OKREŚLENIE CZASU MIESZANIA WIELOSKŁADNIKOWEGO UKŁADU ZIARNISTEGO PODCZAS MIESZANIA Z RECYRKULACJĄ SKŁADNIKÓW

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "OKREŚLENIE CZASU MIESZANIA WIELOSKŁADNIKOWEGO UKŁADU ZIARNISTEGO PODCZAS MIESZANIA Z RECYRKULACJĄ SKŁADNIKÓW"

Transkrypt

1 Inżynera Rolncza 8(96)/2007 OKREŚLENIE CZASU MIESZANIA WIELOSKŁADNIKOWEGO UKŁADU ZIARNISTEGO PODCZAS MIESZANIA Z RECYRKULACJĄ SKŁADNIKÓW Jolanta Królczyk, Marek Tukendorf Katedra Technk Rolnczej Leśnej, Poltechnka Opolska Streszczene: W artykule przedstawono wynk badań meszana dwunastoskładnkowego układu zarnstego. Urządzenem wykorzystanym w badanach był przemysłowy meszalnk z meszadłem ślmakowym. Dodatkowym procesem prowadzonym podczas meszana była recyrkulacja składnków. Do opsu procesu wykorzystano model regresj lnowej. Parametr modelu resztowa suma kwadratów, posłużył do porównana w poszczególnych punktach czasowych na le udzały procentowe wszystkch komponentów meszanny odbegają od wartośc docelowych, czyl składu meszanny zakładanego przez producenta. Analza wykresów zman resztowej sumy kwadratów w funkcj czasu przeprowadzona dla ser trzech prób badanej meszanny potwerdzła zaobserwowaną wcześnej właścwość polegającą na tym, że można wyraźne podzelć proces meszana na dwa etapy: burzlwych zman oraz drug zman łagodnych. Słowa kluczowe: materały zarnste, nejednorodna meszanna zarnsta, weloskładnkowa meszanna zarnsta, pasza, suma kwadratów reszt Wprowadzene Z punktu wdzena procesu meszana materałów zarnstych układ weloskładnkowy to tak układ, w którym lczba stałych składnków wynos co najmnej trzy. Jednocześne meszane k składnków (k > 2) stwarza nne jakoścowo problemy, poczynające od elementarnych defncj [Boss 1987]. Wówczas stan meszanny możemy rozpatrywać tylko z punktu wdzena jednego składnka (A), a wszystke pozostałe składnk B 1, B 2,..., B k są traktowane łączne jako drug składnk. Jeśl tak układ spełna warunk: stnena rozkładów normalnych średnc zarnowych wszystkch składnków, rozkłady te pokrywają w przyblżenu ten sam obszar nne parametry fzyczne składnków są take same, to układ tak może być rozpatrywany jako układ dwuskładnkowy [Stange 1963]. Jeżel składnk A różn sę w sposób stotny od pozostałych składnków, np. wymaram zaren czy gęstoścą, to układ weloskładnkowy jest jednocześne układem nejednorodnym. Mnejsze znaczene mają różnce kształtu, wlgotnośc czy współczynnków tarca wewnętrznego. Wększość rzeczywstych meszann zarnstych, jake spotykamy w praktyce przemysłowej, to układy nejednorodne. Ops stanu takej meszanny (stanu randomowy, równowagowy), a także knetyka należą do podstawowych problemów meszana 127

2 Jolanta Królczyk, Marek Tukendorf [Boss 1987]. Na temat układów nejednorodnych wykonano wele badań prac o charakterze teoretycznym. Jednak w dalszym cągu stan wedzy z tego obszaru jest newystarczający. Meszanem materałów zarnstych rządzą skomplkowane zależnośc, łączące zagadnena co najmnej klku dzedzn nauk. Do opsu procesów meszana, zastosowano dotychczas trzy znane modele: knetyczny [Oyama n. 1956], dyfuzyjny [Cahn n. 1968], stochastyczny [Inoue n. 1970] oraz modelowane neuronowe [Tukendorf 2002a; Tukendorf 2002b]. Przegląd opsu procesów prowadz do stwerdzena, że ne można stosować unwersalnych metod zawsze słusznych dla wszystkch procesów. Wększość przypadków należy rozpatrywać ndywdualne. Relacje pomędzy efektam meszana a własnoścam fzycznym składnków dadzą sę opsać prostą zależnoścą. Specyfka procesu przebegającego w danych warunkach często wyprzeda zaprojektowane meszalnka ln technologcznej bez wstępnych badań w celu opracowana danych teoretycznych. Kluczowe znaczene ma przeprowadzene procesu szybko newelkm kosztem tak, aby zachować wymaganą jakość meszanny. Celem badań było opsane przebegu procesu meszana nejednorodnej, weloskładnkowej meszanny zarnstej zachodzącego w urządzenu z meszadłem ślmakowym z prowadzoną dodatkowo recyrkulacją składnków. Na podstawe przedstawonej metody oceny stopna wymeszana meszanny w trakce trwana procesu zaproponowano wystarczający czas meszana, aby osągnąć zadowalającą jakość meszanny. Metodyka badań Badana prowadzono w meszaln pasz. Materałem do badań była dwunastoskładnkowa meszanna zarnsta o nazwe BP Ekonomczna o składze udzale procentowym podanym w tabel 1. Tabela. 1. Wymagane udzały procentowe składnków meszank. Table. 1. Requred percent shares of the mxture components. Nazwa zarna Wymagany udzał procentowy [%] 1 Kukurydza 40,49 2 Peluszka 16,20 3 Groch żółty 10,48 4 Groch zelony 4,76 5 Sorgo 8,57 6 Proso żółte 7,62 7 Sorgo bałe (dar) 2,86 8 Owes bezłuskowy 2,38 9 Wyka brązowa 2,38 10 Słonecznk czarny 1,88 11 Ryż bały 1,19 12 Krokosz (kard) 1,19 Źródło: Ovgor 128

