POMIARY PRZEMIESZCZEŃ LINIOWYCH I KĄTOWYCH.

Wielkość: px
Rozpocząć pokaz od strony:

Download "POMIARY PRZEMIESZCZEŃ LINIOWYCH I KĄTOWYCH."

Transkrypt

1 LABORATORIUM PODSTAW METROLOGII M-T Ćwiczenie nr POMIARY PRZEMIESZCZEŃ LINIOWYCH I KĄTOWYCH. 1. Wprowadzenie. Przetworniki do pomiaru przemieszczeń liniowych wykorzystywane są w metrologii warsztatowej, w robotyce, w układach sterowania automatycznego położeniem części maszyn lub narzędzi obróbczych oraz do kontroli stanu elementów wykonawczych automatyki. Pomiaru tego dokonuje się za pomocą czujników przemieszczeń pracujących w układach elektrycznych odpowiednich do wymagań współpracujących z nimi sterowanych urządzeń. W wielu układach automatyki przemysłowej sygnał pomiarowy z wyjścia czujnika przemieszczenia nie jest prezentowany na urządzeniach odczytowych lecz bezpośrednio jest wykorzystywany w zamkniętej pętli układu automatyki. Jednak w przeważającej liczbie przypadków wynik pomiaru przemieszczenia jest prezentowany na odpowiednich przyrządach odczytowych. W zależności od wymaganego zakresu mierzonych przemieszczeń oraz dokładności pomiaru wykorzystuje się różnego rodzaju czujniki przemieszczenia. Przy niezbyt dużych wymaganiach dokładnosciowych wykorzystuje się najczęściej indukcyjnościowe czujniki różnicowe, czujniki pojemnościowe oraz czujniki indukcyjne ( wiroprądowe ). W przedmiotowym ćwiczeniu laboratoryjnym wykorzystywane są wymienione konstrukcje czujników przemieszczeń liniowych pracujące w prostych układach pomiarowych pozwalające mierzyć przemieszczenia w zakresie do ok.5mm z rozdzielczością 1µm.. Konstrukcje i układy pomiarowe czujników przemieszczeń liniowych..1. Czujnik indukcyjnościowy. Na rys.1 przedstawiono szkic konstrukcji czujnika indukcyjnościowego różnicowego z rdzeniem nurnikowym pracującego w układzie przetwarzania przemieszczenie-stałe napięcie różnicowe. Uzwojenia, 3 i 3 i przemieszczany rdzeń 4 czujnika stanowią transformator różnicowy, który jest zasilany z generatora sinusoidalnego GS. Napięcia U i U uzwojeń różnicowych wraz z napięciem generatora U Z podawane są na detektor fazowy DF pracujący zwykle w układzie jednopołówkowym lub pierścieniowym. Na wyjściu detektora fazowego znajduje się filtr z którego uzyskuje się napięcie stałe U proporcjonalne do różnicy amplitud napięć U i U : U = U ' U " ( 1 ). To napięcie stałe jest sygnałem wyjściowym czujnika, i jest mierzone w układzie jak na rys.1 za pomocą przetwornika analogowo-cyfrowego AC. Sposób detekcji napięć różnicowych według zależności (1) pozwala uzyskać praktycznie liniową charakterystykę czujnika przemieszczenia. Przykładową charakterystykę czujnika indukcyjnościowego z detektorem fazowym przedstawiono na rys.b. Zastosowanie detektora fazowego w układzie czujnika linearyzuje jego charakterystykę zwłaszcza w obszarze przemieszczeń rdzenia czujnika w pobliżu położenia środkowego. W pobliżu środkowego położenia rdzenia czujnik różnicowy bez detektora fazowego jest nieliniowy ( rys.a ). Ponadto można w nim wykorzystać tylko jedno ramię charakterystyki, a zatem ma on prawie dwukrotnie mniejszy zakres pomiarowy w porównaniu z czujnikiem z detektorem fazowym. MT ćw. Pomiar przemieszczeń liniowych 1

2 6 3' Czujnik 1 +x U x ' x U z GS DF AC -x 3'' U x '' U x Rys.1. Czujnik indukcyjnościowy różnicowy w układzie detektora fazowego. Oznaczono; 1 obudowa ferromagnetyczna, uzwojenie zasilające, 3 i 3 uzwojenia różnicowe, 4 rdzeń ferromagnetyczny, 5 trzpień pomiarowy, 6 sprężyna zwrotna, 7 łożysko toczne. a) b) U = U' - U" U - N + N -Z + Z N / N Rys.. Charakterystyka indukcyjnego różnicowego czujnika przemieszczenia; a) napięcia różnicowego, b) napięcia stałego na wyjściu detektora fazowego. Zależność napięcia wyjściowego czujnika indukcyjnościowego U od przemieszczenia można opisać zależnością: U = SU ( ) du U gdzie: S U czułość czujnika; SU = d.. Czujnik indukcyjny ( wiroprądowy ). Czujnik indukcyjny wykorzystywany jest w praktyce do pomiaru małych przemieszczeń zarówno statycznych jak i dynamicznych. Ze względu na prostą konstrukcję, brak elementów ruchomych i wynikającą stąd małą inercję i dużą trwałość czujnika oraz bezdotykowy sposób pomiaru czujnik wiroprądowy ma zastosowanie w przemyśle szczególnie w pomiarach drgań mechanicznych, których częstotliwości sięgają kilkudziesięciu khz. Na rys.3 przedstawiono zasadę konstrukcji oraz uproszczony układ pomiarowy czujnika wiroprądowego. MT ćw. Pomiar przemieszczeń liniowych

3 1 z 1 Fe I 1 L 1 GS x x Φ 1 Φ I z =1 PS UC Czujnik Rys.3. Zasada konstrukcji i układ pomiarowy czujnika indukcyjnego ( wiroprądowego ). Zasadniczymi elementami czujnika jak na rys.3 jest cewka 1 zasilana prądem sinusoidalnym I 1 z generatora GS oraz mocowana do badanego obiektu płytka wykonana z metalu (zwykle z ferromagnetyka ). W zależności od odległości płytki od cewki (przemieszczenia) zmienia się indukcyjność cewki L 1 oraz prąd zasilania I 1. Zmiany tych wielkości zależnie od układu generatora mogą wywoływać zmianę jego częstotliwości (okresu), napięcia wyjściowego lub poboru prądu ze źródła zasilania. Wymienione wielkości stanowią sygnał pomiarowy, który po odpowiednim przetworzeniu w układzie przetwarzania sygnału PS zamieniany jest na sygnał analogowy (napięcie stałe) lub cyfrowy (ciąg impulsów) dalej przetwarzany w układzie cyfrowym do postaci wartości liczbowej prezentowanej na przyrządzie odczytowym (zwykle cyfrowym polu odczytowym ). Dla czujnika wiroprądowego jak na rys.3 wielkością wyjściową zależną od mierzonego przemieszczenia jest okres generowanego przebiegu T. [ ( ) ( )] T = π LC = π L + L C= T + T ( 3 ). Wprowadzając pojęcie czułości czujnika dla okresu można zależność (3) przedstawić w postaci: T = ST + T ( 4 ) dt T gdzie: S T - czułość czujnika dla okresu generowanego napięcia; ST = nie ma d wartości stałej w całym zakresie pomiarowym. Z zasady działania czujnika wiroprądowego wynika, że indukcyjność czujnika L ( ) zmienia się liniowo z przemieszczeniem jedynie dla małych przemieszczeń <<. W praktyce czujniki wiroprądowe wykorzystywane są w pomiarach przemieszczeń do kilku mm rzadko do kilkunastu mm przy czym są one nieliniowe zwłaszcza w szerszych zakresach pomiarowych co zwykle wymaga stosowania układów linearyzujących. Ponadto przy wykorzystywaniu tych czujników należy liczyć się działaniem siły elektromagnetycznej na płytkę pomiarową co może powodować drgania badanego obiektu z podwójną częstotliwością zasilania czujnika lub jej wielokrotnością. W układzie przedstawionym na rys.3 napięcie generatora sinusoidalnego GS jest przetwarzane w układzie PS tak, aby można było na jego wyjściu uzyskać sygnał proporcjonalny do okresu napięcia generatora (możliwe jest przetwarzanie proporcjonalnie do indukcyjności lub mocy strat czujnika). MT ćw. Pomiar przemieszczeń liniowych 3

