Rzepkoteka 2011 v1.3

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rzepkoteka 2011 v1.3"

Transkrypt

1 Rzepkoteka 0 v.3. Podstawy rachunku operatorowego. Definicje i sposoby liczenia: rotacji, dywergencji, gradientu, laplasjanu skalarnego i wektorowego. Wymienić najważniejsze tożsamości rachunku operatorowego. Rotacja- operacja różniczkowa, która w danemu polu wektorowemu przyporządkuje nowe pole wektorowe. łuży do sprawdzania czy w danym polu wektorowym występują wiry pola. rot E= lim 0 E dl rot E= E= i x E x j y E y k z z E Dywergencja- operacje matematyczne na zadanym polu wektorowym, które przypisują temu polu pewne pole skalarne. łuży do sprawdzenia, czy w danym fragmencie przestrzeni znajduje się źródło pola. div E = lim E dl Δ 0 ΔV div E = E= E x y E y E z y z Gradient pola- pewnemu polu skalarnemu przyporządkowuje pole wektorowe. grad x, y, z = x, y, z = i j k x y z Laplasjan skalarny- operacja różniczkowa II rzędu, która danemu polu skalarnemu przyporządkowuje nowe pole skalarne. Δ= = x i j k (def.) y z Laplasjan wektorowy- operacja różniczkowa II rzędu, która danemu polu skalarnemu przyporządkowuje nowe pole wektorowe. Δ E x, y, z = x y i z x y j z i x y k z Podstawowe tożsamości: A = A A 0 f f = Δ f f = 0 l E d = div E d v v rot E d E d l = ( rotacja rotacji) ( dywengencja rotacji) ( dywengencja gradientu) (rotacja gradientu) (Ostrogradskiego-Gaussa) (tokes`a)

2 . Pole elektrostatyczne. Prawo Coulomba. Definicja natężenia pola elektrycznego. Potencjałsposoby liczenia. Napięcie i związek z potencjałem. Prawo Gaussa, równanie Poissona i Laplace'a. Potencjał, a natężenie pola. Pole elektrostatyczne- to przestrzeń wokół nieruchomych ładunków lub ciał naelektryzowanych, w której na ładunki elektryczne działają siły. ( praca: = F L ) Prawo Coulomba (785): F = q q r [N] 4 0 r 3 r - wektor wodzący ε 0 = 8,85 0 [ F m] q i q - ładunki elektryczne Natężenie pola elektromagnetycznego: E x, y, z = F q0 x 0, y 0, z 0 q 0 [ V m] q 0 0 ładunek próbny q 0 0 ładunek dodatni Potencjał- miara pracy, potrzebna do przesunięcia ładunku q 0 od punktu P 0 do P. posoby liczenia: a) p = 4 0 b) p = 4 0 N i= c) Φ p = 4 πε 0 d) p = 4 0 q i r i r dl ζ r d V dv V r P p = E d l p = 4 0 q r r- odległość od ładunku q do P Napięcie elektryczne: Prawo Gaussa: U = E d l [V] U = (wartość napięcia nie zależy od drogi całkowania) E d = q 0

3 Równanie Poissona: a) Δ = V 0 b) postać różniczkowa: div E = V 0 E= V 0 c) Rozwiązanie równania Poissona: x, y, z = 4 0 Równanie Laplace`a: V =0 =0 V T dv e Potencjał, a natężenie pola elektrycznego: E= d = E d l 3. Dielektryki. Dipol elektryczny, definicja wektora polaryzacji, wektor indukcji elektrycznej, wartość i jednostka ε 0, wartość ε w dla różnych materiałów. Dielektryk- materiał w którym występuje nikła koncentracja ładunków swobodnych, w wyniku czego bardzo słabo jest przewodzony prąd. Dielektryk idealny nie przewodzi prądu elektrycznego i ma strukturę składającą się z dipoli elektrycznych. Dipolem elektrycznym nazywamy układ dwóch ładunków + q i - q mechanicznie ze sobą związanych. p=q l [C m] (moment elektryczny dipola) Wektor polaryzacji: p= lim V 0 p i V Wektor indukcji elektrycznej ( jego wartość zależy od ładunków swobodnych) D= 0 w E D= 0 E p 0 =8,85 0 [ F m] próżnia,0000 powietrze,00053 woda 78,3 Prawo Gaussa (dla dielektryka): Q Z = P d Q Z - ładunek związany 4. Pojemność elektryczna. posoby liczenia. Pojemności podstawowych układów. Energia w kondesatorze. Pojemność elektryczna- to cecha geometryczna układu, która wyraża zdolność do gromadzenia ładunków elektrycznych. Zależy tylko od wymiarów geometrycznych i parametrów dielektryka w układzie.

4 C= Q U [ F ] posób liczenia: a) z definicji: U = E d l E - z prawa Gaussa b) metodą zmiennych rozłożonych: (dzielimy cały układ na połączone ze sobą elementarne kondensatory) polączenie szeregowe: n C w = i= w = dc C i połączenie równoległe: n C w = i = C i C w = dc Pojemność podstawowych kondensatorów: a) płaski: C= 0 w d b) walcowy C= π ε ε l 0 w ln( R R ) c) sferyczny C=4 0 w R R R R Energia zgromadzona w kondensatorze jest elementarną pracą dw potrzebną do przemieszczenia elementarnego ładunku dq z jednej okładki na drugą. Energia ta jest równa energii pola elektrycznego wytworzonego w kondensatorze. Q = 0 dw = U dq= q C dq Q dw = 0 Gęstość energii: W c = pot V diel = 0 w E Q Q dq= C C = CU 5. Prąd elektryczny (definicja). Typy prądów. Równanie ciągłości, lokalne i obwodowe prawo Ohma. I i II prawo Kirchoffa. Prąd elektryczny- uporządkowany ruch ładunków elektrycznych. Za kierunek prądu umownie przyjęto kierunek od niższego do wyższego potencjału. Typy prądów: a) liniowy: I = dq [ A] b) powierzchniowy: I = y V [ A m] c) objętościowy: I = I d [ A]

5 Równanie ciągłości: postać całkowa: I d = dq d postać różniczkowa: div I= d v I= d v Lokalne prawo Ohma: a) I = E b) E= I - przenikalność właściwa materiału; - oporność materiału; U Obwodowe prawo Ohma: I prawo Kirchoffa: I = L = R J d = 0 (Całka po powierzchni zamkniętej z gęstości prądu równa jest 0) II prawo Kirchoffa: l E d l = 0 (Napięcie obliczone po biegunowej zamkniętej jest równe 0) 6. Pole magnetostatyczne. Prawo Grassmanna, Biota- avarta i prawo przepływu Ampera, prawo indukcji elektromagnetycznej Faradaya, reguła Lenza- rysunki i wzory. Pole magnetostatyczne jest określone wektorem indukcji magnetycznej. B= d F [T ] Prawo Grassmanna: d F = 0 4 I I d l r d l [ N ] r 3 iła z jaką jeden przewodnik z prądem oddziałuje na drugi Prawo Biota avurta: d B= 0 4 I d l r r 3 [Wb] Określa wartość indukcji magnetycznej w punkcie odległym od r od elementu z prądem I. Prawo przepływu Ampera: L H d N l = I i i= Cyrkulacja natężenia pola magnetycznego po dowolnej krzywej zamkniętej jest równe algebraicznej sumie prądów obejmowanych przez kontur I.