3 Określene czasu meszana... Badana prowadzono w meszalnku pasz o dzałanu okresowym z meszadłem ślmakowym. Wymary meszalnka podano we wcześnejszych publkacjach autorów [Królczyk n. 2005a; Królczyk n. 2005b]. Proces prowadzony jest z recyrkulacja składnków. Czas meszana wynosł 30 mnut. Masa zasypanej meszanny wynosła 2099,5 kg. Próby do badań poberano w mejscu spustu z meszalnka w odstępach 30 sekundowych. Następne rozdzelono próby na poszczególne komponenty, a wydzelone składnk zważono na wadze elektroncznej. Eksperyment trzykrotne powtórzono w celu weryfkacj powtarzalnośc procesu elmnacj błędów. Do analzy statystycznej wynków prezentowanych w postac grafczne na przykładowym rys. 1 wykorzystano sumę kwadratów reszt (SSE). Wymodelowano zwązk pomędzy zmennym: Y - wynkową docelowym rozkładem częstośc składnków oraz X - zmenną nezależną rozkłady udzałów poszczególnych składnków w kolejnych odstępach czasowych. Dla każdej z poszczególnych prób oblczono SSE w kolejnych punktach czasu meszana. Suma kwadratów reszt jest zdefnowana następująco [Aczel 2005]: gdze: SSE e y ŷ n n 2 2 = e ( ˆ = y y ) (1) = 1 = 1 SSE suma kwadratów reszt, błąd tej obserwacj, wartość zmennej wynkowej docelowego rozkładu częstośc składnków wartość przewdywana z oszacowana otrzymanego z prostej regresj. Sumy kwadratów reszt w poszczególnym punktach czasu meszana posłużyły do przedstawena wykresów obrazujących przebeg procesu w czase (rys. 2). Gdy SSE jest równe zero, wówczas udzały wszystkch komponentów w określonym punkce czasowym są równe wartoścom docelowym, jakość meszanny jest węc najlepsza. Wynk badań ch analza Wynk badań zaprezentowane są na przykładowym wykrese dla jednego składnka meszanny (rys. 1). 129

4 Jolanta Królczyk, Marek Tukendorf Wyka brązowa 12,00% koncentracja składnka [%] 10,00% 8,00% 6,00% 4,00% 2,00% 0,00% czas meszana [s] Rys. 1. Wykres zman procentowego udzału wyk brązowej w meszance BP Ekonomczna w czase 30 mnut meszana Fg. 1. Dagram showng changes n brown vetch percent share n the BP Ekonomczna mxture over 30 mnutes of mxng Na wykrese przedstawono zmany sumy kwadratów reszt dla trzech prób (rys. 2). Rys. 2. Fg. 2. Wykres zman sumy kwadratów reszt w zależnośc od czasu meszana uzyskany dla meszanny 12 składnkowej dla 3 ser badawczych Dagram showng changes n the sum of rest squares n relaton to mxng tme, obtaned for a 12-component mxture for 3 test seres 130

5 Określene czasu meszana... Analza wykresów zman resztowej sumy kwadratów w funkcj czasu przeprowadzona dla ser trzech prób badanej meszanny potwerdzła zaobserwowaną wcześnej właścwość polegającą na tym, że można wyraźne podzelć proces meszana na dwa etapy: burzlwych zman oraz drug zman łagodnych. Dwa etapy procesu zaznaczono na wykrese (rys. 2) w postac obszarów: I II etap meszana. W badanach zaprezentowanych w nnej pracy [Królczyk n. 2005b] do opsu przebegu procesu w czase wykorzystano analzę skupeń. Potwerdzenem wcześnej wycągnętych wnosków o podzale czasu meszanna na dwa etapy jest obserwacja procesu analzowana za pomocą zman sumy kwadratów reszt w czase. Potwerdzono równeż nny wcześnej wysunęty wnosek o skrócenu czasu meszana o połowę (na wykrese rys. 2 grafczne przedstawono ponową lną przerywaną), poneważ jak zaobserwowano (por. rys. 2) od 15 mnuty meszane ne przynosło wyraźnej zmany (polepszena) jakośc meszanny ocenanej w tym przypadku na podstawe odchylena wartośc uzyskanych z pomarów od wartośc docelowych (składu meszanny zakładanego przez producenta). Wnosk 1. Analza zman wartośc suma kwadratów reszt pozwala na obserwację charakteru procesu meszana nejednorodnych meszann zarnstych. 2. Proces meszana można podzelć na dwa etapy: perwszy zman procentowych udzałów składnków określanych jako burzlwe oraz drug zman łagodnych. Perwszy etap dotyczy początkowych mnut meszana do mnuty 14, natomast drug etap okresu od 15 do 30 mnuty. 3. Można skrócć czas meszana o połowę, bowem w drugm etape procesu meszane ne przynos wyraźnej poprawy jakośc. Praca powstała przy współfnansowanu ze środków Europejskego Funduszu Społecznego Un Europejskej oraz ze środków budżetu państwa Bblografa Aczel A.D. Statystyka w zarządzanu. PWN ISBN X Boss J Meszane materałów zarnstych. PWN, Warszawa Wrocław. ISBN Cahn D.S., Fuerstenau D.W. 1968/1969. A probablstc model of the dffussonal mxng of partculate solds. Powder Technology, 2. s Inoue I., Yamaguch K Partcle moton n a mxer n a two dmensonal V-type mxer. Int. Chem. Eng. Vol. 10, No 3: s

6 Jolanta Królczyk, Marek Tukendorf Królczyk J., Matuszek D, Tukendorf M. 2005a. Analza stanów składu nejednorodnej meszanny zarnstej w procese przygotowana paszy dla gołęb w warunkach przemysłowych z wykorzystanem metody taksonomcznej. Inżynera Rolncza 14(74). s Królczyk J., Tukendorf M. 2005b. Zależność przebegu meszana układu weloskładnkowego od udzału składnków ocenana analzą skupeń. Acta Scentarum Polonorum. Technca Agrara 4(2) s Oyama Y., Ayak K. 1956: Mxng of partculate solds. Kagaku Kogaku, 20. s Stange K De Mschgüte ener Zufallsmschung aus dre und mehr Komponenten, bd. 35, No 8. s Tukendorf M. 2002a. Porównane sposobów modelowana procesu meszana jednorodnych układów zarnstych przy użycu modelu stochastycznego oraz metody wstecznej propagacj w technce sztucznych sec neuronowych, Inżynera Rolncza 2(35). s Tukendorf M. 2002b. Przygotowane danych w procese uczena sztucznej sec neuronowej w modelowanu meszana układów zarnstych. Inżynera Rolncza 9(42). s DETERMINATION OF MIXING DURATION FOR MULTICOMPONENT GRANULAR SYSTEM DURING MIXING WITH RECIRCULATION OF COMPONENTS Summary. The paper presents results of mxng of a twelve-component granular system. An ndustral mxer wth worm-type agtator was used n the tests. Components recrculaton was an addtonal process carred out whle mxng. A lnear regresson model was used to characterse the process. The model parameter the sum of rest squares, was used to compare n ndvdual tme ponts, how far percent shares of all mxture components dffer from target values, that s from mxture composton assumed by the manufacturer. The analyss of dagrams showng changes of the sum of rest squares n functon of tme, completed for the seres of three tested mxture samples proved prevously observed characterstc - possblty to clearly dvde the mxng process n two stages: the frst one of turbulent changes, and the second one - of soft changes. Key words: granular materals, nhomogeneous granular mxture, multcomponent granular mxture, feed, the sum of rest squares Adres do korespondencj: Jolanta Królczyk; e-mal: Katedra Technk Rolnczej Leśnej Poltechnka Opolska ul. Mkołajczyka Opole 132

