WAI Wykłady 3 i 4. Sieci neuronowe. Uczenie i zastosowania. Wstęp do logiki rozmytej.

Wielkość: px
Rozpocząć pokaz od strony:

Download "WAI Wykłady 3 i 4. Sieci neuronowe. Uczenie i zastosowania. Wstęp do logiki rozmytej."

Transkrypt

1 WAI Wykłady 3 i 4. Sieci neuronowe. Uczenie i zastosowania. Wstęp do logiki rozmytej. Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. D. Rutkowska, M. Piliński i L. Rutkowski, Sieci neuronowe, algorytmy genetyczne i systemy rozmyte, PWN, Warszawa 997 R. Tadeusiewicz, Sieci neuronowe. Akademicka Oficyna Wydawnicza RM, Warszawa, 993, 999 Żurada Jacek, Barski Mariusz, Jędruch Wojciech, Sztuczne sieci neuronowe, Wydawnictwo Naukowe PWN, Warszawa, 996.

2 Perceptron - przypomnienie x x 2 x n w w 2 w n y = wi xi θ 0 w p. p. y

3 Przypomnienie.Jak opisać perceptron? Co charakteryzuje perceptron? Perceptron jest opisywany jednoznacznie przez zbiór wag w,...,w n R oraz wartość progowa θ R Wartości x,...,x n R to zmienne pojawiające się na wejściu do perceptronu Funkcja aktywacji: wi xi θ y = 0 otherwise

4 Uczenie perceptronu Przykład: rozpoznawanie znaków 36 wejść Wyjście:, jeśli na wejściu pojawia się litera A, zaś 0 w p.p. Siatka 6 6 Zadanie: dobrać wagi wejść i wartość progową tak, by uzyskać zaplanowany efekt Dane testowe Dane treningowe (znane odpowiedzi) Dobór wag (uczenie) Odpowiedź

5 Wejście: Proces uczenia: Inicjujemy wagi losowo Dla każdego przykładu, jeśli Uczenie perceptronu, n=2 Ciąg przykładów uczących ze znanymi odpowiedziami odpowiedź jest nieprawidłowa, to w + = α x w 2 + = α x 2 θ = α w (k+)= w (k) + w +, podobnie dla w 2, θ(k+)= θ(k) θ, k-krok iteracji, epoka [w,w 2 ] gdzie α jest równe różnicy odpowiedzi sieci i prawidłowej odpowiedzi.

6 Uczenie perceptronu Często α mnoży się dodatkowo przez niewielki współczynnik uczenia Po wyczerpaniu przykładów, zaczynamy proces uczenia od początku, dopóki następują jakiekolwiek zmiany wag połączeń Próg θ można traktować jako wagę dodatkowego wejścia o wartości -: (zawsze -) x 2 3 θ = 3 2 (θ = 0) x 2-4 x x 2-4

7 Przykład: Uczenie neuronu Zbiór punktów na wykresie jest liniowo separowalne. Funkcja aktywacji: y = wi xi θ otherwise

8 Niech w =, w 2 =, θ =, wsp. uczenia η= Pierwszy przykład jest dobrze, ale drugi nie, modyfikujemy zatem wagi: w + = (- - ) 9.4 w 2 + = (- - ) 6.4 θ = (- - ) Otrzymamy w = w 2 = θ = 3 Drugi przykład jest dobry, ale trzeci nie

9 Uczenie perceptronu Opisany schemat jest w miarę przejrzysty tylko dla pojedynczych perceptronów, lub niewielkich sieci Ciężko jest stosować reguły tego typu dla skomplikowanych modeli Tymczasem np. do rozpoznawania wszystkich liter potrzeba by sieci złożonej z 26 takich perceptronów

10 Sieci perceptronów Dendrites Nodes Synapses Axon Synapses (weights) Ograniczenia pojedynczych perceptronów spowodowały w latach 80-tych wzrost zainteresowania sieciami wielowarstwowymi i opracowanie algorytmu ich uczenia (propagacja wsteczna)

11 SIECI PERCEPTRONÓW Potrafią reprezentować dowolną funkcję boolowską (opartą na rachunku zdań) p θ = 2-2 θ = p XOR q q

12 SIECI WIELOWARSTWOWE Wyjścia neuronów należących do warstwy niższej połączone są z wejściami neuronów należących do warstwy wyższej np. metodą każdy z każdym Działanie sieci polega na liczeniu odpowiedzi neuronów w kolejnych warstwach Nie jest znana ogólna metoda projektowania optymalnej architektury sieci neuronowej

13 Funkcje aktywacji Progowe,2 f ( s) = s 0 0 s < 0 0,8 0,6 0,4 0, ,2,2 Sigmoidalne 0,8 0,6 0,4 0, f ( s) s = + e

14 FUNKCJE AKTYWACJI (2) Unipolarne,2 f ( s) s = + e 0,8 0,6 0,4 0, ,5 0,5 Bipolarne ,5 - f 2 + e ( s) = s -,5

15 FUNKCJE AKTYWACJI (3),2 0,8 0,6 0,4 0, f α ( s) α s = + e α = 2.0 α =.0 α = 0.5 lim α 0 f α ( s) = 0.5 lim f ( s) α + α = s s s > = < 0 0 0

16 FUNKCJE AKTYWACJI (4) f θ, α + e ( s) = α ( s θ ),2 0,8 0,6 θ = 2 α =.5 0,4 0,

17 FUNKCJE AKTYWACJI (5) Zasady ogólne: Ciągłość (zachowanie stabilności sieci jako modelu rzeczywistego) Różniczkowalność (zastosowanie propagacji wstecznej błędu) Monotoniczność (intuicje związane z aktywacją komórek neuronowych) Nieliniowość (możliwości ekspresji)