4 .3. Czujnik pojemnościowy. Czujnik pojemnościowy o działaniu dotykowym podobnie jak czujnik indukcyjnościowy szczególnie dobrze nadaje się do pomiaru przemieszczeń statycznych lub wolnozmiennych. Wynika to z obecności ruchomych elementów w konstrukcji czujnika. Stosunkowo duża masa tych elementów powoduje ich dużą inercję. Z pośród opisywanych czujników przemieszczenia czujniki pojemnościowe mają najlepsze właściwości metrologiczne. Parametry elektryczne czujników pojemnościowych praktycznie nie zależą od temperatury i nie zmieniają się w czasie. Ponadto można budować czujniki o wymaganej charakterystyce przetwarzania przemieszczenia na pojemność na przykład liniowej. Niedogodnością są małe zmiany pojemności czujników pojemnościowych co powoduje, że czujniki te muszą pracować w układzie elektrycznym o częstotliwości od kilkuset Hz do kilku MHz. Czujniki pojemnościowe pracują zwykle w układach generatorów sinusoidalnych, mostków prądu zmiennego lub w układach impulsowych na przykład w układzie uniwibratora. Na rys.4 przedstawiono szkic konstrukcji czujnika pojemnościowego pracującego w układzie uniwibratora. 6 Czujnik 1 4 ΣC R x C x UW T UC Rys.4. Czujnik pojemnościowy w układzie uniwibratora. Oznaczono; 1 obudowa metalowa, elektroda stała, 3 elektroda ruchoma, 4 dielektryk stały, 5 trzpień pomiarowy, 6 sprężyna zwrotna, 7 łożysko toczne. W układzie pomiarowym jak na rys.4 na wyjściu uniwibratora UW generowane są impulsy prostokątne, których okres jest równy: [ Σ ] ( Σ ) ln ( ) ( ) T= C + CR = C + C + CRln = T + T T = C + Σ C Rln = C Rln. gdzie C pojemność czujnika, ΣC sumaryczna pojemność pasożytnicza na wejściu uniwibratora ( w tym pojemność kabla czujnika ), R rezystancja w układzie relaksacyjnym uniwibratora, [ ( ) ] Zmiany okresu impulsów na wyjściu uniwibratora w zależności od mierzonego przemieszczenia opisuje zależność: ( 5 ) MT ćw. Pomiar przemieszczeń liniowych 4

5 T = T + ST Rln ( 6 ) dc C gdzie S T - czułość czujnika dla okresu sygnału wyjściowego; ST =. d Sygnał wyjściowy z uniwibratora wymaga przetworzenia na napięcie stałe lub sygnał impulsowy w odpowiednim kodzie cyfrowym. Należy zauważyć, że przetwarzanie częstotliwości sygnału z uniwibratora na napięcie powoduje nieliniowość charakterystyki układu czujnika przy liniowej zależności pojemności czujnika od mierzonego przemieszczenia. 3. Stanowisko laboratoryjne do pomiaru charakterystyki statycznej czujników przemieszczeń liniowych. Na rys.5 przedstawiono szkic stanowiska pomiarowego z ławą pomiarową z suportem śrubowym i optycznym układem odczytu położenia suportu. Na stanowisku tym bada się jednocześnie dwa czujniki, które oznaczono odpowiednio: CI czujnik indukcyjnościowy (opcjonalnie CW czujnik wiroprądowy),. CP czujnik pojemnościowy. Czujnik indukcyjnościowy CI pracuje w układzie różnicowym z detektorem fazowy DF i cyfrowym układem pomiaru napięcia VC. Układ ten umożliwia pomiar przemieszczeń w całym zakresie pomiarowym czujnika lub w ograniczonym do jego środkowej części przy czym zwiększona jest rozdzielczość pomiaru. Czujnik pojemnościowy CP pracuje w układzie uniwibratora UW, którego sygnał wyjściowy jest mierzony za pomocą cyfrowego częstościomierza liczącego PFL. Częstościomierzem tym można mierzyć okres lub częstotliwość sygnału wyjściowego uniwibratora. DF VC 4 UW x 6 PFL - 8 mm 7 5 CP CI 3 1 Rys.5. Stanowisko do badania charakterystyk statycznych czujników przemieszczeń liniowych. Oznaczono; 1 podstawa ławy pomiarowej, ruchoma ława pomiarowa, 3 zderzak pomiarowy, 4 suport ławy pomiarowej, 5 pokrętło napędu suportu, 6 okular Abbe go, 7 pokrętło precyzera okularu. MT ćw. Pomiar przemieszczeń liniowych 5

6 Przemieszczenia ustala się za pomocą pokrętła 5 napędu suportu 4 ławy pomiarowej i odczytuje się za pomocą okularu Abbe go 6 z precyzerem optycznym strojonym za pomocą pokrętła 7. Mierzone przemieszczenie wyznacza się jako różnicę położeń zderzaka 3 opartego (bez luzu) na trzpieniach pomiarowych badanych czujników. Ława pomiarowa jak na rys.5 pozwala ustalać położenia zderzaka pomiarowego 3 z rozdzielczością 1µm. w zakresie przemieszczeń do ok.1mm. Aby uzyskać podaną rozdzielczość ustalanych położeń zderzaka pomiarowego należy tak regulować precyzer pokrętłem 7, aby uzyskać obraz w okularze jak to pokazano na rys.6 dla przykładowego wskazania p. = 6,68mm. Wskazanie- 6,68 mm Rys.6. Sposób odczytu wskazania w okularze Abbe go. Obraz w okularze jak na rys.6 uzyskano po przesunięciu ławy pomiarowej do położenia 6,68mm. Najpierw należy odczytać wartość z podziałki liniowej ( w tym przypadku 6 ) następnie dalej poruszając napędem suportu po ustaleniu się wskaźnika ( pionowa kreska na rys.6 ) pomiędzy sąsiednimi łukami podziałki obracając pokrętłem precyzera doprowadzić położenie wskaźnika najbliższą wartość na podziałce poziomej i odczytać wartość wskazaną na podziałce łukowej precyzera ( w tym przypadku odczytano wartość 8 ). W ten sposób odczytana wartość wynosi 6,68mm. 4. Pytania kontrolne. 1. Podać zasady działania czujników przemieszczeń liniowych.. Dlaczego czujniki indukcyjnościowe i pojemnościowe nie są wykorzystywane do pomiaru drgań mechanicznych? 3. W jakim celu w układach pomiarowych czujników indukcyjnościowych wykorzystuje się detektory fazowe? 4. W jakich układach pracują czujniki pojemnościowe? 5. Porównać charakterystyki statyczne opisywanych w ćwiczeniu czujników. 6. Wymienić i uzasadnić sposoby zwiększenia czułości czujników przemieszczenia. MT ćw. Pomiar przemieszczeń liniowych 6