ANALIZA ZMIAN JAKOŚCI WIELOSKŁADNIKOWEJ MIESZANINY ZIARNISTEJ W PRZEMYSŁOWYM MIESZALNIKU PASZ

ANALIZA ZMIAN JAKOŚCI WIELOSKŁADNIKOWEJ MIESZANINY ZIARNISTEJ W PRZEMYSŁOWYM MIESZALNIKU PASZ Inżynieria Rolnicza 8(117)/2009 ANALIZA ZMIAN JAKOŚCI WIELOSKŁADNIKOWEJ MIESZANINY ZIARNISTEJ W PRZEMYSŁOWYM MIESZALNIKU PASZ Jolanta Królczyk, Marek Tukiendorf Katedra Techniki Rolniczej i Leśnej, Politechnika

Bardziej szczegółowo

WYZNACZENIE EFEKTYWNEGO CZASU MIESZANIA W MIESZALNIKU Z MIESZADŁEM ŚLIMAKOWYM

WYZNACZENIE EFEKTYWNEGO CZASU MIESZANIA W MIESZALNIKU Z MIESZADŁEM ŚLIMAKOWYM Inżynieria Rolnicza 6(104)/2008 WYZNACZENIE EFEKTYWNEGO CZASU MIESZANIA W MIESZALNIKU Z MIESZADŁEM ŚLIMAKOWYM Jolanta Królczyk, Marek Tukiendorf Katedra Techniki Rolniczej i Leśnej, Politechnika Opolska

Bardziej szczegółowo

BADANIE PROCESU MIESZANIA WIELOSKŁADNIKOWEJ MIESZANINY ZIARNISTEJ W ZALEŻNOŚCI OD SPOSOBU PODAWANIA SKŁADNIKÓW

BADANIE PROCESU MIESZANIA WIELOSKŁADNIKOWEJ MIESZANINY ZIARNISTEJ W ZALEŻNOŚCI OD SPOSOBU PODAWANIA SKŁADNIKÓW Inżynieria Rolnicza 2(1)/28 BADANIE PROCESU MIESZANIA WIELOSKŁADNIKOWEJ MIESZANINY ZIARNISTEJ W ZALEŻNOŚCI OD SPOSOBU PODAWANIA SKŁADNIKÓW Jolanta Królczyk, Marek Tukiendorf Katedra Techniki Rolniczej

Bardziej szczegółowo

OKREŚLENIE EFEKTYWNEGO CZASU MIESZANIA Z RECYRKULACJĄ SKŁADNIKÓW DLA DZIESIĘCIOSKŁADNIKOWEJ MIESZANKI PASZOWEJ

OKREŚLENIE EFEKTYWNEGO CZASU MIESZANIA Z RECYRKULACJĄ SKŁADNIKÓW DLA DZIESIĘCIOSKŁADNIKOWEJ MIESZANKI PASZOWEJ Inżynieria Rolnicza 5(130)/2011 OKREŚLENIE EFEKTYWNEGO CZASU MIESZANIA Z RECYRKULACJĄ SKŁADNIKÓW DLA DZIESIĘCIOSKŁADNIKOWEJ MIESZANKI PASZOWEJ Jolanta Królczyk Katedra Techniki Rolniczej i Leśnej, Politechnika

Bardziej szczegółowo

OCENA JAKOŚCI WIELOSKŁADNIKOWEJ, NIEJEDNORODNEJ MIESZANINY ZIARNISTEJ

OCENA JAKOŚCI WIELOSKŁADNIKOWEJ, NIEJEDNORODNEJ MIESZANINY ZIARNISTEJ Inżynieria Rolnicza 2(90)/2007 OCENA JAKOŚCI WIELOSKŁADNIKOWEJ, NIEJEDNORODNEJ MIESZANINY ZIARNISTEJ Jolanta Królczyk, Marek Tukiendorf Katedra Techniki Rolniczej i Leśnej, Politechnika Opolska Streszczenie:

Bardziej szczegółowo

MIESZANIE I SEGREGACJA PODCZAS PROCESU UJEDNORODNIANIA PASZ

MIESZANIE I SEGREGACJA PODCZAS PROCESU UJEDNORODNIANIA PASZ Inżynieria Rolnicza 6(94)/27 MIESZANIE I SEGREGACJA PODCZAS PROCESU UJEDNORODNIANIA PASZ Jolanta Królczyk, Marek Tukiendorf Katedra Techniki Rolniczej i Leśnej, Politechnika Opolska Streszczenie: W pracy

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

ANALIZA ZMIAN JAKOŚCI WIELOSKŁADNIKOWYCH MIESZANIN ZIARNISTYCH NA LINII MIESZANIA W PRZEMYSŁOWEJ WYTWÓRNI PASZ

ANALIZA ZMIAN JAKOŚCI WIELOSKŁADNIKOWYCH MIESZANIN ZIARNISTYCH NA LINII MIESZANIA W PRZEMYSŁOWEJ WYTWÓRNI PASZ Inżynieria Rolnicza 5(130)/2011 ANALIZA ZMIAN JAKOŚCI WIELOSKŁADNIKOWYCH MIESZANIN ZIARNISTYCH NA LINII MIESZANIA W PRZEMYSŁOWEJ WYTWÓRNI PASZ Jolanta Królczyk Katedra Techniki Rolniczej i Leśnej, Politechnika