18 SIECI NEURONOWE Potrafią modelować (dowolnie dokładnie przybliżać) funkcje rzeczywiste (z tw. Kołmogorowa) n y = f w 0 + w x i i= i Σ f ( s) s = + e funkcja aktywacji

19 Sieć tworzy teksturę SIECI NEURONOWE Σ

20 SIECI NEURONOWE

21 SIECI JAKO FUNKCJE ZŁOŻONE () x v f w x2 v2 v2 v22 f2 w2 g y ( ( ) ( )) y = g w f v x v x w f v x v x y = Network ( ) x, x 2

22 SIECI JAKO FUNKCJE ZŁOŻONE (2) g f2 f x x y ( ) ( ) ( ) ( ) < = x x x x x x x x e e e e y

23 SIECI JAKO FUNKCJE ZŁOŻONE (3) x v f w x2 v2 v2 v22 f2 w2 g y = =Network(x,x2) Jeśli wszystkie poszczególne funkcje aktywacji są liniowe, to funkcja Network jest również liniowa (małe znaczenie w praktyce) Architektura wielowarstwowa daje zatem nowe możliwości tylko w przypadku stosowania funkcji nieliniowych

24 SIECI JAKO FUNKCJE ZŁOŻONE przypadek liniowy x x2 v2 v2 v v22 Niech f i (x,x2) = a i *(x*v i + x2*v i 2) + b i g(z,z2) = a*(z*w + z2*w2) + b Wtedy Network(x,x2) = A*x + A2*x2 + B Np.: A = a*(a*v*w + a2*v2*w2) f f2 w w2 g y

25 PROPAGACJA WSTECZNA BŁĘDU () Chcemy wytrenować wagi połączeń między kolejnymi warstwami neuronów. Jest to tzw. proces adaptacji wag. Jego algorytm odpowiada zadaniu minimalizacji funkcji błędu. Jest to uczenie pod nadzorem, zwane z nauczycielem, gdyż mamy zbiór danych trenujących. Inicjujemy wagi losowo (na małe wartości) Dla danego wektora uczącego obliczamy odpowiedź sieci (warstwa po warstwie) Każdy neuron wyjściowy oblicza swój błąd, odnoszący się do różnicy pomiędzy obliczoną odpowiedzią y oraz poprawną odpowiedzią t. Następnie ten błąd jest rozkładany na poszczególne połaczenia, zaczynając od połączenia wyjściowego.

26 PROPAGACJA WSTECZNA BŁĘDU (2) dane uczące odpowiedź sieci y błąd d właściwa odpowiedź t Błąd sieci definiowany jest zazwyczaj jako d = 2 ( y t) 2

27 PROPAGACJA WSTECZNA BŁĘDU (3) Oznaczmy przez: f: R R funkcję aktywacji w neuronie w,..., w K wagi połączeń wchodzących z,..., z K sygnały napływające do neuronu z poprzedniej warstwy Błąd neuronu traktujemy jako funkcję wag połączeń do niego prowadzących: d( w ) ( ( ) ) 2,..., wk = f w z wk zk t 2

28 PRZYKŁAD () Rozpatrzmy model, w którym: Funkcja aktywacji przyjmuje postać f + e ( s ) = 3 s + Wektor wag połączeń = [;-3;2] ( 2 ) Załóżmy, że dla danego przykładu: Odpowiedź powinna wynosić t = 0.5 Z poprzedniej warstwy dochodzą sygnały [0;;0.3]

29 PRZYKŁAD (2) Liczymy wejściową sumę ważoną: s = w x + w2 x2 + w3x3 = 0 + ( 3) = 2.4 Liczymy odpowiedź neuronu: y Błąd wynosi: ( s) = 2 + e + e = f 3 + d = ( ) = ( )

30 IDEA ROZKŁADU BŁĘDU Musimy rozłożyć otrzymany błąd na połączenia wprowadzające sygnały do danego neuronu Składową błędu dla każdego j-tego połączenia określamy jako pochodną cząstkową funkcji błędu d(x,y,t) względem j-tej wagi Składowych tych będziemy mogli użyć do zmodyfikowania ustawień poszczególnych wag połączeń

31 IDEA ROZKŁADU BŁĘDU (2) Załóżmy, że mamy neuron z wagami w 0 =0, w =2, w 2 =3. Mamy dane wektor wejściowy: [0.3, 0.7], przy czym oczekiwana odpowiedź to t=. Jak należy zmienić wagi, aby błąd był jak najmniejszy? Możemy błąd przedstawić jako funkcję w, w 2 : x w x 2 n y = f w0 + w i x f w 2 ( s) s = + e i= y i błąd -2 0 Wagi powinniśmy zmienić się w kierunku spadku wartości błędu wartość błędu dla wag [2, 3]

32 KIERUNEK ZMIANY WAG Jeśli rozważymy większą liczbę przykładów, funkcja średniego błędu będzie miała bardziej skomplikowany kształt. [0.3, 0.7], t= [0.2, 0.9], t=0. [-0.6, ], t= [0, -0.8], t=0.5 [0.6, ], t= Nachylenie wykresu w danym punkcie (odpowiadającym aktualnym wartościom wag) dane jest przez gradient, czyli wektor pochodnych cząstkowych. Zmiana wag powinna nastąpić w kierunku przeciwnym.

