Zarzadzanie i Marketing Egzamin z Matematyki. Studia dzienne. 1999

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zarzadzanie i Marketing Egzamin z Matematyki. Studia dzienne. 1999"

Transkrypt

1 Imie Nazwisko Zestaw 121 Zarzadzanie i Marketing Egzamin z Matematyki. Studia dzienne Zaznacz wlasciwa odpowiedz przez otoczenie kolkiem litery a, b lub c. Tylko jedna z podanych odpowiedzi jest wlasciwa. Za zaznaczenie wlasciwej odpowiedzi otrzymasz 1 punkt, za zaznaczenie niewlasciwej (lub wiecej niz jednej) -1 punktow, za brak odpowiedzi 0 punktow. 1. Zdanie,,Jesli kurs dolara spada i kurs dolara rosnie to kurs euro nie zmienia sie jest a) prawdziwe, b) falszywe, c) nie ma wartosci logicznej. 2. Niech A, B beda niepustymi zbiorami. Wtedy rownosc A \ B = A zachodzi a) zawsze, b) czasem, c) nigdy. 3. Niech A, B beda skonczonymi zbiorami. Zdefiniujmy: ARB A ma tyle samo elementow co B. a) R jest relacja rownowaznosci, b) R nie jest relacja rownowaznosci, c) R nie jest relacja. 4. Niech f : N R bedzie okreslona wzorem f(n) = n 2. Funkcja f jest: a) iniekcja, b) suriekcja, c) bijekcja Uklad Ax = b dla A = i b = 0 jest a) sprzeczny, b) oznaczony, c) nieoznaczony. ( ) Niech A =. Wtedy A 0 T A jest rowne ( ) a) 5 0 0, b), c) nie jest okreslone ( ) 7. Niech macierz migracji ma postac M =. Wtedy stan rownowagi 1 0 jest( rowny: ( ) 1 0, 5 a), b), c) nie ma stanu rownowagi 0) 0, 5

2 8. Niech det A = 3. Wtedy det(aa T ) jest rowny: a) 6, b) nie jest okreslony, c) 9. ( ) Macierz odwrotna do A = ma postac: ( ) ( ) 3 4 ( ) a), b), c) Zlozenie dwoch funkcji liniowych jest: a) funkcja kwadratowa, b) funkcja liniowa, c) funkcja stala. 11. Funkcja f(x) = x 5 + 3x 3 jest w R a) malejaca, b) rosnaca c) ani rosnaca ani malejaca. 12. Funkcja f(x) = x 4 + 2x 3 + 4x ma w punkcie x = 1 a) minimum lokalne, b) maksimum lokalne, c) brak ekstremum 13. Najwieksza wartosc funkcji f(x) = x 3 3x w przedziale [ 2, 0] jest rowna a) 1, b) 0, c) Gradient funkcji f(x, y) = 3x+2y +e xy w punkcie (x, y) = (0, 0) jest rowny a) (0, 0), b) (2, 3), c) (3, 2). 15. Najwieksza wartosc funkcji f(x, y) = 2x 2 +2y 2 w prostokacie ograniczonym prostymi y = 1, y = 2, x = 2 i x = 2 wynosi a) 4, b) 16, c) Funkcja f(x, y, z) = x 2 + y 2 + xy ma w punkcie (0, 0) a) minimum lokalne, b) maksimum lokalne, c) nie ma ekstremum. 17. Najmniejsza wartosc funkcji f(x, y) = y na okregu (x 1) 2 + y 2 = 1 jest osiagana w punkcie a) (1, 1), b) (1, 1), c) (2, 2). 18. Roczne oprocentowanie wkladu w banku wynosi 10% z kapitalizacja kwartalna, a poczatkowy wklad 100 zl. Po t latach wklad bedzie rowny a) 100 (1, 025) 4t, b) 100 (1, 1) 4t, c) (1, 1) 4t. 19. Pole obszaru ograniczonego krzywymi y = x 2 1 i y = x wynosi a) 13, b) 12, c) Stopa przyrostu liczby sprzedanych samochodow wyraza sie wzorem s(t) = t [sztuk/miesiac]. Przez pierwsze 4 miesiace sprzedano: a) 4160 samoch., b) 4320 samoch., c) 4240 samoch. Zestaw 121

