POMIAR PRĘDKOŚCI OBROTOWEJ

Wielkość: px
Rozpocząć pokaz od strony:

Download "POMIAR PRĘDKOŚCI OBROTOWEJ"

Transkrypt

1 POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY KATEDRA ELEKTROTECHNIKI TEORETYCZNEJ I METROLOGII Instrukcja do zajęć laboratoryjnych z przedmiotu: Systemy pomiarowe Kod przedmiotu: KS Ćwiczenie nr 8 POMIAR PRĘDKOŚCI OBROTOWEJ O p r a c o w a ł : dr inż. Arkadiusz Łukjaniuk dr inż. Wojciech Walendziuk Białystok 2010

2 Wszystkie prawa zastrzeżone. Wszystkie nazwy handlowe i towarów występujące w niniejszej instrukcji są znakami towarowymi zastrzeżonymi lub nazwami zastrzeżonymi odpowiednich firm odnośnych właścicieli. 2

3 1. Cel ćwiczenia Celem niniejszego ćwiczenia jest zapoznanie studentów z istotą pomiaru prędkości obrotowej za pomocą czujników występujących w przemyśle. Przeprowadzony eksperyment w trakcie prac laboratoryjnych będzie polegał na zbadaniu dokładności pomiaru prędkości obrotowej wirującego wału za pomocą przetworników: hallotronowego, indukcyjnego i tensometrycznego. 2. Wstęp Pomiar prędkości liniowej, czy też obrotowej są jednymi z najważniejszych parametrów metrologicznych powszechnie występujących w przemyśle. Badanie prędkości liniowej stosowane jest powszechnie w czasie kontroli urządzeń związanych na przykład z przesuwem taśmy produkcyjnej, blachy w walcarce czy też szeroko pojętego przemieszczania się obiektów. Prędkość obrotową monitorujemy natomiast w przypadkach kontroli urządzeń wirujących takich jak: silniki, tarcze pilarek, koła zębate oraz pasowe, czy też różnego rodzaju urządzenia mieszające. Standardową jednostką prędkości liniowej według układu SI jest. Z definicji prędkość liniowa w ruchu jednostajnym jest przyrostem wektora położenia względem jednostki czasu. (1) moduł tej wielkości jako wielkość skalarna określa szybkość, która zamiennie jest nazywana prędkością. gdzie: S - określa przebytą drogę, T- czas trwania ruchu. (2) Chcąc analizować prędkość obrotową, której jednostka wyrażana jest w, lub zwyczajowo w przemysłowej nomenklaturze, należy skorzystać z definicji prędkości kątowej. Wyrażana jest ona następująco: (3) 3

4 gdzie: - jest kątem zakreślonym przez promień wiodący, - przyrost czasu w którym nastąpił ruch. Prędkość obrotowa może być więc wyznaczona jako: (4) Istnieje także prosta w zapisie zależność prędkości liniowej w stosunku do prędkości kątowej o postaci: (5) gdzie: v- moduł prędkości liniowej, R- jest promieniem okręgu, którego fragmentem jest zakreślany łuk. 3. Metody pomiarów prędkości w warunkach przemysłowych Pomiar prędkości może odbywać się w dwojaki sposób: o dotykowy mechaniczny odbywający się za pomocą prądniczek tachometrycznych oraz innych metod pośrednich powiązanych z bezdotykowym pomiarem; o bezdotykowy: optyczny wykonywany za pomocą czujników reagujących na światło widzialne (np. żarówka), podczerwień czy też laser; elektromagnetyczny związany z zastosowaniem czujników pojemnościowych, indukcyjnościowych oraz czujników natężenia pola magnetycznego, zwanych czujnikami Halla; porównawczy odbywający się za pomocą lampy stroboskopowej. Pomiar dotykowy polega na bezpośrednim zetknięciu się fragmentu ruchomego urządzenia pomiarowego z częścią maszyny znajdującą się w ruchu. 4