33 ( ) ( ) j z s f t y ' OBLICZANIE POCHODNEJ ( ) = j K w w w d,..., ( ) ( ) K K t z w w z f ( ) ( ) ( ) j K K w z w w z s s f y t y + + = ( ) ( ) j K K w t z w w z f + + =... 2

34 Idea: PROPAGACJA WSTECZNA BŁĘDU Wektor wag połączeń powinniśmy przesunąć w kierunku przeciwnym do wektora gradientu błędu (z pewnym współczynnikiem uczenia η) Możemy to zrobić po każdym przykładzie uczącym, albo sumując zmiany po kilku przykładach. Realizacja: w ( ) ( ) j = η t y f ' s z j Prosty przykład: wagi w =, w 2 =, dane wejściowe: [0.5, 0.5], t =. Funkcja sigmoidalna: f ( s) s = f ( s ) + e więc: s ( + e ) 2 Stąd: s = =, y = 0.73, zmiana w= (- 0.73) * 0.9 * 0.5 = A więc nowe wagi to.026. Ten sam przykład da tym razem odpowiedź y= = e s

35 w PROPAGACJA WSTECZNA BŁĘDU (2) Błędy są następnie propagowane w kierunku poprzednich warstw. Wprowadźmy pomocniczo współczynnik błędu δ zdefiniowany dla ostatniej warstwy jako: błąd δ w 2 błąd δ błąd δ 2 δ = f ( s) δ = ( t y) a dla pozostałych warstw: n f ( s ) δ i= w i czyli neuron w warstwie ukrytej zbiera błąd z neuronów, z którymi jest połączony. Zmiana wag połączeń następuje po fazie propagacji błędu i odbywa się według wzoru: w = η δ Oznaczenia: w - waga wejścia neuronu, z - sygnał wchodzący do neuronu danym wejściem, δ - współczynnik błędu obliczony dla danego neuronu, s - wartość wzbudzenia (suma wartości wejściowych pomnożonych przez wagi) dla danego neuronu. z i

36 Zadania sprawdzające:. Co charakteryzuje prosty perceptron? 2. Podać inną funkcję logiczną niż XOR, której nie potrafi obliczyć sieć neuronowa. 3. Jaką własność posiada każda funkcja aktywacji? 4. Co to jest równanie perceptronowe? Jakie jest jego znaczenie? 5. Co potrafi zrobić pojedyńczy neuron?

37 Co potrafi układ perceptronów? Klasyfikować punkty na płaszczyźnie należące do kilku różnych obszarów Jeśli funkcje decyzyjne neuronów w warstwie wewnętrznej są afiniczne, to rożne obszary są rozdzielane prostymi (ogólnie: hiperpłaszczyznami w przestrzeni n- wymiarowej). Układ perceptronów, który jest już siecią neuronową perceptronową realizuje klasyfikator.

38 ROZPOZNAWANIE WZORCÓW Wzorce: obrazy, nagrania, dane personalne, sposoby prowadzenia pojazdu, etc. Reprezentacja wzorca: Wektor cech (wejść do sieci neuronowej) Klasyfikacja wzorców: Klasyfikacja do jednej z istniejących klas Formowanie klas wzorców, tutaj sieć samoorganizująca się, np.art, Kohonena, uczenie bez nauczyciela Asocjacyjne odtwarzanie wzorców, tutaj sieć Hopfielda: każdy neuron połączony z każdym Odtwarzanie wzorców podobnych Uzupełnianie wzorców Odzyskiwanie (czyszczenie) wzorców

39 Przykład zagadnienia praktycznego Znaleźć, odczytać i zapamiętać numer rejestracyjny samochodu na podstawie zdjęcia:

40 Odczytywanie tablic rejestracyjnych (2) Wyselekcjonowany obszar Lokalizacja znaków Rozpoznawanie znaków: - znajdowanie istotnych cech liczbowych - klasyfikacja na podstawie cech (systemy uczące się)

41 Wykorzystywane technik sztucznej inteligencji i ich narzędzi Sieci neuronowe Wnioskowanie, indukcja reguł Algorytmy ewolucyjne Systemy wieloagentowe (współpraca) Automaty komórkowe Metody przeszukiwania możliwych rozwiązań i ich optymalizacji...

42 PRZYKŁADOWE POLE DO POPISU Analiza dźwięku, obrazu, bądź danych multimedialnych, nie może opierać się ani wyłącznie na sieciach neuronowych, ani na, np., drzewach decyzyjnych czy AG. Konieczne jest połączenie metod numerycznych, naśladujących działanie ludzkich zmysłów, z metodami symbolicznymi, naśladującymi ludzkie rozumowanie.

43 Zbiory rozmyte Sposób formalnego opisu nieprecyzyjności Literatura. Piegat A. Modelowanie i sterowanie rozmyte. Akademicka Oficyna Wydawnicza EXIT Warszawa Rutkowska D., Piliński M, Rutkowski L. Sieci neuronowe, algorytmy genetyczne i systemy rozmyte. Wyd. Naukowe PWN Warszawa 997

44 Zbiory rozmyte naśladowanie ludzkiej nieprecyzyjnej oceny otoczenia Ludzie patrzą na świat nieprecyzyjnie: bardzo zimno, szybko, niedaleko Ludzie potrafią radzić sobie mimo nieprecyzyjnej oceny nawet w ekstremalnych sytuacjach : przechodzenie przez jezdnię, sterowanie samolotem

45 Przynależność do zbioru Zbiory klasyczne przynależność całkowita Czy duży stos kamieni przestanie być dużym stosem kamieni, gdy zabierzemy jeden? A jak dwa, a jak 22? Czy po zabraniu części kamienia myślimy o dużym stosie jako o nieco mniejszym? Czy cena za produkt 3,99 jest w codziennym życiu równoważna cenie 4,00? Zbiory rozmyte przynależność częściowa Przestrzeń zbiorów klasycznych jest podzbiorem przestrzeni zbiorów rozmytych, poprzez funkcję charakterystyczną tego zbioru, jako szczególnym przypadkiem funkcji przynależności zbioru rozmytego

46 Zbiór klasyczny jak jednoznacznie opisać? Funkcja charakterystyczna - odpowiednik zbioru klasycznego Funkcja charakterystyczna zbioru A: χ A Presztrzeń X Przedział (zbiór) A X

47 Definicje DEFINICJA Zbiorem rozmytym A na pewnej przestrzeni X, nazywamy zbiór par: A={(x, µ A (x))} x X gdzie: µ A jest funkcją, która przypisuje każdemu elementowi x X (przyjętej przestrzeni rozważań X) jego stopień przynależności do zbioru A, przy czym: µ A : X [0,], zatem µ A (x) [0,]. Można to odebrać jako zdanie w logice wielowartościowej, gdzie 0 fałsz, - prawda.

