ρ (6) przy czym ρ ij to współczynnik korelacji, wyznaczany na podstawie następującej formuły: (7)

Wielkość: px
Rozpocząć pokaz od strony:

Download "ρ (6) przy czym ρ ij to współczynnik korelacji, wyznaczany na podstawie następującej formuły: (7)"

Transkrypt

1 PROCES ZARZĄDZANIA PORTFELEM PAPIERÓW WARTOŚCIOWYCH WSPOMAGANY PRZEZ ŚRODOWISKO AUTOMATÓW KOMÓRKOWYCH Ageszka ULFIK Streszczee: W pracy przedstawoo sposób zarządzaa portfelem paperów wartoścowych wspomagay przez środowsko automatów komórkowych. Klasyczy model Markowtza est edą z podstawowych techk w aalze portfelowe. Problemem est praktycze zastosowae te teor, ze względu a dużą złożoość oblczeową aaltycze postac tego modelu. W zwązku z tym korzyste est zastosowae techk formatyczych usprawaących skomplkoway proces doboru składków do portfela. Automaty komórkowe to struktury takch samych elemetarych automatów komórkowych azywaych komórkam ułożoych w satkę, wykouących te same procesy oblczeowe. Przeprowadzoe symulace udowodły, że automat komórkowy staow arzędze do wyboru westycyego portfela paperów wartoścowych. Słowa kluczowe: automaty komórkowe, aalza portfelowa, model Markowtza, zarządzae portfelem paperów wartoścowych.. Portfel paperów wartoścowych Aalza portfelowa to eda z trzech podstawowych techk, obok aalzy techcze aalzy fudametale, stosowaych przez westorów gełdowych w celu optymalzac swoch westyc. Główą zaletą aalzy portfelowe est dywersyfkaca kaptału powoduąca zmeszee potecalego pozomu ryzyka... Model Markowtza W aalze portfelowe stworzoe przez H. Markowtza, a podstawe hstoryczych otowań spółek gełdowych, oblczaa est ch oczekwaa stopa zwrotu oraz odchylee stadardowe. Welkośc te terpretue sę ako spodzeway zysk z westyc oraz ryzyko emu towarzyszące. Na podstawe daych hstoryczych, wyzaczae są oczekwaa stopa zwrotu będącą zgode z tą teorą marą pozomu przewdywaego zysku. Na podstawe stóp zwrotu wyzaczae są ch odchylea stadardowe będące marą dyspers wyrażaące ryzyko towarzyszące estymowaym zyskom []. Iwestorzy zwykle są zateresowa waloram przyoszącym duży dochód, zwązay z skm pozomem ryzyka. Take papery wartoścowe musałyby posadać wysok pozom oczekwae stopy zwrotu przy edoczesym skm stopu dyspers. Wartość stopy zwrotu w okrese t est oblczaa a podstawe astępuącego wzoru: Pt Pt + Dt R t () P t 587

2 gdze R t stopa zwrotu w okrese t, P t cea waloru w okrese t, P t- cea waloru w okrese t-, D t dywdeda wypłacoa w okrese t. Dla każdego okresu t wyzaczaa zostae stopa zwrotu w zwązku z tym stopa zwrotu est fukcą czasu. Wysokość zysku (lub straty) z westyc zależy od welu czyków. W praktyce wartość oczekwae stopy zwrotu wyzacza sę ako średą arytmetyczą wszystkch zaobserwowaych stóp zwrotu. Prowadz to do astępuącego wzoru a oczekwaą stopę zwrotu z daego paperu wartoścowego: N Rt t R (2) N gdze: R oczekwaa stopa zwrotu z daego paperu wartoścowego, R t emprycza stopa zwrotu w okrese t, N lczba wszystkch aalzowaych stóp zwrotu. Tak określoemu pozomow zysku zawsze towarzyszy ryzyko westycye. Poęce to est ezwykle złożoe. W praktyczych aalzach gełdowych, ryzyko wyzacza sę wykorzystuąc statystykę matematyczą. Welkoścą terpretowaą ako ryzyko est odchylee stadardowe będące perwastkem kwadratowym z warac [2]. Wyzacza sę e a podstawe astępuącego wzoru: S ( R R) 2 (3) gdze: S odchylee stadardowe stopy zwrotu paperu wartoścowego, lczba wszystkch aalzowaych stóp zwrotu. Dochód ryzyko są główym kryteram ocey rozpatrywaym przez westora [3]. Obe welkośc wyzaczae są dla wszystkch rozpatrywaych paperów wartoścowych, a astępe umeszcza a wykrese potocze azywaym mapą ryzyko dochód lub wykresem korelacyym. Powstae o przez aesee a wykres stóp zwrotu oraz ryzyka towarzyszącego ch osągau. Wartość stopy zwrotu ryzyka główego deksu gełdowego staową pukt odesea zazwycza te pukt uważa sę za cetrum wykresu. Nabardze teresuące dla westora są spółk gełdowe, które maą wększy spodzeway zysk oraz mesze ryzyko ż WIG. Name korzyste dla westora są atomast spółk z meszym spodzewaym zyskem wększym ryzykem. Rysuek przedstawaą mapę ryzyko dochód sporządzoą a podstawe rocze hstor otowań. Aalza portfelowa pokazue ak zmeą sę oczekwaa stopa zwrotu oraz ego odchylee stadardowe, eśl będzemy westować w węce ż ede paper wartoścowy, a także w ak sposób dobrać do portfela westycyego ego składk, aby zdywersyfkować ryzyko, czyl aby ryzyko portfela było mesze ż składków 588

3 wchodzących w ego skład, przy edoczesym zachowau odpowedego pozomu zysku. [4]. 0,05 0,0 R 0, ,00 0,02 0,04 0,06 0,08 0,0 0,2 0,4 0,6 0,8-0,005-0,0 S Rys.. Mapa ryzyko dochód dla wększośc spółek otowaych a Gełdze Paperów Wartoścowych w Warszawe od lstopada 2008 roku do lstopada 2009 roku. Źródło: opracowae włase W przypadku składkowego portfela paperów wartoścowych, wartość stopy zwrotu z portfela R p est sumą stóp zwrotu poszczególych walorów pomożoych przez ch udzały w całośc westyc. [2] Wartość stopy zwrotu portfela składkowego wyzacza sę a podstawe astępuącego wzoru: R p x R (4) gdze x, 0 x, dla, 2, 3,,. Odchylee stadardowe oczekwae stopy zwrotu S p dla składkowego portfela paperów wartoścowych będące marą ryzyka, est perwastkem z warac. Moża e wyzaczyć z edego z dwóch rówoważych wzorów: 2 2 S x S + 2 x x S S ρ (5) p + 589