3 Imie Nazwisko Zestaw 122 Zarzadzanie i Marketing Egzamin z Matematyki. Studia dzienne Zaznacz wlasciwa odpowiedz przez otoczenie kolkiem litery a, b lub c. Tylko jedna z podanych odpowiedzi jest wlasciwa. Za zaznaczenie wlasciwej odpowiedzi otrzymasz 1 punkt, za zaznaczenie niewlasciwej (lub wiecej niz jednej) -1 punktow, za brak odpowiedzi 0 punktow. 1. Zdanie,,Jesli kurs euro spada i kurs euro rosnie to kurs euro nie zmienia sie jest a) prawdziwe, b) falszywe, c) nie ma wartosci logicznej. 2. Niech A, B beda niepustymi zbiorami. Wtedy rownosc A \ B = B zachodzi a) zawsze, b) czasem, c) nigdy. 3. Niech A, B beda skonczonymi zbiorami. Zdefiniujmy: ARB A i B maja rozna liczbe elementow. a) R jest relacja rownowaznosci, b) R nie jest relacja rownowaznosci, c) R nie jest relacja. 4. Niech f : Z N {0} bedzie okreslona wzorem f(n) = n 2. Funkcja f jest: a) iniekcja, b) suriekcja, c) bijekcja Uklad Ax = b dla A = i b = 0 jest 0 0 a) sprzeczny, b) oznaczony, c) nieoznaczony. ( ) Niech A =. Wtedy A A jest rowne ( ) a) 5 0 0, b), c) nie jest okreslone ( ) Niech macierz migracji ma postac M =. Wtedy stan rownowagi jest rowny: ( 1 a) nie ma stanu rownowagi, b), c) kazdy stan jest stanem rownowagi 1)

4 8. Niech det A = 3. Wtedy det(aa 1 ) jest rowny: a) 1, b) nie jest okreslony, c) 9. ( ) Macierz odwrotna do A = ma postac: 5 4 ( ) ( ) ( ) a), b), c) Suma dwoch funkcji liniowych jest: a) funkcja kwadratowa, b) funkcja liniowa, c) funkcja stala. 11. Funkcja f(x) = x 5 3x 3 jest w R a) malejaca, b) rosnaca c) ani rosnaca ani malejaca. 12. Funkcja f(x) = x 4 + 2x 3 + 4x ma w punkcie x = 1 a) minimum lokalne, b) maksimum lokalne, c) brak ekstremum 13. Najwieksza wartosc funkcji f(x) = x 3 + 3x w przedziale [0, 2] jest rowna a) 1, b) 0, c) Gradient funkcji f(x, y) = 3x + 2y + e x+y w punkcie (x, y) = (0, 0) jest rowny a) (0, 0), b) (4, 3), c) (3, 2). 15. Najwieksza wartosc funkcji f(x, y) = x 2 + y 2 w prostokacie ograniczonym prostymi y = 1, y = 2, x = 2 i x = 2 wynosi a) 4, b) 16, c) Funkcja f(x, y, z) = x 2 + y 2 + 3xy ma w punkcie (0, 0) a) minimum lokalne, b) maksimum lokalne, c) nie ma ekstremum. 17. Najwieksza wartosc funkcji f(x, y) = y na okregu (x 1) 2 + y 2 = 1 jest osiagana w punkcie a) (1, 1), b) (1, 1), c) (2, 2). 18. Roczne oprocentowanie wkladu w banku wynosi 10% z kapitalizacja polroczna, a poczatkowy wklad 100 zl. Po t latach wklad bedzie rowny a) 100 (1, 5) t, b) 100 (1, 05) 2t, c) (1, 1) 2t. 19. Pole obszaru ograniczonego krzywymi y = x 2 1 i y = 0 wynosi a) 43, b) 12, c) Stopa przyrostu liczby sprzedanych samochodow wyraza sie wzorem s(t) = t [sztuk/miesiac]. Przez pierwsze 4 miesiace sprzedano: a) 8160 samoch., b) 8320 samoch., c) 8240 samoch. Zestaw 122

5 Imie Nazwisko Zestaw 123 Zarzadzanie i Marketing Egzamin z Matematyki. Studia dzienne Zaznacz wlasciwa odpowiedz przez otoczenie kolkiem litery a, b lub c. Tylko jedna z podanych odpowiedzi jest wlasciwa. Za zaznaczenie wlasciwej odpowiedzi otrzymasz 1 punkt, za zaznaczenie niewlasciwej (lub wiecej niz jednej) -1 punktow, za brak odpowiedzi 0 punktow. 1. Zdanie,,Czy jesli kurs dolara spada i kurs dolara rosnie to kurs euro nie zmienia sie? jest a) prawdziwe, b) falszywe, c) nie ma wartosci logicznej. 2. Niech A, B beda niepustymi zbiorami. Wtedy rownosc A \ B = A B zachodzi a) zawsze, b) czasem, c) nigdy. 3. Niech A, B beda skonczonymi zbiorami. Zdefiniujmy: ARB A ma nie wiecej elementow niz B. a) R jest relacja rownowaznosci, b) R nie jest relacja rownowaznosci, c) R nie jest relacja. 4. Niech f : N N bedzie okreslona wzorem f(n) = n 2. Funkcja f jest: a) iniekcja, b) suriekcja, c) bijekcja Uklad Ax = b dla A = i b = 0 jest a) sprzeczny, b) oznaczony, c) nieoznaczony. ( ) Niech A =. Wtedy A A 0 T jest rowne ( ) a) 5 0 0, b), c) nie jest okreslone ( ) 1 0, 5 7. Niech macierz migracji ma postac M =. Wtedy stan rownowagi 0 0, 5 jest( rowny: ( ) 1 0, 5 a), b), c) nie ma stanu rownowagi 0) 0, 5