48 Funkcja µ A nazywana jest funkcją przynależności, zaś jej wartość dla danego argumentu nazywana jest stopniem przynależności x do zbioru rozmytego A. Stopień przynależności określa, w jakim stopniu rozpatrywany argument należy do zbioru rozmytego A. Można zauważyć,że funkcja µ A wraz z dziedziną jednoznacznie wyznaczają zbiór A. Zbiór rozmyty, którego funkcja przynależności osiąga wartość dla co najmniej jednego elementu nazywany jest zbiorem rozmytym normalnym.

49 Dla każdego zbioru rozmytego wyznacza się często jego integralny parametr pomocny przy określaniu i analizie różnych własności - nośnik (ang. support). DEFINICJA Nośnikiem zbioru rozmytego A w X jest zbiór nierozmyty oznaczany jako supp(a) i określony następująco: supp(a)={x: µ A (x) > 0}. Inaczej mówiąc, nośnikiem nazywamy taki podzbiór dziedziny funkcji przynależności, dla którego elementów, wartości funkcji są większe od zera.

50 µ A Przykład zbioru rozmytego () Zbiór rozmyty reprezentujący określenie ciepła pogoda. T[ C]

51 µ A Przykład zbioru rozmytego (2) Zbiór rozmyty reprezentujący określenie ciepła pogoda. T[ C]

52 Przykład zbioru rozmytego (3) 0,8 0,6 0,4 0,2 µ A Zbiór rozmyty (dyskretny) reprezentujący określenie sympatyczne zwierzę. Gatunek zwierząt rekin koń pies kot owca kura mucha

53 Działania na zbiorach rozmytych Istnieją różne sposoby definiowania działań na zbiorach rozmytych. Tutaj zostaną omówione te zaproponowane przez Zadeha w 965r. zwane działaniami mnogościowymi. Sumą zbiorów rozmytych A i B z funkcjami przynależności (odpowiednio µ A i µ B ) określonymi na tym samym zbiorze X nazywamy zbiór C wyznaczony przez funkcję przynależności µ C gdzie x X. µ C (x)= µ A B (x) = max(µ A (x), µ B (x))

54 A B A+B

55 Iloczynem (przecięciem) zbiorów rozmytych A i B z funkcjami przynależności (odpowiednio µ A i µ B ) określonymi na tym samym zbiorze X nazywamy zbiór C wyznaczony przez funkcję przynależności µ C µ C (x)= µ A B (x) = min(µ A (x), µ B (x)) gdzie x X.

56 A B A B

57 Dopełnieniem zbioru A określonego na przestrzeni X jest zbiór rozmyty A wyznaczony przez funkcję przynależności µ A gdzie x X. µ A (x) = - µ A (x)

58 A A

59 Własności działań w klasycznej teorii zbiorów Inwolucja (podwójna negacja) A= ( A) Przemienność A B = B A A B = B A Łączność (A B) C = A (B C) (A B) C = A (B C) Rozdzielność A (B C) = (A B) (A C) Idempotencja A (B C) = (A B) (A C) A = A A, A = A A Pochłanianie (absorpcja) A (A B) = A A (A B) = A

60 Pochłanianie dopełnienia Pochłanianie przez i U Identyczność Prawo zaprzeczenia Prawo wyłączonego środka A ( A B) = A B A ( A B) = A B A U = U A = A = A A U = A A A = A A = U Prawa de Morgana (A B) = A B (A B) = A B U uniwersum do którego należą rozważane zbiory A, B i C - zbiór pusty, jego funkcja charakterystyczna jest stała i równa zero

61 Własności spełniane przez działania mnogościowe na zbiorach rozmytych Inwolucja Przemienność Łączność Rozdzielność Idempotencja Pochłanianie Pochłanianie dopełnienia Pochłanianie przez i U Identyczność Prawo zaprzeczenia Prawo wyłączonego środka Prawa de Morgana tak tak tak tak tak tak nie tak tak nie nie tak

62 Operatory t-normy i s-normy normy trójkątne Istnieją różne rodzaje działań, które można nazywać sumą lub iloczynem zbiorów. Warunki, które muszą być spełnione, by dane działanie było sumą nazywane są s-normą, iloczynem t-normą. Ogólnie nazywa się je normami trójkątnymi. s-normą nazywa się funkcję S: [0, ] [0, ] [0, ] taką, że dla każdego a, b, c [0, ] spełnione są warunki o łączność S(S(a, b),c) = S(a, S(b, c)) o przemienność S(a, b) = S(b, a) o monotoniczność dla b c zachodzi S(a, b) S(a, c) o warunek brzegowy (element neutralny) S(a, 0) = a

63 t normą nazywa się funkcję T: [0, ] x [0, ] [0, ] niemalejącą (monotoniczną) oraz spełniającą warunki łączności, przemienności (jak w przypadku s-normy), a także warunek brzegowy: T(a,) = a Dla każdej konkretnej normy trójkątnej istnieje norma do niej dualna inaczej nazywana jej ko-normą. Warunkiem tego, by s-norma była dualna do danej t-normy (i na odwrót) jest spełnianie poniższych zależności: S(a,b) = -T(-a,-b) T(a,b) = -S(-a,-b), które można rozpatrywać jak uogólnienie praw de Morgana.