4 S p x x S S ρ (6) przy czym ρ to współczyk korelac, wyzaczay a podstawe astępuące formuły: ( Rk R ) ( R k R ) k ρ (7) S S W przypadku składkowego portfela paperów wartoścowych, wartość stopy zwrotu z portfela R p oraz odchylee stadardowe oczekwae stopy zwrotu S p będące marą ryzyka, to dwa podstawowe parametry służące do porówywaa różych składkowych portfel paperów wartoścowych, używae w zarządzau portfelem paperów wartoścowych [2, 5]..2. Zarządzae portfelem paperów wartoścowych Istotym warukem powodzea a ryku kaptałowym est odpowede zróżcowae dokoywaych westyc. Zróżcowae westyc pozwala zmmalzować ryzyko zwązae z westowaem w papery wartoścowe. Ewetuale możlwe straty wykaące z lokowaa kaptału w ede papery wartoścowe, wyrówuą zysk z ych westyc. Zawsko dywersyfkac portfela westycyego to główa zaleta aalzy portfelowe. Zarządzae portfelem westycyym to szereg czyośc maących a celu wybór abardze optymale dla daego westora westyc. W. Tarczyńsk przedstawa te proces astępuąco: Zarządzae portfelem paperów wartoścowych est ogólym określeem wszelke dzałalośc westora w dzedze lokowaa w papery wartoścowe. W ramach tego poęca wyróża sę pęć różych aspektów [5]:. Określee celu waruków tworzea portfela. Podstawowym problemem rozstrzygaym w tym aspekce est określee horyzotu czasowego dla portfela. Wyróża sę dwe możlwośc: krótk okres dług okres. 2. Określee zboru paperów wartoścowych, z których kostruue sę portfel. Jeśl a ryku est dużo paperów wartoścowych, aalzy zawęża sę do pewych grup. 3. Określee kryterów wyzaczaa portfela. Krytera te determuą metody stosowae przy tworzeu portfela, a przykład kryterum maksymalzac zysku dla daego ryzyka. 4. Określee charakterystyk paperów wartoścowych. Wyzaczaąc skład portfela, posługuemy sę metodam loścowym. Do tego potrzeba est zaomość charakterystyk paperów wartoścowych, które potecale mogą zaleźć sę w portfelu. Naczęśce charakterystyk te dotyczą zysku ryzyka paperu wartoścowego. 5. Ocea portfela. Z uwag a zmeaącą sę a ryku sytuacę zachodz koeczość stałe kotrol optymalośc portfela ewetuale zmay ego składu. Ocea taka powa być prowadzoa a beżąco. 590

5 2. Automaty komórkowe Automaty komórkowe zostały stworzoe w latach czterdzestych ubegłego weku, aby emulować procesy występuące w aturze, a edocześe tworzyć samoreplkuące sę maszyy oblczeowe. Za ch twórcę uważa sę Joha vo Neumaa. Swó początek mały oe w aśladowau żywych orgazmów. Wkrótce po ch odkrycu, okazały sę oe bardzo teresuące przydate w welu dzedzach auk. Początkowo zateresowal sę m fzycy zaczęl z powodzeem stosować automaty komórkowe do symulac złożoych zagadeń. Dzś automaty komórkowe są stosowae w matematyce, mechace, ekoom, grafce, socolog, w symulacach ruchu ulczego powetrzego, grach komputerowych, kryptograf welu ych zagadeach. Jedym z takch zagadeń może być symulowae zachowaa sę ryku akc westorów, a także zagadee doboru portfela westycyego. Automaty komórkowe to dyskrete modele używae główe w fzyce, matematyce teorach oblczeowych. Są to struktury takch samych elemetarych automatów komórkowych azywaych komórkam ułożoych w satkę. Zazwycza est oa edo, dwu lub trówymarową kratowcą, choć steą róweż e sposoby ułożea komórek przykładowo przypomaące plaster modu lub ułożoych ako sąsaduące ze sobą trókąty. Lczba wymarów automatu komórkowego, może być wększa ż trzy, choć w praktyce take rozwązaa stosue sę rzadko ze względu a trudość w mplemetac takego modelu ewelke korzyśc, w porówau z bardze typowym automatam komórkowym. W automace komórkowym każda komórka komukue sę z przylegaącym do e sąsadam. Wyróża sę dwa podstawowe rodzae sąsedztw: vo Neumaa Moore a. W perwszym przypadku ako sąsad rozumaa est komórka przylegaąca do dae całym bokem, a w drugm róweż werzchołkem. Każdy automat komórkowy oprócz swoe struktury oraz typu sąsedztwa, mus meć ustaloe trzy astępuące parametry: typ komórek buduących automat komórkowy, co ozacza ustalee akego typu formace muszą przechowywać elemetare automaty komórkowe, wartość początkową każde komórk, fukcę prześca, która est algorytmem decyduącym ak będze sta komórk w obece terac a podstawe wartośc komórek sąsedch w poprzede terac. Nalepe zaym przykładem zastosowaa automatu komórkowego est gra Życe stworzoa przez Joha Coway a. W grze te automat komórkowy ma strukturę dwuwymarowe satk. Każda komórka otrzymue sta początkowy: może być aktywa żywa lub eaktywa martwa. W grze te są ustaowoe reguły zachowaa sę każde komórk, które mogą doprowadzć do ożywea dae komórk lub też do e obumarca, w zależośc od tego ake wartośc maą komórk sąsede. Ta gra symulue środowsko aturale w którym zwerzęta mogą sę rodzć umerać, kedy e maą wystarczaące lośc pożywea. Poeważ automat komórkowy charakteryzue sę dużą mocą oblczeową, celowe est sprawdzee, w ak sposób środowsko automatów komórkowych może pomóc w doborze parametrów portfela westycyego. Take próby były uż zae dowodły, ż proces doboru portfela paperów wartoścowych może sę odbywać z użycem środowska automatów komórkowych [6]. 59

6 3. Symulace W celu zbadaa przydatośc automatów komórkowych do kostruowaa portfela paperów wartoścowych, apsay został autorsk program komputerowy. Program te został zamplemetoway w środowsku Bulder C++ frmy Borlad. Aplkaca ta wczytue dae gełdowe z wybraych przez użytkowka plków w formace tekstowym. Z daych tych wyberae są otowaa dotyczące wybraego przez użytkowka przedzału czasowego. Na podstawe tych otowań, wyzaczae są podstawowe charakterystyk wybraych paperów wartoścowych (oczekwaa stopa zwrotu oraz e odchylee stadardowe). Jako kolee welkośc, wyzaczae są współczyk korelac pomędzy wszystkm wybraym spółkam. Wszystke wyzaczoe welkośc trafaą ako formace weścowe do środowska automatów komórkowych. Na podstawe tych daych dokoywaa est symulaca. Celem przeprowadzaa symulac było zalezee portfela charakteryzuącego sę możlwe awększym zyskem przy ameszym ryzyku. Przykładowe symulace przeprowadzoe w środowsku automatów komórkowych mały a celu stworzee portfel dwuskładkowych. Baday przedzał czasowy dotyczył daych od lstopada 2008 roku do lstopada 2009 roku. Automat komórkowy użyty w symulacach mał 00 komórek w poe 00 w pozome, czyl składał sę z komórek elemetarych automatów komórkowych. Na początku każde symulac, każda komórka mała losowo wyberay skład portfela westycyego. Następe komórk komukuąc sę ze sobą, wyberały alepszy portfel. Tabela przedstawa wyk uzyskae w 0 symulacach oraz charakterystyk WIGu. Wyk symulac przedstawoe w tabel pokazuą ż wartość oczekwae stopy zwrotu dwuskładkowych portfel paperów wartoścowych, est wyższa ż ta wartość dla deksu WIG w badaym okrese czasu. Jedocześe wartość odchylea stadardowego czyl mary ryzyka, dla portfel paperów wartoścowych wylosowaych przez automat komórkowy est wyższa, gdyż take było założee przeprowadzaych symulac. Tab.. Podstawowe charakterystyk dwuelemetowych portfel paperów wartoścowych, uzyskaych w trakce symulac Numer realzac R [%] S [%] 0,726 5, ,320 3, ,48 4, ,629 7, ,59 6,3442 6,005 5, ,583 4, ,623 5, ,6253 5, ,537 4,3459 WIG 0,83,