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

WPŁYW PARAMETRÓW DYSKRETYZACJI NA NIEPEWNOŚĆ WYNIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO

WPŁYW PARAMETRÓW DYSKRETYZACJI NA NIEPEWNOŚĆ WYNIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO Walenty OWIECZKO WPŁYW PARAMETRÓW DYSKRETYZACJI A IEPEWOŚĆ WYIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO STRESZCZEIE W artykule przedstaono ynk analzy nepenośc pomaru ybranych cech obektu obrazu cyfroego. Wyznaczono

Bardziej szczegółowo

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

OCENA JEDNORODNOŚCI JEDENASTOSKŁADNIKOWEJ MIESZANKI PASZ

OCENA JEDNORODNOŚCI JEDENASTOSKŁADNIKOWEJ MIESZANKI PASZ I N Ż YNIERIA R OLNICZA A GRICULTURAL E NGINEERING 2013: Z. 2(143) T.1 S. 175-181 ISSN 1429-7264 Polskie Towarzystwo Inżynierii Rolniczej http://www.ptir.org OCENA JEDNORODNOŚCI JEDENASTOSKŁADNIKOWEJ MIESZANKI

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 3

Natalia Nehrebecka. Zajęcia 3 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 3 1. Dobroć dopasowana równana regresj. Współczynnk determnacj R Dk Dekompozycja warancj zmennej zależnej ż Współczynnk determnacj R. Zmenne cągłe a

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012 ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW (88)/01 Hubert Sar, Potr Fundowcz 1 WYZNACZANIE ASOWEGO OENTU BEZWŁADNOŚCI WZGLĘDE OSI PIONOWEJ DLA SAOCHODU TYPU VAN NA PODSTAWIE WZORU EPIRYCZNEGO 1. Wstęp asowy moment

Bardziej szczegółowo

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT

Bardziej szczegółowo

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe

Bardziej szczegółowo

Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane

Bardziej szczegółowo

ENERGIA MIESZANIA WYBRANYCH MATERIAŁÓW ZIARNISTYCH W MIESZALNIKU Z MIESZADŁEM ŚLIMAKOWYM PIONOWYM

ENERGIA MIESZANIA WYBRANYCH MATERIAŁÓW ZIARNISTYCH W MIESZALNIKU Z MIESZADŁEM ŚLIMAKOWYM PIONOWYM Inżynieria Rolnicza 6(94)/2007 ENERGIA MIESZANIA WYBRANYCH MATERIAŁÓW ZIARNISTYCH W MIESZALNIKU Z MIESZADŁEM ŚLIMAKOWYM PIONOWYM Marek Węgrzyn Katedra Techniki Rolniczej i Leśnej, Politechnika Opolska

Bardziej szczegółowo

Evaluation of estimation accuracy of correlation functions with use of virtual correlator model

Evaluation of estimation accuracy of correlation functions with use of virtual correlator model Jadwga LAL-JADZIAK Unwersytet Zelonogórsk Instytut etrolog Elektrycznej Elżbeta KAWECKA Unwersytet Zelonogórsk Instytut Informatyk Elektronk Ocena dokładnośc estymacj funkcj korelacyjnych z użycem modelu

Bardziej szczegółowo

Zjawiska masowe takie, które mogą wystąpid nieograniczoną ilośd razy. Wyrazów Obcych)

Zjawiska masowe takie, które mogą wystąpid nieograniczoną ilośd razy. Wyrazów Obcych) Statystyka - nauka zajmująca sę metodam badana przedmotów zjawsk w ch masowych przejawach ch loścową lub jakoścową analzą z punktu wdzena nauk, do której zakresu należą.

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

3. ŁUK ELEKTRYCZNY PRĄDU STAŁEGO I PRZEMIENNEGO

3. ŁUK ELEKTRYCZNY PRĄDU STAŁEGO I PRZEMIENNEGO 3. ŁUK ELEKTRYCZNY PRĄDU STŁEGO I PRZEMIENNEGO 3.1. Cel zakres ćwczena Celem ćwczena jest zapoznane sę z podstawowym właścwoścam łuku elektrycznego palącego sę swobodne, w powetrzu o cśnentmosferycznym.

Bardziej szczegółowo

65120/ / / /200

65120/ / / /200 . W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę

Bardziej szczegółowo

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne ś POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr nż. Łukasz Amanowcz Systemy Ochrony Powetrza Ćwczena Laboratoryjne 2 TEMAT ĆWICZENIA: Oznaczane lczbowego rozkładu lnowych projekcyjnych

Bardziej szczegółowo

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010 EKONOMETRIA I Spotkane, dn. 5..2 Dr Katarzyna Beń Program ramowy: http://www.sgh.waw.pl/nstytuty/e/oferta_dydaktyczna/ekonometra_stacjonarne_nest acjonarne/ Zadana, dane do zadań, ważne nformacje: http://www.e-sgh.pl/ben/ekonometra

Bardziej szczegółowo

WikiWS For Business Sharks

WikiWS For Business Sharks WkWS For Busness Sharks Ops zadana konkursowego Zadane Opracowane algorytmu automatyczne przetwarzającego zdjęce odręczne narysowanego dagramu na tablcy lub kartce do postac wektorowej zapsanej w formace

Bardziej szczegółowo

Metody predykcji analiza regresji

Metody predykcji analiza regresji Metody predykcj analza regresj TPD 008/009 JERZY STEFANOWSKI Instytut Informatyk Poltechnka Poznańska Przebeg wykładu. Predykcja z wykorzystanem analzy regresj.. Przypomnene wadomośc z poprzednch przedmotów..

Bardziej szczegółowo

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY. Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY. Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY Zakład Budowy Eksploatacj Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA Temat ćwczena: PRAKTYCZNA REALIZACJA PRZEMIANY ADIABATYCZNEJ.