6 8. Niech det A = 3. Wtedy det(a T A T ) jest rowny: a) 6, b) nie jest okreslony, c) 9. ( ) Macierz odwrotna do A = ma postac: 3 4 ( ) ( ) ( ) a), b), c) Roznica dwoch funkcji liniowych jest: a) funkcja kwadratowa, b) funkcja liniowa, c) funkcja stala. 11. Funkcja f(x) = x 5 + 3x 3 jest w R a) malejaca, b) rosnaca c) ani rosnaca ani malejaca. 12. Funkcja f(x) = x 4 + 2x 3 4x ma w punkcie x = 1 a) minimum lokalne, b) maksimum lokalne, c) brak ekstremum 13. Najwieksza wartosc funkcji f(x) = x 3 3x w przedziale [ 2, 1] jest rowna a) -2, b) 0, c) Gradient funkcji f(x, y) = 3x + 2y + e x y w punkcie (x, y) = (0, 0) jest rowny a) (0, 0), b) (4, 1), c) (3, 2). 15. Najwieksza wartosc funkcji f(x, y) = 2x 2 +2y 2 w prostokacie ograniczonym prostymi y = 1, y = 0, x = 1 i x = 0 wynosi a) 4, b) 12, c) Funkcja f(x, y, z) = x 2 y 2 + xy ma w punkcie (0, 0) a) minimum lokalne, b) maksimum lokalne, c) nie ma ekstremum. 17. Najmniejsza wartosc funkcji f(x, y) = x na okregu (x 1) 2 + y 2 = 1 jest osiagana w punkcie a) (1, 1), b) (1, 1), c) (2, 0). 18. Roczne oprocentowanie wkladu w banku wynosi 40% z kapitalizacja kwartalna, a poczatkowy wklad 100 zl. Po t latach wklad bedzie rowny a) 100 (1, 025) 4t, b) 100 (1, 1) 4t, c) (1, 1) 4t. 19. Pole obszaru ograniczonego krzywymi y = 0 i y = x wynosi a) 43, b) 12, c) Stopa przyrostu liczby sprzedanych samochodow wyraza sie wzorem s(t) = t [sztuk/miesiac]. Przez pierwsze 4 miesiace sprzedano: a) 4160 samoch., b) 4080 samoch., c) 4240 samoch. Zestaw 123

Sprawy organizacyjne. dr Barbara Przebieracz Bankowa 14, p.568

Sprawy organizacyjne. dr Barbara Przebieracz Bankowa 14, p.568 Sprawy organizacyjne Jak można się ze mna skontaktować dr Barbara Przebieracz Bankowa 14, p.568 barbara.przebieracz@us.edu.pl www.math.us.edu.pl/bp 10 wykładów, Zaliczenie wykładu: ocena z wykładu jest

Bardziej szczegółowo

NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI FUNKCJE KWADRATOWE PARAMETRY

NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI FUNKCJE KWADRATOWE PARAMETRY www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI FUNKCJE KWADRATOWE PARAMETRY 1 www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI ZADANIE 1 Wyznacz wzór funkcji f (x) = 2x

Bardziej szczegółowo

FUNKCJA I JEJ WŁASNOŚCI

FUNKCJA I JEJ WŁASNOŚCI FUNKCJA I JEJ WŁASNOŚCI Niech i oznaczają dwa dowolne niepuste zbiory. DEFINICJA (odwzorowanie zbioru (funkcja)) Odwzorowaniem zbioru w zbiór nazywamy przyporządkowanie każdemu elementowi zbioru dokładnie

Bardziej szczegółowo

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU Agata Boratyńska Zadania z matematyki Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU. Korzystając z definicji granicy ciągu udowodnić: a) n + n+ = 0 b) n + n n+ = c) n + n a =, gdzie a

Bardziej szczegółowo

Lokalna odwracalność odwzorowań, odwzorowania uwikłane

Lokalna odwracalność odwzorowań, odwzorowania uwikłane Lokalna odwracalność odwzorowań, odwzorowania uwikłane Katedra Matematyki i Ekonomii Matematycznej Szkoła Główna Handlowa 17 maja 2012 Definicja Mówimy, że odwzorowanie F : X R n, gdzie X R n, jest lokalnie

Bardziej szczegółowo

1 Funkcje dwóch zmiennych podstawowe pojęcia

1 Funkcje dwóch zmiennych podstawowe pojęcia 1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne.

13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne. 13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne. 1. Wprowadzenie. Dotąd rozważaliśmy funkcje działające z podzbioru liczb rzeczywistych w zbiór liczb rzeczywistych, zatem funkcje

Bardziej szczegółowo

x+h=10 zatem h=10-x gdzie x>0 i h>0

x+h=10 zatem h=10-x gdzie x>0 i h>0 Zadania optymalizacyjne. Jaka jest największa możliwa wartość iloczynu dwóch liczb, których suma jest równa 60? Rozwiązanie: KROK USTALENIE WZORU Liczby oznaczamy przez a i b więc x+y=60 Następnie wyznaczamy

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 8 MARCA 2014 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) ( Liczba 9 3 6 4 27) jest

Bardziej szczegółowo

11. Pochodna funkcji

11. Pochodna funkcji 11. Pochodna funkcji Definicja pochodnej funkcji w punkcie. Niech X R będzie zbiorem niepustym, f:x >R oraz niech x 0 X. Funkcję określoną wzorem, nazywamy ilorazem różnicowym funkcji f w punkcie Mówimy,

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 25 MARCA 2017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Najmniejsza liczba całkowita

Bardziej szczegółowo

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Liczby naturalne Liczby całkowite. Liczby wymierne Liczby niewymierne Rozwinięcie dziesiętne liczby rzeczywistej Pierwiastek

Bardziej szczegółowo

Zapisujemy:. Dla jednoczesnego podania funkcji (sposobu przyporządkowania) oraz zbiorów i piszemy:.