5 Przy pomiarach prędkości liniowej, pomiar dotykowy jest jedną z najczęściej spotykanych metod. Na przykład pomiar prędkości pojazdu osobowego wykonywany jest pośrednio poprzez badanie prędkości obrotowej koła o znanym promieniu. Jak łatwo zauważyć pomiar prędkości obrotowej odegrał tu pośrednią rolę. Bez niego niestety nie dało by się wykonać pomiaru prędkości liniowej przy założeniu, że urządzenie pomiarowe jest umiejscowione nieruchomo. Warto więc w tym momencie podkreślić fakt, iż pomiary prędkości obrotowej w środowisku przemysłowym odgrywają przeważającą rolę. Jednymi z urządzeń wykorzystywanych w tym celu są tzw. prądniczki tachometryczne. Przykładem może tu być prądniczka komutatorowa, w której parametrem proporcjonalnym do prędkości obrotowej wirnika jest napięcie. Nieobciążona prądniczka traktowana jest wtedy jako źródło badanego sygnału. Metody pomiaru stykowego stosowane są w zakresie metodami stykowymi są:. Wadami pomiaru obciążenie części wirującej maszyny dodatkowym oporem, poślizgi lub nieodpowiedni docisk części pomiarowej miernika w punkcie stycznym z pomiarowym, trudny pomiar elementów wirujących o małych rozmiarach, przy pomiarach tachoprądniczkami występują duże zakłócenia w postaci szumów. Bezdotykowe badania prędkości w związku z rozwojem nowoczesnej elektroniki zaczynają odgrywać coraz to istotniejszą rolę. W zasadzie pomiary metodami bezdotykowymi opierają się na dwóch metodach. Pierwsza z nich polega na badaniu liczby impulsów wygenerowanych przez czujnik pomiarowy w jednostce czasu. Druga na pomiarze czasu pomiędzy wygenerowanymi impulsami z czujników. Układy akwizycji danych pomiarowych na podstawie tych impulsów mogą obliczać dwa rodzaje prędkości obrotowej: prędkość uśrednioną z na przykład ostatnich 60 s i prędkość chwilową. Rysunek 1 poglądowo przedstawia pomiar przebiegi impulsów, które poddawane są dalszej analizie. 5

6 Rys.1. Przebiegi impulsów pomiarowych przy pomiarze prędkości obrotowej uśrednionej i chwilowej. Czujniki wykorzystywane do pomiarów bezdotykowych opierają się na różnych zasadach działania. Czujniki optyczne przeważnie ze względu na zmniejszenie czynnika zakłócenia światłem widzialnym wykorzystują podczerwień, jako nośnik informacji. Rozróżniamy tu na przykład czujniki odbiciowe oraz czujniki reagujące na promieniowanie, które dostarczane jest z zewnętrznego źródła. Czujniki drugiego rodzaju powszechnie określa się jako pracujące na zasadzie fotokomórki lub bariery świetlnej. Do zalet czujników odbiciowych można zaliczyć łatwy montaż czujnika w maszynie ze względu na umieszczenie w jednej obudowie zarówno odbiornika i nadajnika bez potrzeby stosowania reflektora, którym jest wirująca część maszyny. Czujniki barierowe natomiast charakteryzują się dwoma rozdzielnymi elementami tj.: nadajnikiem i odbiornikiem. Oba elementy muszą być usytuowane wzdłuż jednej osi wyznaczonej przez wiązkę nadajnika. Czujniki takie wykrywają obiekty pojawiające się miedzy wiązką światła (przysłaniając ją) emitowaną z nadajnika, a odbiornikiem który odbiera sygnał. Czujniki tego typu mają większy zasięg działania w porównaniu do czujników odbiciowych. Wadą czujników optycznych jest konieczność częstej ich konserwacji ze względu na zabrudzenia mechaniczne optyki czujników. Przykład czujnika optycznego z barierą świetlną przedstawiono poniżej (rys.2.). 6