Bardziej szczegółowo

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni. Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ], STATECZNOŚĆ SKARP W przypadku obektu wykonanego z gruntów nespostych zaprojektowane bezpecznego nachylena skarp sprowadza sę do przekształcena wzoru na współczynnk statecznośc do postac: tgφ tgα = n gdze:

Bardziej szczegółowo

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch Za: Stansław Latoś, Nwelacja trygonometryczna, [w:] Ćwczena z geodezj II [red.] J. eluch 6.1. Ogólne zasady nwelacj trygonometrycznej. Wprowadzene Nwelacja trygonometryczna, zwana równeż trygonometrycznym

Bardziej szczegółowo

Statystyka Opisowa 2014 część 1. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 1. Katarzyna Lubnauer Statystyka Opsowa 2014 część 1 Katarzyna Lubnauer Lteratura: 1. Statystyka w Zarządzanu Admr D. Aczel 2. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucjan Kowalsk. 4. Statystyka opsowa,

Bardziej szczegółowo

WPŁYW WYMIARÓW NASION NA PROCES MIESZANIA W MIESZALNIKU PRZESYPOWYM Z ZASTOSOWANIEM DODATKOWYCH ELEMENTÓW WSPOMAGAJĄCYCH

WPŁYW WYMIARÓW NASION NA PROCES MIESZANIA W MIESZALNIKU PRZESYPOWYM Z ZASTOSOWANIEM DODATKOWYCH ELEMENTÓW WSPOMAGAJĄCYCH Inżynieria Rolnicza 8(96)/2007 WPŁYW WYMIARÓW NASION NA PROCES MIESZANIA W MIESZALNIKU PRZESYPOWYM Z ZASTOSOWANIEM DODATKOWYCH ELEMENTÓW WSPOMAGAJĄCYCH Dominika Matuszek, Marek Tukiendorf Katedra Techniki

Bardziej szczegółowo

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego. RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu

Bardziej szczegółowo

Jolanta Królczyk PROCES MIESZANIA WIELOSKŁADNIKOWYCH MATERIAŁÓW ZIARNISTYCH W MIESZALNIKU ŚLIMAKOWYM

Jolanta Królczyk PROCES MIESZANIA WIELOSKŁADNIKOWYCH MATERIAŁÓW ZIARNISTYCH W MIESZALNIKU ŚLIMAKOWYM PROCES MIESZANIA WIELOSKŁADNIKOWYCH MATERIAŁÓW ZIARNISTYCH W MIESZALNIKU ŚLIMAKOWYM Jolanta Królczyk Katedra Techniki Rolniczej i Leśnej, Politechnika Opolska 1 WPROWADZENIE Proces mieszania jest szczególną

Bardziej szczegółowo

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy (MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU

STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU Ewa Szymank Katedra Teor Ekonom Akadema Ekonomczna w Krakowe ul. Rakowcka 27, 31-510 Kraków STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU Abstrakt Artykuł przedstawa wynk badań konkurencyjnośc

Bardziej szczegółowo

5. OPTYMALIZACJA GRAFOWO-SIECIOWA

5. OPTYMALIZACJA GRAFOWO-SIECIOWA . OPTYMALIZACJA GRAFOWO-SIECIOWA Defncja grafu Pod pojęcem grafu G rozumemy następującą dwójkę uporządkowaną (defncja grafu Berge a): (.) G W,U gdze: W zbór werzchołków grafu, U zbór łuków grafu, U W W,

Bardziej szczegółowo

Zastosowanie symulatora ChemCad do modelowania złożonych układów reakcyjnych procesów petrochemicznych

Zastosowanie symulatora ChemCad do modelowania złożonych układów reakcyjnych procesów petrochemicznych NAFTA-GAZ styczeń 2011 ROK LXVII Anna Rembesa-Śmszek Instytut Nafty Gazu, Kraków Andrzej Wyczesany Poltechnka Krakowska, Kraków Zastosowane symulatora ChemCad do modelowana złożonych układów reakcyjnych

Bardziej szczegółowo

Semestr zimowy Brak Nie

Semestr zimowy Brak Nie KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angelskm Obowązuje od roku akademckego 2015/2016 Z-ID-702 Semnarum praca dyplomowa Semnar and Dplom Thess A. USYTUOWANIE MODUŁU

Bardziej szczegółowo

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009.

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009. A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009 Unwersytet Mkołaja Kopernka w Torunu Katedra Ekonometr Statystyk Elżbeta

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

Analiza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009

Analiza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009 Mara Konopka Katedra Ekonomk Organzacj Przedsęborstw Szkoła Główna Gospodarstwa Wejskego w Warszawe Analza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009 Wstęp Polska prywatyzacja

Bardziej szczegółowo

ADAPTACJA FUNKCJI KWADRATOWEJ DO OPISU ZMIAN JAKOŚCI MIESZANKI ZIARNISTEJ

ADAPTACJA FUNKCJI KWADRATOWEJ DO OPISU ZMIAN JAKOŚCI MIESZANKI ZIARNISTEJ Inżynieria Rolnicza 9(107)/008 ADAPTACJA FUNKCJI KWADRATOWEJ DO OPISU ZMIAN JAKOŚCI MIESZANKI ZIARNISTEJ Dominika Matuszek, Marek Tukiendorf Katedra Techniki Rolniczej i Leśnej, Politechnika Opolska Streszczenie:

Bardziej szczegółowo

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH Z a k ł a d U b e z p e c z e ń S p o ł e c z n y c h Wprowadzene Nnejsza ulotka adresowana jest zarówno do osób dopero ubegających

Bardziej szczegółowo

Natalia Nehrebecka. Wykład 2

Natalia Nehrebecka. Wykład 2 Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad

Bardziej szczegółowo

ZASTOSOWANIE WIELOWYMIAROWEJ ANALIZY WARIANCJI DO OCENY ROZMIARU PRÓBY WIELOSKŁADNIKOWYCH PASZ

ZASTOSOWANIE WIELOWYMIAROWEJ ANALIZY WARIANCJI DO OCENY ROZMIARU PRÓBY WIELOSKŁADNIKOWYCH PASZ I N Ż YNIERIA R OLNICZA A GRICULTURAL E NGINEERING 2013: Z. 2(143) T.1 S. 183-189 ISSN 1429-7264 Polskie Towarzystwo Inżynierii Rolniczej http://www.ptir.org ZASTOSOWANIE WIELOWYMIAROWEJ ANALIZY WARIANCJI

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu

Karta (sylabus) modułu/przedmiotu Karta (sylabus) mułu/przedmotu Budownctwo (Nazwa kerunku studów) Studa I Stopna Przedmot: Materały budowlane II Constructon materals Rok: II Semestr: MK_26 Rzaje zajęć lczba gzn: Studa stacjonarne Studa