Zapisujemy:. Dla jednoczesnego podania funkcji (sposobu przyporządkowania) oraz zbiorów i piszemy:. Funkcja Funkcją (stosuje się też nazwę odwzorowanie) określoną na zbiorze o wartościach w zbiorze nazywamy przyporządkowanie każdemu elementowi dokładnie jednego elementu. nazywamy argumentem, zaś wartością

Bardziej szczegółowo

Egzamin z matematyki dla I roku Biochemii i Biotechnologii

Egzamin z matematyki dla I roku Biochemii i Biotechnologii Egzamin z matematyki dla I roku Biochemii i Biotechnologii 9..04 Zadanie (0 punktów). Rozwiązać układ + 3y z = 3 5y + z = a 5 ay + 3z = 3 dla a = oraz dla a = 4. Zadanie (0 punktów). Wyznaczyć dziedzinę,

Bardziej szczegółowo

Równania nieliniowe, nieliniowe układy równań, optymalizacja

Równania nieliniowe, nieliniowe układy równań, optymalizacja 4 maj 2009 Nieliniowe równania i układy rówań Slajd 1 Równania nieliniowe, nieliniowe układy równań, optymalizacja 4 maj 2009 Nieliniowe równania i układy rówań Slajd 2 Plan zajęć Rozwiązywanie równań

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Funkcje dwóch zmiennych 1. Funkcje dwóch zmiennych: pojęcia podstawowe Definicja 1. Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

EGZAMIN PRÓBNY Z ZAKRESU MATEMATYKI DLA II KLASY GIMNAZJUM GRUPA A I B

EGZAMIN PRÓBNY Z ZAKRESU MATEMATYKI DLA II KLASY GIMNAZJUM GRUPA A I B Maria Żylska ul. Krasickiego 9/78 30-55 Kraków zyluska@interia.pl EGZAMIN PRÓBNY Z ZAKRESU MATEMATYKI DLA II KLASY GIMNAZJUM GRUPA A I B Autor: Maria Żylska Gimnazjum 7 Kraków Zad.. Która z podanych liczb

Bardziej szczegółowo

Wstęp do topologii Ćwiczenia

Wstęp do topologii Ćwiczenia Wstęp do topologii Ćwiczenia Spis treści Przestrzeń metryczna, metryka 2 Kule w przestrzeni metrycznej 2 3 Zbieżność w przestrzeniach metrycznych 4 4 Domknięcie, wnętrze i brzeg 6 5 Zbiory gęste, brzegowe

Bardziej szczegółowo

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II Wymagania edukacyjne, kontrola i ocena w nauczaniu matematyki w zakresie podstawowym dla uczniów technikum część II Figury na płaszczyźnie kartezjańskiej L.p. Temat lekcji Uczeń demonstruje opanowanie

Bardziej szczegółowo

Programowanie nieliniowe. Badania operacyjne Wykład 3 Metoda Lagrange a

Programowanie nieliniowe. Badania operacyjne Wykład 3 Metoda Lagrange a Programowanie nieliniowe Badania operacyjne Wykład 3 Metoda Lagrange a Plan wykładu Przykład problemu z nieliniową funkcją celu Sformułowanie problemu programowania matematycznego Podstawowe definicje

Bardziej szczegółowo

Dr inż. Janusz Dębiński Mechanika ogólna Wykład 2 Podstawowe wiadomości z matematyki Kalisz

Dr inż. Janusz Dębiński Mechanika ogólna Wykład 2 Podstawowe wiadomości z matematyki Kalisz Dr inż. Janusz Dębiński Mechanika ogólna Wykład 2 Podstawowe wiadomości z matematyki Kalisz Dr inż. Janusz Dębiński 1 2.1. Przestrzeń i płaszczyzna Podstawowe definicje Punkt - najmniejszy bezwymiarowy

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 1 MAJA 2010 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Rozwiazaniem nierówności

Bardziej szczegółowo

1 Pochodne wyższych rzędów

1 Pochodne wyższych rzędów Pochodne wyższych rzędów Pochodną rzędu drugiego lub drugą pochodną funkcji y = f(x) nazywamy pochodną pierwszej pochodnej tej funkcji. Analogicznie definiujemy pochodne wyższych rzędów, jako pochodne

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 8 KWIETNIA 2017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Dla każdej dodatniej

Bardziej szczegółowo

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. Twierdzenie 1.1. (Rolle a) Jeżeli funkcja f jest ciągła w przedziale domkniętym

Bardziej szczegółowo

Zadanie 1. Rozważ funkcję f(x, y) = (x + y)(x + 6)( y 3) określoną na zbiorze R 2.