7 4. Wosk Model Markowtza est edą z podstawowych techk wspomagaących westorów zamuących sę lokowaem kaptału a gełdze w węce ż ede walor. Problemem est praktycze zastosowae te teor, ze względu a dużą złożoość oblczeową. W zwązku z tym koecze est wstępe określee celu westora oraz waruków tworzea portfela westycyego ak róweż ograczee zboru paperów wartoścowych które w aszym portfelu mogą sę zaleźć. Dopero po takm wstępym opracowau założeń ależy przystąpć do kostruowaa portfela paperów wartoścowych. Przeprowadzoe symulace udowodły, że automat komórkowy staow arzędze do wyboru westycyego portfela paperów wartoścowych. Dodatkowo, portfele uzyskae w symulacach charakteryzowały sę wysokm pozomem zysku przy stosukowo skm pozome ryzyka. Lteratura. Hauge R.: Nowa auka o fasach. WIG Press, Warszawa, Jauga K., Jauga T.: Iwestyce, strumety fasowe, ryzyko fasowe, żyera fasowa. Wydawctwo Naukowe PWN, Warszawa, Dębsk W.: Ryek fasowy ego mechazmy. Podstawy teor praktyk. Wydawctwo Naukowe PWN, Warszawa, Markowtz H.: Portfolo selecto, The Joural of Face, 952, Vol.7 No. 5. Tarczyńsk W.: Fudametaly portfel paperów wartoścowych. Polske Wydawctwo Ekoomcze, Warszawa, Ulfk A.: Automaty komórkowe ako arzędze do kostruowaa portfela westycyego, [w:] Iformatyka w bakowośc fasach. red. F. Mareck, J. K. Grabara, PTI, Katowce, Dr ż. Ageszka ULFIK Istytut Ekoometr Iformatyk Wydzał Zarządzaa Poltechka Częstochowska Częstochowa, ul. Dąbrowskego 69 tel.: (0-34) e-mal: 593

Portfel złożony z wielu papierów wartościowych

Portfel złożony z wielu papierów wartościowych Portfel westycyy ćwczea Na odst. Wtold Jurek: Kostrukca aalza, rozdzał 4 dr Mchał Kooczyńsk Portfel złożoy z welu aerów wartoścowych. Zwrot ryzyko Ozaczea: w kwota ulokowaa rzez westora w aery wartoścowe

Bardziej szczegółowo

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację.

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację. Wrażlwość oblgacj Jedym z czyków ryzyka westowaa w oblgacje jest zmeość rykowych stóp procetowych. Iżyera fasowa dyspouje metodam pozwalającym zabezpeczyć portfel przed egatywym skutkam zma stóp procetowych.

Bardziej szczegółowo

FINANSE II. Model jednowskaźnikowy Sharpe a.

FINANSE II. Model jednowskaźnikowy Sharpe a. ODELE RYNKU KAPITAŁOWEGO odel jedowskaźkowy Sharpe a. odel ryku kaptałowego - CAP (Captal Asset Prcg odel odel wycey aktywów kaptałowych). odel APT (Arbtrage Prcg Theory Teora artrażu ceowego). odel jedowskaźkowy

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość

Bardziej szczegółowo

KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA. Adrian Kapczyński Maciej Wolny

KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA. Adrian Kapczyński Maciej Wolny KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA Adra Kapczyńsk Macej Woly Wprowadzee Rozwój całego spektrum coraz doskoalszych środków formatyczych

Bardziej szczegółowo

WYBRANE MOŻLIWOŚCI WSPOMAGANIA INWESTYCJI

WYBRANE MOŻLIWOŚCI WSPOMAGANIA INWESTYCJI WYBRANE MOŻLIWOŚCI WSPOMAGANIA INWESTYCJI GIEŁDOWYCH PRZY UŻYCIU ALGORYTMÓW GENETYCZNYCH mgr ż. Marc Klmek Katedra Iformatyk Państwowa Wyższa Szkoła Zawodowa m. Papeża Jaa Pawła II w Bałej Podlaskej Streszczee:

Bardziej szczegółowo

Monika Jeziorska - Pąpka Uniwersytet Mikołaja Kopernika w Toruniu

Monika Jeziorska - Pąpka Uniwersytet Mikołaja Kopernika w Toruniu DYNAMICZNE MODELE EKONOMERYCZNE X Ogólopolske Semarum Naukowe, 4 6 wrześa 2007 w oruu Katedra Ekoometr Statystyk, Uwersytet Mkołaja Koperka w oruu Moka Jezorska - Pąpka Uwersytet Mkołaja Koperka w oruu

Bardziej szczegółowo

Modelowanie niezawodności i wydajności synchronicznej elastycznej linii produkcyjnej

Modelowanie niezawodności i wydajności synchronicznej elastycznej linii produkcyjnej Dr hab. ż. Ato Śwć, prof. adzw. Istytut Techologczych ystemów Iformacyych oltechka Lubelska ul. Nadbystrzycka 36, 2-68 Lubl e-mal: a.swc@pollub.pl Dr ż. Lech Mazurek aństwowa Wyższa zkoła Zawodowa w Chełme

Bardziej szczegółowo

Ćwiczenia nr 3 Finanse II Robert Ślepaczuk. Teoria portfela papierów wartościowych

Ćwiczenia nr 3 Finanse II Robert Ślepaczuk. Teoria portfela papierów wartościowych Ćczea r 3 Fae II obert Ślepaczuk Teora portfela paperó artoścoych Teora portfela paperó artoścoych jet jedym z ajażejzych dzałó ooczeych faó. Dotyczy oa etycj faoych, a przede zytkm etycj dokoyaych a ryku

Bardziej szczegółowo

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki)

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki) Podstawy aalzy epewośc pomarowych (I Pracowa Fzyk) Potr Cygak Zakład Fzyk Naostruktur Naotecholog Istytut Fzyk UJ Pok. 47 Tel. 0-663-5838 e-mal: potr.cygak@uj.edu.pl Potr Cygak 008 Co to jest błąd pomarowy?