6 Prawo indukcji elektromagnetycznej Faradaya: L = d B E d l = d B Cyrkulacja pola elektrycznego po zamkniętej krzywej jest równa zmianie indukcji magnetycznej obejmowanego przez kontur magnetyczny. Reguła Lenza: I R= 7. Moment magnetyczny, wektor namagnesowania, pole magnetyczne w ośrodkach materialnych: krzywa histerezy. Indukcyjność własna i wzajemna. Energia pola magnetycznego. Moment magnetyczny jest własnością danego ciała opisującą pole magnetyczne wytwarzane przez to ciało, a tym samym i jego oddziaływaniem z polem magnetycznym. m= I s [ m ] Wektor namagnesowania: m i V M = lim 0 Wyraża gęstość wypadkowego momentu magnetycznego. Pole magnetyczne w ośrodkach materialnych: B= 0 y w H = 0 w H w = f H Indukcja własna: L m = mm I m

7 Indukcja wzajemna: M ki = Bki I i, M ki =M ik [ H ] Energia pola magnetycznego: m = V m x, y,z dv = H B dv V Całkowita energia w objętości V. 8. Równania Maxwella. Postać całkowa (wzór, treść i rysunek), postać różniczkowa i zespolona. Podać pełne wyrażenie na ε sk. Prawo Gaussa: D d =Q s, D= ρ V, D= ρ, D N D N = σ q trumień wektora indukcji elektrycznej przez dowolną zamkniętą powierzchnie jest równy algebraicznej sumie ładunków swobodnych zgromadzonych wewnątrz bryły ograniczonej powierzchnią. Prawo Gaussa (dla pola magnetycznego): B d = 0, B= 0, B= 0, B N B N = 0 trumień wektora indukcji magnetycznej przez dowolną zamkniętą powierzchnię zawsze jest równy 0. B =0

8 Prawo Faraday`a: E d l = d Ψ B, E= B L t, E= j ω μ H, E t E t = 0 Cyrkulacja pola elektrycznego po dowolnej krzywej zamkniętej l, jest równa zmianie strumienia indukcji magnetycznej przenikającej przez dowolną powierzchnię rozpięta na konturze l. Prawo Ampera: H d l = J + dψ B, H = J+ d D L, H = j ω ε sk E, H t H t =J st Cyrkulacja wektora H po dowolnej krzywej zamkniętej l jest równa algebraicznej sumie prądów obejmujących konturem l i zmiana strumienia indukcji elektrycznej przenikającego przez dowolną powierzchnię rozpiętą na konturze l. Równanie ciągłości: J d = dq, J = d ρ V, J N J N = d σ y trumień gęstości prądu przez dowolną zamkniętą powierzchnie jest równy zmianie ładunku zawartego w bryle ograniczonej powierzchnią. ε sk = σ jω +ε = σ jω +ε 0ε w 9. Warunki brzegowe wektorów pola elektrycznego, magnetycznego i J n. Wyprowadzić warunki D n i E t. ) D N D N = σ q (prawo Gaussa) ) E t E t = 0 (prawo Faraday`a) 3) H t H t = I st (prawo Ampera) 4) J N J N = d σ y (prawo ciągłości)

9 Warunki na D n : D d = Q b D d = 0, więc D d = D d + D N +D N = Q D d = Q D N D N = Q = σ q Warunki na E t : E d l = 0, h 0 E d 3 l + E d 4 l + E d l + 3 = 5 E d l = 4 4 E t d l + 3 E d l + 4 E d l = 3 E N d l + E t d l + E t d l E t l E t l= 0 E t E t = E N d 4 l + 3 E t d l = 0. Równanie falowe (wyprowadzić), jednorodna fala płaska- zapis i struktura (rysunek). Założenia: ) przestrzeń jest nie ograniczona, ) ośrodek jest jednorodny (ε, μ, σ= const), 3) brak ładunków oraz prądów wywołanych ruchem tych ładunków. Z równań Maxwella: D= 0 B= 0 E= j μ ω j ω ε sk E E μ ω ε sk E = 0 E= E ( E) E= 0 H = 0 E = j μ ω H H = jω ε sk E, H = E j μ ω

10 { E +ε sk μω E= 0 H +ε sk μω H = 0} γ = ε sk μ ω { E γ E= 0 H γ H = 0} (Równanie falowe Helmholtz) Jednorodna fala płaska: γ - wektor propagacji, γ = α + j β (α współczynnik tłumienia, β współczynnik fazy) E= E m e γ r e j ω t H = H m e γ r e jω t α = u α α, u α = u β = u - kierunek propagacji β = u β β, γ = γ u E= E m e α r e j β r, [α ] = [β ] = [ m] n= i y E= E mz e α r cos(ω t β r)i z H = H ux e α r cos(ω t β r)i x E= 0 E= γ E= 0 γ E H = γ H = 0 γ H { E Fala poprzeczna H n}

11 . Propagacja fali płaskiej w różnych ośrodkach (dielektryk bezstratny, dielektryk stratny, przewodnik). Jak ośrodek wpływa na parametry fali. Propagacja fali w różnych ośrodkach: α= ω c ε w μ w 0,5( +a ) β = ω c ε w μ w 0,5( +a +) σ a=, λ = π, v ω ε 0 ε w β f = ω, δ = β α λ długość fali; v f prędkość falowa; δ głębokość wnikania; próżnia: v f = c, λ 0 = c f, δ =, Z fo = 0 π, φ 0 = 0 dielektryk bezstratny: v f = c, λ = λ 0 ε w ε w, δ = α, Z f <Z fbeastr, φ 0 0, Z f C dielektryk stratny: v f <u fstr., λ <λ str., δ = α, Z f <Z fstr., φ 0 0, Z f C przewodnik rzeczywisty: a= σ ω ε 0 ε w, α β α= β = 0,5ω μσ, δ = α = 0,5ω μ σ v f = ω β, λ = v f f, λ λ 0 3. Odbicie i załamanie fali płaskiej na granicy dwóch ośrodków. Wzory Fresnella. Współczynniki energetyczne. Kąt Brewstera. Całkowite wewnętrzne odbicie. Założenia: ) fala monochromatyczna i jednorodna; ) granica jest nieruchoma; 3) fala pada od strony dielektryka bezstratnego; 4) oba ośrodki są liniowe, jednorodne i izotropowe. (dlac n ) E t = E t, D N D N = σ q W t = P t +R t, ε w E N = ε w E N P t exp( jω p t γ px x γ py y)+r t exp( j ω w t γ wx x γ wy y)= W t exp( jω w z γ wx x γ wy y) Wzory Fresnela: ρ E = E r = tg(θ Θ ) E p tg(θ +Θ ) ρ E = E r = sin(θ Θ ) E p sin(θ +Θ ) H E = cosθ sinθ sin(θ +Θ )cos(θ Θ )