Zadanie 1. Rozważ funkcję f(x, y) = (x + y)(x + 6)( y 3) określoną na zbiorze R 2. Zadanie 1. Rozważ funkcję f(x, y) = (x + y)(x + 6)( y 3) określoną (ii) (3pt) Zbadaj, czy w punktach A = ( 3, 0), B = (1, 2), C = ( 6, 3) funkcja f ma maksimum lokalne. (iii) (2pt) Zbadaj, czy w punktach

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

1. Liczby zespolone i

1. Liczby zespolone i Zadania podstawowe Liczby zespolone Zadanie Podać część rzeczywistą i urojoną następujących liczb zespolonych: z = ( + 7i)( + i) + ( 5 i)( + 7i), z = + i, z = + i i, z 4 = i + i + i i Zadanie Dla jakich

Bardziej szczegółowo

Wykład 11 i 12. Informatyka Stosowana. 9 stycznia Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39

Wykład 11 i 12. Informatyka Stosowana. 9 stycznia Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39 Wykład 11 i 12 Informatyka Stosowana 9 stycznia 2017 Informatyka Stosowana Wykład 11 i 12 9 stycznia 2017 1 / 39 Twierdzenie Lagrange a Jeżeli funkcja f spełnia warunki: 1 jest ciagła na [a, b] 2 f istnieje

Bardziej szczegółowo

ZADANIA PRZYGOTOWAWCZE

ZADANIA PRZYGOTOWAWCZE Kraj bez matematyki nie wytrzyma współzawodnictwa z tymi krajami, które matematykę uprawiają Hugo Steinhause X I Dąbrowski Konkurs Matematyczny Dla uczniów klas pierwszych szkół ponad gimnazjalnych Konkurs

Bardziej szczegółowo

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności I. Pojęcie funkcji definicja różne sposoby opisu funkcji określenie dziedziny, zbioru wartości, miejsc zerowych. Należy

Bardziej szczegółowo

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Leszek Skrzypczak 1. Niech E = {x [0, 1] : x = k 2 n k = 1, 2,... 2 n, n = 1, 2, 3,...} Wówczas: (a) Dla dowolnych liczb wymiernych p, q [0,

Bardziej szczegółowo

R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} },

R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, nazywa- Definicja 1. Przestrzenią liniową R n my zbiór wektorów R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, z określonymi działaniami dodawania wektorów i mnożenia wektorów przez liczby rzeczywiste.

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM. I. Funkcje. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM. 1. Pojęcie funkcji i jej dziedzina. 2. Zbiór wartości funkcji. 3. Wykres funkcji liczbowej i odczytywanie jej własności

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 5508 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Wskaż rysunek,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową

Bardziej szczegółowo

Zadanie 1 Naszkicuj wykres funkcji f x ={ x2 dla x < 2,1) x 2 2x dla x < 1,3> }

Zadanie 1 Naszkicuj wykres funkcji f x ={ x2 dla x < 2,1) x 2 2x dla x < 1,3> } Zadanie 1 Naszkicuj wykres funkcji f x ={ x2 dla x < 2,1) x 2 2x dla x < 1,3> } Tworzymy sobie tabelkę dla wybranych punktów w danych przedziałach: 1) X -2-1 0 1 Y -4-1 0-1 2) X 1 2 3 Y -1 0 3 Szkicujemy

Bardziej szczegółowo

Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia 1 Pewne funkcje - funkcja liniowa dla gdzie -funkcja kwadratowa dla gdzie postać kanoniczna postać iloczynowa gdzie równanie kwadratowe pierwiastki równania kwadratowego: dla dla wzory Viete a

Bardziej szczegółowo

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady część II

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady część II Wydział Matematyki i Informatyki Uniwersytetu Łódzkiego w Łodzi Dariusz Wardowski Katedra Analizy Nieliniowej Bankowość i metody statystyczne w biznesie - zadania i przykłady część II Łódź 2008 Rozdział

Bardziej szczegółowo

Analiza matematyczna 2 zadania z odpowiedziami

Analiza matematyczna 2 zadania z odpowiedziami Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści I Całki niewłaściwe pierwszego rodzaju II Całki niewłaściwe drugiego rodzaju 5 III Szeregi liczbowe 6 IV Szeregi potęgowe

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 5 LUTEGO 017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba x jest przybliżeniem

Bardziej szczegółowo

Rozkład materiału KLASA I

Rozkład materiału KLASA I I. Liczby (31 godz.) Rozkład materiału Wg podręczników serii Prosto do matury. Zakres podstawowy i rozszerzony (Na czerwono zaznaczono treści z zakresu rozszerzonego) KLASA I 1. Zapis dziesiętny liczby

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami ANALIZA MATEMATYCZNA zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Całki niewłaściwe pierwszego rodzaju Całki niewłaściwe drugiego rodzaju Szeregi liczbowe 4 4 Szeregi potęgowe 5 5

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy

Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum LICZBY (20 godz.) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum Wg podręczników serii Prosto do matury KLASA I (60 godz.) 1. Zapis dziesiętny liczby rzeczywistej 1 2. Wzory skróconego

Bardziej szczegółowo

2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2.