64 Przykładowe często wykorzystywane normy trójkątne: Norma maksyminowa t norma minimum: T(a, b) = a b = min (a, b) s norma maksimum: S(a, b) = a b = max(a, b) Norma Larsena t norma - iloczyn algebraiczny: T(a, b) = a b s norma - iloczyn probablistyczny: S(s, b) = a + b (a b) Mimo, iż normy trójkątne podają ogólne warunki, jakie musi spełniać dane działanie, by można je było nazwać dodawaniem lub mnożeniem, to są wygodnym narzędziem służącym do definiowania działań także na zbiorach rozmytych (zatem także liczbach rozmytych).

65 Przykładowe częściej wykorzystywane normy trójkątne: Norma maksyminowa t norma minimum: T(a, b) = a b = min (a, b) s norma maksimum: S(a, b) = a b = max(a, b) Norma Larsena t norma - iloczyn algebraiczny: T(a, b) = a b s norma - iloczyn probabilistyczny: S(s, b) = a + b (a b) Mimo, iż normy trójkątne podają ogólne warunki, jakie musi spełniać dane działanie, by można je było nazwać dodawaniem lub mnożeniem, to są wygodnym narzędziem służącym do definiowania działań na zbiorach rozmytych (zatem także liczbach rozmytych, które są szczególnym przypadkiem gdy X=R).

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z inteligentnymi

Bardziej szczegółowo

Metody Sztucznej Inteligencji II

Metody Sztucznej Inteligencji II 17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału

Bardziej szczegółowo

8. Neuron z ciągłą funkcją aktywacji.

8. Neuron z ciągłą funkcją aktywacji. 8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

Jeśli X jest przestrzenią o nieskończonej liczbie elementów:

Jeśli X jest przestrzenią o nieskończonej liczbie elementów: Logika rozmyta 2 Zbiór rozmyty może być formalnie zapisany na dwa sposoby w zależności od tego z jakim typem przestrzeni elementów mamy do czynienia: Jeśli X jest przestrzenią o skończonej liczbie elementów

Bardziej szczegółowo

INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Temat: Podstawowe pojęcia z logiki rozmytej Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sterowanie

Bardziej szczegółowo

Sztuczne Sieci Neuronowe. Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW

Sztuczne Sieci Neuronowe. Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW Sztuczne Sieci Neuronowe Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW SN są częścią dziedziny Sztucznej Inteligencji Sztuczna Inteligencja (SI) zajmuje się

Bardziej szczegółowo

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2)

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Ewa Wołoszko Praca pisana pod kierunkiem Pani dr hab. Małgorzaty Doman Plan tego wystąpienia Teoria Narzędzia

Bardziej szczegółowo

Sztuczna inteligencja : Zbiory rozmyte cz. 2

Sztuczna inteligencja : Zbiory rozmyte cz. 2 Sztuczna inteligencja : Zbiory rozmyte cz. 2 Przemysław Juszczuk Instytut Informatyki Uniwersytetu Śląskiego 1 marca 2012 Funkcja trójkątna: Funkcja trójkątna: Funkcja przynależności γ (gamma): Rysunek:

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Algebra Boole a

Wstęp do Techniki Cyfrowej... Algebra Boole a Wstęp do Techniki Cyfrowej... Algebra Boole a Po co AB? Świetne narzędzie do analitycznego opisu układów logicznych. 1854r. George Boole opisuje swój system dedukcyjny. Ukoronowanie zapoczątkowanych w

Bardziej szczegółowo

Automatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010

Automatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010 Materiały/konsultacje Automatyczna predykcja http://www.ibp.pwr.wroc.pl/kotulskalab Konsultacje wtorek, piątek 9-11 (uprzedzić) D1-115 malgorzata.kotulska@pwr.wroc.pl Co to jest uczenie maszynowe? Uczenie

Bardziej szczegółowo

Kurs logiki rozmytej - zadania. Wojciech Szybisty

Kurs logiki rozmytej - zadania. Wojciech Szybisty Kurs logiki rozmytej - zadania Wojciech Szybisty 2009 Spis treści 1 Zadania - zbiory rozmyte 3 2 Zadania - relacje rozmyte 6 3 Zadania - logika rozmyta 11 1 Zadania - zbiory rozmyte 3 Przykłady rozwiązywania

Bardziej szczegółowo

Sztuczne siei neuronowe - wprowadzenie

Sztuczne siei neuronowe - wprowadzenie Metody Sztucznej Inteligencji w Sterowaniu Ćwiczenie 2 Sztuczne siei neuronowe - wprowadzenie Przygotował: mgr inż. Marcin Pelic Instytut Technologii Mechanicznej Politechnika Poznańska Poznań, 2 Wstęp

Bardziej szczegółowo

Seminarium magisterskie. Dyskusja nad tematem pracy magisterskiej pisanej pod kierunkiem pani Dr hab. Małgorzaty Doman

Seminarium magisterskie. Dyskusja nad tematem pracy magisterskiej pisanej pod kierunkiem pani Dr hab. Małgorzaty Doman Seminarium magisterskie Dyskusja nad tematem pracy magisterskiej pisanej pod kierunkiem pani Dr hab. Małgorzaty Doman Plan wystąpienia Ogólnie o sztucznych sieciach neuronowych Temat pracy magisterskiej

Bardziej szczegółowo

SIECI RBF (RADIAL BASIS FUNCTIONS)

SIECI RBF (RADIAL BASIS FUNCTIONS) SIECI RBF (RADIAL BASIS FUNCTIONS) Wybrane slajdy z prezentacji prof. Tadeusiewicza Wykład Andrzeja Burdy S. Osowski, Sieci Neuronowe w ujęciu algorytmicznym, Rozdz. 5, PWNT, Warszawa 1996. opr. P.Lula,

Bardziej szczegółowo

Arytmetyka liczb binarnych

Arytmetyka liczb binarnych Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1

Bardziej szczegółowo

Kurs logiki rozmytej. Wojciech Szybisty

Kurs logiki rozmytej. Wojciech Szybisty Kurs logiki rozmytej Wojciech Szybisty 2009 Spis treści 1 Co to jest logika rozmyta 3 1.1 Podstawy teorii zbiorów rozmytych........................ 3 1.2 Historia.......................................