7 Rys.2. Wygląd czujnika optycznego barierowego. Przetworniki indukcyjne pracują na zasadzie zmiany indukcyjności własnej lub wzajemnej. Odbywa się to pod wpływem przesunięcia lub zmiany geometrii obwodu magnetycznego, co bezpośrednio w urządzeniach przemysłowych wiąże się ze zmianą szczeliny powietrznej. W pewnych przypadkach korzysta się ze zmiany rezystancji cewki indukcyjnej w zależności od położenia części ruchomej czujnika, powodowanej prądami wirowymi. Wielkość mierzona stanowi sygnał wejściowy przetwornika pomiarowego, a wyjściowa to sygnał pomiarowy. Zazwyczaj przetworniki tego typu mogą być samodzielnymi urządzeniami pomiarowymi, lub częściami złożonego układu pomiarowego. Jako przykład przedstawiona będzie zasada działania przetwornika magnetoindukcyjnego (rys.3.). Przetwornik taki pracuje na zasadzie indukowania siły elektromotorycznej w uzwojeniu cewki nawiniętej na magnesie trwałym pod wpływem zbliżania się ferromagnetyka. Częstym zastosowaniem jest pomiar prędkości obrotowej silnika spalinowego, na którego wale znajduje się koło zębate. Wał silnika będąc w ruchu powoduje zmianę wartości strumienia magnetycznego, wytworzonego przez magnes trwały. Wartość siły elektromotorycznej E indukowanej w uzwojeniu o ilości zwojów z będzie proporcjonalna do szybkości zmian strumienia magnetycznego skojarzonego z uzwojeniem cewki: (6) 7

8 Rys. 3. Magnetoindukcyjny przetwornik prędkości obrotowej. Wartość jaką osiąga strumień elektromagnetyczny otaczający cewkę zależy od stosunku położenia przetwornika względem koła zębatego. Jeśli przetwornik jest ustawiony naprzeciwko zęba koła zębatego, to strumień magnetyczny emitowany przez magnes ma łatwiejszą drogę przepływu. Jego droga zamyka się poprzez materiał ferromagnetyczny, z którego jest wykonane koło zębate. Odmienna sytuacja występuje w przypadku położenia czujnika między zębami, reluktancja obwodu magnetycznego jest wtedy znacznie większa przez co strumień zostaje znacznie osłabiony. Cykliczne zmiany strumienia magnetycznego w cewce spowodowane obrotem koła zębatego indukują napięcie wyjściowe. Napięcie to jest funkcją obrotu koła zębatego, ponieważ strumień magnetyczny zależy od kątowego położenia zęba w stosunku do położenia magnesu. W celu poprawy czułości przetwornika zmniejsza się średnicę jednego z biegunów, który zwrócony jest w kierunku koła zębatego magnesu stałego. Konstrukcję w warunkach przemysłowych zazwyczaj osłania się obudową z tworzywa sztucznego, w celu ochrony przed uszkodzeniami mechanicznymi oraz wpływem warunków atmosferycznych. Zaletą stosowania przetworników tego typu jest brak konieczności zasilania, stosowania układów wzmacniających, względnie tania konstrukcja oraz duża odporność na zakłócenia elektromagnetyczne. Do wad tych przetworników można zaliczyć małą przydatność do pomiarów niewielkich prędkości obrotowych oraz wrażliwość na zmiany grubości szczeliny powietrznej i ograniczenie w możliwości zmniejszania wymiarów przy tradycyjnym wykonaniu cewki. Czujnik Halla opiera się na zjawisku, które polega na tym, iż w przewodniku znajdującym się w poprzecznym do płynącego prądu polu magnetycznym, wytwarza się różnica potencjałów. Napięcie to, nazwane zostało napięciem Halla, a pojawia się ono pomiędzy płaszczyznami ograniczającymi przewodnik prostopadle do płaszczyzny wyznaczanej przez 8