2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2. 2. ZASTOSOWANIA POCHODNYCH. Koniecznie trzeba znać: twierdzenia o ekstremach (z wykorzystaniem pierwszej i drugiej pochodnej), Twierdzenie Lagrange a, Twierdzenie Taylora (z resztą w postaci Peano, Lagrange

Bardziej szczegółowo

Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne.

Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne. Treści programowe Matematyka 1 Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

Wykład 6. Matematyka 2, semestr letni 2010/2011 Brak fragmentu dotyczącego twierdzenia o odwzorowaniu odwrotnym

Wykład 6. Matematyka 2, semestr letni 2010/2011 Brak fragmentu dotyczącego twierdzenia o odwzorowaniu odwrotnym Wykład 6. Matematyka 2, semestr letni 2010/2011 Brak fragmentu dotyczącego twierdzenia o odwzorowaniu odwrotnym Niechf: R n RbędziefunkcjąróżniczkowalnąnapewnymobszarzeO R 2.Przyjrzyjmy się zbiorowi f

Bardziej szczegółowo

Pochodną funkcji w punkcie nazywamy granicę ilorazu różnicowego w punkcie gdy przyrost argumentu dąży do zera: lim

Pochodną funkcji w punkcie nazywamy granicę ilorazu różnicowego w punkcie gdy przyrost argumentu dąży do zera: lim Definicja pochodnej Niech będzie funkcją określoną w pewnym przedziale i niech będzie punktem wewnętrznym tego przedziału. Liczbę dowolną, ale taką, że nazywamy przyrostem argumentu, a różnicę nazywamy

Bardziej szczegółowo

Dział I FUNKCJE I ICH WŁASNOŚCI

Dział I FUNKCJE I ICH WŁASNOŚCI MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: II Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE I ICH WŁASNOŚCI Lp. Zagadnienie Osiągnięcia ucznia. 1. Podstawowe własności funkcji.. Podaje określenie

Bardziej szczegółowo

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 40092 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM ROZSZERZONY CZAS PRACY: 180 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Największa wartość

Bardziej szczegółowo

Rozwiązania zadań z listy T.Koźniewskiego

Rozwiązania zadań z listy T.Koźniewskiego Rozwiązania zadań z listy T.Koźniewskiego 1. Podstawiamy do równań. Tylko czwarty wektor spełnia wszystkie trzy równania.. U 1 : ( + 0x 9x 4, 7x + 8x 4, x, x 4 ), U : ( x 4, 4 x 4, + x 4, x 4 ), U : (x

Bardziej szczegółowo

AB = x a + yb y a + zb z a 1

AB = x a + yb y a + zb z a 1 1. Wektory w przestrzeni trójwymiarowej EFINICJA. Uporzadkowana pare punktów (A, B) nazywamy wektorem i oznaczamy AB. Punkt A to poczatek wektora, punkt B to koniec wektora. EFINICJA. Je±li B = A, to wektor

Bardziej szczegółowo

Przykładowe zadania z matematyki na poziomie podstawowym. Zadanie 1. (0 1) Liczba A. 3. Zadanie 2. (0 1) Liczba log 24 jest równa

Przykładowe zadania z matematyki na poziomie podstawowym. Zadanie 1. (0 1) Liczba A. 3. Zadanie 2. (0 1) Liczba log 24 jest równa Przykładowe zadania z rozwiązaniami: poziom podstawowy 1. Przykładowe zadania z matematyki na poziomie podstawowym Zadanie 1. (0 1) Liczba 8 3 3 2 3 9 jest równa A. 3 3 B. 32 3 9 C. 3 D. 5 3 Zadanie 2.

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 2 KWIETNIA 204 CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT) Liczba 2 2 3 2 3 jest równa

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna Arkusz A01 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba log 1 3 3 27 jest równa:

Bardziej szczegółowo

. Funkcja ta maleje dla ( ) Zadanie 1 str. 180 b) i c) Zadanie 2 str. 180 a) i b)

. Funkcja ta maleje dla ( ) Zadanie 1 str. 180 b) i c) Zadanie 2 str. 180 a) i b) Lekcja 1 -. Lekcja organizacyjna kontrakt diagnoza i jej omówienie Podręcznik: W. Babiański, L. Chańko, D. Ponczek Matematyka. Zakres podstawowy. Wyd. Nowa Era. Zakres materiału: Funkcje kwadratowe Wielomiany

Bardziej szczegółowo

PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM

PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM Zad.1. (0-1) Liczba 3 8 3 3 9 2 A. 3 3 Zad.2. (0-1) jest równa: Liczba log24 jest równa: B. 3 32 9 C. 3 4 D. 3 5 A. 2log2 + log20 B. log6 + 2log2

Bardziej szczegółowo

Sprawdzian 2. MATEMATYKA. Przed próbną maturą. (poziom podstawowy) Czas pracy: 90 minut Maksymalna liczba punktów: 26. Imię i nazwisko ...

