKŁADNIKOWY PRZYPADEK WARTOŚCI BIEŻĄCEJ DANEJ JAKO TRÓJKĄTNA LICZBA ROZMYTA

PORTFEL DWUSKŁADNIKOWY PRZYPADEK WARTOŚCI BIEŻĄCEJ DANEJ JAKO TRÓJKĄTNA LICZBA ROZMYTA Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 241 2015 Informatyka i Ekonometria 3 Uniwersytet Ekonomiczny w Poznaniu Wydział Informatyki i Gospodarki Elektronicznej

Bardziej szczegółowo

Postawy wobec ryzyka

Postawy wobec ryzyka Postawy wobec ryzyka Wskaźnik Sharpe a przykład zintegrowanej miary rentowności i ryzyka Konstrukcja wskaźnika odwołuje się do klasycznej teorii portfelowej Markowitza, której elementem jest mapa ryzyko

Bardziej szczegółowo

O STOPIE ZWROTU OSZACOWANEJ PRZEZ INTUICYJNY ROZMYTY ZBIÓR PROBABILISTYCZNY 1

O STOPIE ZWROTU OSZACOWANEJ PRZEZ INTUICYJNY ROZMYTY ZBIÓR PROBABILISTYCZNY 1 Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 248 2015 Uniwersytet Ekonomiczny w Poznaniu Wdział Informatyki i Gospodarki Elektronicznej Katedra Badań Operacyjnych

Bardziej szczegółowo

Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko.

Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko. Inwestycje finansowe Wycena obligacji. Stopa zwrotu z akcji. yzyko. Inwestycje finansowe Instrumenty rynku pieniężnego (np. bony skarbowe). Instrumenty rynku walutowego. Obligacje. Akcje. Instrumenty pochodne.

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Aksjomat synergii w arytmetyce finansowej

Aksjomat synergii w arytmetyce finansowej Krzysztof Piasecki Akademia Ekonomiczna w Poznaniu Aksjomat synergii w arytmetyce finansowej Problem badawczy Pieniądz odpowiednio traktowany zwiększa swą wartość wraz z upływem czasu. Jest to przyrost

Bardziej szczegółowo

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA DYNAMICZNYCH LOKAT KAPITAŁOWYCH Krzysztof Gąsior Uniwersytet Rzeszowski Streszczenie Celem referatu jest zaprezentowanie praktycznego zastosowania

Bardziej szczegółowo

Zarządzanie ryzykiem projektów inwestycyjnych

Zarządzanie ryzykiem projektów inwestycyjnych 351 Zeszyty Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa we Wrocławiu Zarządzanie ryzykiem projektów inwestycyjnych Streszczenie. Inwestycje to główny czynnik kreowania

Bardziej szczegółowo

Podstawowe definicje dotyczące zarządzania portfelowego

Podstawowe definicje dotyczące zarządzania portfelowego Podstawowe definicje dotyczące zarządzania portfelowego Prof. SGH, dr hab. Andrzej Sobczak Kurs: Zarządzanie portfelem IT z wykorzystaniem modeli Zakres tematyczny kursu Podstawowe definicje dotyczące

Bardziej szczegółowo

3. Modele tendencji czasowej w prognozowaniu

3. Modele tendencji czasowej w prognozowaniu II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa

Bardziej szczegółowo

Zarządzanie ryzykiem. Opracował: Dr inŝ. Tomasz Zieliński

Zarządzanie ryzykiem. Opracował: Dr inŝ. Tomasz Zieliński Zarządzanie ryzykiem Opracował: Dr inŝ. Tomasz Zieliński I. OGÓLNE INFORMACJE O PRZEDMIOCIE Cel przedmiotu: Celem przedmiotu jest zaprezentowanie studentom podstawowych pojęć z zakresu ryzyka w działalności

Bardziej szczegółowo

Prawa wielkich liczb, centralne twierdzenia graniczne

Prawa wielkich liczb, centralne twierdzenia graniczne , centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne

Bardziej szczegółowo

ANALIZA ZDOLNOŚCI PROCESU O ZALEŻNYCH CHARAKTERYSTYKACH

ANALIZA ZDOLNOŚCI PROCESU O ZALEŻNYCH CHARAKTERYSTYKACH Małgorzata Szerszunowicz Uniwersytet Ekonomiczny w Katowicach ANALIZA ZDOLNOŚCI PROCESU O ZALEŻNYCH CHARAKTERYSTYKACH Wprowadzenie Statystyczna kontrola jakości ma na celu doskonalenie procesu produkcyjnego

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

Inne kryteria tworzenia portfela. Inne kryteria tworzenia portfela. Poziom bezpieczeństwa. Analiza i Zarządzanie Portfelem cz. 3. Dr Katarzyna Kuziak

Inne kryteria tworzenia portfela. Inne kryteria tworzenia portfela. Poziom bezpieczeństwa. Analiza i Zarządzanie Portfelem cz. 3. Dr Katarzyna Kuziak Inne kryteria tworzenia portfela Analiza i Zarządzanie Portfelem cz. 3 Dr Katarzyna Kuziak. Minimalizacja ryzyka przy zadanym dochodzie Portfel efektywny w rozumieniu Markowitza odchylenie standardowe

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Temat: Podstawowe pojęcia z logiki rozmytej Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sterowanie

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Metodologia badań psychologicznych

Metodologia badań psychologicznych Metodologia badań psychologicznych Lucyna Golińska SPOŁECZNA AKADEMIA NAUK Psychologia jako nauka empiryczna Wprowadzenie pojęć Wykład 5 Cele badań naukowych 1. Opis- (funkcja deskryptywna) procedura definiowania

Bardziej szczegółowo

Jeśli X jest przestrzenią o nieskończonej liczbie elementów:

Jeśli X jest przestrzenią o nieskończonej liczbie elementów: Logika rozmyta 2 Zbiór rozmyty może być formalnie zapisany na dwa sposoby w zależności od tego z jakim typem przestrzeni elementów mamy do czynienia: Jeśli X jest przestrzenią o skończonej liczbie elementów

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Inteligencja obliczeniowa

Inteligencja obliczeniowa Ćwiczenie nr 1 Zbiory rozmyte logika rozmyta Tworzenie: termów zmiennej lingwistycznej o różnych kształtach, modyfikatorów, zmiennych o wielu termach; operacje przecięcia, połączenia i dopełnienia 1. Wprowadzenie

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Proces badawczy schemat i zasady realizacji

Proces badawczy schemat i zasady realizacji Proces badawczy schemat i zasady realizacji Agata Górny Zaoczne Studia Doktoranckie z Ekonomii Warszawa, 23 października 2016 Metodologia i metoda naukowa 1 Metodologia Metodologia nauka o metodach nauki

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Proces badawczy schemat i zasady realizacji

Proces badawczy schemat i zasady realizacji Proces badawczy schemat i zasady realizacji Agata Górny Zaoczne Studia Doktoranckie z Ekonomii Warszawa, 14 grudnia 2014 Metodologia i metoda badawcza Metodologia Zadania metodologii Metodologia nauka

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

MATRYCA EFEKTÓW KSZTAŁCENIA

MATRYCA EFEKTÓW KSZTAŁCENIA ZAŁĄCZNIK NR 2 MATRYCA EFEKTÓW KSZTAŁCENIA Studia podyplomowe ZARZĄDZANIE FINANSAMI I MARKETING Przedmioty OPIS EFEKTÓW KSZTAŁCENIA Absolwent studiów podyplomowych - ZARZĄDZANIE FINANSAMI I MARKETING:

Bardziej szczegółowo

Dobija M., Smaga E.; Podstawy matematyki finansowej i ubezpieczeniowej, PWN Warszawa- -Kraków 1995.