Bardziej szczegółowo

HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM

HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM ZASTOSOWANIE SIECI NEURONOWYCH W SYSTEMACH AKTYWNEJ REDUKCJI HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM WPROWADZENIE Zwalczanie hałasu przy pomocy metod aktywnych redukcji hałasu polega

Bardziej szczegółowo

Rozmyte systemy doradcze

Rozmyte systemy doradcze Systemy ekspertowe Rozmyte systemy doradcze Plan. Co to jest myślenie rozmyte? 2. Teoria zbiorów rozmytych. 3. Zmienne lingwistyczne. 4. Reguły rozmyte. 5. Wnioskowanie rozmyte (systemy doradcze). typu

Bardziej szczegółowo

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe wykład 1. Właściwości sieci neuronowych Model matematyczny sztucznego neuronu Rodzaje sieci neuronowych Przegląd d głównych g

Bardziej szczegółowo

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Dorota Witkowska Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wprowadzenie Sztuczne

Bardziej szczegółowo

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu.

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu. SYLLABUS na rok akademicki 01/013 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr /3 Specjalność Bez specjalności Kod katedry/zakładu

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych.

Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Metody Sztucznej Inteligencji 2 Projekt Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Autorzy: Robert Wojciechowski Michał Denkiewicz Mateusz Gągol Wstęp Celem projektu

Bardziej szczegółowo

Kurs logiki rozmytej - pomoc. Wojciech Szybisty

Kurs logiki rozmytej - pomoc. Wojciech Szybisty Kurs logiki rozmytej - pomoc Wojciech Szybisty 2009 Spis treści 1 Wymagania 3 2 Zawartość strony internetowej 3 3 Obsługa apletów 6 3.1 Aplet Rodzaje funkcji przynależności...................... 6 3.2

Bardziej szczegółowo

Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wg programu nauczania Matematyka Prosto do matury

Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wg programu nauczania Matematyka Prosto do matury STEREOMETRIA Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wskazać płaszczyzny równoległe i prostopadłe do danej płaszczyzny wskazać proste równoległe i prostopadłe do danej płaszczyzny

Bardziej szczegółowo

Elementy logiki (4 godz.)

Elementy logiki (4 godz.) Elementy logiki (4 godz.) Spójniki zdaniotwórcze, prawa de Morgana. Wyrażenie implikacji za pomocą alternatywy i negacji, zaprzeczenie implikacji. Prawo kontrapozycji. Podstawowe prawa rachunku zdań. Uczestnik

Bardziej szczegółowo

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci

Bardziej szczegółowo

Co to jest grupowanie

Co to jest grupowanie Grupowanie danych Co to jest grupowanie 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Szukanie grup, obszarów stanowiących lokalne gromady punktów Co to jest grupowanie

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

Prof. Stanisław Jankowski

Prof. Stanisław Jankowski Prof. Stanisław Jankowski Zakład Sztucznej Inteligencji Zespół Statystycznych Systemów Uczących się p. 228 sjank@ise.pw.edu.pl Zakres badań: Sztuczne sieci neuronowe Maszyny wektorów nośnych SVM Maszyny

Bardziej szczegółowo

WYRAŻENIA ALGEBRAICZNE

WYRAŻENIA ALGEBRAICZNE WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. 1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Układy kombinacyjne

Wstęp do Techniki Cyfrowej... Układy kombinacyjne Wstęp do Techniki Cyfrowej... Układy kombinacyjne Przypomnienie Stan wejść układu kombinacyjnego jednoznacznie określa stan wyjść. Poszczególne wyjścia określane są przez funkcje boolowskie zmiennych wejściowych.

Bardziej szczegółowo

Elementy Sztucznej Inteligencji. Sztuczne sieci neuronowe cz. 2

Elementy Sztucznej Inteligencji. Sztuczne sieci neuronowe cz. 2 Elementy Sztucznej Inteligencji Sztuczne sieci neuronowe cz. 2 1 Plan wykładu Uczenie bez nauczyciela (nienadzorowane). Sieci Kohonena (konkurencyjna) Sieć ze sprzężeniem zwrotnym Hopfielda. 2 Cechy uczenia

Bardziej szczegółowo

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji

Bardziej szczegółowo

Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty

Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-03 Projekt pn. Wzmocnienie potencjału

Bardziej szczegółowo

9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI

9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Ekstrema i monotoniczność funkcji Oznaczmy przez D f dziedzinę funkcji f Mówimy, że funkcja f ma w punkcie 0 D f maksimum lokalne (minimum lokalne), gdy dla każdego

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013 Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

Sieci neuronowe i ich ciekawe zastosowania. Autor: Wojciech Jamrozy III rok SMP / Informatyka

Sieci neuronowe i ich ciekawe zastosowania. Autor: Wojciech Jamrozy III rok SMP / Informatyka Sieci neuronowe i ich ciekawe zastosowania Autor: Wojciech Jamrozy III rok SMP / Informatyka Klasyczna algorytmika Sortowanie ciągu liczb Czy i ile razy dane słowo wystąpiło w tekście Najkrótsza droga

Bardziej szczegółowo

W narzędziu typu Excel, Calc czy Gnumeric napisz formułę logiczną która wyznaczy wartośd przynależności dla podanej temperatury do zbioru gorąco.