9 kierunek prądu i wektor indukcji pola magnetycznego. Napięcie wywołane jest działaniem siły Lorentza na ładunki, które poruszają się w polu magnetycznym. F gdzie: F - siła Lorentza [N], q - ładunek elektryczny [C], v - prędkość elektronów [m/s], B - indukcja magnetyczna [T]. q( v B) Kierunek siły Lorentza jest prostopadły do indukcji magnetycznej B oraz prędkości elektronów v, a jej zwrot zależy od znaku ładunku elektrycznego q. Siła ta powoduje powstanie różnicy w umiejscowieniu ładunków w przewodniku, a co się z tym wiąże, powstanie różnicy potencjałów, czyli napięcia, które mierzy się prostopadle do kierunku prądu I i wektora indukcji pola magnetycznego B. Napięcie to można wyznaczyć ze wzoru: Rh B I U H (8) h gdzie: U H - napięcie Halla Rh - jest tzw. stałą Halla, charakterystyczną dla danego rodzaju materiału, z którego wykonany jest hallotron, B - wartość wektora indukcji magnetycznej [T], I - prąd płynący przez przewodnik [A], h - grubość przewodnika [m]. Poniżej (rys.4.) przedstawiono klasyczny układ przewodnika w postaci płytki wraz z przenikającą go indukcyjnością, służący do demonstracji efektu Halla. (7) Rys. 4. Demonstracja układu do badania efektu Halla, w którym I jest prądem płynącym przez przewodnik [A], B - wartość wektora indukcji magnetycznej [T], U H - różnica potencjałów występująca na brzegach przewodnika [V], d- szerokość przewodnika [m], h- grubość przewodnika [m]. 9

10 4. Przebieg ćwiczenia Przed rozpoczęciem pomiarów należy włączyć zasilanie tablicy rozdzielczej i przełączniki na płycie czołowej rozdzielnicy ustawić w pozycji 1 (rys. 5). Rysunek 5. Widok czołowej płyty rozdzielnicy z zamontowanymi przyrządami Następnie zapoznać się z budową stanowiska laboratoryjnego i zastosowanymi w nich czujnikami do pomiaru prędkości obrotowej (rys. 6).. Rysunek 6. Widok stanowiska laboratoryjnego do pomiaru prędkości obrotowej 10

11 Na rys. 7a przestawiony jest hallotronowy czujnik do pomiaru prędkości obrotowej. Impulsy napięciowe na wyjściu tego czujnika powstają w wyniku przelotu magnesu trwałego umieszczonego na obwodzie teflonowej tarczy. a) b) Rysunek 7. Zamocowanie czujników na stanowisku laboratoryjnym: a) hallotronowego, b) indukcyjnego. b) Zasada działania przetwornika indukcyjnego (rys. 7b) opisana została w poprzednim rozdziale. Dane techniczne przetwornika magnetoindukcyjnego: Amplituda sygnału wyjściowego przetwornika zawiera się w przedziale: Znamionowe warunki użytkowania: zakres przetwarzania obrotów od 50 do 9999 obr/min; odległość przetwornika od koła zębatego od 0,5 do 1mm; temperatura otoczenia od -25 do 50ºC; wilgotność względna od 25 do 85%. Przetwornik tensometryczny do pomiaru prędkości obrotowej działa na zasadzie pomiaru za pomocą tensometrów foliowych odkształcenia belek 1 (rys. 8) pod wpływem siły odśrodkowej. Sygnał odkształcenia jest następnie przetwarzany w sposób przedstawiony na rys