7 7. Który z opisywanych w ćwiczeniu czujników pozwala uzyskać najwyższą dokładność pomiaru przemieszczenia. Uzasadnić odpowiedź. 8. Dlaczego czujniki wiroprądowe są wrażliwe na zbliżenie do nich przedmiotów metalowych? 5. BADANIE POJEMNOŚCIOWEGO CZUJNIKA KĄTA POCHYLENIA POWIERZCHNI. 6. Wprowadzenie. Na rys. 7 przedstawiono szkic stanowiska laboratoryjnego do badania właściwości statycznych pojemnościowego czujnika kąta pochylenia powierzchni. Stanowisko składa się z obrotowej belki, na której umieszczono badany czujnik, stolika zaopatrzonego w nóżki o regulowanej wysokości umożliwiające stabilne usytuowanie go na poziomej powierzchni. Badanie czujnika na stanowisku zwykle rozpoczyna się od ustawienia belki pomiarowej, na której umieszczony jest badany czujnik w położeniu poziomym. Dokonuje się tego za pomocą śruby mikrometrycznej oraz umieszczonej na belce poziomicy cieczowej. W tym położeniu belki ( = ) odczytuje się na podziałce śruby mikrometrycznej wartość { = ( = )} oraz mierzy się pojemność C x badanego czujnika za pomocą miernika pojemności (miernika RLC, mostka LC itp.) zapewniającego wymaganą w badaniach dokładność pomiaru. W ćwiczeniu laboratoryjnym bada się czujnik pojemnościowy, którego zasadę budowy pokazano na rys. 8. Istotą przedstawionej na rys. 8 konstrukcji badanego czujnika są półkoliste okładki kondensatora obrotowego, z których jedne są umocowane na sztywno do obudowy czujnika a drugie zamocowane na obrotowej osi w taki sposób, że niezależnie od położenia obudowy czujnika ich położenie nie zmienia się. Jest to możliwe dzięki usytuowaniu osi obrotu tych okładek poza ich środkiem ciężkości (na rys. 8 symbolizuje to masa m okładek ruchomych, na którą działa przyśpieszenie ziemskie g). Śruba mikrometryczna Kable pomiarowe CZUJNIK BADANY C x I H U H U L I L MIERNIK POJEMNOŚCI Poziomica g A' Belka pomiarowa A a Przegub walcowy Oś obrotu belki l Rys Stanowisko do badania czujnika kąta pochylenia powierzchni. MT ćw. Pomiar przemieszczeń liniowych 7

8 18 A' l A Oś obrotu belki O Rys Topografia wymiarów geometrycznych stanowiska jak na rys.5.1. wykorzystywanych do wyznaczania kąta pochylenia belki pomiarowej. Wykorzystując wymiary geometryczne stanowiska jak na rys. 7 oraz na szkicu (rys. 8) można napisać dla dowolnego kąta pochylenia belki pomiarowej: α = arctan = arctan 5.1 (7) l l Zależność (7) można także przedstawić w postaci szeregu potęgowego: α [ rad] (8) l 3 l 5 l Aby wyznaczyć kąt pochylenia w stopniach kątowych przelicza się wartości uzyskane z zależności (7) lub (8) według wzoru: 18 α [] = α [rad ] 5.3 (9) π W ćwiczeniu laboratoryjnym bada się czujnik pojemnościowy w postaci kondensatora obrotowego o płaskich okładkach w kształcie półkoli ułożonych wielowarstwowo w sposób jak na rys. 9. C x C xmin C xmax Okładka ruchoma r Okładka nieruchoma d m mg Rys Zasada budowy pojemnościowego czujnika kąta pochylenia powierzchni. MT ćw. Pomiar przemieszczeń liniowych 8

9 Pojemność czujnika dla dowolnego kąta pochylenia αx można opisać ogólnym wzorem: C ( α ) εs = 55(1) d Zmiana kąta pochylenia czujnika powoduje wzajemne odchylenie się okładek czujnika tak jak pokazano na rys. 1. C x = C(α = ) C x = C(α = ) Rys Szkic wzajemnego położenia okładek czujnika pojemnościowego przy dwóch kątach pochylenia czujnika. Biorąc pod uwagę konstrukcję czujnika (rys. 9) oraz zachowanie się jego okładek przy różnych kątach pochylenia czujnika (rys. 1) można stwierdzić że, mamy do czynienia z czujnikiem, który można opisać liniową zależnością jego pojemności od kąta pochylenia. Można więc dla pojemności czujnika w położeniu poziomym napisać: ε S ( ) ( α = ) πεkn r C = C α = = = 5.6 (11) d d gdzie: ε - przenikalność elektryczna (w przypadku kondensatora powietrznego ε = ε ), d średnia odległość pomiędzy okładkami, k n współczynnik zależny od liczby okładek kondensatora czujnika, r promień łuku okładki. Jeśli czujnik zostanie odchylony od położenia poziomego o kąt jak na rys. 1 to nastąpi zmiana jego pojemności o wartość: C = C α C 5.7 (1) ( ) Przyczyną zmiany pojemności czujnika po odchyleniu go o kąt względem poziomu jest zmiana wzajemnego usytuowania jego okładek (rys. 1), wskutek tego zmienia się czynne pole powierzchni okładek o wartość: π r α ( ) [ ] S α = 5.8 (13) 36 Stąd przyrost pojemności czujnika: πεknr α [ ] α [ ] C = 1 = C (14) d przy czym C = C ( α = ) oraz ; α [] = α [ rad ]. π O MT ćw. Pomiar przemieszczeń liniowych 9

10 Wyżej przedstawione zależności dotyczą idealnego czujnika. W praktyce należy liczyć się z rozbieżnością wartośi obliczanych według podanych zależności i wartości zmierzonych spowodowaną nierównoległością względem siebie okładek kondensatora obrotowego czujnika oraz niepłaską ich powierzchnią, mimośrodowym umieszczeniem poszczególnych okładek, pojemnością rozproszenia (wpływ ścian obudowy czujnika), a także wpływ pojemności przewodów pomiarowych. Należy więc badać nieliniowość rzeczywistej charakterystyki. 7. Program ćwiczenia pomiar kąta 1- Przygotować stanowisko laboratoryjne do pracy (przyłączyć miernik pojemności i włączyć zasilanie) - Ustawić belkę pomiarową w pozycji poziomej z pomocą śruby mikrometrycznej (w razie potrzeby skorygować wysokość nóżek stolika tak aby stolik był w położeniu poziomym) korzystając z poziomicy umieszczonej na belce pomiarowej (rys. 7) 3- Odczytać z podziałki mikromierza i zapisać wskazywaną wartość [µm] wskazane w [mm], odczytać wskazanie miernika pojemności dla tego położenia oraz tgδ C ( ) 4- Zmieniając położenie belki za pomocą śruby mikrometrycznej (np. co 1mm) dokonać dla tych położeń pomiaru pojemności i kąta stratności kondensatora czujnika zmieniać położenie belki pomiarowej w obydwóch kierunkach względem położenia poziomego. 5- Obracając ostrożnie całym stanowiskiem w płaszczyźnie osi podłużnej belki zmierzyć graniczne wartości pojemności czujnika C min i C max. 6- Sporządzić wykresy charakterystyk statycznych: - C = f ( α ) ; S = f ( α ) - δ = f α - charakterystykę błędu nieliniowości czujnika charakterystykę czułości; ( ) nlc 7- Obliczyć wartości dla granicznych ustawień położenia czujnika (niemożliwych do ustawienia za pomocą śruby mikrometrycznej) 8- Wyprowadzić wnioski z pomiarów. Uwaga! Przeprowadzić obliczenia niezbędne do realizacji p.6 i p.7 wykorzystując wzory podane w opisie ćwiczenia. Do obliczeń przyjąć wartość: l = 144mm. Z zależności (8) i (9) otrzymuje się wtedy: α [],398( )[ 1 1,68( ) 1 + 4,651( ) 1 ]; [mm]; [mm]. 8. Program ćwiczenia pomiar przemieszczeń liniowych 1. Dokonać identyfikacji badanych czujników i współpracujących z nimi układów pomiarowych.. Przygotować układy pomiarowe do pracy i ustalić położenie początkowe ławy pomiarowej. 3. Zdjąć charakterystyki statyczne czujników Y = f() przemieszczając ławę pomiarową za pomocą pokrętła suportu; Y wskazanie przyrządu pomiarowego ( częstotliwość Y = f, okres Y = T, napięcie Y = U ) ; wartości położeń odczytywać za pomocą okularu Abbe go. 4. Dokonać pomiaru charakterystyki czujnika indukcyjnego także dla zwężonego zakresu pomiarowego. 5. Sporządzić wykresy czułości badanych czujników: S U = f( ), S T = f( ), S C = f( ) czułość czujnika pojemnościowego ( bez układu pomiarowego ). 6. Sporządzić wykresy błędów nieliniowości badanych czujników: δ NU = f( ), δ ΝΤ = f( ). 7. Wnioski z pomiarów. Uwaga! Zachować ostrożność przy ustawianiu ławy pomiarowej na początkowe położenia istnieje możliwość uszkodzenia badanych czujników wskutek uderzenia ich zderzakiem ławy pomiarowej ( duża masa ławy ). MT ćw. Pomiar przemieszczeń liniowych 1