Dobija M., Smaga E.; Podstawy matematyki finansowej i ubezpieczeniowej, PWN Warszawa- -Kraków 1995. Bibliografia Dobija M., Smaga E.; Podstawy matematyki finansowej i ubezpieczeniowej, PWN Warszawa- -Kraków 1995. Elton E.J., Gruber M.J., Nowoczesna teoria portfelowa i analiza papierów wartościowych,

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa

Bardziej szczegółowo

Matematyka bankowa 1 1 wykład

Matematyka bankowa 1 1 wykład Matematyka bankowa 1 1 wykład Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address: klimdr@math.uni.ldz.pl

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

Zadanie 1. są niezależne i mają rozkład z atomami: ( ),

Zadanie 1. są niezależne i mają rozkład z atomami: ( ), Zadanie. Zmienne losowe są niezależne i mają rozkład z atomami: ( ) ( ) i gęstością: ( ) na przedziale ( ). Wobec tego ( ) wynosi: (A) 0.2295 (B) 0.2403 (C) 0.2457 (D) 0.25 (E) 0.269 Zadanie 2. Niech:

Bardziej szczegółowo

Inżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska

Inżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska Inżynieria Wiedzy i Systemy Ekspertowe Niepewność wiedzy dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Logika Rozmyta (Fuzzy Logic) Mimo

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

Finanse behawioralne. Finanse 110630-1165

Finanse behawioralne. Finanse 110630-1165 behawioralne Plan wykładu klasyczne a behawioralne Kiedy są przydatne narzędzia finansów behawioralnych? Przykłady modeli finansów behawioralnych klasyczne a behawioralne klasyczne opierają się dwóch założeniach:

Bardziej szczegółowo

Poziom przedmiotu: II stopnia. Liczba godzin/tydzień: 2W E, 2L PRZEWODNIK PO PRZEDMIOCIE

Poziom przedmiotu: II stopnia. Liczba godzin/tydzień: 2W E, 2L PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z podstawowymi metodami i technikami analizy finansowej na podstawie nowoczesnych instrumentów finansowych

Bardziej szczegółowo

Rozmyte systemy doradcze

Rozmyte systemy doradcze Systemy ekspertowe Rozmyte systemy doradcze Plan. Co to jest myślenie rozmyte? 2. Teoria zbiorów rozmytych. 3. Zmienne lingwistyczne. 4. Reguły rozmyte. 5. Wnioskowanie rozmyte (systemy doradcze). typu

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

Wycena papierów wartościowych - instrumenty pochodne

Wycena papierów wartościowych - instrumenty pochodne Matematyka finansowa - 8 Wycena papierów wartościowych - instrumenty pochodne W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,

Bardziej szczegółowo

Etapy modelowania ekonometrycznego

Etapy modelowania ekonometrycznego Etapy modelowania ekonometrycznego jest podstawowym narzędziem badawczym, jakim posługuje się ekonometria. Stanowi on matematyczno-statystyczną formę zapisu prawidłowości statystycznej w zakresie rozkładu,

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem

Bardziej szczegółowo

Kilka uwag o testowaniu istotności współczynnika korelacji

Kilka uwag o testowaniu istotności współczynnika korelacji 341 Zeszyty Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Piotr Peternek Uniwersytet Ekonomiczny we Wrocławiu Marek Kośny Uniwersytet Ekonomiczny we Wrocławiu Kilka uwag o testowaniu istotności

Bardziej szczegółowo

Matematyka finansowa w pakiecie Matlab

Matematyka finansowa w pakiecie Matlab Matematyka finansowa w pakiecie Matlab Wykład 5. Wycena opcji modele dyskretne Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK Kurs letni dla studentów studiów zamawianych na kierunku Matematyka

Bardziej szczegółowo

Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych

Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych dr Piotr Sulewski POMORSKA AKADEMIA PEDAGOGICZNA W SŁUPSKU KATEDRA INFORMATYKI I STATYSTYKI Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych Wprowadzenie Obecnie bardzo

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie. SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

P: Czy studiujący i niestudiujący preferują inne sklepy internetowe?

P: Czy studiujący i niestudiujący preferują inne sklepy internetowe? 2 Test niezależności chi-kwadrat stosuje się (między innymi) w celu sprawdzenia czy pomiędzy zmiennymi istnieje związek/zależność. Stosujemy go w sytuacji, kiedy zmienna zależna mierzona jest na skali

Bardziej szczegółowo

Zintegrowane Systemy Informatyczne analiza, projektowanie, wdrażanie

Zintegrowane Systemy Informatyczne analiza, projektowanie, wdrażanie dr hab. Grzegorz Bartoszewicz, prof. nadzw. UEP Katedra Informatyki Ekonomicznej Zintegrowane Systemy Informatyczne analiza, projektowanie, wdrażanie Tematyka seminarium związana jest z wykorzystaniem