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 7 Krzywa retowośc, zadaa (mat. f.), marża w hadlu, NPV IRR, Ustawa o kredyce kosumeckm, fukcje fasowe Excela Krzywa retowośc (dochodowośc) Yeld Curve Krzywa ta jest grafczym

Bardziej szczegółowo

Analiza wyniku finansowego - analiza wstępna

Analiza wyniku finansowego - analiza wstępna Aalza wyku fasowego - aalza wstępa dr Potr Ls Welkość wyku fasowego determuje: etowość przedsęborstwa Welkość podatku dochodowego Welkość kaptałów własych Welkość dywded 1 Aalza wyku fasowego ma szczególe

Bardziej szczegółowo

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych dr Ewa Wycka Wyższa Szkoła Bakowa w Gdańsku Wtold Komorowsk, Rafał Gatowsk TZ SKOK S.A. Statystycza aalza mesęczych zma współczyka szkodowośc kredytów hpoteczych Wskaźk szkodowośc jest marą obcążea kwoty/lczby

Bardziej szczegółowo

Wyrażanie niepewności pomiaru

Wyrażanie niepewności pomiaru Wyrażae epewośc pomaru Adrzej Kubaczyk Wydzał Fzyk, Poltechka Warszawska Warszawa, 05 Iformacje wstępe Każdy pomar welkośc fzyczej dokoyway jest ze skończoą dokładoścą, co ozacza, że wyk tego pomaru dokoyway

Bardziej szczegółowo

Portfel. Portfel pytania. Portfel pytania. Analiza i Zarządzanie Portfelem cz. 2. Katedra Inwestycji Finansowych i Zarządzania Ryzykiem

Portfel. Portfel pytania. Portfel pytania. Analiza i Zarządzanie Portfelem cz. 2. Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Katedra Ietycj Faoych Zarządzaa yzykem Aalza Zarządzae Portfelem cz. Dr Katarzya Kuzak Co to jet portfel? Portfel grupa aktyó (trumetó faoych, aktyó rzeczoych), które zotały yelekcjooae, którym ależy zarządzać

Bardziej szczegółowo

5. OPTYMALIZACJA NIELINIOWA

5. OPTYMALIZACJA NIELINIOWA 5. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często, że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też, oprócz lowych zadań decyzyjych, formułujemy także elowe

Bardziej szczegółowo

MATERIAŁY I STUDIA. Efektywność sektora publicznego na poziomie samorządu lokalnego. Zesz y t nr 242. Barbara Karbownik, Grzegorz Kula

MATERIAŁY I STUDIA. Efektywność sektora publicznego na poziomie samorządu lokalnego. Zesz y t nr 242. Barbara Karbownik, Grzegorz Kula MATERAŁY STUDA Zesz y t r 242 Efektywość sektora publczego a pozome samorządu lokalego Barbara Karbowk, Grzegorz Kula Warszawa 2009 Barbara Karbowk Narodowy Bak Polsk, barbara.karbowk@bp.pl Grzegorz Kula

Bardziej szczegółowo

Centralna Izba Pomiarów Telekomunikacyjnych (P-12) Komputerowe stanowisko do wzorcowania generatorów podstawy czasu w częstościomierzach cyfrowych

Centralna Izba Pomiarów Telekomunikacyjnych (P-12) Komputerowe stanowisko do wzorcowania generatorów podstawy czasu w częstościomierzach cyfrowych Cetrala Izba Pomarów Telekomukacyjych (P-1) Komputerowe staowsko do wzorcowaa geeratorów podstawy czasu w częstoścomerzach cyrowych Praca r 1300045 Warszawa, grudzeń 005 Komputerowe staowsko do wzorcowaa

Bardziej szczegółowo

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5 L.Kowalsk zadaa ze statystyk opsowej-zestaw 5 Zadae 5. X cea (zł, Y popyt (tys. szt.. Mając dae ZADANIA Zestaw 5 x,5,5 3 3,5 4 4,5 5 y 44 43 43 37 36 34 35 35 Oblcz współczyk korelacj Pearsoa. Oblcz współczyk

Bardziej szczegółowo

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA Ćwczee 8 TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA 8.. Cel ćwczea Celem ćwczea jest wyzaczee statyczego współczyka tarca pomędzy walcową powerzchą cała a opasującą je lą. Poadto a drodze eksperymetalej

Bardziej szczegółowo

Pomiary parametrów napięć i prądów przemiennych

Pomiary parametrów napięć i prądów przemiennych Ćwczee r 3 Pomary parametrów apęć prądów przemeych Cel ćwczea: zapozae z pomaram wartośc uteczej, średej, współczyków kształtu, szczytu, zekształceń oraz mocy czyej, berej, pozorej współczyka cosϕ w obwodach

Bardziej szczegółowo

Statystyczne charakterystyki liczbowe szeregu

Statystyczne charakterystyki liczbowe szeregu Statystycze charakterystyk lczbowe szeregu Aalzę badaej zmeej moża uzyskać posługując sę parametram opsowym aczej azywaym statystyczym charakterystykam lczbowym szeregu. Sytetycza charakterystyka zborowośc

Bardziej szczegółowo

Zależność kosztów produkcji węgla w kopalni węgla brunatnego Konin od poziomu jego sprzedaży

Zależność kosztów produkcji węgla w kopalni węgla brunatnego Konin od poziomu jego sprzedaży Gawlk L., Kasztelewcz Z., 2005 Zależość kosztów produkcj węgla w kopal węgla bruatego Ko od pozomu jego sprzedaży. Prace aukowe Istytutu Górctwa Poltechk Wrocławskej r 2. Wyd. Ofcya Wydawcza Poltechk Wrocławskej,

Bardziej szczegółowo

Ryzyko inwestycji w spółki sektora TSL na Warszawskiej Giełdzie Papierów Wartościowych

Ryzyko inwestycji w spółki sektora TSL na Warszawskiej Giełdzie Papierów Wartościowych CZYŻYCKI Rafał 1 PURCZYŃSKI Ja Ryzyko westycj w spółk sektora TSL a Warszawskej Gełdze Paperów Wartoścowych WSTĘP Elemetem erozerwale zwązaym z dzałaloścą westorów a całym ryku kaptałowym jest epewość

Bardziej szczegółowo

POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4

POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4 POZECHNE KRAJOE ZAADY YCENY (PKZ) KRAJOY TANDARD YCENY PECJALITYCZNY NR 4 K 4 INETYCJE LINIOE - ŁUŻEBNOŚĆ PRZEYŁU I BEZUMONE KORZYTANIE Z NIERUCHOMOŚCI 1. PROADZENIE 1.1. Nejszy stadard przedstawa reguły

Bardziej szczegółowo

UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie

UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie B A D A N I A O P E R A C Y J N E I D E C Y J E Nr 2 2007 Aa ĆWIĄKAŁA-MAŁYS*, Woletta NOWAK* UOGÓLNIONA ANALIA WRAŻLIWOŚCI YSKU W PREDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW Przedstawoo ajważejsze elemety

Bardziej szczegółowo

Analiza spektralna stóp zwrotu z inwestycji w akcje

Analiza spektralna stóp zwrotu z inwestycji w akcje Nasz rye aptałowy, 003 r3, str. 38-43 Joaa Góra, Magdalea Osńsa Katedra Eoometr Statysty Uwersytet Mołaja Kopera w Toruu Aalza spetrala stóp zwrotu z westycj w acje. Wstęp Agregacja w eoom eoometr bywa

Bardziej szczegółowo

ANALIZA INPUT - OUTPUT

ANALIZA INPUT - OUTPUT Aalza put - output Notatk S Dorosewcz J Staseńko Stroa z 28 SŁAWOMIR DOROSIEWICZ JUSTYNA STASIEŃKO ANALIZA INPUT - OUTPUT NOTATKI Istytut Ekoometr SGH Aalza put - output Notatk S Dorosewcz J Staseńko Stroa

Bardziej szczegółowo

3. OPTYMALIZACJA NIELINIOWA

3. OPTYMALIZACJA NIELINIOWA Wybrae zaadea badań operacyjych dr ż. Zbew Tarapata 3. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też oprócz