12 F[N] 1 belka z tensometrami; 2 śruby; 3 podkładka dociskowa; 4 kołek; 5 korpus; 6 tuleja z ebonitu; 7 pierścień ślizgowy; 8 pierścień z ebonitu; 9 tuleja dociskowa, 10 tuleja z teflonu wewnątrz, której znajduje się wzmacniacz pomiarowy i nadajnik sygnału. Rysunek. 1. Widok przetwornika tensometrycznego do pomiaru prędkości obrotowej Rys. 9. Schemat blokowy toru sygnału przy pomiarze tensometrycznym prędkości obrotowej. Charakterystyka przetwarzania takiego przetwornika jest przedstawiona na rys. 10, a jej nieliniowość jest uwarunkowana zależnością siły odśrodkowej od prędkości obrotowej n[obr/min] Rysunek. 2. Zależność pomiędzy prędkością obrotową a siła odśrodkową. 12

13 Tachometr laserowy BETA 1760 (rys. 11) służy jako wzorzec do pomiaru prędkości obrotowej. Plamkę lasera z tego przyrządu należy skierować na marker znajdujący się na obudowie teflonowej układów elektronicznych do czujników tensometrycznych (rys. 6). Rysunek 11. Tachometr laserowy BETA Dane techniczne tachometru laserowego BETA 1760: bezkontaktowy pomiar prędkości obrotowej, kontaktowy pomiar prędkości obrotowej i liniowej, 5 cyfrowy wyświetlacz LCD, zakres pomiarowy: pomiar bezkontaktowy 2, obr/min, pomiar kontaktowy 0, obr/min, kontaktowy pomiar prędkości liniowej 0, ,99 m/min, okres odświeżania 0,8 s, zasilanie 6 V. Ćwiczenie polega na zbadaniu charakterystyk metrologicznych przetworników: tensometrycznego, magnetoindukcyjnego i hallotronowego oraz weryfikację wskazań wyświetlacza falownika. Po zapoznaniu się ze stanowiskiem pomiarowym należy wykonać serię 30 pomiarów prędkości obrotowej. Wyniki zestawić w tabeli 1. 13

14 Tabela 1. Lp. Miernik BETA Czujnik tensometr. Czujnik magnetoinduk. Czujnik hallotronowy Wskazania falownika czujnika tensom. Błąd względny czujnika magnetoind. czujnika hallotron. wskazań falownika Należy zbadać różnicę wskazań przy pomiarach prędkości obrotowej dla różnych czujników., (9) a także obliczyć także błąd względny wskazań: (10) Na podstawie tabeli narysować charakterystyki błędu bezwzględnego oraz względnego w funkcji prędkości obrotowej. 14

15 5. Pytania kontrolne 1. Podaj definicję prędkości liniowej i obrotowej. 2. Wymień sposoby pomiaru prędkości liniowej i obrotowej. 3. Wyjaśnij ogólną zasadę działania czujnika optycznego. 4. Wyjaśnij ogólną zasadę działania czujnika tensometrycznego. 5. Wyjaśnij ogólną zasadę działania czujnika indukcyjnościowego. 6. Wyjaśnij ogólną zasadę działania czujnika Halla. 7. Omów przyczyny błędów pomiaru prędkości obrotowej wymienionymi wyżej czujnikami. 6. Literatura 1) Turkowski M.: Przemysłowe sensory i przetworniki pomiarowe, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2002, ISBN: ) Miłek M.: Pomiary wielkości nieelektrycznych metodami elektrycznymi, Podręcznik akademicki, Zielona Góra, ) Hagel R.: Miernictwo wielkości nieelektrycznych metodami elektrycznymi, Cz. 1, Przetworniki i ich zastosowanie, Skrypt Pol. Śląskiej, ) Hagel R.: Miernictwo wielkości nieelektrycznych metodami elektrycznymi, Cz. 2, Przetworniki i ich zastosowanie, Skrypt Pol. Śląskiej, ) Kaczmarek Z.: Pomiary wielkości nieelektrycznych metodami elektrycznymi, skrypt nr 215, Wyd. Politechniki Świętokrzyskiej, Kielce Wymagania BHP Warunkiem przystąpienia do praktycznej realizacji ćwiczenia jest zapoznanie się z instrukcją BHP i instrukcją przeciwpożarową oraz przestrzeganie zasad w nich zawartych. Wybrane urządzenia dostępne na stanowisku laboratoryjnym mogą posiadać instrukcje stanowiskowe. Przed rozpoczęciem pracy należy zapoznać się z instrukcjami stanowiskowymi wskazanymi przez prowadzącego. W trakcie zajęć laboratoryjnych należy przestrzegać następujących zasad: Sprawdzić, czy urządzenia dostępne na stanowisku laboratoryjnym są w stanie kompletnym, nie wskazującym na fizyczne uszkodzenie. Sprawdzić prawidłowość połączeń urządzeń. Załączenie napięcia do układu pomiarowego może się odbywać po wyrażeniu zgody przez prowadzącego. 15