W narzędziu typu Excel, Calc czy Gnumeric napisz formułę logiczną która wyznaczy wartośd przynależności dla podanej temperatury do zbioru gorąco. Zadanie 0 Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad wartośd funkcji przynależności

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2015/2016 Przedmiot: MATEMATYKA Klasa: III 2 godz/tyg 30 = 60 godzin Rozkład materiału nauczania Temat I. LOGARYTMY

Bardziej szczegółowo

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE DIAGNOSTYKĘ MEDYCZNĄ Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj zajęć: wykład, projekt

Bardziej szczegółowo

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności I. Pojęcie funkcji definicja różne sposoby opisu funkcji określenie dziedziny, zbioru wartości, miejsc zerowych. Należy

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

Wykład z modelowania matematycznego. Zagadnienie transportowe.

Wykład z modelowania matematycznego. Zagadnienie transportowe. Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana

Bardziej szczegółowo

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu Podstawy baz danych PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych

Bardziej szczegółowo

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i

Bardziej szczegółowo

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.

Bardziej szczegółowo

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 13 - Układy bramkowe Instytut Automatyki i Robotyki Warszawa, 2015 Układy z elementów logicznych Bramki logiczne Elementami logicznymi (bramkami logicznymi) są urządzenia o dwustanowym sygnale wyjściowym

Bardziej szczegółowo

Algebra Boole a. Ćwiczenie Sprawdź, czy algebra zbiorów jestrównież algebrą Boole a. Padaj wszystkie elementy takiej realizacji.

Algebra Boole a. Ćwiczenie Sprawdź, czy algebra zbiorów jestrównież algebrą Boole a. Padaj wszystkie elementy takiej realizacji. Algebra Boole a Algebrą Boole a nazywamy zbiór B, wyróżnione jego podzbiory O i I oraz operacje dwuargumentowe +;, które dla dowolnych elementów X, Y, Z zbioru B spełniają następujące aksjomaty: X+Y B;

Bardziej szczegółowo

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi:

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi: 1 Elementy logiki W logice zdaniem nazywamy wypowiedź oznajmującą, która (w ramach danej nauki) jest albo prawdziwa, albo fałszywa. Tak więc zdanie może mieć jedną z dwóch wartości logicznych. Prawdziwość

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty

Bardziej szczegółowo

Algorytmy sztucznej inteligencji

Algorytmy sztucznej inteligencji Algorytmy sztucznej inteligencji Dynamiczne sieci neuronowe 1 Zapis macierzowy sieci neuronowych Poniżej omówione zostaną części składowe sieci neuronowych i metoda ich zapisu za pomocą macierzy. Obliczenia

Bardziej szczegółowo

Uczeń: -podaje przykłady ciągów liczbowych skończonych i nieskończonych oraz rysuje wykresy ciągów

Uczeń: -podaje przykłady ciągów liczbowych skończonych i nieskończonych oraz rysuje wykresy ciągów Wymagania edukacyjne PRZEDMIOT: Matematyka KLASA: III Th ZAKRES: zakres podstawowy Poziom wymagań Lp. Dział programu Konieczny-K Podstawowy-P Rozszerzający-R Dopełniający-D Uczeń: 1. Ciągi liczbowe. -zna

Bardziej szczegółowo

Z-ZIP2-303z Zagadnienia optymalizacji Problems of optimization

Z-ZIP2-303z Zagadnienia optymalizacji Problems of optimization KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 0/03 Z-ZIP-303z Zagadnienia optymalizacji Problems of optimization A. USYTUOWANIE

Bardziej szczegółowo

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby Zadania 1 Przedsiębiorstwo wytwarza cztery rodzaje wyrobów: A, B, C, D, które są obrabiane na dwóch maszynach M 1 i M 2. Czas pracy maszyn przypadający na obróbkę jednostki poszczególnych wyrobów podany

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym. Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II

Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1

Bardziej szczegółowo

Elektroniczne materiały dydaktyczne do przedmiotu Wstęp do Sieci Neuronowych

Elektroniczne materiały dydaktyczne do przedmiotu Wstęp do Sieci Neuronowych Elektroniczne materiały dydaktyczne do przedmiotu Wstęp do Sieci Neuronowych Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-21 Koncepcja kursu Koncepcja

Bardziej szczegółowo

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. 1. Elementy logiki matematycznej. 1.1. Rachunek zdań. Definicja 1.1. Zdaniem logicznym nazywamy zdanie gramatyczne

Bardziej szczegółowo

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 2 Detekcja twarzy autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się algorytmem gradientu prostego

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

Wprowadzenie do algorytmiki

Wprowadzenie do algorytmiki Wprowadzenie do algorytmiki Pojecie algorytmu Powszechnie przyjmuje się, że algorytm jest opisem krok po kroku rozwiązania postawionego problemu lub sposób osiągnięcia jakiegoś celu. Wywodzi się z matematyki

Bardziej szczegółowo

Kryteria oceniania z matematyki zakres podstawowy Klasa I

Kryteria oceniania z matematyki zakres podstawowy Klasa I Kryteria oceniania z matematyki zakres podstawowy Klasa I zakres Dopuszczający Dostateczny Dobry bardzo dobry Zdanie logiczne ( proste i złożone i forma zdaniowa oraz prawa logiczne dotyczące alternatywy,