12 H E = cosθ sinθ sin(θ +Θ ) Współczynniki energetyczne: R ρ E, T R, R n +n Kąt Brewstera: tgθ Br = n 00% fali spolaryzowanej wnika do ośrodka drugiego. Całkowite wewnętrzne odbicie, to zjawisko polegające na tym, że światło padające na granice od strony ośrodka o wyższym współczynniku załamania, pod kątem większym niż kąt graniczny, nie przechodzi do drugiego ośrodka, lecz ulega całkowitemu odbiciu ( pryzmaty, światłowody). 4. Potencjały elektrodynamiczne. Potencjał opóźniony skalarny i wektorowy. Wektor Hertza. Potencjał elektrodynamiczny: E= grad Φ, Φ = ρ v ε 0 Potencjały opóźnione (skalarny i wektorowy): E= grad Φ d A Wektor Hertza: { E= rot rot Π e H = jω ε rot Π e} {Φ ( x, y, z, t)= π ε V A (x, y, z,t ) = 4π V, B= rot A ρ (x 0, y 0, z 0,t r v ) } dv r y( x 0, y 0, z 0,t r v ) dv r Zastosowanie elektrycznego wektora Hertza Π e pozwala na wyrażenie potencjałów Φ i A w funkcji tego wektora oraz natężeń pól E i H. 5. Dipol elementarny. Charakterystyki promieniowania w polu dalekim i bliskim. Opór promieniowania. Źródło elementarne: a) rozpatrujemy pola w odległościach >> od rozmiarów źródła, tzn. l<<r b) wymiary źródła są << λ (nie ma przesunięć fazowych w obrębie źródła) Źródło elementarne można więc uważać za punktowe źródło pola. Elementarny oscylator (wibrator lub dipol) dla przebiegów harmonicznych o pulsacji ω: I = j ω q q= j ω I = j ω I p= q l = j ω I l - moment elektryczny odcinka o długości l, w którym płynie prąd przemienny o natężeniu I.

13 Wartość (chwilowa) natężenia prądu w każdym punkcie oscylatora elementarnego jest taka sama. A= μ 4π I l e j π r λ r - potencjał wektorowy oscylatora elementarnego (w ośrodku ε, μ=const σ=0) Π e = j I l 4π ε ω e j π r λ r π r E r = j IlcosΘ j e λ 4π ε ω r 3 π r ( + j λ ) π r E Θ = j IlsinΘ j e λ 4π ε ω r ( + j π r 3 λ ( π r λ ) ) E φ = 0 Linie pola H tworzą koła koncentryczne z osią oscylatora, linie równoleżnikowe. Linie wektora E leżą w płaszczyznach południkowych.

14 - Pole elektromagnetyczne w małych odległościach od oscylatora: ( π r λ ) π r π r λ, j e λ = H r = 0, H Θ = 0, H φ = IlsinΘ 4π ε r E r = j IlcosΘ pcosθ 3= 4π ε ω r 4π ε r 3 IlsinΘ E Θ = j 4π ε ω r 3= psinθ 4 π ε r 3 E φ = 0 Pole elektrostatyczne oscylatora jest w małej odległości identyczne z polem dipola elektrostatycznego (ale jest to znowu pole pulsujące). Pole H i E są w obszarze bliskim kwazistacjonarne. - Pole elektromagnetyczne w dużych odległościach od oscylatora elementarnego. ( π r λ ) π r λ - można pominąć człony z niskimi potęgami π r λ π r H r = 0, H Θ = 0, H φ = j IlsinΘ j e λ pole elektryczne i magnetyczne są współfazowe pole E jest prostopadłe do H. E Θ = Z f H φ Opór promieniowania jest to taki opór zastępczy, w którym po dołączeniu do źródła zasilającego oscylator (antenę) wydziela się moc równa mocy promieniowanej przez oscylator (antenę). R pr = 80 π ( λ ) - opór promieniowania oscylatora elementarnego w wolnej przestrzeni. λ r 6. Falowody. Fale typu TE i TM. Częstotliwość graniczna. Mody. Rozpływ linii sił pola i prądów dla modu podstawowego. zczeliny w falowodach. Falowód jest pustą rurą metalową nie mającą przewodnika wewnętrznego. Przekroje poprzeczne falowodów mogą mieć różne kształty, od prostokątów i okręgów do bardziej skomplikowanych. tosuje się także pełne rury z dielektryka. tosowanie falowodów jest charakterystyczne dla techniki mikrofalowej (fale centymetrowe i milimetrowe). Poprzeczna fala elektryczna TE (H): (tylko pole elektryczne ma składową podłużną) E Z = 0, H Z 0 Poprzeczna fala magnetyczna TM: E Z 0, H Z = 0 Mod jest charakterystycznym rozkładem pola elektromagnetycznego odpowiadającym danemu kątowi rozchodzenia się fal w falowodzie. Mody dzieli się na: -TE{ Ey, Hz, Hx } (Transverse Electric) - mody których natężenie pole elektrycznego w kierunku rozchodzenia się jest zerowa. -TM{ Hy, Ez, Ex } (Transverse Magnetic) - mody których indukcja magnetyczna w kierunku rozchodzenia się jest zerowa. -TEM (Transverse ElectroMagnetic) - mody których natężenie pola elektrycznego i indukcja magnetyczna wzdłuż kierunku rozchodzenia jest zerowa. -Hybrydowe - mody nie spełniające powyższych warunków.

15 Częstotliwością graniczną (krytyczną) f gr nazywamy taką częstotliwość, dla której wyrażenie pod pierwiastkiem (a tym samym γ Z ) jest równe zeru. f gr = ε μ ( m a ) +( n b) Częstotliwość graniczna zależy od rozmiarów falowodu (a, b) jak również od rodzaju fali (m, n). Można też uprościć zapis: f gr = v ( m a ) +( n b) Tym samym długość fali wynosi: λ gr = v f gr = ( m a ) +( n b) Rozkład pola magnetycznego dla kilku rodzajów: E 0 E 0 E E 0 E 0 E

16 zczelina typu A równoległa do linii prądów powierzchniowych, nieco ten rozpływ zakłóca, mało gdy wąska nie powoduje zmian w przepływie energii wewnątrz falowodu, szczeliny pomiarowe sondy, zczelina typu B przecinają linie prądu, brzegi szczeliny ładują się, w szczelinie powstaje pole E, prąd przesunięcia J d, pole H - szczelina wypromieniowuje energię. Wykorzystanie anteny falowodowe, sprzęganie dwóch falowodów.