Bardziej szczegółowo

Miary statystyczne. Katowice 2014

Miary statystyczne. Katowice 2014 Mary statystycze Katowce 04 Podstawowe pojęca Statystyka Populacja próba Cechy zmee Szereg statystycze Wykresy Statystyka Statystyka to auka zajmująca sę loścowym metodam aalzy zjawsk masowych (występujących

Bardziej szczegółowo

STATYSTYKA MORANA W ANALIZIE ROZKŁADU CEN NIERUCHOMOŚCI

STATYSTYKA MORANA W ANALIZIE ROZKŁADU CEN NIERUCHOMOŚCI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XII/, 0, tr. 3 STATYSTYKA MORANA W ANALIZIE ROZKŁADU CEN NIERUCHOMOŚCI Dorota Kozoł-Kaczorek Katedra Ekoomk Rolcta Mędzyarodoych Stoukó Gopodarczych Szkoła

Bardziej szczegółowo

POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4

POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4 POZECHNE KRAJOE ZAADY YCENY (PKZ) KRAJOY TANDARD YCENY PECJALITYCZNY NR 4 K 4 YCENA ŁUŻEBNOŚCI PRZEYŁU I OKREŚLANIE KOTY YNAGRODZENIA ZA BEZUMONE KORZYTANIE Z NIERUCHOMOŚCI PRZY INETYCJACH LINIOYCH 1.

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

Badania Maszyn CNC. Nr 2

Badania Maszyn CNC. Nr 2 Poltechka Pozańska Istytut Techolog Mechaczej Laboratorum Badaa Maszy CNC Nr 2 Badae dokładośc pozycjoowaa os obrotowych sterowaych umerycze Opracował: Dr. Wojcech Ptaszy sk Mgr. Krzysztof Netter Pozań,

Bardziej szczegółowo

L.Kowalski PODSTAWOWE TESTY STATYSTYCZNE WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH

L.Kowalski PODSTAWOWE TESTY STATYSTYCZNE WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH L.Kowalsk PODSTAWOWE TESTY STATYSTYCZNE TESTY STATYSTYCZNE poteza statystycza to dowole przypuszczee dotyczące rozkładu cechy X. potezy statystycze: -parametrycze dotyczą ezaego parametru, -parametrycze

Bardziej szczegółowo

1. Relacja preferencji

1. Relacja preferencji dr Mchał Koopczyńsk EKONOMIA MATEMATYCZNA Wykłady, 2, 3 (a podstawe skryptu r 65) Relaca preferec koszyk towarów: przestrzeń towarów: R + = { x R x 0} x = ( x,, x ) X X R+ x 0 x 0 =, 2,, x~y xf y x y x

Bardziej szczegółowo

ĆWICZENIE 10 OPTYMALIZACJA STRUKTURY CZUJKI TEMPERATURY W ASPEKCIE NIEZWODNOŚCI

ĆWICZENIE 10 OPTYMALIZACJA STRUKTURY CZUJKI TEMPERATURY W ASPEKCIE NIEZWODNOŚCI ĆWICZENIE 0 OPTYMALIZACJA STUKTUY CZUJKI TEMPEATUY W ASPEKCIE NIEZWODNOŚCI Cel ćwczea: zapozae z metodam optymalzac wewętrze struktury mozakowe czuk temperatury stosowae w systemach sygalzac pożaru; wyzaczee

Bardziej szczegółowo

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego Portel nwestycyjny ćwczena Na podst. Wtold Jurek: Konstrukcja analza rozdzał 5 dr chał Konopczyńsk Portele zawerające walor pozbawony ryzyka. lementy teor rynku kaptałowego 1. Pożyczane penędzy amy dwa

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO ZESZYTY AUKOWE UIWERSYTETU SZCZECI SKIEGO R 394 PRACE KATEDRY EKOOMETRII I STATYSTYKI R 5 004 SEBASTIA GAT Unwersytet Szczec sk KRYTERIA BUDOWY PORTFELI PAPIERÓW WARTO CIOWYCH W OKRESIE BESSY A GIEŁDA

Bardziej szczegółowo

Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki

Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki tatystycza terpretacja wyków eksperymetu Małgorzata Jakubowska Katedra Chem Aaltyczej Wydzał IŜyer Materałowej Ceramk AGH Podstawowe zadae statystyk tatystyka to uwersale łatwo dostępe arzędze, które pomaga

Bardziej szczegółowo

Przestrzenno-czasowe zróżnicowanie stopnia wykorzystania technologii informacyjno- -telekomunikacyjnych w przedsiębiorstwach

Przestrzenno-czasowe zróżnicowanie stopnia wykorzystania technologii informacyjno- -telekomunikacyjnych w przedsiębiorstwach dr ż. Jolata Wojar Zakład Metod Iloścowych, Wydzał Ekoom Uwersytet Rzeszowsk Przestrzeo-czasowe zróżcowae stopa wykorzystaa techolog formacyjo- -telekomukacyjych w przedsęborstwach WPROWADZENIE W czasach,

Bardziej szczegółowo

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ 9 Cel ćwczea Ćwczee 9 WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANE PODCZAS ZDERZENIA CIAŁ Celem ćwczea jest wyzaczee wartośc eerg rozpraszaej podczas zderzea cał oraz współczyka restytucj charakteryzującego

Bardziej szczegółowo

WPŁYW SPÓŁEK AKCYJNYCH NA LOKALNY RYNEK PRACY

WPŁYW SPÓŁEK AKCYJNYCH NA LOKALNY RYNEK PRACY ZESZYTY NAUKOWE WYDZIAŁU NAUK EKONOMICZNYCH Mara KLONOWSKA-MATYNIA Natala CENDROWSKA WPŁYW SPÓŁEK AKCYJNYCH NA LOKALNY RYNEK PRACY Zarys treśc: Nejsze opracowae pośwęcoe zostało spółkom akcyjym, które

Bardziej szczegółowo

GEODEZJA INŻYNIERYJNA SEMESTR 6 STUDIA NIESTACJONARNE

GEODEZJA INŻYNIERYJNA SEMESTR 6 STUDIA NIESTACJONARNE GEODEZJ INŻNIERJN SEMESTR 6 STUDI NIESTCJONRNE CZNNIKI WPŁWJĄCE N GEOMETRIĘ UDNKU/OIEKTU Zmaę geometr budyku mogą powodować m.: czyk atmosferycze, erówomere osadae płyty fudametowej mogące skutkować wychyleem

Bardziej szczegółowo

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym?