Bardziej szczegółowo

KOŁO MATEMATYCZNE LUB INFORMATYCZNE - klasa III gimnazjum, I LO

KOŁO MATEMATYCZNE LUB INFORMATYCZNE - klasa III gimnazjum, I LO Aleksandra Nogała nauczycielka matematyki w Gimnazjum im. Macieja Rataja w Żmigrodzie olanog@poczta.onet.pl KONSPEKT ZAJĘĆ ( 2 godziny) KOŁO MATEMATYCZNE LUB INFORMATYCZNE - klasa III gimnazjum, I LO TEMAT

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA DYNAMICZNYCH LOKAT KAPITAŁOWYCH Krzysztof Gąsior Uniwersytet Rzeszowski Streszczenie Celem referatu jest zaprezentowanie praktycznego zastosowania

Bardziej szczegółowo

Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO

Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO Dział programowy. Zakres realizacji 1. Liczby, działania i procenty Liczby wymierne i liczby niewymierne-działania, kolejność

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem

Bardziej szczegółowo

12.Rozwiązywanie równań i nierówności liniowych oraz ich układów.

12.Rozwiązywanie równań i nierówności liniowych oraz ich układów. matematyka /.Rozwiązywanie równań i nierówności liniowych oraz ich układów. I. Przypomnij sobie:. Co to jest równanie /nierówność? Rodzaje nierówności. Ogólnie: Równaniem nazywamy dwa wyrażenia algebraiczne

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod

Bardziej szczegółowo

Funkcja liniowa i prosta podsumowanie

Funkcja liniowa i prosta podsumowanie Funkcja liniowa i prosta podsumowanie Definicja funkcji liniowej Funkcja liniowa określona jest wzorem postaci: y = ax + b, x R, a R, b R a, b współczynniki funkcji dowolne liczby rzeczywiste a- współczynnik

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Podstawa programowa z 23 grudnia 2008r. do nauczania matematyki w zasadniczych szkołach zawodowych Podręcznik: wyd.

Bardziej szczegółowo

Matematyka. Poznać, zrozumieć. Zakres podstawowy Katalog wymagań programowych na poszczególne stopnie szkolne Klasa 1

Matematyka. Poznać, zrozumieć. Zakres podstawowy Katalog wymagań programowych na poszczególne stopnie szkolne Klasa 1 Matematyka. Poznać, zrozumieć. Zakres podstawowy Katalog wymagań programowych na poszczególne stopnie szkolne Klasa 1 Matematyka Poznać, zrozumieć. Zakres podstawowy Klasa 1 Liceum i technikum Katalog

Bardziej szczegółowo

MATLAB Neural Network Toolbox przegląd

MATLAB Neural Network Toolbox przegląd MATLAB Neural Network Toolbox przegląd WYKŁAD Piotr Ciskowski Neural Network Toolbox: Neural Network Toolbox - zastosowania: przykłady zastosowań sieci neuronowych: The 1988 DARPA Neural Network Study

Bardziej szczegółowo

Przedmiot statystyki. Graficzne przedstawienie danych.

Przedmiot statystyki. Graficzne przedstawienie danych. Przedmiot statystyki. Graficzne przedstawienie danych. dr Mariusz Grządziel 23 lutego 2009 Przedmiot statystyki Statystyka dzieli się na trzy części: -zbieranie danych; -opracowanie i kondensacja danych

Bardziej szczegółowo

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4) Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego

Bardziej szczegółowo

Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych

Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych AUTOMATYKA INFORMATYKA Technologie Informacyjne Sieć Semantyczna Przetwarzanie Języka Naturalnego Internet Edytor Serii: Zdzisław

Bardziej szczegółowo

Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32

Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania 2/32 Cel analizy Celem fazy określania wymagań jest udzielenie odpowiedzi na pytanie:

Bardziej szczegółowo

Automatyzacja Ćwicz. 2 Teoria mnogości i algebra logiki Akademia Morska w Szczecinie - Wydział Inżynieryjno-Ekonomiczny Transportu

Automatyzacja Ćwicz. 2 Teoria mnogości i algebra logiki Akademia Morska w Szczecinie - Wydział Inżynieryjno-Ekonomiczny Transportu Automatyzacja Ćwicz. 2 Teoria mnogości i algebra logiki Historia teorii mnogości Teoria mnogości to inaczej nauka o zbiorach i ich własnościach; Zapoczątkowana przez greckich matematyków i filozofów w

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

Optymalizacja konstrukcji

Optymalizacja konstrukcji Optymalizacja konstrukcji Kształtowanie konstrukcyjne: nadanie właściwych cech konstrukcyjnych przeszłej maszynie określenie z jakiego punktu widzenia (wg jakiego kryterium oceny) będą oceniane alternatywne

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Kombinacje liniowe wektorów.

Kombinacje liniowe wektorów. Kombinacje liniowe wektorów Definicja: Niech V będzie przestrzenią liniową nad ciałem F, niech A V Zbiór wektorów A nazywamy liniowo niezależnym, jeżeli m N v,, v m A a,, a m F [a v + + a m v m = θ a =

Bardziej szczegółowo

Algorytmiczne sieci neuronowe idea działania, słabe i mocne strony

Algorytmiczne sieci neuronowe idea działania, słabe i mocne strony Patryk DUŃSKI Wydział Informatyki, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie E mail: pdunski@wi.zut.edu.pl Algorytmiczne sieci neuronowe idea działania, słabe i mocne strony Streszczenie:

Bardziej szczegółowo

Metody sztucznej inteligencji

Metody sztucznej inteligencji Metody sztucznej inteligencji sztuczne sieci neuronowe - wstęp dr hab. inż. Andrzej Obuchowicz, prof. UZ Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski A. Obuchowicz Metody sztucznej

Bardziej szczegółowo