Bardziej szczegółowo

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska Anna Stankiewicz Izabela Słomska Wstęp- statystyka w politologii Rzadkie stosowanie narzędzi statystycznych Pisma Karla Poppera

Bardziej szczegółowo

Opis przedmiotu: Probabilistyka I

Opis przedmiotu: Probabilistyka I Opis : Probabilistyka I Kod Nazwa Wersja TR.SIK303 Probabilistyka I 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność Jednostka prowadząca

Bardziej szczegółowo

Optymalizacja wielokryterialna

Optymalizacja wielokryterialna Optymalizacja wielokryterialna Optymalizacja wielokryterialna Dział badań operacyjnych zajmujący się wyznaczaniem optymalnej decyzji w przypadku, gdy występuje więcej niż jedno kryterium Problem wielokryterialny

Bardziej szczegółowo

Analiza zdarzeń Event studies

Analiza zdarzeń Event studies Analiza zdarzeń Event studies Dobromił Serwa akson.sgh.waw.pl/~dserwa/ef.htm Leratura Campbell J., Lo A., MacKinlay A.C.(997) he Econometrics of Financial Markets. Princeton Universy Press, Rozdział 4.

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Sterowanie wielkością zamówienia w Excelu - cz. 3

Sterowanie wielkością zamówienia w Excelu - cz. 3 Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

System bonus-malus z mechanizmem korekty składki

System bonus-malus z mechanizmem korekty składki System bonus-malus z mechanizmem korekty składki mgr Kamil Gala Ubezpieczeniowy Fundusz Gwarancyjny dr hab. Wojciech Bijak, prof. SGH Ubezpieczeniowy Fundusz Gwarancyjny, Szkoła Główna Handlowa Zagadnienia

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 Regresja wielokrotna Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X 1, X 2, X 3,...) na zmienną zależną (Y).

Bardziej szczegółowo

Proces inwestowania jest wyrzeczeniem się bieżącej konsumpcji na rzecz przyszłych, lecz niepewnych zysków [Hirschleifer, 1965, s. 509]. W przytoczonej definicji pojawiają się określenia zysku i niepewności,

Bardziej szczegółowo

Głównym celem opracowania jest próba określenia znaczenia i wpływu struktury kapitału na działalność przedsiębiorstwa.

Głównym celem opracowania jest próba określenia znaczenia i wpływu struktury kapitału na działalność przedsiębiorstwa. KAPITAŁ W PRZEDSIĘBIORSTWIE I JEGO STRUKTURA Autor: Jacek Grzywacz, Wstęp W opracowaniu przedstawiono kluczowe zagadnienia dotyczące możliwości pozyskiwania przez przedsiębiorstwo kapitału oraz zasad kształtowania

Bardziej szczegółowo

Sympozjum Trwałość Budowli

Sympozjum Trwałość Budowli Sympozjum Trwałość Budowli Andrzej ownuk ROJEKTOWANIE UKŁADÓW Z NIEEWNYMI ARAMETRAMI Zakład Mechaniki Teoretycznej olitechnika Śląska pownuk@zeus.polsl.gliwice.pl URL: http://zeus.polsl.gliwice.pl/~pownuk

Bardziej szczegółowo

Streszczenia referatów

Streszczenia referatów Streszczenia referatów mgr Marcin Krzywda Jak estymować zmienność na rynku akcji? Do praktycznego zastosowania modeli matematyki finansowej musimy potrafić wyznaczyć parametry zmiennych rynkowych. Jednym

Bardziej szczegółowo

... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu...

... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu... 4 Prognozowanie historyczne Prognozowanie - przewidywanie przyszłych zdarzeń w oparciu dane - podstawowy element w podejmowaniu decyzji... prognozowanie nie jest celem samym w sobie a jedynie narzędziem

Bardziej szczegółowo

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, 诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu - metodologia badań

Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu - metodologia badań Raport 1/2015 Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu - metodologia badań autor: Michał Osmoła INIME Instytut nauk informatycznych i matematycznych z zastosowaniem

Bardziej szczegółowo

Analiza wielokryterialna wstęp do zagadnienia

Analiza wielokryterialna wstęp do zagadnienia Organizacja, przebieg i zarządzanie inwestycją budowlaną Analiza wielokryterialna wstęp do zagadnienia dr hab. Mieczysław Połoński prof. SGGW 1 Wprowadzenie Jednym z podstawowych, a równocześnie najważniejszym

Bardziej szczegółowo

Analiza inwestycji i zarządzanie portfelem SPIS TREŚCI

Analiza inwestycji i zarządzanie portfelem SPIS TREŚCI Analiza inwestycji i zarządzanie portfelem Frank K. Reilly, Keith C. Brown SPIS TREŚCI TOM I Przedmowa do wydania polskiego Przedmowa do wydania amerykańskiego O autorach Ramy książki CZĘŚĆ I. INWESTYCJE

Bardziej szczegółowo

Matematyka finansowa i ubezpieczeniowa - 8 Wycena papierów wartościowych

Matematyka finansowa i ubezpieczeniowa - 8 Wycena papierów wartościowych Matematyka finansowa i ubezpieczeniowa - 8 Wycena papierów wartościowych W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,

Bardziej szczegółowo

Prace magisterskie 1. Założenia pracy 2. Budowa portfela

Prace magisterskie 1. Założenia pracy 2. Budowa portfela 1. Założenia pracy 1 Założeniem niniejszej pracy jest stworzenie portfela inwestycyjnego przy pomocy modelu W.Sharpe a spełniającego następujące warunki: - wybór akcji 8 spółek + 2 papiery dłużne, - inwestycja

Bardziej szczegółowo

Elementy statystyki STA - Wykład 5

Elementy statystyki STA - Wykład 5 STA - Wykład 5 Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza 1 ANOVA 2 Model jednoczynnikowej analizy wariancji Na model jednoczynnikowej analizy wariancji możemy traktować jako uogólnienie

Bardziej szczegółowo

Struktura terminowa rynku obligacji

Struktura terminowa rynku obligacji Krzywa dochodowości pomaga w inwestowaniu w obligacje Struktura terminowa rynku obligacji Wskazuje, które obligacje są atrakcyjne a których unikać Obrazuje aktualną sytuację na rynku długu i zmiany w czasie

Bardziej szczegółowo

Sposoby prezentacji problemów w statystyce

Sposoby prezentacji problemów w statystyce S t r o n a 1 Dr Anna Rybak Instytut Informatyki Uniwersytet w Białymstoku Sposoby prezentacji problemów w statystyce Wprowadzenie W artykule zostaną zaprezentowane podstawowe zagadnienia z zakresu statystyki

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu

Bardziej szczegółowo

Hierarchiczna analiza skupień

Hierarchiczna analiza skupień Hierarchiczna analiza skupień Cel analizy Analiza skupień ma na celu wykrycie w zbiorze obserwacji klastrów, czyli rozłącznych podzbiorów obserwacji, wewnątrz których obserwacje są sobie w jakimś określonym

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

4,5. Dyskretne zmienne losowe (17.03; 31.03)

4,5. Dyskretne zmienne losowe (17.03; 31.03) 4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie

Bardziej szczegółowo

ANALIZA I ZARZADZANIE PORTFELEM. Specjalista ds. Analiz Giełdowych Łukasz Porębski

ANALIZA I ZARZADZANIE PORTFELEM. Specjalista ds. Analiz Giełdowych Łukasz Porębski ANALIZA I ZARZADZANIE PORTFELEM Specjalista ds. Analiz Giełdowych Łukasz Porębski PLAN PREZENTACJI 1) Efektywnośd rynków finansowych 2) Teoria portfela Markowitza (Nobel w 1990 r.) 3) Dywersyfikacja 4)

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM

Bardziej szczegółowo

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów

Bardziej szczegółowo

ZWIĄZKI MIĘDZY WSPÓŁCZYNNIKAMI WRAŻLIWOŚCI W MODELU WYCENY OPCJI GARMANA-KOHLHAGENA

ZWIĄZKI MIĘDZY WSPÓŁCZYNNIKAMI WRAŻLIWOŚCI W MODELU WYCENY OPCJI GARMANA-KOHLHAGENA STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR Beata Bieszk-Stolorz Uniwersytet Szczeciński ZWIĄZKI MIĘDZY WSPÓŁCZYNNIKAMI WRAŻLIWOŚCI W MODELU WYCENY OPCJI GARMANA-KOHLHAGENA Streszczenie