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym? Oblczae średej, odchylea tadardowego meday oraz kwartyl w zeregu zczegółowym rozdzelczym? Średa medaa ależą do etymatorów tzw. tedecj cetralej, atomat odchylee tadardowe to etymatorów rozprozea (dyperj)

Bardziej szczegółowo

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

METODY KOMPUTEROWE 1

METODY KOMPUTEROWE 1 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN MTODA ULRA Mcał PŁOTKOWIAK Adam ŁODYGOWSKI Kosultacje aukowe dr z. Wtold Kąkol Pozań 00/00 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN Metod umercze MN pozwalają a ormułowae matematczc

Bardziej szczegółowo

Laboratorium Metod Statystycznych ĆWICZENIE 2 WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI

Laboratorium Metod Statystycznych ĆWICZENIE 2 WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI Laboatoum Metod tatystyczych ĆWICZENIE WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI Oacowała: Katazya tąo Weyfkaca hotez Hoteza statystycza to dowole zyuszczee dotyczące ozkładu oulac. Wyóżamy hotezy: aametycze

Bardziej szczegółowo

Teraz wiesz i inwestujesz ANALIZA TECHNICZNA WPROWADZENIE

Teraz wiesz i inwestujesz ANALIZA TECHNICZNA WPROWADZENIE Teraz wesz westujesz ANALIZA TECHNICZNA WPROWADZENIE Natura ryków fasowych od początków swego stea przycąga ogromą lczbę westorów, których adrzędym celem jest odesee sukcesu westycyjego przez pomaŝae zawestowaych

Bardziej szczegółowo

BQR FMECA/FMEA. czujnik DI CPU DO zawór. Rys. 1. Schemat rozpatrywanego systemu zabezpieczeniowego PE

BQR FMECA/FMEA. czujnik DI CPU DO zawór. Rys. 1. Schemat rozpatrywanego systemu zabezpieczeniowego PE BQR FMECA/FMEA Przed rozpoczęcem aalzy ależy przeprowadzć dekompozycję systemu a podsystemy elemety. W efekce dekompozycj uzyskuje sę klka pozomów: pozom systemu, pozomy podsystemów oraz pozom elemetów.

Bardziej szczegółowo

Predyktywne harmonogramowanie projektów informatycznych

Predyktywne harmonogramowanie projektów informatycznych Predyktywe harmoogramowae proektów formatyczych mgr Ŝ. Marc Klmek Istytut Iformatyk Państwowa WyŜsza Szkoła Zawodowa m. PapeŜa Jaa Pawła II w Bałe Podlaske Streszczee: W artykule przedstawoo problem predyktywego

Bardziej szczegółowo

VIW20 koncepcja indeksu zmienności dla polskiego rynku akcyjnego 1

VIW20 koncepcja indeksu zmienności dla polskiego rynku akcyjnego 1 Dr Robert Ślepaczuk Katedra Bakowośc Fasów Wydzał Nauk Ekoomczych Uwersytet Warszawsk Grzegorz Zakrzewsk Po Kredytów Detalczych Departamet Ryzyka Kredytowego Polbak EFG VIW0 kocepcja deksu zmeośc dla polskego

Bardziej szczegółowo

OKREŚLANIE NIEPEWNOŚCI POMIARÓW (poradnik do Laboratorium Fizyki)

OKREŚLANIE NIEPEWNOŚCI POMIARÓW (poradnik do Laboratorium Fizyki) Adrzej Kubaczyk Laboratorum Fzyk I Wydzał Fzyk Poltechka Warszawska OKREŚLANIE NIEPEWNOŚCI POMIARÓW (poradk do Laboratorum Fzyk) ROZDZIAŁ Wstęp W roku 995 z cjatywy Mędzyarodowego Komtetu Mar (CIPM) zostały

Bardziej szczegółowo

ZARYS METODY OCENY TRWAŁOSCI I NIEZAWODNOSCI OBIEKTU Z UWZGLEDNIENIEM CZYNNIKA LUDZKIEGO I PŁASZCZYZNY LICZB ZESPOLONYCH

ZARYS METODY OCENY TRWAŁOSCI I NIEZAWODNOSCI OBIEKTU Z UWZGLEDNIENIEM CZYNNIKA LUDZKIEGO I PŁASZCZYZNY LICZB ZESPOLONYCH Zdzsław IDZIASZEK 1 Mechatrocs ad Avato Faculty Mltary Uversty of Techology, 00-908 Warsaw 49, Kalskego street r zdzaszek@wat.edu.pl Norbert GRZESIK Avato Faculty Polsh Ar Force Academy, 08-51 Dębl, Dywzjou

Bardziej szczegółowo

Zarządzanie ryzykiem w przedsiębiorstwie i jego wpływ na analizę opłacalności przedsięwzięć inwestycyjnych

Zarządzanie ryzykiem w przedsiębiorstwie i jego wpływ na analizę opłacalności przedsięwzięć inwestycyjnych dr nż Andrze Chylńsk Katedra Bankowośc Fnansów Wyższa Szkoła Menedżerska w Warszawe Zarządzane ryzykem w rzedsęborstwe ego wływ na analzę ołacalnośc rzedsęwzęć nwestycynych w w w e - f n a n s e c o m

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I Pracowa IF UJ Luy 03 PODRĘCZNIKI Wsęp do aalzy błędu pomarowego Joh R. Taylor Wydawcwo Naukowe PWN Warszawa 999 I Pracowa

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 6 Matematyka fasowa c.d. Rachuek retowy (autetowy) Maem rachuku retowego określa sę regulare płatośc w stałych odstępach czasu przy założeu stałej stopy procetowej. Przykłady

Bardziej szczegółowo

Materiały do wykładu 7 ze Statystyki

Materiały do wykładu 7 ze Statystyki Materał do wkładu 7 ze Statstk Aalza ZALEŻNOŚCI pomędz CECHAMI (Aalza KORELACJI REGRESJI) korelacj wkres rozrzutu (korelogram) rodzaje zależośc (brak, elowa, lowa) pomar sł zależośc lowej (współczk korelacj

Bardziej szczegółowo

Wstęp do prawdopodobieństwa. Dr Krzysztof Piontek. Literatura:

Wstęp do prawdopodobieństwa. Dr Krzysztof Piontek. Literatura: Studum podyplomowe altyk Fasowy Wstęp do prawdopodobeństwa Lteratura: Ostasewcz S., Rusak Z., Sedlecka U.: Statystyka elemety teor zadaa, kadema Ekoomcza we Wrocławu 998. mr czel: Statystyka w zarządzau,

Bardziej szczegółowo

Projekt 3 Analiza masowa

Projekt 3 Analiza masowa Wydzał Mechaczy Eergetyk Lotctwa Poltechk Warszawskej - Zakład Saolotów Śgłowców Projekt 3 Aalza asowa Nejszy projekt składa sę z dwóch częśc. Perwsza polega projekce wstępy wętrza kaby (kadłuba). Druga

Bardziej szczegółowo

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE Adranna Mastalerz-Kodzs Unwersytet Ekonomczny w Katowcach KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE Wprowadzene W dzałalnośc nstytucj fnansowych, takch

Bardziej szczegółowo

OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE OPTIMAL INVESTMENT STRATEGY FUNDAMENTAL ANALYSIS

OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE OPTIMAL INVESTMENT STRATEGY FUNDAMENTAL ANALYSIS ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014 Sera: ORGANIZACJA I ZARZĄDZANIE z. 68 Nr kol. 1905 Adranna MASTALERZ-KODZIS Unwersytet Ekonomczny w Katowcach OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE

Bardziej szczegółowo

Problem plecakowy (KNAPSACK PROBLEM).