Indukcja elektromagnetyczna

Indukcja elektromagnetyczna ruge, elgium, May 2005 W-14 (Jaroszewicz) 19 slajdów Indukcja elektromagnetyczna Prawo indukcji Faraday a Indukcja wzajemna i własna Indukowane pole magnetyczna prawo Amper a-maxwella Dywergencja prądu

Bardziej szczegółowo

SPIS TREŚCI ««*» ( # * *»»

SPIS TREŚCI ««*» ( # * *»» ««*» ( # * *»» CZĘŚĆ I. POJĘCIA PODSTAWOWE 1. Co to jest fizyka? 11 2. Wielkości fizyczne 11 3. Prawa fizyki 17 4. Teorie fizyki 19 5. Układ jednostek SI 20 6. Stałe fizyczne 20 CZĘŚĆ II. MECHANIKA 7.

Bardziej szczegółowo

Elektrodynamika. Część 5. Pola magnetyczne w materii. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.

Elektrodynamika. Część 5. Pola magnetyczne w materii. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu. Elektrodynamika Część 5 Pola magnetyczne w materii yszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 6 Pola magnetyczne w materii 3 6.1 Magnetyzacja.......................

Bardziej szczegółowo

Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni.

Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. Pole magnetyczne Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. naładowane elektrycznie cząstki, poruszające się w przewodniku w postaci prądu elektrycznego,

Bardziej szczegółowo

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A.

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A. Prąd elektryczny Dotychczas zajmowaliśmy się zjawiskami związanymi z ładunkami spoczywającymi. Obecnie zajmiemy się zjawiskami zachodzącymi podczas uporządkowanego ruchu ładunków, który często nazywamy

Bardziej szczegółowo

Teoria Pola Elektromagnetycznego

Teoria Pola Elektromagnetycznego Teoria Pola Elektromagnetycznego Wykład 3 Pole elektryczne w środowisku przewodzącym 19.05.2006 Stefan Filipowicz 3.1. Prąd i gęstość prądu przewodzenia Jeżeli w przewodniku istnieje pole elektryczne,

Bardziej szczegółowo

POLE MAGNETYCZNE. Magnetyczna siła Lorentza Prawo Ampere a

POLE MAGNETYCZNE. Magnetyczna siła Lorentza Prawo Ampere a POLE MAGNETYCZNE Magnetyczna siła Lorentza Prawo Ampere a 1 Doświadczenie Oersteda W 18 r. Hans C. Oersted odkrywa niezwykle interesujące zjawisko. Przepuszczając prąd elektryczny nad igiełką magnetyczną,

Bardziej szczegółowo

Rozdział 6. Równania Maxwella. 6.1 Pierwsza para

Rozdział 6. Równania Maxwella. 6.1 Pierwsza para Rozdział 6 Równania Maxwella Podstawą elektrodynamiki klasycznej są równania Maxwella, które wiążą pola elektryczne E i magnetyczne B ze sobą oraz z ładunkami i prądami elektrycznymi. Pola E i B są funkcjami

Bardziej szczegółowo

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane

Bardziej szczegółowo

Lekcja 40. Obraz graficzny pola elektrycznego.

Lekcja 40. Obraz graficzny pola elektrycznego. Lekcja 40. Obraz graficzny pola elektrycznego. Polem elektrycznym nazywamy obszar, w którym na wprowadzony doń ładunek próbny q działa siła. Pole elektryczne występuje wokół ładunków elektrycznych i ciał

Bardziej szczegółowo

ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM

ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM D. B. Tefelski Zakład VI Badań Wysokociśnieniowych Wydział Fizyki Politechnika Warszawska, Koszykowa 75, 00-662 Warszawa, PL 21 marca 2011 Falowody: rodzaje fal, dopasowanie,

Bardziej szczegółowo

Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. II

Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. II Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. II Semestr I Elektrostatyka Ocenę dopuszczającą otrzymuje uczeń, który: Wie że materia zbudowana jest z cząsteczek Wie że cząsteczki składają się

Bardziej szczegółowo

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor.

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. DKOS-5002-2\04 Anna Basza-Szuland FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA REALIZOWANYCH TREŚCI PROGRAMOWYCH Kinematyka

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

Magnetostatyka. Bieguny magnetyczne zawsze występują razem. Nie istnieje monopol magnetyczny - samodzielny biegun północny lub południowy.

Magnetostatyka. Bieguny magnetyczne zawsze występują razem. Nie istnieje monopol magnetyczny - samodzielny biegun północny lub południowy. Magnetostatyka Nazwa magnetyzm pochodzi od Magnezji w Azji Mniejszej, gdzie już w starożytności odkryto rudy żelaza przyciągające żelazne przedmioty. Chińczycy jako pierwsi (w IIIw n.e.) praktycznie wykorzystywali

Bardziej szczegółowo

Wykłady z Fizyki. Elektromagnetyzm

Wykłady z Fizyki. Elektromagnetyzm Wykłady z Fizyki 08 Zbigniew Osiak Elektromagnetyzm OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej

Bardziej szczegółowo

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w

Bardziej szczegółowo

Czego można się nauczyć z prostego modelu szyny magnetycznej

Czego można się nauczyć z prostego modelu szyny magnetycznej Czego można się nauczyć z prostego modelu szyny magnetycznej 1) Hamowanie magnetyczne I B F L m v L Poprzeczka o masie m może się przesuwać swobodnie po dwóch równoległych szynach, odległych o L od siebie.

Bardziej szczegółowo

Pole magnetyczne Ziemi. Pole magnetyczne przewodnika z prądem

Pole magnetyczne Ziemi. Pole magnetyczne przewodnika z prądem Pole magnetyczne Własność przestrzeni polegającą na tym, że na umieszczoną w niej igiełkę magnetyczną działają siły, nazywamy polem magnetycznym. Pole takie wytwarza ruda magnetytu, magnes stały (czyli

Bardziej szczegółowo

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH

Bardziej szczegółowo

Fizyka - zakres materiału oraz kryteria oceniania. w zakresie rozszerzonym kl 2 i 3

Fizyka - zakres materiału oraz kryteria oceniania. w zakresie rozszerzonym kl 2 i 3 Fizyka - zakres materiału oraz kryteria oceniania w zakresie rozszerzonym kl 2 i 3 METODY OCENY OSIĄGNIĘĆ UCZNIÓW Celem nauczania jest kształtowanie kompetencji kluczowych, niezbędnych człowiekowi w dorosłym

Bardziej szczegółowo

Indukcja elektromagnetyczna

Indukcja elektromagnetyczna Rozdział 6 ndukcja elektromagnetyczna 6.1 Zjawisko indukcji elektromagnetycznej 6.1.1 Prawo Faraday a i reguła Lenza W rozdziale tym rozpatrzymy niektóre zagadnienia, związane ze zmiennymi w czasie polami

Bardziej szczegółowo

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m.