Bardziej szczegółowo

METODY PLANOWANIA EKSPERYMENTÓW. dr hab. inż. Mariusz B. Bogacki

METODY PLANOWANIA EKSPERYMENTÓW. dr hab. inż. Mariusz B. Bogacki Metody Planowana Eksperymentów Rozdzał 1. Strona 1 z 14 METODY PLANOWANIA EKSPERYMENTÓW dr hab. nż. Marusz B. Bogack Marusz.Bogack@put.poznan.pl www.fct.put.poznan.pl/cv23.htm Marusz B. Bogack 1 Metody

Bardziej szczegółowo

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim 5. Pocodna funkcj Defncja 5.1 Nec f: (a, b) R nec c (a, b). Jeśl stneje granca lm x c x c to nazywamy ją pocodną funkcj f w punkce c oznaczamy symbolem f (c) Twerdzene 5.1 Jeśl funkcja f: (a, b) R ma pocodną

Bardziej szczegółowo

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że Twerdzene Bezouta lczby zespolone Javer de Lucas Ćwczene 1 Ustal dla których a, b R można podzelć f 1 X) = X 4 3X 2 + ax b przez f 2 X) = X 2 3X+2 Oblcz a b Z 5 jeżel zak ladamy, że f 1 f 2 s a welomanam

Bardziej szczegółowo

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ Autor: Joanna Wójcik

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ   Autor: Joanna Wójcik Opracowane w ramach projektu System Przecwdzałana Powstawanu Bezroboca na Terenach Słabo Zurbanzowanych ze środków Europejskego Funduszu Społecznego w ramach Incjatywy Wspólnotowej EQUAL PARTNERSTWO NA

Bardziej szczegółowo

PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE

PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE Janusz Wątroba, StatSoft Polska Sp. z o.o. W nemal wszystkch dzedznach badań emprycznych mamy do czynena ze złożonoścą zjawsk procesów.

Bardziej szczegółowo

PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA WAHANIA SEZONOWE

PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA WAHANIA SEZONOWE STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36 Krzysztof Dmytrów * Marusz Doszyń ** Unwersytet Szczecńsk PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej Rachunek prawdopodobeństwa statstka W 11: Analz zależnoścpomędz zmennm losowm Model regresj welokrotnej Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Model regresj lnowej Model regresj lnowej prostej

Bardziej szczegółowo

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np. Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas

Bardziej szczegółowo

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu PRACE KOMISJI GEOGRAFII PRZEMY SŁU Nr 7 WARSZAWA KRAKÓW 2004 Akadema Pedagogczna, Kraków Kształtowane sę frm nformatycznych jako nowych elementów struktury przestrzennej przemysłu Postępujący proces rozwoju

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

Regulamin promocji 14 wiosna

Regulamin promocji 14 wiosna promocja_14_wosna strona 1/5 Regulamn promocj 14 wosna 1. Organzatorem promocj 14 wosna, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 lutego 2014 do 30

Bardziej szczegółowo

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE POLITHNIKA RZSZOWSKA Katedra Podstaw lektronk Instrkcja Nr4 F 00/003 sem. letn TRANZYSTOR IPOLARNY HARAKTRYSTYKI STATYZN elem ćwczena jest pomar charakterystyk statycznych tranzystora bpolarnego npn lb

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca

Bardziej szczegółowo

Współczynnik przenikania ciepła U v. 4.00

Współczynnik przenikania ciepła U v. 4.00 Współczynnk przenkana cepła U v. 4.00 1 WYMAGANIA Maksymalne wartośc współczynnków przenkana cepła U dla ścan, stropów, stropodachów, oken drzw balkonowych podano w załącznku do Rozporządzena Mnstra Infrastruktury

Bardziej szczegółowo

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości Podstawowe pojęca procesu pomarowego kreślene jakośc poznana rzeczywstośc Δ zmerzone rzeczywste 17 9 Zalety stosowana elektrycznych przyrządów 1/ 1. możlwość budowy czujnków zamenających werne każdą welkość

Bardziej szczegółowo

MODELOWANIE PRZEPŁYWU POWIETRZA W KANAŁACH WENTYLACYJNYCH PIECZARKARNI

MODELOWANIE PRZEPŁYWU POWIETRZA W KANAŁACH WENTYLACYJNYCH PIECZARKARNI Inżynera Rolncza 10(108)/2008 MODELOWANIE PRZEPŁYWU POWIETRZA W KANAŁACH WENTYLACYJNYCH PIECZARKARNI Leonard Vorontsov, Ewa Wachowcz Katedra Automatyk, Poltechnka Koszalńska Streszczene: W pracy przedstawono

Bardziej szczegółowo

α i = n i /n β i = V i /V α i = β i γ i = m i /m

α i = n i /n β i = V i /V α i = β i γ i = m i /m Ćwczene nr 2 Stechometra reakcj zgazowana A. Część perwsza: powtórzene koncentracje stężena 1. Stężene Stężene jest stosunkem lośc substancj rozpuszczonej do całkowtej lośc rozpuszczalnka. Sposoby wyrażena

Bardziej szczegółowo

Pomiary parametrów akustycznych wnętrz.

Pomiary parametrów akustycznych wnętrz. Pomary parametrów akustycznych wnętrz. Ocena obektywna wnętrz pod względem akustycznym dokonywana jest na podstawe wartośc następujących parametrów: czasu pogłosu, wczesnego czasu pogłosu ED, wskaźnków

Bardziej szczegółowo

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego

Bardziej szczegółowo

WSKAŹNIK OCENY HIC SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO

WSKAŹNIK OCENY HIC SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO WSKAŹNIK OCENY SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO Dagmara KARBOWNICZEK 1, Kazmerz LEJDA, Ruch cała człoweka w samochodze podczas wypadku drogowego zależy od sztywnośc nadwoza

Bardziej szczegółowo

METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów.

METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów. Opracowane: Dorota Mszczyńska METODA UNITARYZACJI ZEROWANEJ Porównane obektów przy ocene welokryteralnej. Rankng obektów. Porównane wybranych obektów (warantów decyzyjnych) ze względu na różne cechy (krytera)

Bardziej szczegółowo

D Archiwum Prac Dyplomowych - Instrukcja dla opiekunów/promotorów/recenzentów

D Archiwum Prac Dyplomowych - Instrukcja dla opiekunów/promotorów/recenzentów D Archwum Prac Dyplomowych - Instrukcja dla opekunów/promotorów/recenzentów Kraków 13.01.2016 r. Procedura Archwzacj Prac Dyplomowych jest realzowana zgodne z zarządzenem nr 71/2015 Rektora Unwersytetu

Bardziej szczegółowo

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego Portel nwestycyjny ćwczena Na podst. Wtold Jurek: Konstrukcja analza rozdzał 5 dr chał Konopczyńsk Portele zawerające walor pozbawony ryzyka. lementy teor rynku kaptałowego 1. Pożyczane penędzy amy dwa

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Raciborzu

Państwowa Wyższa Szkoła Zawodowa w Raciborzu Państwowa Wyższa Szkoła Zawodowa w Racborzu KARTA PRZEDMIOTU 1. Nazwa przedmotu: Termnologa ekonomczna prawncza 2. Kod przedmotu: FGB-23 3. Okres ważnośc karty: 2015-2018 4. Forma kształcena: studa perwszego

Bardziej szczegółowo

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru Pomary fzyczne - dokonywane tylko ze skończoną dokładnoścą. Powodem - nedoskonałość przyrządów pomarowych neprecyzyjność naszych zmysłów borących udzał w obserwacjach. Podawane samego tylko wynku pomaru

Bardziej szczegółowo

Analiza regresji modele ekonometryczne

Analiza regresji modele ekonometryczne Analza regresj modele ekonometryczne Klasyczny model regresj lnowej - przypadek jednej zmennej objaśnającej. Rozpatrzmy klasyczne zagadnene zależnośc pomędzy konsumpcją a dochodam. Uważa sę, że: - zależność

Bardziej szczegółowo

OPTYMALIZACJA PROCESU PRZESIEWANIA W PRZESIEWACZACH WIELOPOKŁADOWYCH

OPTYMALIZACJA PROCESU PRZESIEWANIA W PRZESIEWACZACH WIELOPOKŁADOWYCH Prace Naukowe Instytutu Górnctwa Nr 136 Poltechnk Wrocławskej Nr 136 Studa Materały Nr 43 2013 Jerzy MALEWSKI* Marta BASZCZYŃSKA** przesewane, jakość produktów, optymalzacja OPTYMALIZACJA PROCESU PRZESIEWANIA

Bardziej szczegółowo

ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH

ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH Grzegorz PRZEKOTA ZESZYTY NAUKOWE WYDZIAŁU NAUK EKONOMICZNYCH ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH Zarys treśc: W pracy podjęto problem dentyfkacj cykl gełdowych.

Bardziej szczegółowo

TRENDS IN THE DEVELOPMENT OF ORGANIC FARMING IN THE WORLD IN THE YEARS 1999-2012

TRENDS IN THE DEVELOPMENT OF ORGANIC FARMING IN THE WORLD IN THE YEARS 1999-2012 Mara GOLINOWSKA, Mchał KRUSZYŃSKI, Justyna JANOWSKA-BIERNAT Unwersytet Przyrodnczy we Wrocławu, Instytut Nauk Ekonomcznych Społecznych Pl. Grunwaldzk 24A, 50-367 Wrocław e-mal: mara.golnowska@up.wroc.pl

Bardziej szczegółowo

Krzysztof Borowski Zastosowanie metody wideł cenowych w analizie technicznej

Krzysztof Borowski Zastosowanie metody wideł cenowych w analizie technicznej Krzysztof Borowsk Zastosowane metody wdeł cenowych w analze technczne Wprowadzene Metoda wdeł cenowych została perwszy raz ogłoszona przez Alana Andrewsa 1 w roku 1960. Trzy lne wchodzące w skład metody

Bardziej szczegółowo

Analiza korelacji i regresji

Analiza korelacji i regresji Analza korelacj regresj Zad. Pewen zakład produkcyjny zatrudna pracownków fzycznych. Ich wydajność pracy (Y w szt./h) oraz mesęczne wynagrodzene (X w tys. zł) przedstawa ponższa tabela: Pracownk y x A

Bardziej szczegółowo

D Archiwum Prac Dyplomowych - Instrukcja dla studentów

D Archiwum Prac Dyplomowych - Instrukcja dla studentów Kraków 01.10.2015 D Archwum Prac Dyplomowych - Instrukcja dla studentów Procedura Archwzacj Prac Dyplomowych jest realzowana zgodne z zarządzenem nr 71/2015 Rektora Unwersytetu Rolnczego m. H. Kołłątaja

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013 ZESZYTY NAUKOWE NSTYTUTU POJAZDÓW 5(96)/2013 Hubert Sar, Potr Fundowcz 1 WYZNACZANE MASOWEGO MOMENTU BEZWŁADNOŚC WZGLĘDEM OS PODŁUŻNEJ DLA SAMOCHODU TYPU VAN NA PODSTAWE WZORÓW DOŚWADCZALNYCH 1. Wstęp

Bardziej szczegółowo

APLIKACJA METODY BADAŃ WŁASNOŚCI DYNAMICZNYCH ZAWIESZEŃ POJAZDÓW SAMOCHODOWYCH O DMC POWYŻEJ 3,5 TONY W PROGRAMIE LABVIEW

APLIKACJA METODY BADAŃ WŁASNOŚCI DYNAMICZNYCH ZAWIESZEŃ POJAZDÓW SAMOCHODOWYCH O DMC POWYŻEJ 3,5 TONY W PROGRAMIE LABVIEW ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 015 Sera: TRANSPORT z. 86 Nr kol. 196 Jan WARCZEK, Kaml BRONCEL APLIKACJA METODY BADAŃ WŁASNOŚCI DYNAMICZNYCH ZAWIESZEŃ POJAZDÓW SAMOCHODOWYCH O DMC POWYŻEJ 3,5 TONY

Bardziej szczegółowo

WSPOMAGANIE PROCESU MIESZANIA NIEJEDNORODNYCH UKŁADÓW ZIARNISTYCH WKŁADKĄ TYPU DOUBLE CONE

WSPOMAGANIE PROCESU MIESZANIA NIEJEDNORODNYCH UKŁADÓW ZIARNISTYCH WKŁADKĄ TYPU DOUBLE CONE Inżynieria Rolnicza 2(9)/27 WSPOMAGANIE PROCESU MIESZANIA NIEJEDNORODNYCH UKŁADÓW ZIARNISTYCH WKŁADKĄ TYPU DOUBLE CONE Dominika Matuszek, Marek Tukiendorf Katedra Techniki Rolniczej i Leśnej, Politechnika