Problem plecakowy (KNAPSACK PROBLEM). Problem plecakowy (KNAPSACK PROBLEM). Zagadnene optymalzac zwane problemem plecakowym swą nazwę wzęło z analog do sytuac praktyczne podobne do problemu pakowana plecaka. Chodz o to, by zapakować maksymalne

Bardziej szczegółowo

STANDARYZACJA PRZEPROWADZANIA NAPRAW JAKO ETAP WDROŻENIA TOTAL PRODUCTIVE MAINTENANCE W PRZEMYŚLE WYDOBYWCZYM

STANDARYZACJA PRZEPROWADZANIA NAPRAW JAKO ETAP WDROŻENIA TOTAL PRODUCTIVE MAINTENANCE W PRZEMYŚLE WYDOBYWCZYM STANDARYZACJA PRZEPROWADZANIA NAPRAW JAKO ETAP WDROŻENIA TOTAL PRODUCTIVE MAINTENANCE W PRZEMYŚLE WYDOBYWCZYM Edward CHLEBUS, Joaa HELMAN, Mara ROSIENKIEWICZ, Paweł STEFANIAK Streszczee: Nejszy artykuł

Bardziej szczegółowo

Elementy arytmetyki komputerowej

Elementy arytmetyki komputerowej Elemety arytmetyk komputerowej cz. I Elemety systemów lczbowych /materał pomocczy do wykładu Iformatyka sem II/ Sps treśc. Wprowadzee.... Wstępe uwag o systemach lczbowych... 3. Przegląd wybraych systemów

Bardziej szczegółowo

2012-10-11. Definicje ogólne

2012-10-11. Definicje ogólne 0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj

Bardziej szczegółowo

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe

Bardziej szczegółowo

8. Optymalizacja decyzji inwestycyjnych

8. Optymalizacja decyzji inwestycyjnych dr nż. Zbgnew Tarapata: Optymalzacja decyzj nwestycyjnych, cz.ii 8. Optymalzacja decyzj nwestycyjnych W rozdzale 8, część I przedstawono elementarne nformacje dotyczące metod oceny decyzj nwestycyjnych.

Bardziej szczegółowo

Modele wartości pieniądza w czasie

Modele wartości pieniądza w czasie Joaa Ceślak, Paula Bawej Modele wartośc peądza w czase Podstawowe pojęca ozaczea Kaptał (ag. prcpal), kaptał początkowy, wartośd początkowa westycj - peądze jake zostały wpłacoe a początku westycj (a początku

Bardziej szczegółowo

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010 EKONOMETRIA I Spotkane, dn. 5..2 Dr Katarzyna Beń Program ramowy: http://www.sgh.waw.pl/nstytuty/e/oferta_dydaktyczna/ekonometra_stacjonarne_nest acjonarne/ Zadana, dane do zadań, ważne nformacje: http://www.e-sgh.pl/ben/ekonometra

Bardziej szczegółowo

METODY ANALIZY DANYCH DOŚWIADCZALNYCH

METODY ANALIZY DANYCH DOŚWIADCZALNYCH POLITECHNIKA Ł ÓDZKA TOMASZ W. WOJTATOWICZ METODY ANALIZY DANYCH DOŚWIADCZALNYCH Wybrae zagadea ŁÓDŹ 998 Przedsłowe Specyfką teor pomarów jest jej wtóry charakter w stosuku do metod badawczych stosowaych

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

WSTĘP METODY OPRACOWANIA I ANALIZY WYNIKÓW POMIARÓW

WSTĘP METODY OPRACOWANIA I ANALIZY WYNIKÓW POMIARÓW WSTĘP METODY OPRACOWANIA I ANALIZY WYNIKÓW POMIARÓW U podstaw wszystkch auk przyrodczych leży zasada: sprawdzaem wszelkej wedzy jest eksperymet, tz jedyą marą prawdy aukowej jest dośwadczee Fzyka, to auka

Bardziej szczegółowo

Teorie inwestycyjne w zarządzaniu bogactwem na przykładzie instytucji Wealth Management

Teorie inwestycyjne w zarządzaniu bogactwem na przykładzie instytucji Wealth Management Bak Kredyt 4 (5, 00, 77 00 www.bakkredyt.bp.pl www.bakadcredt.bp.pl Teore westycyje w zarządzau bogactwe a przykładze stytucj Wealth Maageet Krzyszto Opolsk *, Toasz otock #, Toasz Śwst Nadesłay: 5 lutego

Bardziej szczegółowo

BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG20

BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG20 Darusz Letkowsk Unwersytet Łódzk BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG0 Wprowadzene Teora wyboru efektywnego portfela nwestycyjnego zaproponowana przez H. Markowtza oraz jej rozwnęca

Bardziej szczegółowo

Janusz Górczyński. Moduł 1. Podstawy prognozowania. Model regresji liniowej

Janusz Górczyński. Moduł 1. Podstawy prognozowania. Model regresji liniowej Materały omoccze do e-leargu Progozowae symulacje Jausz Górczyńsk Moduł. Podstawy rogozowaa. Model regresj lowej Wyższa Szkoła Zarządzaa Marketgu Sochaczew Od Autora Treśc zawarte w tym materale były erwote

Bardziej szczegółowo

Szeregi czasowe, modele DL i ADL, przyczynowość, integracja

Szeregi czasowe, modele DL i ADL, przyczynowość, integracja Szereg czasowe, modele DL ADL, rzyczyowość, egracja Szereg czasowy, o cąg realzacj zmeej losowej, owedzmy y, w kolejych okresach czasu: { y } T, co rówoważe możemy zasać: = 1 y = { y1, y,..., y T }. Najogólej

Bardziej szczegółowo

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE Marek Cecura, Jausz Zacharsk PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE CZĘŚĆ II STATYSTYKA OPISOWA Na prawach rękopsu Warszawa, wrzeseń 0 Data ostatej aktualzacj: czwartek, 0 paźdzerka

Bardziej szczegółowo

Analiza danych pomiarowych

Analiza danych pomiarowych Materały pomoccze dla studetów Wydzału Chem UW Opracowała Ageszka Korgul. Aalza daych pomarowych wersja trzeca, uzupełoa Lteratura, Wstęp 3 R OZDZIAŁ SPRAWOZDANIE Z DOŚWIADCZENIA FIZYCZNEGO 4 Stałe elemety

Bardziej szczegółowo

ZASTOSOWANIE WYBRANYCH ELEMENTÓW ANALIZY FUNDAMENTALNEJ DO WYZNACZANIA PORTFELI OPTYMALNYCH

ZASTOSOWANIE WYBRANYCH ELEMENTÓW ANALIZY FUNDAMENTALNEJ DO WYZNACZANIA PORTFELI OPTYMALNYCH Adranna Mastalerz-Kodzs Ewa Pośpech Unwersytet Ekonomczny w Katowcach ZASTOSOWANIE WYBRANYCH ELEMENTÓW ANALIZY FUNDAMENTALNEJ DO WYZNACZANIA PORTFELI OPTYMALNYCH Wprowadzene Zagadnene wyznaczana optymalnych

Bardziej szczegółowo

Lekcja 1. Pojęcia podstawowe: Zbiorowość generalna i zbiorowość próbna

Lekcja 1. Pojęcia podstawowe: Zbiorowość generalna i zbiorowość próbna TECHNIKUM ZESPÓŁ SZKÓŁ w KRZEPICACH PRACOWNIA EKONOMICZNA TEORIA ZADANIA dla klasy II Techkum Marek Kmeck Zespół Szkół Techkum w Krzepcach Wprowadzee do statystyk Lekcja Statystyka - określa zbór formacj

Bardziej szczegółowo

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej PŁAKA GEOMETRIA MA Środek cężkośc fgury płaskej Mometam statyczym M x M y fgury płaskej względem os x lub y (rys. 7.1) azywamy gracę algebraczej sumy loczyów elemetarych pól d przez ch odległośc od os,