16 Przyrządy pomiarowe należy ustawić w sposób zapewniający stałą obserwację, bez konieczności nachylania się nad innymi elementami układu znajdującymi się pod napięciem. Zabronione jest dokonywanie jakichkolwiek przełączeń oraz wymiana elementów składowych stanowiska pod napięciem. Zmiana konfiguracji stanowiska i połączeń w badanym układzie może się odbywać wyłącznie w porozumieniu z prowadzącym zajęcia. W przypadku zaniku napięcia zasilającego należy niezwłocznie wyłączyć wszystkie urządzenia. Stwierdzone wszelkie braki w wyposażeniu stanowiska oraz nieprawidłowości w funkcjonowaniu sprzętu należy przekazywać prowadzącemu zajęcia. Zabrania się samodzielnego włączania, manipulowania i korzystania z urządzeń nie należących do danego ćwiczenia. W przypadku wystąpienia porażenia prądem elektrycznym należy niezwłocznie wyłączyć zasilanie stanowisk laboratoryjnych za pomocą wyłącznika bezpieczeństwa, dostępnego na każdej tablicy rozdzielczej w laboratorium. Przed odłączeniem napięcia nie dotykać porażonego. 16

POMIARY ELEKTRYCZNE WIELKOŚCI NIEELEKTRYCZNYCH 2

POMIARY ELEKTRYCZNE WIELKOŚCI NIEELEKTRYCZNYCH 2 Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Laboratorium z przedmiotu POMIARY ELEKTRYCZNE WIELKOŚCI NIEELEKTRYCZNYCH 2 Kod przedmiotu: EZ2B200012 Ćwiczenie

Bardziej szczegółowo

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH Kod

Bardziej szczegółowo

BADANIE ROZKŁADU TEMPERATURY W PIECU PLANITERM

BADANIE ROZKŁADU TEMPERATURY W PIECU PLANITERM POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY KATEDRA ELEKTROTECHNIKI TEORETYCZNEJ I METROLOGII Instrukcja do zajęć laboratoryjnych z przedmiotu: Pomiary elektryczne wielkości nieelektrycznych 2 Kod przedmiotu:

Bardziej szczegółowo

Pomiar prędkości obrotowej

Pomiar prędkości obrotowej 2.3.2. Pomiar prędkości obrotowej Metody: Kontaktowe mechaniczne (prądniczki tachometryczne różnych typów), Bezkontaktowe: optyczne (światło widzialne, podczerwień, laser), elektromagnetyczne (indukcyjne,

Bardziej szczegółowo

METROLOGIA EZ1C

METROLOGIA EZ1C Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu METOLOGI Kod przedmiotu: EZ1C 300 016 POMI EZYSTNCJI METODĄ

Bardziej szczegółowo

POMIARY PARAMETRÓW PRZEPŁYWU POWIETRZA

POMIARY PARAMETRÓW PRZEPŁYWU POWIETRZA POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY KATEDRA ELEKTROTECHNIKI TEORETYCZNEJ I METROLOGII Instrukcja do zajęć laboratoryjnych z przedmiotu: Systemy pomiarowe Kod przedmiotu: KS 04456 Ćwiczenie nr