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Przykład (wstępny). Producent twierdzi, że wadliwość produkcji wynosi 5%. My podejrzewamy, że rzeczywista wadliwość produkcji wynosi 15%. Pobieramy próbę stuelementową

Bardziej szczegółowo

O LICZBIE ABONENTÓW TELEFONII KOMÓRKOWEJ W POLSCE ZDANIEM TRZECH STATYSTYKÓW

O LICZBIE ABONENTÓW TELEFONII KOMÓRKOWEJ W POLSCE ZDANIEM TRZECH STATYSTYKÓW Rafał Czyżycki, Marcin Hundert, Rafał Klóska Wydział Zarządzania i Ekonomiki Usług Uniwersytet Szczeciński O LICZBIE ABONENTÓW TELEFONII KOMÓRKOWEJ W POLSCE ZDANIEM TRZECH STATYSTYKÓW Wprowadzenie Poruszana

Bardziej szczegółowo

Agnieszka Nowak Brzezińska

Agnieszka Nowak Brzezińska Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia

Bardziej szczegółowo

Dominacja stochastyczna w ocenie efektywności OFE

Dominacja stochastyczna w ocenie efektywności OFE 165 Zeszyty Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa we Wrocławiu Dominacja stochastyczna w ocenie efektywności OFE Streszczenie. Ustawowa stopa zwrotu wykorzystywana

Bardziej szczegółowo

BADANIA OPERACYJNE. dr Adam Sojda Pokój A405

BADANIA OPERACYJNE. dr Adam Sojda  Pokój A405 BADANIA OPERACYJNE dr Adam Sojda adam.sojda@polsl.pl http://dydaktyka.polsl.pl/roz6/asojda/default.aspx Pokój A405 Przedsięwzięcie - zorganizowanie działanie ludzkie zmierzające do osiągnięcia określonego

Bardziej szczegółowo

METODOLOGIA BADAŃ przypomnienie kluczowych zagadnień dot. metodologii konstrukcja planu pracy do ustalonych

METODOLOGIA BADAŃ przypomnienie kluczowych zagadnień dot. metodologii konstrukcja planu pracy do ustalonych METODOLOGIA BADAŃ przypomnienie kluczowych zagadnień dot. metodologii konstrukcja planu pracy do ustalonych tematów zadanie: opracowanie własnego projektu badawczego przygotowanie konspektu pracy (max

Bardziej szczegółowo

Wykład 1 Sprawy organizacyjne

Wykład 1 Sprawy organizacyjne Wykład 1 Sprawy organizacyjne 1 Zasady zaliczenia Prezentacja/projekt w grupach 5 osobowych. Każda osoba przygotowuje: samodzielnie analizę w excel, prezentację teoretyczną w grupie. Obecność na zajęciach

Bardziej szczegółowo

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012

Bardziej szczegółowo

Kalibracja. W obu przypadkach jeśli mamy dane, to możemy znaleźć równowagę: Konwesatorium z Ekonometrii, IV rok, WNE UW 1

Kalibracja. W obu przypadkach jeśli mamy dane, to możemy znaleźć równowagę: Konwesatorium z Ekonometrii, IV rok, WNE UW 1 Kalibracja Kalibracja - nazwa pochodzi z nauk ścisłych - kalibrowanie instrumentu oznacza wyznaczanie jego skali (np. kalibrowanie termometru polega na wyznaczeniu 0C i 100C tak by oznaczały punkt zamarzania

Bardziej szczegółowo

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Instumenty rynków finansowych Rok akademicki: 2015/2016 Kod: ZZP-2-304-ZF-s Punkty ECTS: 4 Wydział: Zarządzania Kierunek: Zarządzanie Specjalność: Zarządzanie finansami Poziom studiów: Studia

Bardziej szczegółowo

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych

Bardziej szczegółowo