Bardziej szczegółowo

ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI PRACY

ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI PRACY STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36, T. 1 Barbara Batóg *, Jacek Batóg ** Unwersytet Szczecńsk ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI

Bardziej szczegółowo

PORÓWNANIE PRODUKCJI ENERGII ELEKTRYCZNEJ W LATACH W WYBRANYCH WOJEWÓDZTWACH

PORÓWNANIE PRODUKCJI ENERGII ELEKTRYCZNEJ W LATACH W WYBRANYCH WOJEWÓDZTWACH Małgorzata Szczepank, Mrosława Wesołowska-Janczarek Katedra Zastosowań Matematyk Akadema Rolncza w Lublne Wstęp PORÓWNANIE PRODUKCJI ENERGII ELEKTRYCZNEJ W LATAC 995- W WYBRANYC WOJEWÓDZTWAC Streszczene

Bardziej szczegółowo

ANALIZA ILOŚCI ZANIECZYSZCZEŃ OTRZYMYWANYCH W PROCESIE PRODUKCJI PASZ Z RECYRKULACJĄ SKŁADNIKÓW

ANALIZA ILOŚCI ZANIECZYSZCZEŃ OTRZYMYWANYCH W PROCESIE PRODUKCJI PASZ Z RECYRKULACJĄ SKŁADNIKÓW I N Ż YNIERIA R OLNICZA A GRICULTURAL E NGINEERING 2013: Z. 3(145) T.1 S. 149-157 ISSN 1429-7264 Polskie Towarzystwo Inżynierii Rolniczej http://www.ptir.org ANALIZA ILOŚCI ZANIECZYSZCZEŃ OTRZYMYWANYCH

Bardziej szczegółowo

WSPOMAGANE KOMPUTEROWO POMIARY CZĘSTOTLIWOŚCI CHWILOWEJ SYGNAŁÓW IMPULSOWYCH

WSPOMAGANE KOMPUTEROWO POMIARY CZĘSTOTLIWOŚCI CHWILOWEJ SYGNAŁÓW IMPULSOWYCH Metrologa Wspomagana Komputerowo - Zegrze, 9-22 05.997 WSPOMAGANE KOMPUTEROWO POMIARY CZĘSTOTLIWOŚCI CHWILOWEJ SYGNAŁÓW IMPULSOWYCH dr nż. Jan Ryszard Jask, dr nż. Elgusz Pawłowsk POLITECHNIKA lubelska

Bardziej szczegółowo

1. Komfort cieplny pomieszczeń

1. Komfort cieplny pomieszczeń 1. Komfort ceplny pomeszczeń Przy określanu warunków panuących w pomeszczenu używa sę zwykle dwóch poęć: mkroklmat komfort ceplny. Przez poęce mkroklmatu wnętrz rozume sę zespół wszystkch parametrów fzycznych

Bardziej szczegółowo

Kierownik Katedry i Kliniki: prof. dr hab. Bernard Panaszek, prof. zw. UMW. Recenzja

Kierownik Katedry i Kliniki: prof. dr hab. Bernard Panaszek, prof. zw. UMW. Recenzja KATEDRA KLINIKA CHORÓB WEWNĘTRZNYCHYCH GERIATRII ALERGOLOGU Unwersytet Medyczny m. Pastów Śląskch we Wrocławu 50-367 Wrocław, ul. Cure-Skłodowskej 66 Tel. 71/7842521 Fax 71/7842529 E-mal: bernard.panaszek@umed.wroc.pl

Bardziej szczegółowo

PRÓBA OKREŚLENIA WPŁYWU CZASU MIESZANIA NA ILOŚĆ ZANIECZYSZCZEŃ W MIESZANKACH PASZOWYCH

PRÓBA OKREŚLENIA WPŁYWU CZASU MIESZANIA NA ILOŚĆ ZANIECZYSZCZEŃ W MIESZANKACH PASZOWYCH I N Ż YNIERIA R OLNICZA A GRICULTURAL E NGINEERING 2013: Z. 3(145) T.1 S. 159-167 ISSN 1429-7264 Polskie Towarzystwo Inżynierii Rolniczej http://www.ptir.org PRÓBA OKREŚLENIA WPŁYWU CZASU MIESZANIA NA

Bardziej szczegółowo

PROGNOZOWANIE KSZTAŁTOWANIA SIĘ MIKROKLIMATU BUDYNKÓW INWENTARSKICH MOśLIWOŚCI I OGRANICZENIA

PROGNOZOWANIE KSZTAŁTOWANIA SIĘ MIKROKLIMATU BUDYNKÓW INWENTARSKICH MOśLIWOŚCI I OGRANICZENIA InŜynera Rolncza 7/2005 Jan Radoń Katedra Budownctwa Weskego Akadema Rolncza w Krakowe PROGNOZOWANIE KSZTAŁTOWANIA SIĘ MIKROKLIMATU BUDYNKÓW INWENTARSKICH MOśLIWOŚCI I OGRANICZENIA Streszczene Opsano nawaŝnesze

Bardziej szczegółowo

Zastosowanie wielowymiarowej analizy porównawczej w doborze spó³ek do portfela inwestycyjnego Zastosowanie wielowymiarowej analizy porównawczej...

Zastosowanie wielowymiarowej analizy porównawczej w doborze spó³ek do portfela inwestycyjnego Zastosowanie wielowymiarowej analizy porównawczej... Adam Waszkowsk * Adam Waszkowsk Zastosowane welowymarowej analzy porównawczej w doborze spó³ek do portfela nwestycyjnego Zastosowane welowymarowej analzy porównawczej... Wstêp Na warszawskej Ge³dze Paperów

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 1 Statystyka opsowa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 W statystyce opsowej mamy pełne nformacje

Bardziej szczegółowo

Diagnostyka układów kombinacyjnych

Diagnostyka układów kombinacyjnych Dagnostyka układów kombnacyjnych 1. Wprowadzene Dagnostyka obejmuje: stwerdzene stanu układu, systemu lub ogólne sec logcznej. Jest to tzw. kontrola stanu wykrywająca czy dzałane sec ne jest zakłócane

Bardziej szczegółowo