Bardziej szczegółowo

WIELOWYMIAROWE REGUŁY ASOCJACJI W MODELOWANIU TENDENCJI ROZWOJOWYCH MSP

WIELOWYMIAROWE REGUŁY ASOCJACJI W MODELOWANIU TENDENCJI ROZWOJOWYCH MSP KATARZYNA BŁASZCZYK BOGDAN RUSZCZAK Poltecha Opolsa WIELOWYMIAROWE REGUŁY ASOCJACJI W MODELOWANIU TENDENCJI ROZWOJOWYCH MSP Wstęp Esploraca daych (ag. data g) zaue sę efetywy zadowae ezaych dotychczas

Bardziej szczegółowo

SPOŁECZNA AKDAEMIA NAUK W ŁODZI

SPOŁECZNA AKDAEMIA NAUK W ŁODZI SPOŁECZNA AKDAEMIA NAUK W ŁODZI KIERUNEK STUDIÓW: ZARZĄDZANIE PRZEDMIOT: METODY ILOŚCIOWE W ZARZĄDZANIU (MATERIAŁ POMOCNICZY PRZEDMIOT PODSTAWOWY ) Łódź Sps treśc Moduł Wprowadzee do metod loścowych w

Bardziej szczegółowo

Model IS-LM-BP. Model IS-LM-BP jest wersją modelu ISLM w gospodarce otwartej. Pokazuje on zatem jak

Model IS-LM-BP. Model IS-LM-BP jest wersją modelu ISLM w gospodarce otwartej. Pokazuje on zatem jak Ćwczena z Makroekonom II Model IS-LM- Model IS-LM- jest wersją modelu ISLM w gospodarce otwartej. Pokazuje on zatem jak gospodarka taka zachowuje sę w krótkm okrese, w efekce dzałań podejmowanych w ramach

Bardziej szczegółowo

Olejowe śrubowe sprężarki powietrza. Seria R55-75kW

Olejowe śrubowe sprężarki powietrza. Seria R55-75kW Olejowe śrubowe sprężark powetrza Sera R55-75kW Nowy pozom ezawodośc, efektywośc wydajośc Śrubowe sprężark powetrza ser R frmy Igersoll Rad to połączee ajlepszych, sprawdzoych kostrukcj techolog z owym,

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,

Bardziej szczegółowo

Struktura czasowa stóp procentowych (term structure of interest rates)

Struktura czasowa stóp procentowych (term structure of interest rates) Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,

Bardziej szczegółowo

Inwestycje finansowe i ubezpieczenia tendencje światowe a rynek polski

Inwestycje finansowe i ubezpieczenia tendencje światowe a rynek polski PRACE NAUKOWE Uwersytetu Ekoomczego we Wrocławu RESEARCH PAPERS of Wrocław Uversty of Ecoomcs 323 Iwestyce fasowe ubezpeczea tedece śwatowe a ryek polsk Redaktorzy aukow Krzysztof Jauga Wada Roka-Chmelowec

Bardziej szczegółowo

NORMALiZACJA ZMIENNYCH W SKALI PRZEDZIAŁOWEJ I ILORAZOWEJ W REFERENCYJNYM SYSTEMIE GRANICZNYM

NORMALiZACJA ZMIENNYCH W SKALI PRZEDZIAŁOWEJ I ILORAZOWEJ W REFERENCYJNYM SYSTEMIE GRANICZNYM PRZEGLĄD STATYSTYCZNY R. XLIV - ZESZ\'T 1-1997 DANUTA STRAHL, MAREK WALESIAK NORMALZACJA ZMIENNYCH W SKALI PRZEDZIAŁOWEJ I ILORAZOWEJ W REFERENCYJNYM SYSTEMIE GRANICZNYM l. WPROWADZENIE Przy stosowanu

Bardziej szczegółowo

ROZMIESZCZENIE OBIEKTÓW NOCLEGOWYCH W ŁODZI W 2013 ROKU W ŚWIETLE MIAR CENTROGRAFICZNYCH 1

ROZMIESZCZENIE OBIEKTÓW NOCLEGOWYCH W ŁODZI W 2013 ROKU W ŚWIETLE MIAR CENTROGRAFICZNYCH 1 A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA GEOGRAPHICA SOCIO-OECONOMICA 6, 204 Marta Nalej ROZMIESZCZENIE OBIEKTÓW NOCLEGOWYCH W ŁODZI W 203 ROKU W ŚWIETLE MIAR CENTROGRAFICZNYCH Artykuł

Bardziej szczegółowo

Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka

Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka Nepewośc pomarowe. Teora praktka. Prowadząc: Dr ż. Adrzej Skoczeń Wższa Szkoła Turstk Ekolog Wdzał Iformatk, rok I Fzka 014 03 30 WSTE Sucha Beskdzka Fzka 1 Iformacje teoretcze zameszczoe a slajdach tej

Bardziej szczegółowo

Wiek statku a prawdopodobieństwo wystąpienia wypadku na morzu analiza współzależności

Wiek statku a prawdopodobieństwo wystąpienia wypadku na morzu analiza współzależności BOGALECKA Magda 1 Wek statku a prawdopodobeństwo wstąpea wpadku a morzu aalza współzależośc WSTĘP Obserwowa od blsko weku tesw rozwój trasportu morskego, oprócz lądowego powetrzego, jest kosekwecją wzmożoej

Bardziej szczegółowo

MIKROEKONOMIA Prof. nadzw. dr hab. Jacek Prokop jproko@sgh.waw.pl

MIKROEKONOMIA Prof. nadzw. dr hab. Jacek Prokop jproko@sgh.waw.pl MIKROEKONOMIA Prof. nadzw. dr hab. Jacek Proko roko@sgh.waw.l Statyka dynamka olgoolstyczne struktury rynku. Modele krótkookresowe konkurenc cenowe w olgoolu.. Model ogranczonych mocy rodukcynych ako wyaśnene

Bardziej szczegółowo

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu PRACE KOMISJI GEOGRAFII PRZEMY SŁU Nr 7 WARSZAWA KRAKÓW 2004 Akadema Pedagogczna, Kraków Kształtowane sę frm nformatycznych jako nowych elementów struktury przestrzennej przemysłu Postępujący proces rozwoju

Bardziej szczegółowo

Przybliżone zapytania do baz danych z akceleracją obliczeń rozkładów prawdopodobieństwa

Przybliżone zapytania do baz danych z akceleracją obliczeń rozkładów prawdopodobieństwa Przyblżoe zapytaa o baz aych z akceleracą oblczeń rozkłaów prawopoobeństwa Wtol Arzeewsk Poltechka Pozańska e mal: Wtol.Arzeewsk@cs.put.poza.pl Artur Gramack, Jarosław Gramack Uwersytet Zeloogórsk e mal:

Bardziej szczegółowo

Ekonometryczny pomiar efektywności ekonomicznej instytucji finansowych. Stochastyczny model graniczny kosztów

Ekonometryczny pomiar efektywności ekonomicznej instytucji finansowych. Stochastyczny model graniczny kosztów Bak Kredyt 4 (), 2, 3 56.bakkredyt.bp.pl.bakadcredt.bp.pl Ekoometryczy pomar efektyośc ekoomcze stytuc fasoyc. Stocastyczy model raczy kosztó Jacek Barbursk* Nadesłay: serpa 28 r. Zaakceptoay: lstopada

Bardziej szczegółowo