Sprawdzian 2. MATEMATYKA. Przed próbną maturą. (poziom podstawowy) Czas pracy: 90 minut Maksymalna liczba punktów: 26. Imię i nazwisko ... MATEMATYKA Przed próbną maturą Sprawdzian. (poziom podstawowy) Czas pracy: 90 minut Maksymalna liczba punktów: 6 Imię i nazwisko... Liczba punktów Procent Przed próbną maturą. Sprawdzian. Zadanie 1. (0

Bardziej szczegółowo

1 S t r o n a ZDASZ MATURĘ! Cz.1. Do każdego zadania dodano film z rozwiązaniem

1 S t r o n a ZDASZ MATURĘ! Cz.1. Do każdego zadania dodano film z rozwiązaniem 1 S t r o n a ZDASZ MATURĘ! Cz.1 Do każdego zadania dodano film z rozwiązaniem S t r o n a Autor: ADAM CZYŻ E-book Zdasz maturę! w całości napisał, przygotował i dokonał poprawek: Adam Czyż prywatny korepetytor

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Wprowadzenie Ciągi liczbowe

Analiza matematyczna i algebra liniowa Wprowadzenie Ciągi liczbowe Analiza matematyczna i algebra liniowa Wprowadzenie Ciągi liczbowe Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:

Bardziej szczegółowo

1 Pochodne wyższych rzędów

1 Pochodne wyższych rzędów 1 Pochodne wyższych rzędów Definicja 1.1 (Pochodne cząstkowe drugiego rzędu) Niech f będzie odwzorowaniem o wartościach w R m, określonym na zbiorze G R k. Załóżmy, że zbiór tych x G, dla których istnieje

Bardziej szczegółowo

Pisemny egzamin dyplomowy. na Uniwersytecie Wroc lawskim. na kierunku matematyka. zadania testowe. 22czerwca2009r. 60 HS-8-8

Pisemny egzamin dyplomowy. na Uniwersytecie Wroc lawskim. na kierunku matematyka. zadania testowe. 22czerwca2009r. 60 HS-8-8 EGZAMIN DYPLOMOWY, cze ść I (testowa) 22.06.2009 INSTRUKCJE DOTYCZA CE WYPE LNIANIA TESTU 1. Nie wolno korzystać z kalkulatorów. 2. Sprawdzić, czy wersja testu podana na treści zadań jest zgodna z wersja

Bardziej szczegółowo

Ekstrema globalne funkcji

Ekstrema globalne funkcji SIMR 2013/14, Analiza 1, wykład 9, 2013-12-13 Ekstrema globalne funkcji Definicja: Funkcja f : D R ma w punkcie x 0 D minimum globalne wtedy i tylko (x D) f(x) f(x 0 ). Wartość f(x 0 ) nazywamy wartością

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI (zakres podstawowy) Rok szkolny 2017/2018 - klasa 2a, 2b, 2c 1. Funkcja

Bardziej szczegółowo

Układy równań. Kinga Kolczyńska - Przybycień 22 marca Układ dwóch równań liniowych z dwiema niewiadomymi

Układy równań. Kinga Kolczyńska - Przybycień 22 marca Układ dwóch równań liniowych z dwiema niewiadomymi Układy równań Kinga Kolczyńska - Przybycień 22 marca 2014 1 Układ dwóch równań liniowych z dwiema niewiadomymi 1.1 Pojęcie układu i rozwiązania układu Układem dwóch równań liniowych z dwiema niewiadomymi

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Rozdział 1 Podstawowe struktury algebraiczne 1.1. Działania wewnętrzne Niech X będzie zbiorem niepustym. Dowolną funkcję h : X X X nazywamy działaniem wewnętrznym w zbiorze X. Działanie wewnętrzne, jak

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2015

LUBELSKA PRÓBA PRZED MATURĄ 2015 1 MATEMATYKA - poziom podstawowy klasa 2 CZERWIEC 2015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to

Bardziej szczegółowo

Zbiory, funkcje i ich własności. XX LO (wrzesień 2016) Matematyka elementarna Temat #1 1 / 16

Zbiory, funkcje i ich własności. XX LO (wrzesień 2016) Matematyka elementarna Temat #1 1 / 16 Zbiory, funkcje i ich własności XX LO (wrzesień 2016) Matematyka elementarna Temat #1 1 / 16 Zbiory Zbiory ograniczone, kresy Zbiory ograniczone, min, max, sup, inf Zbiory ograniczone 1 Zbiór X R jest

Bardziej szczegółowo

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej 15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)

Bardziej szczegółowo

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem Zestaw zadań 9: Przestrzenie wektorowe. Podprzestrzenie () Wykazać, że V = C ze zwykłym dodawaniem jako dodawaniem wektorów i operacją mnożenia przez skalar : C C C, (z, v) z v := z v jest przestrzenią

Bardziej szczegółowo

Pochodna funkcji. Zastosowania

Pochodna funkcji. Zastosowania Pochodna funkcji Zastosowania Informatyka (sem.1 2015/16) Analiza Matematyczna Temat 3 1 / 33 Niektóre zastosowania pochodnych 1 Pochodna jako narzędzie do przybliżania wartości 2 Pochodna jako narzędzie