Bardziej szczegółowo

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH Kod

Bardziej szczegółowo

WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ

WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Fizyka Kod przedmiotu: ISO73, INO73 Ćwiczenie Nr 7 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ

Bardziej szczegółowo

Mechatronika i inteligentne systemy produkcyjne. Sensory (czujniki)

Mechatronika i inteligentne systemy produkcyjne. Sensory (czujniki) Mechatronika i inteligentne systemy produkcyjne Sensory (czujniki) 1 Zestawienie najważniejszych wielkości pomiarowych w układach mechatronicznych Położenie (pozycja), przemieszczenie Prędkość liniowa,

Bardziej szczegółowo

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH Politecnika Białostocka Wydział Elektryczny Katedra Elektrotecniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnyc z przedmiotu MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH Kod przedmiotu:

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 4 POMIARY REFRAKTOMETRYCZNE Autorzy: dr

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

Ćwiczenie nr 43: HALOTRON

Ćwiczenie nr 43: HALOTRON Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel

Bardziej szczegółowo

Ćwiczenie: "Silnik prądu stałego"

Ćwiczenie: Silnik prądu stałego Ćwiczenie: "Silnik prądu stałego" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Zasada

Bardziej szczegółowo

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNE D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 14. Pomiary przemieszczeń liniowych

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNE D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 14. Pomiary przemieszczeń liniowych Cel ćwiczenia: Poznanie zasady działania czujników dławikowych i transformatorowych, w typowych układach pracy, określenie ich podstawowych parametrów statycznych oraz zbadanie ich podatności na zmiany

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE TS1C300 018

ELEMENTY ELEKTRONICZNE TS1C300 018 Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEMENY ELEKONICZNE S1C300 018 BIAŁYSOK 2013 1. CEL I ZAKES ĆWICZENIA LABOAOYJNEGO

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

Wyznaczanie stosunku e/m elektronu

Wyznaczanie stosunku e/m elektronu Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się

Bardziej szczegółowo

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ Ćwiczenie 4 WYZNCZNE NDUKCYJNOŚC WŁSNEJ WZJEMNEJ Celem ćwiczenia jest poznanie pośrednich metod wyznaczania indukcyjności własnej i wzajemnej na podstawie pomiarów parametrów elektrycznych obwodu. 4..

Bardziej szczegółowo

Klasyczny efekt Halla

Klasyczny efekt Halla Klasyczny efekt Halla Rysunek pochodzi z artykułu pt. W dwuwymiarowym świecie elektronów, autor: Tadeusz Figielski, Wiedza i Życie, nr 4, 1999 r. Pełny tekst artykułu dostępny na stronie http://archiwum.wiz.pl/1999/99044800.asp

Bardziej szczegółowo

PRZETWORNIKI POMIAROWE

PRZETWORNIKI POMIAROWE PRZETWORNIKI POMIAROWE PRZETWORNIK POMIAROWY element systemu pomiarowego, który dokonuje fizycznego przetworzenia z określoną dokładnością i według określonego prawa mierzonej wielkości na inną wielkość

Bardziej szczegółowo

Badanie rozkładu pola magnetycznego przewodników z prądem

Badanie rozkładu pola magnetycznego przewodników z prądem Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze

Bardziej szczegółowo

Charakterystyka rozruchowa silnika repulsyjnego

Charakterystyka rozruchowa silnika repulsyjnego Silnik repulsyjny Schemat połączeń silnika repulsyjnego Silnik tego typu budowany jest na małe moce i używany niekiedy tam, gdzie zachodzi potrzeba regulacji prędkości. Układ połączeń silnika repulsyjnego

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo

BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5

BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5 BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5 BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO 1. Wiadomości wstępne Silniki asynchroniczne jednofazowe są szeroko stosowane wszędzie tam, gdzie