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m. Segment B.XIV Prądy zmienne Przygotowała: dr Anna Zawadzka Zad. 1 Obwód drgający składa się z pojemności C = 4 nf oraz samoindukcji L = 90 µh. Jaki jest okres, częstotliwość, częstość kątowa drgań oraz

Bardziej szczegółowo

Potencjał pola elektrycznego

Potencjał pola elektrycznego Potencjał pola elektrycznego Pole elektryczne jest polem zachowawczym, czyli praca wykonana przy przesunięciu ładunku pomiędzy dwoma punktami nie zależy od tego po jakiej drodze przesuwamy ładunek. Spróbujemy

Bardziej szczegółowo

I N S T Y T U T F I Z Y K I U N I W E R S Y T E T U G D AŃSKIEGO I N S T Y T U T K S Z T A Ł C E N I A N A U C Z Y C I E L I

I N S T Y T U T F I Z Y K I U N I W E R S Y T E T U G D AŃSKIEGO I N S T Y T U T K S Z T A Ł C E N I A N A U C Z Y C I E L I I N S T Y T U T F I Z Y K I U N I W E R S Y T E T U G D AŃSKIEGO I N S T Y T U T K S Z T A Ł C E N I A N A U C Z Y C I E L I C ZĘŚĆ I I I Podręcznik dla nauczycieli klas III liceum ogólnokształcącego i

Bardziej szczegółowo

30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY

30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY 30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY Magnetyzm Indukcja elektromagnetyczna Prąd przemienny Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod

Bardziej szczegółowo

MAGNETYZM. 1. Pole magnetyczne Ziemi i magnesu stałego.

MAGNETYZM. 1. Pole magnetyczne Ziemi i magnesu stałego. MAGNETYZM 1. Pole magnetyczne Ziemi i magnesu stałego. Źródła pola magnetycznego: Ziemia, magnes stały (sztabkowy, podkowiasty), ruda magnetytu, przewodnik, w którym płynie prąd. Każdy magnes posiada dwa

Bardziej szczegółowo

Plan wynikowy (propozycja)

Plan wynikowy (propozycja) Plan wynikowy (propozycja) 9. Pole elektryczne (17 godzin) Zagadnienie (treści podręcznika) 9.1. Ładunki elektryczne i ich oddziaływanie (Jednostka ładunku. Ładunek elementarny. R Kwarki. Oddziaływanie

Bardziej szczegółowo

Plan wynikowy (propozycja)

Plan wynikowy (propozycja) Plan wynikowy (propozycja) 9. Elektrostatyka (18 godzin) Treści nauczania (tematy lekcji) 9.1. Ładunki elektryczne i prawo Coulomba (Zjawiska elektryczne wokół nas. Ładunek elektryczny protonu i elektronu.

Bardziej szczegółowo

Elektrostatyka. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Elektrostatyka. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Elektrostatyka Projekt współfinansowany przez Unię Europejską w ramach Europejskiego unduszu Społecznego Ładunek elektryczny Materia zbudowana jest z atomów. Atom składa się z dodatnie naładowanego jądra

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Podstawy elektrodynamiki Nazwa w języku angielskim: Introduction to Electrodynamics Kierunek studiów (jeśli

Bardziej szczegółowo

Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Magnetyzm to zjawisko przyciągania kawałeczków stali przez magnesy. 2. Źródła pola magnetycznego. a. Magnesy

Bardziej szczegółowo

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII

Bardziej szczegółowo

Pole magnetyczne Wykład LO Zgorzelec 13-01-2016

Pole magnetyczne Wykład LO Zgorzelec 13-01-2016 Pole magnetyczne Igła magnetyczna Pole magnetyczne Magnetyzm ziemski kompas Biegun północny geogr. Oś obrotu deklinacja Pole magnetyczne Ziemi pochodzi od dipola magnetycznego. Kierunek magnetycznego momentu

Bardziej szczegółowo

Zbigniew Osiak ZADA IA PROBLEMOWE Z FIZYKI

Zbigniew Osiak ZADA IA PROBLEMOWE Z FIZYKI Zbigniew Osiak ZADA IA PROBLEMOWE Z FIZYKI 3 Copyright by Zbigniew Osiak Wszelkie prawa zastrzeżone. Rozpowszechnianie i kopiowanie całości lub części publikacji zabronione bez pisemnej zgody autora. Portret

Bardziej szczegółowo

ZASADY PRZEPROWADZANIA EGZAMINU DYPLOMOWEGO KOŃCZĄCEGO STUDIA PIERWSZEGO ORAZ DRUGIEGO STOPNIA NA KIERUNKU FIZYKA

ZASADY PRZEPROWADZANIA EGZAMINU DYPLOMOWEGO KOŃCZĄCEGO STUDIA PIERWSZEGO ORAZ DRUGIEGO STOPNIA NA KIERUNKU FIZYKA ZASADY PRZEPROWADZANIA EGZAMINU DYPLOMOWEGO KOŃCZĄCEGO STUDIA PIERWSZEGO ORAZ DRUGIEGO STOPNIA NA KIERUNKU FIZYKA INSTYTUT FIZYKI WYDZIAŁ MATEMATYKI, FIZYKI I TECHNIKI UNIWERSYTET KAZIMIERZA WIELKIEGO

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

Zakres pól magnetycznych: Źródło pola B B maks. [ T ] Pracujący mózg 10-13 Ziemia 4 10-5 Elektromagnes 2 Cewka nadprzewodząca. Cewka impulsowa 70

Zakres pól magnetycznych: Źródło pola B B maks. [ T ] Pracujący mózg 10-13 Ziemia 4 10-5 Elektromagnes 2 Cewka nadprzewodząca. Cewka impulsowa 70 Wykład 7. Pole magnetyczne Siła magnetyczna W pobliżu przewodników z prądem elektrycznym i magnesów działają siły magnetyczne -magnes trwały, elektromagnes, silnik elektryczny, prądnica, monitor komputerowy...

Bardziej szczegółowo

Klasa 1. Zadania domowe w ostatniej kolumnie znajdują się na stronie internetowej szkolnej. 1 godzina fizyki w tygodniu. 36 godzin w roku szkolnym.

Klasa 1. Zadania domowe w ostatniej kolumnie znajdują się na stronie internetowej szkolnej. 1 godzina fizyki w tygodniu. 36 godzin w roku szkolnym. Rozkład materiału nauczania z fizyki. Numer programu: Gm Nr 2/07/2009 Gimnazjum klasa 1.! godzina fizyki w tygodniu. 36 godzin w ciągu roku. Klasa 1 Podręcznik: To jest fizyka. Autor: Marcin Braun, Weronika

Bardziej szczegółowo

średnia droga swobodna L

średnia droga swobodna L PĄD STAŁY. Na czym polega przepływ prądu elektrycznego. Natężenie prądu i opór; źródła oporu elektrycznego 3. Prawo Ohma; temperaturowa zależność oporu elektrycznego 4. Siła elektromotoryczna 5. Prawa

Bardziej szczegółowo

1. Podstawy matematyki

1. Podstawy matematyki 1. Podstawy matematyki 1.1. Pola Pole wiąże wielkość fizyczną z położeniem punktu w przestrzeni W przypadku, gdy pole jest zależne od czasu, możemy je zapisać jako. Najprostszym przykładem pola jest pole