POMIARY PRZEMIESZCZEŃ LINIOWYCH I KĄTOWYCH.

POMIARY PRZEMIESZCZEŃ LINIOWYCH I KĄTOWYCH. POMIARY PRZEMIESZCZEŃ LINIOWYCH I KĄTOWYCH. 1. Wprowadzenie. Przetworniki do pomiaru przemieszczeń liniowych wykorzystywane są w metrologii warsztatowej, w robotyce, w układach sterowania automatycznego

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Katedra Technik Wytwarzania i Automatyzacji WYDZIAŁ BUDOWY MASZYN I LOTNICTWA INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Przedmiot: DIAGNOSTYKA I NADZOROWANIE SYSTEMÓW OBRÓBKOWYCH Temat: Pomiar charakterystyk

Bardziej szczegółowo

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNE D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 14. Pomiary przemieszczeń liniowych

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNE D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 14. Pomiary przemieszczeń liniowych Cel ćwiczenia: Poznanie zasady działania czujników dławikowych i transformatorowych, w typowych układach pracy, określenie ich podstawowych parametrów statycznych oraz zbadanie ich podatności na zmiany

Bardziej szczegółowo

CZUJNIKI I PRZETWORNIKI POJEMNOŚCIOWE

CZUJNIKI I PRZETWORNIKI POJEMNOŚCIOWE CZUJNIKI I PRZETWORNIKI POJEMNOŚCIOWE A POMIAR ZALEŻNOŚCI POJENOŚCI ELEKTRYCZNEJ OD WYMIARÓW KONDENSATOR PŁASKIEGO I Zestaw przyrządów: Kondensator płaski 2 Miernik pojemności II Przebieg pomiarów: Zmierzyć

Bardziej szczegółowo

Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 2 str. 1/7 ĆWICZENIE 2

Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 2 str. 1/7 ĆWICZENIE 2 Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 2 str. 1/7 ĆWICZENIE 2 WYBRANE ELEKTRYCZNE CZUJNIKI-PRZETWORNIKI PRZESUNIĘĆ LINIOWYCH I KĄTOWYCH 1.CEL ĆWICZENIA: zapoznanie się z podstawowymi

Bardziej szczegółowo

LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH. Pomiary statycznych parametrów indukcyjnościowych przetworników przemieszczenia liniowego

LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH. Pomiary statycznych parametrów indukcyjnościowych przetworników przemieszczenia liniowego LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH Pomiary statycznych parametrów indukcyjnościowych przetworników przemieszczenia liniowego Wrocław 1994 1 Pomiary statycznych parametrów indukcyjnościowych

Bardziej szczegółowo

Ćw. 18: Pomiary wielkości nieelektrycznych II

Ćw. 18: Pomiary wielkości nieelektrycznych II Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (2010/2011) Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 18: Pomiary wielkości nieelektrycznych

Bardziej szczegółowo

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C ĆWICZENIE 4EMC POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C Cel ćwiczenia Pomiar parametrów elementów R, L i C stosowanych w urządzeniach elektronicznych w obwodach prądu zmiennego.

Bardziej szczegółowo

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Mechatronika (WM) Laboratorium Elektrotechniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Bardziej szczegółowo

Ćw. 18: Pomiary wielkości nieelektrycznych II

Ćw. 18: Pomiary wielkości nieelektrycznych II Wydział: EAIiIB Kierunek: Imię i nazwisko (e mail): Rok: Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 18: Pomiary wielkości nieelektrycznych II Celem

Bardziej szczegółowo

Ćwiczenie EA9 Czujniki położenia

Ćwiczenie EA9 Czujniki położenia Akademia Górniczo-Hutnicza im.s.staszica w Krakowie KATEDRA MASZYN ELEKTRYCZNYCH Ćwiczenie EA9 Program ćwiczenia I. Transformator położenia kątowego 1. Wyznaczenie przekładni napięciowych 2. Pomiar napięć

Bardziej szczegółowo

Ćw. 18: Pomiary wielkości nieelektrycznych II

Ćw. 18: Pomiary wielkości nieelektrycznych II Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (../..) Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 18: Pomiary wielkości nieelektrycznych

Bardziej szczegółowo

Temat ćwiczenia. Pomiary przemieszczeń metodami elektrycznymi

Temat ćwiczenia. Pomiary przemieszczeń metodami elektrycznymi POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temat ćwiczenia Pomiary przemieszczeń metodami elektrycznymi Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z elektrycznymi metodami pomiarowymi wykorzystywanymi

Bardziej szczegółowo

Badanie czujnika przemieszczeń liniowych

Badanie czujnika przemieszczeń liniowych KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN POLITECHNIKA OPOLSKA MECHATRONIKA Instrukcja do ćwiczeń laboratoryjnych Badanie czujnika przemieszczeń liniowych Opracował: Dr inż. Roland Pawliczek Opole

Bardziej szczegółowo

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej

Bardziej szczegółowo

WYZNACZENIE CHARAKTERYSTYK STATYCZNYCH PRZETWORNIKÓW POMIAROWYCH

WYZNACZENIE CHARAKTERYSTYK STATYCZNYCH PRZETWORNIKÓW POMIAROWYCH Zakład Metrologii i Systemów Pomiarowych P o l i t e c h n i k a P o z n ańska ul. Jana Pawła II 4 60-96 POZNAŃ (budynek Centrum Mechatroniki, Biomechaniki i Nanoinżynierii) www.zmisp.mt.put.poznan.pl

Bardziej szczegółowo

Zakład Metrologii i Systemów Pomiarowych Laboratorium Metrologii I. Grupa. Nr ćwicz.

Zakład Metrologii i Systemów Pomiarowych Laboratorium Metrologii I. Grupa. Nr ćwicz. Laboratorium Metrologii I Politechnika zeszowska akład Metrologii i Systemów Pomiarowych Laboratorium Metrologii I Mostki niezrównoważone prądu stałego I Grupa Nr ćwicz. 12 1... kierownik 2... 3... 4...

Bardziej szczegółowo

PRZYRZĄDY POMIAROWE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

PRZYRZĄDY POMIAROWE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego PRZYRZĄDY POMIAROWE Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Przyrządy pomiarowe Ogólny podział: mierniki, rejestratory, detektory, charakterografy.