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2015

LUBELSKA PRÓBA PRZED MATURĄ 2015 1 MATEMATYKA - poziom podstawowy klasa 2 CZERWIEC 2015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY+ 19 MARCA 2011 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Wskaż nierówność, która

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY MATEMATYKA. MaturoBranie

PRÓBNY EGZAMIN MATURALNY MATEMATYKA. MaturoBranie Uzupełnia zdający PESEL PRÓBNY EGZAMIN MATURALNY MATEMATYKA POZIOM PODSTAWOWY DATA: 25 stycznia 2017 r. GODZINA ROZPOCZĘCIA: 9:00 CZAS PRACY: 170 minut MaturoBranie LICZBA PUNKTÓW DO UZYSKANIA: 50 Instrukcja

Bardziej szczegółowo

Podstawy nauk przyrodniczych Matematyka Wstęp

Podstawy nauk przyrodniczych Matematyka Wstęp Podstawy nauk przyrodniczych Matematyka Wstęp Katarzyna Kluzek i Adrian Silesian Zakład Genetyki Molekularnej Człowieka tel. 61 829 58 33 adrian.silesian@amu.edu.pl katarzyna.kluzek@amu.edu.pl Pokój 1.117

Bardziej szczegółowo

Rozkład materiału: matematyka na poziomie rozszerzonym

Rozkład materiału: matematyka na poziomie rozszerzonym Rozkład materiału: matematyka na poziomie rozszerzonym KLASA I 105h Liczby (30h) 1. Zapis dziesiętny liczby rzeczywistej 2. Wzory skróconego mnoŝenia 3. Nierówności pierwszego stopnia 4. Przedziały liczbowe

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 4 MARCA 201 CZAS PRACY: 10 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Suma sześciu kolejnych liczb

Bardziej szczegółowo

MATeMAtyka zakres rozszerzony

MATeMAtyka zakres rozszerzony MATeMAtyka zakres rozszerzony Proponowany rozkład materiału kl. I (160 h) (Na czerwono zaznaczono treści z zakresu rozszerzonego) Temat lekcji Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne

Bardziej szczegółowo

1. Równania i nierówności liniowe

1. Równania i nierówności liniowe Równania i nierówności liniowe Wykonać działanie: Rozwiązać równanie: ( +x + ) x a) 5x 5x+ 5 = 50 x 0 b) 6(x + x + ) = (x + ) (x ) c) x 0x (0 x) 56 = 6x 5 5 ( x) Rozwiązać równanie: a) x + x = 4 b) x x

Bardziej szczegółowo

Zestaw VI. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. (x + 1) 2 > 18 B. (x 1) 2 < 5 C. (x + 4) 2 < 50 D.

Zestaw VI. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. (x + 1) 2 > 18 B. (x 1) 2 < 5 C. (x + 4) 2 < 50 D. Zestaw VI Zadanie. ( pkt) Wskaż nierówność, którą spełnia liczba π A. (x + ) 2 > 8 B. (x ) 2 < C. (x + 4) 2 < 0 D. (x 2 )2 8 Zadanie 2. ( pkt) Pierwsza rata, która stanowi 8% ceny roweru, jest równa 92

Bardziej szczegółowo

Wzór Maclaurina. Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = x k + f (n) (θx) x n.

Wzór Maclaurina. Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = x k + f (n) (θx) x n. Wzór Maclaurina Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = n 1 k=0 f (k) (0) k! x k + f (n) (θx) x n. n! Wzór Maclaurina Przykład. Niech f (x) =

Bardziej szczegółowo

Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO

Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO Dział programowy. Zakres realizacji 1. Liczby, działania i procenty Liczby wymierne i liczby niewymierne-działania, kolejność

Bardziej szczegółowo

Elementy Modelowania Matematycznego

Elementy Modelowania Matematycznego Elementy Modelowania Matematycznego Wykład 8 Programowanie nieliniowe Spis treści Programowanie nieliniowe Zadanie programowania nieliniowego Zadanie programowania nieliniowego jest identyczne jak dla

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

Logika i teoria mnogości Ćwiczenia

Logika i teoria mnogości Ćwiczenia Logika i teoria mnogości Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Algebra zbiorów 3 3 Różnica symetryczna 4 4 Iloczyn kartezjański. Kwantyfikatory. 5 5 Kwantyfikatory. 6 6 Relacje 7 7 Relacje

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRZED MATURĄ MAJ 2017 POZIOM PODSTAWOWY Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron (zadania 1 33). 2. Rozwiązania zadań wpisuj

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom rozszerzony

Próbny egzamin maturalny z matematyki Poziom rozszerzony Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 2016 POZIOM ROZSZERZONY 1. Rozwiązania zadań i odpowiedzi wpisuj

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

Analiza Matematyczna MAEW101

Analiza Matematyczna MAEW101 Analiza Matematyczna MAEW Wydział Elektroniki Listy zadań nr 8-4 (część II) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 5 M.Gewert, Z Skoczylas,

Bardziej szczegółowo