Bardziej szczegółowo

CIĘŻAR. gdzie: F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg

CIĘŻAR. gdzie: F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg WZORY CIĘŻAR F = m g F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg 1N = kg m s 2 GĘSTOŚĆ ρ = m V ρ gęstość substancji, z jakiej zbudowane jest ciało [ kg m 3] m- masa [kg] V objętość [m

Bardziej szczegółowo

Elektryczność i magnetyzm

Elektryczność i magnetyzm Elektryczność i magnetyzm Pole elektryczne, kondensatory, przewodniki i dielektryki. Zadanie 1. Dwie niewielkie, przewodzące kulki o masach równych odpowiednio m 1 i m 2 naładowane ładunkami q 1 i q 2

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

Rozkład materiału i wymagania edukacyjne na poszczególne oceny z fizyki i astronomii dla klasy II TE, IITI, II TM w roku szkolnym 2012/2013

Rozkład materiału i wymagania edukacyjne na poszczególne oceny z fizyki i astronomii dla klasy II TE, IITI, II TM w roku szkolnym 2012/2013 Rozkład materiału i wymagania edukacyjne na poszczególne oceny z fizyki i astronomii dla klasy II TE, IITI, II TM w roku szkolnym 2012/2013 Lp. Temat lekcji Uszczegółowienie treści Wymagania na ocenę dopuszczającą

Bardziej szczegółowo

Pole magnetyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Pole magnetyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Pole magnetyczne Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Pole magnetyczne Pole magnetyczne jest nierozerwalnie związane z polem elektrycznym. W zależności

Bardziej szczegółowo

Dielektryki Opis w domenie częstotliwości

Dielektryki Opis w domenie częstotliwości Dielektryki Opis w domenie częstotliwości Ryszard J. Barczyński, 2013 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Opis w domenie częstotliwości

Bardziej szczegółowo

Wymagania edukacyjne fizyka kl. 3

Wymagania edukacyjne fizyka kl. 3 Wymagania edukacyjne fizyka kl. 3 Wymagania na poszczególne oceny konieczne podstawowe rozszerzające dopełniające dopuszczająca dostateczna dobra bardzo dobra Rozdział 1. Elektrostatyka wymienia dwa rodzaje

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

Obwody liniowe. Sprawdzanie praw Kirchhoffa

Obwody liniowe. Sprawdzanie praw Kirchhoffa POLTECHNK ŚLĄSK WYDZŁ NŻYNER ŚRODOWSK ENERGETYK NSTYTT MSZYN RZĄDZEŃ ENERGETYCZNYCH LBORTORM ELEKTRYCZNE Obwody liniowe. Sprawdzanie praw Kirchhoffa (E 2) Opracował: Dr inż. Włodzimierz OGLEWCZ 3 1. Cel

Bardziej szczegółowo

Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową.

Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową. Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową. Lekcja organizacyjna. Omówienie programu nauczania i przypomnienie wymagań przedmiotowych Tytuł rozdziału

Bardziej szczegółowo

Pojemnośd elektryczna

Pojemnośd elektryczna Pojemnośd elektryczna Tekst jest wolnym tłumaczeniem pliku guide05pdf kursu dostępnego na stronie http://webmitedu/802t/www/802teal3d/visualizations/coursenotes/indexhtm Wszystkie rysunki i animacje zaczerpnięto

Bardziej szczegółowo

ODDZIAŁYWANIA W PRZYRODZIE ODDZIAŁYWANIA GRAWITACYJNE

ODDZIAŁYWANIA W PRZYRODZIE ODDZIAŁYWANIA GRAWITACYJNE ODDZIAŁYWANIA W PRZYRODZIE ODDZIAŁYWANIA GRAWITACYJNE 1. Ruch planet dookoła Słońca Najjaśniejszą gwiazdą na niebie jest Słońce. W przeszłości debatowano na temat związku Ziemi i Słońca, a także innych

Bardziej szczegółowo

R o z d z i a ł 7 POLE ELEKTRYCZNE

R o z d z i a ł 7 POLE ELEKTRYCZNE R o z d z i a ł 7 POLE ELEKTRYCZNE Zjawiska elektryczne towarzyszyły człowiekowi od samego początku jego pojawienia się. Wyładowania atmosferyczne napawały grozą, zaś zjawiska bioelektryczne i elektryzacja

Bardziej szczegółowo

Człowiek najlepsza inwestycja

Człowiek najlepsza inwestycja Człowiek najlepsza inwestycja Fizyka ćwiczenia F6 - Prąd stały, pole magnetyczne magnesów i prądów stałych Prowadzący: dr Edmund Paweł Golis Instytut Fizyki Konsultacje stałe dla projektu; od Pn. do Pt.

Bardziej szczegółowo

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL We wstępnej analizie przyjęto następujące założenia: Dwuwymiarowość

Bardziej szczegółowo

Oddziaływanie wirnika

Oddziaływanie wirnika Oddziaływanie wirnika W każdej maszynie prądu stałego, pracującej jako prądnica lub silnik, może wystąpić taki szczególny stan pracy, że prąd wirnika jest równy zeru. Jedynym przepływem jest wówczas przepływ

Bardziej szczegółowo

CHARAKTERYSTYKA WIĄZKI GENEROWANEJ PRZEZ LASER

CHARAKTERYSTYKA WIĄZKI GENEROWANEJ PRZEZ LASER CHARATERYSTYA WIĄZI GENEROWANEJ PRZEZ LASER ształt wiązki lasera i jej widmo są rezultatem interferencji promieniowania we wnęce rezonansowej. W wyniku tego procesu powstają charakterystyczne rozkłady

Bardziej szczegółowo

KOMPENDIUM FIZYKI. Zbiór wszystkich pojęć, niezbędnych do pozytywnego zaliczenia, testów i egzaminów.

KOMPENDIUM FIZYKI. Zbiór wszystkich pojęć, niezbędnych do pozytywnego zaliczenia, testów i egzaminów. KOMPENDIUM FIZYKI Zbiór wszystkich pojęć, niezbędnych do pozytywnego zaliczenia, testów i egzaminów. Poznań 2010 1 Copyright for Polish edition by www.iwiedza.net Data 01.07.2011 Niniejsza publikacja nie

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie E6 Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym E6.1. Cel ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający moment

Bardziej szczegółowo

29 PRĄD PRZEMIENNY. CZĘŚĆ 2

29 PRĄD PRZEMIENNY. CZĘŚĆ 2 Włodzimierz Wolczyński 29 PRĄD PRZEMIENNY. CZĘŚĆ 2 Opory bierne Indukcyjny L - indukcyjność = Szeregowy obwód RLC Pojemnościowy C pojemność = = ( + ) = = = = Z X L Impedancja (zawada) = + ( ) φ R X C =

Bardziej szczegółowo

Plan realizacji materiału z fizyki.