Bardziej szczegółowo

BADANIE WŁAŚCIWOŚCI STATYCZNYCH PRZETWORNIKÓW POMIAROWYCH

BADANIE WŁAŚCIWOŚCI STATYCZNYCH PRZETWORNIKÓW POMIAROWYCH ĆWICZENIE 5a BADANIE WŁAŚCIWOŚCI STATCZNCH PRZETWORNIKÓW POMIAROWCH 5.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie metod badania właściwości statycznych przetworników pomiarowych na przykładzie indukcyjnościowego

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PĄDU SINUSOIDLNEGO

Bardziej szczegółowo

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr inż. Łukasz Amanowicz Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne 3 TEMAT ĆWICZENIA: Badanie składu pyłu za pomocą mikroskopu

Bardziej szczegółowo

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 1. Cel ćwiczenia Celem ćwiczenia jest dynamiczne badanie wzmacniacza operacyjnego, oraz zapoznanie się z metodami wyznaczania charakterystyk częstotliwościowych.

Bardziej szczegółowo

Własności dynamiczne przetworników pierwszego rzędu

Własności dynamiczne przetworników pierwszego rzędu 1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości

Bardziej szczegółowo

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ ĆWICZENIE NR 14A BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ I. Zestaw pomiarowy: 1. Układ do badania prostego zjawiska piezoelektrycznego metodą statyczną 2. Odważnik 3. Miernik uniwersalny

Bardziej szczegółowo

Uśrednianie napięć zakłóconych

Uśrednianie napięć zakłóconych Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Miernictwa Elektronicznego Uśrednianie napięć zakłóconych Grupa Nr ćwicz. 5 1... kierownik 2... 3... 4... Data Ocena I.

Bardziej szczegółowo

Mostek Wheatstone a, Maxwella, Sauty ego-wiena. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Mostek Wheatstone a, Maxwella, Sauty ego-wiena. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Mostek Wheatstone a, Maxwella, Sauty ego-wiena Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego 2 Do pomiaru rezystancji rezystorów, rezystancji i indukcyjności

Bardziej szczegółowo

(54) (13)B1 PL B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19)PL (11)165054

(54) (13)B1 PL B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19)PL (11)165054 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19)PL (11)165054 (13)B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 289981 (22) Data zgłoszenia: 19.04.1991 (51) IntCl5: B63B 39/14 (54)

Bardziej szczegółowo

ĆWICZENIE NR 79 POMIARY MIKROSKOPOWE. I. Cel ćwiczenia: Zapoznanie się z budową mikroskopu i jego podstawowymi możliwościami pomiarowymi.

ĆWICZENIE NR 79 POMIARY MIKROSKOPOWE. I. Cel ćwiczenia: Zapoznanie się z budową mikroskopu i jego podstawowymi możliwościami pomiarowymi. ĆWICZENIE NR 79 POMIARY MIKROSKOPOWE I. Zestaw przyrządów: 1. Mikroskop z wymiennymi obiektywami i okularami.. Oświetlacz mikroskopowy z zasilaczem. 3. Skala mikrometryczna. 4. Skala milimetrowa na statywie.

Bardziej szczegółowo

Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"

Ćwiczenie: Obwody prądu sinusoidalnego jednofazowego Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres

Bardziej szczegółowo

Metody mostkowe. Mostek Wheatstone a, Maxwella, Sauty ego-wiena

Metody mostkowe. Mostek Wheatstone a, Maxwella, Sauty ego-wiena Metody mostkowe Mostek Wheatstone a, Maxwella, Sauty ego-wiena Rodzaje przewodników Do pomiaru rezystancji rezystorów, rezystancji i indukcyjności cewek, pojemności i stratności kondensatorów stosuje się

Bardziej szczegółowo

PRZETWORNIKI POMIAROWE

PRZETWORNIKI POMIAROWE PRZETWORNIKI POMIAROWE PRZETWORNIK POMIAROWY element systemu pomiarowego, który dokonuje fizycznego przetworzenia z określoną dokładnością i według określonego prawa mierzonej wielkości na inną wielkość

Bardziej szczegółowo

LABORATORIUM PODSTAW METROLOGII M-T Ćwiczenie nr 5 BADANIE CZUJNIKÓW CIŚNIENIA.

LABORATORIUM PODSTAW METROLOGII M-T Ćwiczenie nr 5 BADANIE CZUJNIKÓW CIŚNIENIA. 1. Wprowadzenie LABORATORIUM PODSTAW METROLOGII M-T Ćwiczenie nr 5 BADANIE CZUJNIKÓW CIŚNIENIA. W przemyśle (także w praktyce laboratoryjnej) pomiary ciśnienia oprócz pomiarów temperatury należą do najczęściej

Bardziej szczegółowo

CZUJNIKI POJEMNOŚCIOWE

CZUJNIKI POJEMNOŚCIOWE ĆWICZENIE NR CZUJNIKI POJEMNOŚCIOWE A POMIAR PRZEMIESZCZEŃ ODŁAMÓW KOSTNYCH METODĄ POJEMNOŚCIOWĄ I Zestaw przyrządów: Układ do pomiaru przemieszczeń kości zbudowany ze stabilizatora oraz czujnika pojemnościowego

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA Wydział Elektryczny Zakład Systemów Informacyjno-Pomiarowych

POLITECHNIKA WARSZAWSKA Wydział Elektryczny Zakład Systemów Informacyjno-Pomiarowych POLITECHNIKA WARSZAWSKA Wydział Elektryczny Zakład Systemów Informacyjno-Pomiarowych Studia... Kierunek... Grupa dziekańska... Zespół... Nazwisko i Imię 1.... 2.... 3.... 4.... Laboratorium...... Ćwiczenie

Bardziej szczegółowo

Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE

Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl

Bardziej szczegółowo

Wartość średnia półokresowa prądu sinusoidalnego I śr : Analogicznie określa się wartość skuteczną i średnią napięcia sinusoidalnego:

Wartość średnia półokresowa prądu sinusoidalnego I śr : Analogicznie określa się wartość skuteczną i średnią napięcia sinusoidalnego: Ćwiczenie 27 Temat: Prąd przemienny jednofazowy Cel ćwiczenia: Rozróżnić parametry charakteryzujące przebieg prądu przemiennego, oszacować oraz obliczyć wartości wielkości elektrycznych w obwodach prądu

Bardziej szczegółowo

ĆWICZENIE nr 5. Pomiary rezystancji, pojemności, indukcyjności, impedancji

ĆWICZENIE nr 5. Pomiary rezystancji, pojemności, indukcyjności, impedancji Politechnika Łódzka Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych WWW.DSOD.PL LABORATORIUM METROLOGII ELEKTRONICZNEJ ĆWICZENIE nr 5 Pomiary rezystancji, pojemności, indukcyjności, impedancji

Bardziej szczegółowo

P O L I T E C H N I K A Ł Ó D Z K A INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI LABORATORIUM POMIARÓW I AUTOMATYKI W ELEKTROWNIACH

P O L I T E C H N I K A Ł Ó D Z K A INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI LABORATORIUM POMIARÓW I AUTOMATYKI W ELEKTROWNIACH P O L I T E C H N I K A Ł Ó D Z K A INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI LABORATORIUM POMIARÓW I AUTOMATYKI W ELEKTROWNIACH Badanie siłowników INSTRUKCJA DO ĆWICZENIA LABORATORYJNEGO ŁÓDŹ 2011

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 7. Pomiar mocy czynnej, biernej i cosφ

INSTRUKCJA DO ĆWICZENIA NR 7. Pomiar mocy czynnej, biernej i cosφ INSTRUKCJA DO ĆWICZENIA NR 7 Pomiar mocy czynnej, biernej i cosφ Wstęp Układy elektryczne w postaci szeregowego połączenia RL, podczas zasilania z sieci napięcia przemiennego, pobierają moc czynną, bierną

Bardziej szczegółowo

Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH. Nr 2

Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH. Nr 2 Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH Nr 2 POMIAR I KASOWANIE LUZU W STOLE OBROTOWYM NC Poznań 2008 1. CEL ĆWICZENIA Celem ćwiczenia jest

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1) Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDLNEGO

Bardziej szczegółowo

Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych

Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych Zakres wymaganych wiadomości do testów z przedmiotu Metrologia Ćwiczenie 1 Wprowadzenie do obsługi multimetrów analogowych i cyfrowych budowa i zasada działania przyrządów analogowych magnetoelektrycznych

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

POMIARY METODAMI POŚREDNIMI NA MIKROSKOPIE WAR- SZTATOWYM. OBLICZANIE NIEPEWNOŚCI TYCH POMIARÓW

POMIARY METODAMI POŚREDNIMI NA MIKROSKOPIE WAR- SZTATOWYM. OBLICZANIE NIEPEWNOŚCI TYCH POMIARÓW Józef Zawada Instrukcja do ćwiczenia nr P12 Temat ćwiczenia: POMIARY METODAMI POŚREDNIMI NA MIKROSKOPIE WAR- SZTATOWYM. OBLICZANIE NIEPEWNOŚCI TYCH POMIARÓW Cel ćwiczenia Celem niniejszego ćwiczenia jest

Bardziej szczegółowo

Ćwiczenie 5 Badanie sensorów piezoelektrycznych

Ćwiczenie 5 Badanie sensorów piezoelektrycznych Ćwiczenie 5 Badanie sensorów piezoelektrycznych 1. Cel ćwiczenia Poznanie podstawowych układów pracy sensorów piezoelektrycznych jako przetworników wielkości mechanicznych na elektryczne. Doświadczalne

Bardziej szczegółowo

CHARAKTERYSTYKA PIROMETRÓW I METODYKA PRZEPROWADZANIA POMIARÓW

CHARAKTERYSTYKA PIROMETRÓW I METODYKA PRZEPROWADZANIA POMIARÓW CHARAKTERYSTYKA PIROMETRÓW I METODYKA PRZEPROWADZANIA POMIARÓW Wykaz zagadnień teoretycznych, których znajomość jest niezbędna do wykonania ćwiczenia: Prawa promieniowania: Plancka, Stefana-Boltzmana.

Bardziej szczegółowo

Ćwiczenie M2 POMIARY STATYSTYCZNE SERII OPORNIKÓW

Ćwiczenie M2 POMIARY STATYSTYCZNE SERII OPORNIKÓW Laboratorium Podstaw Miernictwa Wiaczesław Szamow Ćwiczenie M2 POMIARY STATYSTYCZNE SERII OPORNIKÓW opr. tech. Mirosław Maś Uniwersytet Przyrodniczo - Humanistyczny Siedlce 2011 1. Wstęp Celem ćwiczenia

Bardziej szczegółowo

ZJAWISKO PIEZOELEKTRYCZNE.

ZJAWISKO PIEZOELEKTRYCZNE. ZJAWISKO PIEZOELEKTRYCZNE. A. BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO I. Zestaw przyrządów: 1. Układ do badania prostego zjawiska piezoelektrycznego metodą statyczną. 2. Odważnik. 3. Miernik uniwersalny

Bardziej szczegółowo

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO POLITECHNIKA ŚLĄSKA WYDZIAŁ TRANSPORTU KATEDRA LOGISTYKI I TRANSPORTU PRZEMYSŁOWEGO NR 1 POMIAR PRZESUNIĘCIA FAZOWEGO Katowice, październik 5r. CEL ĆWICZENIA Poznanie zjawiska przesunięcia fazowego. ZESTAW

Bardziej szczegółowo

Bierne układy różniczkujące i całkujące typu RC

Bierne układy różniczkujące i całkujące typu RC Instytut Fizyki ul. Wielkopolska 15 70-451 Szczecin 6 Pracownia Elektroniki. Bierne układy różniczkujące i całkujące typu RC........ (Oprac. dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia:

Bardziej szczegółowo

WAT - WYDZIAŁ ELEKTRONIKI INSTYTUT SYSTEMÓW ELEKTRONICZNYCH. Przedmiot: CZUJNIKI I PRZETWORNIKI Ćwiczenie nr 1 PROTOKÓŁ / SPRAWOZDANIE

WAT - WYDZIAŁ ELEKTRONIKI INSTYTUT SYSTEMÓW ELEKTRONICZNYCH. Przedmiot: CZUJNIKI I PRZETWORNIKI Ćwiczenie nr 1 PROTOKÓŁ / SPRAWOZDANIE Grupa: WAT - WYDZIAŁ ELEKTRONIKI INSTYTT SYSTEMÓW ELEKTRONICZNYCH Przedmiot: CZJNIKI I PRZETWORNIKI Ćwiczenie nr 1 PROTOKÓŁ / SPRAWOZDANIE Temat: Przetworniki tensometryczne /POMIARY SIŁ I CIŚNIEŃ PRZY

Bardziej szczegółowo

Miernictwo I INF Wykład 13 dr Adam Polak

Miernictwo I INF Wykład 13 dr Adam Polak Miernictwo I INF Wykład 13 dr Adam Polak ~ 1 ~ I. Właściwości elementów biernych A. Charakterystyki elementów biernych 1. Rezystor idealny (brak przesunięcia fazowego między napięciem a prądem) brak części

Bardziej szczegółowo

Laboratorium Przyrządów Półprzewodnikowych Laboratorium 1

Laboratorium Przyrządów Półprzewodnikowych Laboratorium 1 Laboratorium Przyrządów Półprzewodnikowych Laboratorium 1 1/10 2/10 PODSTAWOWE WIADOMOŚCI W trakcie zajęć wykorzystywane będą następujące urządzenia: oscyloskop, generator, zasilacz, multimetr. Instrukcje

Bardziej szczegółowo

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności

Bardziej szczegółowo

Piezorezystancyjny czujnik ciśnienia: pomiar i wyznaczenie parametrów metrologicznych czujnika i przetwornika ciśnienia

Piezorezystancyjny czujnik ciśnienia: pomiar i wyznaczenie parametrów metrologicznych czujnika i przetwornika ciśnienia MIKROSYSTEMY - laboratorium Ćwiczenie 3 Piezorezystancyjny czujnik ciśnienia: pomiar i wyznaczenie parametrów metrologicznych czujnika i przetwornika ciśnienia Zadania i cel ćwiczenia. W ćwiczeniu zostaną

Bardziej szczegółowo

Źródła zasilania i parametry przebiegu zmiennego

Źródła zasilania i parametry przebiegu zmiennego POLIECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGEYKI INSYU MASZYN I URZĄDZEŃ ENERGEYCZNYCH LABORAORIUM ELEKRYCZNE Źródła zasilania i parametry przebiegu zmiennego (E 1) Opracował: Dr inż. Włodzimierz

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU CZĘŚĆ (A-zestaw 1) Instrukcja wykonawcza

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU CZĘŚĆ (A-zestaw 1) Instrukcja wykonawcza ĆWICZENIE 76A WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU CZĘŚĆ (A-zestaw ) Instrukcja wykonawcza. Wykaz przyrządów Spektrometr (goniometr) Lampy spektralne Pryzmaty. Cel ćwiczenia

Bardziej szczegółowo

BEZDOTYKOWY CZUJNIK ULTRADŹWIĘKOWY POŁOŻENIA LINIOWEGO

BEZDOTYKOWY CZUJNIK ULTRADŹWIĘKOWY POŁOŻENIA LINIOWEGO Temat ćwiczenia: BEZDOTYKOWY CZUJNIK ULTRADŹWIĘKOWY POŁOŻENIA LINIOWEGO 1. Wprowadzenie Ultradźwiękowy bezdotykowy czujnik położenia liniowego działa na zasadzie pomiaru czasu powrotu impulsu ultradźwiękowego,

Bardziej szczegółowo

BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO I JEGO ZASTOSOWANIA

BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO I JEGO ZASTOSOWANIA BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO I JEGO ZASTOSOWANIA I. BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO a). Zestaw przyrządów: 1. Układ do badania prostego zjawiska piezoelektrycznego

Bardziej szczegółowo

LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH. Ćwiczenie nr 2. Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy

LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH. Ćwiczenie nr 2. Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH Ćwiczenie nr 2 Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy Wykonując pomiary PRZESTRZEGAJ przepisów BHP związanych z obsługą urządzeń

Bardziej szczegółowo

POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji POMIARY KĄTÓW I STOŻKÓW

POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji POMIARY KĄTÓW I STOŻKÓW POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji TEMAT: Ćwiczenie nr 4 POMIARY KĄTÓW I STOŻKÓW ZADANIA DO WYKONANIA:. zmierzyć 3 wskazane kąty zadanego przedmiotu

Bardziej szczegółowo

1 Ćwiczenia wprowadzające

1 Ćwiczenia wprowadzające 1 W celu prawidłowego wykonania ćwiczeń w tym punkcie należy posiłkować się wiadomościami umieszczonymi w instrukcji punkty 1.1.1. - 1.1.4. oraz 1.2.2. 1.1 Rezystory W tym ćwiczeniu należy odczytać wartość

Bardziej szczegółowo

PRZETWORNIKI CIŚNIENIA. ( )

PRZETWORNIKI CIŚNIENIA. ( ) PRZETWORNIKI CIŚNIENIA. 1. Wprowadzenie Pomiary ciśnień należą do najczęściej wykonywanych pomiarów wraz z pomiarami temperatury zarówno w przemyśle wytwórczym jak i w badaniach laboratoryjnych. Pomiary

Bardziej szczegółowo

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ Ćwiczenie 4 WYZNCZNE NDUKCYJNOŚC WŁSNEJ WZJEMNEJ Celem ćwiczenia jest poznanie pośrednich metod wyznaczania indukcyjności własnej i wzajemnej na podstawie pomiarów parametrów elektrycznych obwodu. 4..

Bardziej szczegółowo

Technik elektronik 311[07] Zadanie praktyczne

Technik elektronik 311[07] Zadanie praktyczne 1 Technik elektronik 311[07] Zadanie praktyczne Mała firma elektroniczna wyprodukowała tani i prosty w budowie prototypowy generator funkcyjny do zastosowania w warsztatach amatorskich. Podstawowym układem

Bardziej szczegółowo

4. Schemat układu pomiarowego do badania przetwornika

4. Schemat układu pomiarowego do badania przetwornika 1 1. Projekt realizacji prac związanych z uruchomieniem i badaniem przetwornika napięcie/częstotliwość z układem AD654 2. Założenia do opracowania projektu a) Dane techniczne układu - Napięcie zasilające

Bardziej szczegółowo

Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników

Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników 1. Podstawowe pojęcia związane z niewyważeniem Stan niewyważenia stan wirnika określony takim rozkładem masy, który w czasie wirowania wywołuje

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH

POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH Gliwice, wrzesień 2007 Cyfrowe pomiary częstotliwości oraz parametrów RLC Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z budową,

Bardziej szczegółowo

Pomiar indukcyjności.

Pomiar indukcyjności. Pomiar indukcyjności.. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z metodami pomiaru indukcyjności, ich wadami i zaletami, wynikającymi z nich błędami pomiarowymi, oraz umiejętnością ich właściwego

Bardziej szczegółowo

INSTRUKCJA do ćwiczenia Wyważanie wirnika maszyny w łożyskach własnych

INSTRUKCJA do ćwiczenia Wyważanie wirnika maszyny w łożyskach własnych ZAKŁAD PODSTAW KONSTRUKCJI I EKSPLOATACJI MASZYN ENERGETYCZNYCH Instytut Maszyn i Urządzeń Energetycznych Politechnika Śląska INSTRUKCJA do ćwiczenia Wyważanie wirnika maszyny w łożyskach własnych Wprowadzenie

Bardziej szczegółowo

Ćwiczenie: "Mierniki cyfrowe"

Ćwiczenie: Mierniki cyfrowe Ćwiczenie: "Mierniki cyfrowe" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Próbkowanie

Bardziej szczegółowo

13 K A T E D R A F I ZYKI S T O S O W AN E J

13 K A T E D R A F I ZYKI S T O S O W AN E J 3 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 3. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony

Bardziej szczegółowo

KATEDRA TECHNOLOGII MASZYN I AUTOMATYZACJI PRODUKCJI ĆWICZENIE NR 2 POMIAR KRZYWEK W UKŁADZIE WSPÓŁRZĘDNYCH BIEGUNOWYCH

KATEDRA TECHNOLOGII MASZYN I AUTOMATYZACJI PRODUKCJI ĆWICZENIE NR 2 POMIAR KRZYWEK W UKŁADZIE WSPÓŁRZĘDNYCH BIEGUNOWYCH KATEDRA TECHNOLOGII MASZYN I AUTOMATYZACJI PRODUKCJI TEMAT ĆWICZENIA: ĆWICZENIE NR 2 POMIAR KRZYWEK W UKŁADZIE WSPÓŁRZĘDNYCH BIEGUNOWYCH ZADANIA DO WYKONANIA: 1. Pomiar rzeczywistego zarysu krzywki. 2.

Bardziej szczegółowo

Filtry aktywne filtr środkowoprzepustowy

Filtry aktywne filtr środkowoprzepustowy Filtry aktywne iltr środkowoprzepustowy. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości iltrów aktywnych, metod ich projektowania oraz pomiaru podstawowych parametrów iltru.. Budowa

Bardziej szczegółowo

Układy regulacji i pomiaru napięcia zmiennego.

Układy regulacji i pomiaru napięcia zmiennego. Układy regulacji i pomiaru napięcia zmiennego. 1. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z metodami regulacji napięcia zmiennego, stosowanymi w tym celu układami elektrycznymi, oraz metodami

Bardziej szczegółowo

Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera.

Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera. ĆWICZENIE 5 Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera. I. Cel ćwiczenia Badanie właściwości dynamicznych wzmacniaczy tranzystorowych pracujących w układzie

Bardziej szczegółowo

POMIARY OSCYLOSKOPOWE. Instrukcja wykonawcza

POMIARY OSCYLOSKOPOWE. Instrukcja wykonawcza ĆWICZENIE 51 POMIARY OSCYLOSKOPOWE Instrukcja wykonawcza 1. Wykaz przyrządów a. Oscyloskop dwukanałowy b. Dwa generatory funkcyjne (jednym z nich może być generator zintegrowany z oscyloskopem) c. Przesuwnik

Bardziej szczegółowo

Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i prędkości.

Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i prędkości. Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych CięŜkich PW Laboratorium Elektrotechniki i Elektroniki Ćwiczenie E3 - protokół Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i

Bardziej szczegółowo

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

LABORATORIUM INŻYNIERII MATERIAŁOWEJ Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Protokół

Bardziej szczegółowo

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne ĆWICZENIE 4 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO Wprowadzenie teoretyczne Rys. Promień przechodzący przez pryzmat ulega dwukrotnemu załamaniu na jego powierzchniach bocznych i odchyleniu o kąt δ. Jeżeli

Bardziej szczegółowo

Ćwiczenie 5. Pomiary parametrów sygnałów napięciowych. Program ćwiczenia:

Ćwiczenie 5. Pomiary parametrów sygnałów napięciowych. Program ćwiczenia: Ćwiczenie 5 Pomiary parametrów sygnałów napięciowych Program ćwiczenia: 1. Pomiar wartości skutecznej, średniej wyprostowanej i maksymalnej sygnałów napięciowych o kształcie sinusoidalnym, prostokątnym

Bardziej szczegółowo

INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe.

INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe. INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe. MTiSP pomiary częstotliwości i przesunięcia fazowego MTiSP 003 Autor: dr inż. Piotr Wyciślok Strona 1 / 8 Cel Celem ćwiczenia jest wykorzystanie

Bardziej szczegółowo

Pomiar rezystancji metodą techniczną

Pomiar rezystancji metodą techniczną Pomiar rezystancji metodą techniczną Cel ćwiczenia. Poznanie metod pomiarów rezystancji liniowych, optymalizowania warunków pomiaru oraz zasad obliczania błędów pomiarowych. Zagadnienia teoretyczne. Definicja

Bardziej szczegółowo

2. Pomiar drgań maszyny

2. Pomiar drgań maszyny 2. Pomiar drgań maszyny Stanowisko laboratoryjne tworzą: zestaw akcelerometrów, przedwzmacniaczy i wzmacniaczy pomiarowych z oprzyrządowaniem (komputery osobiste wyposażone w karty pomiarowe), dwa wzorcowe

Bardziej szczegółowo

Ćwiczenie 25. Temat: Obwód prądu przemiennego RC i RL. Cel ćwiczenia

Ćwiczenie 25. Temat: Obwód prądu przemiennego RC i RL. Cel ćwiczenia Temat: Obwód prądu przemiennego RC i RL. Cel ćwiczenia Ćwiczenie 25 Poznanie własności obwodu szeregowego RC w układzie. Zrozumienie znaczenia reaktancji pojemnościowej, impedancji kąta fazowego. Poznanie

Bardziej szczegółowo

WZORCE I PODSTAWOWE PRZYRZĄDY POMIAROWE

WZORCE I PODSTAWOWE PRZYRZĄDY POMIAROWE WZORCE I PODSTAWOWE PRZYRZĄDY POMIAROWE 1. Cel ćwiczenia Celem ćwiczenia jest: 1. Poznanie podstawowych pojęć z zakresu metrologii: wartość działki elementarnej, długość działki elementarnej, wzorzec,

Bardziej szczegółowo

Podstawy użytkowania i pomiarów za pomocą MULTIMETRU

Podstawy użytkowania i pomiarów za pomocą MULTIMETRU Podstawy użytkowania i pomiarów za pomocą MULTIMETRU Spis treści Informacje podstawowe...2 Pomiar napięcia...3 Pomiar prądu...5 Pomiar rezystancji...6 Pomiar pojemności...6 Wartość skuteczna i średnia...7

Bardziej szczegółowo

WZMACNIACZ NAPIĘCIOWY RC

WZMACNIACZ NAPIĘCIOWY RC WZMACNIACZ NAPIĘCIOWY RC 1. WSTĘP Tematem ćwiczenia są podstawowe właściwości jednostopniowego wzmacniacza pasmowego z tranzystorem bipolarnym. Zadaniem ćwiczących jest dokonanie pomiaru częstotliwości

Bardziej szczegółowo

Pomiar podstawowych parametrów liniowych układów scalonych

Pomiar podstawowych parametrów liniowych układów scalonych Instytut Fizyki ul Wielkopolska 15 70-451 Szczecin 5 Pracownia Elektroniki Pomiar podstawowych parametrów liniowych układów scalonych Zakres materiału obowiązujący do ćwiczenia: wzmacniacz operacyjny,

Bardziej szczegółowo

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘśEŃ BADANIE ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO METODĄ STATYCZNĄ. POMIAR MAŁYCH DEFORMACJI

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘśEŃ BADANIE ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO METODĄ STATYCZNĄ. POMIAR MAŁYCH DEFORMACJI BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘśEŃ BADANIE ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO METODĄ STATYCZNĄ. POMIAR MAŁYCH DEFORMACJI Zagadnienia: - Pojęcie zjawiska piezoelektrycznego

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU.

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU. 0.X.00 ĆWICZENIE NR 76 A (zestaw ) WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU. I. Zestaw przyrządów:. Spektrometr (goniometr), Lampy spektralne 3. Pryzmaty II. Cel ćwiczenia: Zapoznanie

Bardziej szczegółowo

LABORATORIUM PRZETWORNIKÓW ELEKTROMECHANICZNYCH

LABORATORIUM PRZETWORNIKÓW ELEKTROMECHANICZNYCH -CEL- LABORATORIUM PRZETWORNIKÓW ELEKTROMECHANICZNYCH PODSTAWOWE CHARAKTERYSTYKI I PARAMETRY SILNIKA RELUKTANCYJNEGO Z KLATKĄ ROZRUCHOWĄ (REL) Zapoznanie się z konstrukcją silników reluktancyjnych. Wyznaczenie

Bardziej szczegółowo

Badanie obwodów z prostownikami sterowanymi

Badanie obwodów z prostownikami sterowanymi Ćwiczenie nr 9 Badanie obwodów z prostownikami sterowanymi 1. Cel ćwiczenia Poznanie układów połączeń prostowników sterowanych; prostowanie jedno- i dwupołówkowe; praca tyrystora przy obciążeniu rezystancyjnym,

Bardziej szczegółowo

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Przedmiot: Pomiary Elektryczne Materiały dydaktyczne: Pomiar i regulacja prądu i napięcia zmiennego Zebrał i opracował: mgr inż. Marcin Jabłoński

Bardziej szczegółowo

Tranzystory bipolarne. Podstawowe układy pracy tranzystorów.

Tranzystory bipolarne. Podstawowe układy pracy tranzystorów. ĆWICZENIE 4 Tranzystory bipolarne. Podstawowe układy pracy tranzystorów. I. Cel ćwiczenia Zapoznanie się z układami zasilania tranzystorów. Wybór punktu pracy tranzystora. Statyczna prosta pracy. II. Układ

Bardziej szczegółowo

POMIARY KĄTÓW I STOŻKÓW

POMIARY KĄTÓW I STOŻKÓW WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Ćwiczenie nr 4 TEMAT: POMIARY KĄTÓW I STOŻKÓW ZADANIA DO WYKONANIA:. zmierzyć trzy wskazane kąty zadanego przedmiotu kątomierzem

Bardziej szczegółowo

Badanie wzmacniacza niskiej częstotliwości

Badanie wzmacniacza niskiej częstotliwości Instytut Fizyki ul Wielkopolska 5 70-45 Szczecin 9 Pracownia Elektroniki Badanie wzmacniacza niskiej częstotliwości (Oprac dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia: klasyfikacje

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie B-2 POMIAR PROSTOLINIOWOŚCI PROWADNIC ŁOŻA OBRABIARKI

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie B-2 POMIAR PROSTOLINIOWOŚCI PROWADNIC ŁOŻA OBRABIARKI POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN Ćwiczenie B-2 Temat: POMIAR PROSTOLINIOWOŚCI PROWADNIC ŁOŻA OBRABIARKI Opracowanie: dr inż G Siwiński Aktualizacja i opracowanie elektroniczne:

Bardziej szczegółowo

1.Wstęp. Prąd elektryczny

1.Wstęp. Prąd elektryczny 1.Wstęp. Celem ćwiczenia pierwszego jest zapoznanie się z metodą wyznaczania charakterystyki regulacyjnej silnika prądu stałego n=f(u), jako zależności prędkości obrotowej n od wartości napięcia zasilania

Bardziej szczegółowo

LABORATORIUM ELEKTRONICZNYCH UKŁADÓW POMIAROWYCH I WYKONAWCZYCH. Badanie detektorów szczytowych

LABORATORIUM ELEKTRONICZNYCH UKŁADÓW POMIAROWYCH I WYKONAWCZYCH. Badanie detektorów szczytowych LABORATORIM ELEKTRONICZNYCH KŁADÓW POMIAROWYCH I WYKONAWCZYCH Badanie detektorów szczytoch Cel ćwiczenia Poznanie zasady działania i właściwości detektorów szczytoch Wyznaczane parametry Wzmocnienie detektora

Bardziej szczegółowo