Plan realizacji materiału z fizyki. Plan realizacji materiału z fizyki. Ze względu na małą ilość godzin jaką mamy do dyspozycji w całym cyklu nauczania fizyki pojawił się problem odpowiedniego doboru podręczników oraz podziału programu na

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka 7. Pole magnetyczne zadania z arkusza I 7.8 7.1 7.9 7.2 7.3 7.10 7.11 7.4 7.12 7.5 7.13 7.6 7.7 7. Pole magnetyczne - 1 - 7.14 7.25 7.15 7.26 7.16 7.17 7.18 7.19 7.20 7.21 7.27 Kwadratową ramkę (rys.)

Bardziej szczegółowo

FIZYKA IV etap edukacyjny zakres rozszerzony

FIZYKA IV etap edukacyjny zakres rozszerzony FIZYKA IV etap edukacyjny zakres rozszerzony Cele kształcenia wymagania ogólne I. Znajomość i umiejętność wykorzystania pojęć i praw fizyki do wyjaśniania procesów i zjawisk w przyrodzie. II. Analiza tekstów

Bardziej szczegółowo

R o z d z i a ł 8 POLE MAGNETYCZNE

R o z d z i a ł 8 POLE MAGNETYCZNE R o z d z i a ł 8 POLE MAGNETYCZNE Oddziaływania magnetyczne odkryto wcześniej niż oddziaływania elektryczne. Wiąże się to z istnieniem w przyrodzie tzw. magnesów trwałych (np. rudy żelaza magnetytu),

Bardziej szczegółowo

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki.

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. 1. Równanie soczewki i zwierciadła kulistego. Z podobieństwa trójkątów ABF i LFD (patrz rysunek powyżej) wynika,

Bardziej szczegółowo

Wymagania edukacyjne FIZYKA. zakres rozszerzony

Wymagania edukacyjne FIZYKA. zakres rozszerzony Wymagania edukacyjne FIZYKA zakres rozszerzony I. Cele kształcenia wymagania ogólne I. Znajomość i umiejętność wykorzystania pojęć i praw fizyki do wyjaśniania procesów i zjawisk w przyrodzie. II. Analiza

Bardziej szczegółowo

INDUKCJA ELEKTROMAGNETYCZNA

INDUKCJA ELEKTROMAGNETYCZNA Wstęp INDKCJA ELEKTROMAGNETYCZNA Zajęcia wyrównawcze, Częstochowa, 009/00 Ewa Jakubczyk Michalel Faraday (79-867) odkrył w 83roku zjawisko indukcji elektromagnetycznej. Oto pierwsza prądnica -generator

Bardziej szczegółowo

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa Spis treści Rozdział I. Membrany izotropowe 1. Wyprowadzenie równania na ugięcie membrany... 13 2. Sformułowanie zagadnień brzegowych we współrzędnych kartezjańskich i biegunowych... 15 3. Wybrane zagadnienia

Bardziej szczegółowo

Strumień pola elektrycznego i prawo Gaussa

Strumień pola elektrycznego i prawo Gaussa Strumień pola elektrycznego i prawo Gaussa Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Strumień pola

Bardziej szczegółowo

Energia potencjalna pola elektrostatycznego ładunku punktowego

Energia potencjalna pola elektrostatycznego ładunku punktowego Energia potencjalna pola elektrostatycznego ładunku punktowego Wszystkie rysunki i animacje zaczerpnięto ze strony http://web.mit.edu/8.02t/www/802teal3d/visualizations/electrostatics/index.htm. Tekst

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r.

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r. V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r. 1. Po wirującej płycie gramofonowej idzie wzdłuż promienia mrówka ze stałą prędkością względem płyty. Torem ruchu mrówki

Bardziej szczegółowo

KARTA PROGRAMOWA - Sylabus -

KARTA PROGRAMOWA - Sylabus - AKADEMIA TECHNICZNO HUMANISTYCZNA KARTA PROGRAMOWA - Sylabus - WYDZIAŁ BUDOWY MASZYN I INFORMATYKI Przedmiot: Fizyka Kod przedmiotu: ZDI_B_0_ Rok studiów: Semestr: Punkty ECTS: 4 Kierunek : Zarządzanie

Bardziej szczegółowo

Magnetyzm. Magnetyzm zdolność do przyciągania małych kawałków metalu. Bar Magnet. Magnes. Kompas N N. Iron filings. Biegun południowy.

Magnetyzm. Magnetyzm zdolność do przyciągania małych kawałków metalu. Bar Magnet. Magnes. Kompas N N. Iron filings. Biegun południowy. Magnetyzm Magnetyzm zdolność do przyciągania małych kawałków metalu Magnes Bar Magnet S S N N Iron filings N Kompas S Biegun południowy Biegun północny wp.lps.org/kcovil/files/2014/01/magneticfields.ppt

Bardziej szczegółowo

2. Oblicz jakie przyspieszenie zyskała kula o masie 0,15 tony pod wpływem popchnięcia jej przez strongmana siłą 600N.

2. Oblicz jakie przyspieszenie zyskała kula o masie 0,15 tony pod wpływem popchnięcia jej przez strongmana siłą 600N. Wersja A KONKURS FIZYCZNY DLA UCZNIÓW KLAS 3 GIMNAZJUM Masz przed sobą zestaw 20 zadań. Na ich rozwiązanie masz 45 minut. Czytaj uważnie treści zadań. Tylko jedna odpowiedź jest prawidłowa. Za każde prawidłowo

Bardziej szczegółowo

Polaryzatory/analizatory

Polaryzatory/analizatory Polaryzatory/analizatory Polaryzator eliptyczny element układu optycznego lub układ optyczny, za którym światło jest spolaryzowane eliptycznie i o parametrach ściśle określonych przez polaryzator zazwyczaj

Bardziej szczegółowo

KRYTERIA OCENIANIA Z FIZYKI DLA KLASY III GIMNAZJUM

KRYTERIA OCENIANIA Z FIZYKI DLA KLASY III GIMNAZJUM KRYTERIA OCENIANIA Z FIZYKI DLA KLASY III GIMNAZJUM DRGANIA I FALE MECHANICZNE - Uczeń nie opanował wiedzy i umiejętności niezbędnych w dalszej nauce. -Wie, że fale sprężyste nie mogą rozchodzić się w

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI WYMAGANIA EDUKACYJNE Z FIZYKI KLASA III Drgania i fale mechaniczne Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia.

Bardziej szczegółowo

wskazuje w otoczeniu zjawiska elektryzowania przez tarcie formułuje wnioski z doświadczenia sposobu elektryzowania ciał objaśnia pojęcie jon

wskazuje w otoczeniu zjawiska elektryzowania przez tarcie formułuje wnioski z doświadczenia sposobu elektryzowania ciał objaśnia pojęcie jon Klasa III Elektryzowanie przez tarcie. Ładunek elementarny i jego wielokrotności opisuje budowę atomu i jego składniki elektryzuje ciało przez potarcie wskazuje w otoczeniu zjawiska elektryzowania przez

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II Energia Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia zna pojęcia pracy

Bardziej szczegółowo

POLE MAGNETYCZNE czyli jedna strona zjawisk elektromagnetycznych. Marian Talar

POLE MAGNETYCZNE czyli jedna strona zjawisk elektromagnetycznych. Marian Talar POLE MAGNETYCZNE czyli jedna strona zjawisk elektromagnetycznych 7 stycznia 2007 2 Pole magnetyczne 1 Wymagania egzaminacyjne na egzamin maturalny - poziom rozszerzony: fizyka 2005-2006 Zjawiska magnetyczne

Bardziej szczegółowo

Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć. Dr hab.

Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć. Dr hab. Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć Dr hab. Paweł Żukowski Materiały magnetyczne Właściwości podstawowych materiałów magnetycznych

Bardziej szczegółowo

Kryteria oceniania z fizyki. Nowa podstawa programowa nauczania fizyki i astronomii w gimnazjum. Moduł I, klasa I. 1.Ocenę dopuszczającą otrzymuje

Kryteria oceniania z fizyki. Nowa podstawa programowa nauczania fizyki i astronomii w gimnazjum. Moduł I, klasa I. 1.Ocenę dopuszczającą otrzymuje Kryteria oceniania z fizyki. Moduł I, klasa I. - zna pojęcia: substancja, ekologia, wzajemność oddziaływań, siła. - zna cechy wielkości siły, jednostki siły. - wie, jaki przyrząd służy do pomiaru siły.

Bardziej szczegółowo

Propagacja światła we włóknie obserwacja pól modowych.

Propagacja światła we włóknie obserwacja pól modowych. Propagacja światła we włóknie obserwacja pól modowych. Przy pomocy optyki geometrycznej łatwo można przedstawić efekty propagacji światła tylko w ośrodku nieograniczonym. Nie ukazuje ona jednak interesujących

Bardziej szczegółowo

Badanie rozkładu pola magnetycznego przewodników z prądem

Badanie rozkładu pola magnetycznego przewodników z prądem Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze

Bardziej szczegółowo

Prawo Gaussa. Jeśli pole elektryczne jest prostopadłe do powierzchni A, to strumieo pola elektrycznego wynosi

Prawo Gaussa. Jeśli pole elektryczne jest prostopadłe do powierzchni A, to strumieo pola elektrycznego wynosi Prawo Gaussa Tekst jest wolnym tłumaczeniem pliku guide04.pdf kursu dostępnego na stronie http://web.mit.edu/8.02t/www/802teal3d/visualizations/coursenotes/index.htm Wszystkie rysunki i animacje zaczerpnięto

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4) Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego

Bardziej szczegółowo

PRĄDNICE I SILNIKI. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

PRĄDNICE I SILNIKI. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego PRĄDNICE I SILNIKI Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Prądnice i silniki (tzw. maszyny wirujące) W każdej maszynie można wyróżnić: - magneśnicę

Bardziej szczegółowo

1. FALE ELEKTROMAGNETYCZNE: WŁASNOŚCI I PARAMETRY.

1. FALE ELEKTROMAGNETYCZNE: WŁASNOŚCI I PARAMETRY. 1. FALE ELEKTROMAGNETYCZNE: WŁASNOŚCI I PARAMETRY. 1. Napisz układ równań Maxwella w postaci: a) różniczkowej b) całkowej 2. Podaj trzy podstawowe równania materiałowe wiążące E z D, B z H, E z j 3. Zapisz

Bardziej szczegółowo

U=U 0 sin t. Wykresy zależności I(t) i U(t) dla prądu przemiennego, płynącego w obwodzie zawierającym tylko opór R.

U=U 0 sin t. Wykresy zależności I(t) i U(t) dla prądu przemiennego, płynącego w obwodzie zawierającym tylko opór R. O B W O D Y P R Ą D U P R Z E M I E N N E G O Wykresy zależności I(t) i U(t) dla prądu przemiennego, płynącego w obwodzie zawierającym tylko opór R. I=I 0 sin t U=U 0 sin t Zwojnica w obwodzie prądu przemiennego.

Bardziej szczegółowo

Klasyczny efekt Halla

Klasyczny efekt Halla Klasyczny efekt Halla Rysunek pochodzi z artykułu pt. W dwuwymiarowym świecie elektronów, autor: Tadeusz Figielski, Wiedza i Życie, nr 4, 1999 r. Pełny tekst artykułu dostępny na stronie http://archiwum.wiz.pl/1999/99044800.asp

Bardziej szczegółowo

Ćwiczenie: "Zagadnienia optyki"

Ćwiczenie: Zagadnienia optyki Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.

Bardziej szczegółowo

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis Nauka o Materiałach Wykład XI Właściwości cieplne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Stabilność termiczna materiałów 2. Pełzanie wysokotemperaturowe 3. Przewodnictwo cieplne 4. Rozszerzalność

Bardziej szczegółowo

Fale elektromagnetyczne w medycynie i technice

Fale elektromagnetyczne w medycynie i technice V Edycja Od Einsteina Do... Temat XI Podaj własne opracowanie dowolnego tematu technicznego. Fale elektromagnetyczne w medycynie i technice Prace wykonały : -Marcelina Grąbkowska -Marcelina Misiak -Edyta

Bardziej szczegółowo

Temat: ŹRÓDŁA ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO

Temat: ŹRÓDŁA ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO Temat: ŹRÓDŁA ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO 1 Źródła energii elektrycznej prądu przemiennego: 1. prądnice synchroniczne 2. prądnice asynchroniczne Surowce energetyczne: węgiel kamienny i brunatny

Bardziej szczegółowo

Teresa Wieczorkiewicz. Fizyka i astronomia. Program nauczania, rozkład materiału oraz plan wynikowy Gimnazjum klasy: 3G i 3H

Teresa Wieczorkiewicz. Fizyka i astronomia. Program nauczania, rozkład materiału oraz plan wynikowy Gimnazjum klasy: 3G i 3H Teresa Wieczorkiewicz Fizyka i astronomia Program nauczania, rozkład materiału oraz plan wynikowy Gimnazjum klasy: 3G i 3H Wg podstawy programowej z Rozporządzenia Ministra Edukacji Narodowej z dnia 23

Bardziej szczegółowo

FIZYKA 2. Międzywydziałowa Szkoła Inżynierii Biomedycznej 2008/2009 SEMESTR 2

FIZYKA 2. Międzywydziałowa Szkoła Inżynierii Biomedycznej 2008/2009 SEMESTR 2 FIZYKA 2 Międzywydziałowa Szkoła Inżynierii Biomedycznej 2008/2009 SEMESTR 2 Rozwiązania zadań nie były w żaden sposób konsultowane z żadnym wiarygodnym źródłem informacji!!! W związku z tym ich poprawność

Bardziej szczegółowo

Elektrostatyka, część pierwsza

Elektrostatyka, część pierwsza Elektrostatyka, część pierwsza ZADANIA DO PRZEROBIENIA NA LEKJI 1. Dwie kulki naładowano ładunkiem q 1 = 1 i q 2 = 3 i umieszczono w odległości r = 1m od siebie. Oblicz siłę ich wzajemnego oddziaływania.

Bardziej szczegółowo