Bardziej szczegółowo

Pole elektromagnetyczne

Pole elektromagnetyczne Pole elektromagnetyczne Pole magnetyczne Strumień pola magnetycznego Jednostką strumienia magnetycznego w układzie SI jest 1 weber (1 Wb) = 1 N m A -1. Zatem, pole magnetyczne B jest czasem nazywane gęstością

Bardziej szczegółowo

WAT - WYDZIAŁ ELEKTRONIKI INSTYTUT SYSTEMÓW ELEKTRONICZNYCH. Przedmiot: CZUJNIKI I PRZETWORNIKI Ćwiczenie nr 1 PROTOKÓŁ / SPRAWOZDANIE

WAT - WYDZIAŁ ELEKTRONIKI INSTYTUT SYSTEMÓW ELEKTRONICZNYCH. Przedmiot: CZUJNIKI I PRZETWORNIKI Ćwiczenie nr 1 PROTOKÓŁ / SPRAWOZDANIE Grupa: WAT - WYDZIAŁ ELEKTRONIKI INSTYTT SYSTEMÓW ELEKTRONICZNYCH Przedmiot: CZJNIKI I PRZETWORNIKI Ćwiczenie nr 1 PROTOKÓŁ / SPRAWOZDANIE Temat: Przetworniki tensometryczne /POMIARY SIŁ I CIŚNIEŃ PRZY

Bardziej szczegółowo

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

LABORATORIUM INŻYNIERII MATERIAŁOWEJ Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Protokół

Bardziej szczegółowo

Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii. Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA

Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii. Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA Kod przedmiotu: TS1C 200 008 ODDZIAŁYWANIE PRZYRZĄDU

Bardziej szczegółowo

Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 2 str. 1/7 ĆWICZENIE 2

Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 2 str. 1/7 ĆWICZENIE 2 Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 2 str. 1/7 ĆWICZENIE 2 WYBRANE ELEKTRYCZNE CZUJNIKI-PRZETWORNIKI PRZESUNIĘĆ LINIOWYCH I KĄTOWYCH 1.CEL ĆWICZENIA: zapoznanie się z podstawowymi

Bardziej szczegółowo

LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH. Pomiary statycznych parametrów indukcyjnościowych przetworników przemieszczenia liniowego

LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH. Pomiary statycznych parametrów indukcyjnościowych przetworników przemieszczenia liniowego LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH Pomiary statycznych parametrów indukcyjnościowych przetworników przemieszczenia liniowego Wrocław 1994 1 Pomiary statycznych parametrów indukcyjnościowych

Bardziej szczegółowo

ELEMENTY RLC W OBWODACH PRĄDU SINUSOIDALNIE ZMIENNEGO

ELEMENTY RLC W OBWODACH PRĄDU SINUSOIDALNIE ZMIENNEGO Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii nstrukcja do zajęć laboratoryjnych ELEMENTY RLC W OBWODACH PRĄD SNSODALNE ZMENNEGO Numer ćwiczenia E0 Opracowanie:

Bardziej szczegółowo

Temat: POMIAR SIŁ SKRAWANIA

Temat: POMIAR SIŁ SKRAWANIA AKADEMIA TECHNICZNO-HUMANISTYCZNA w Bielsku-Białej Katedra Technologii Maszyn i Automatyzacji Ćwiczenie wykonano: dnia:... Wykonał:... Wydział:... Kierunek:... Rok akadem.:... Semestr:... Ćwiczenie zaliczono:

Bardziej szczegółowo

Czujniki prędkości obrotowej silnika

Czujniki prędkości obrotowej silnika Czujniki prędkości obrotowej silnika Czujniki prędkości obrotowej silnika 1 Jednym z najważniejszych sygnałów pomiarowych używanych przez program sterujący silnikiem spalinowym ZI jest sygnał kątowego

Bardziej szczegółowo

Zjawisko Halla Referujący: Tomasz Winiarski

Zjawisko Halla Referujący: Tomasz Winiarski Plan referatu Zjawisko Halla Referujący: Tomasz Winiarski 1. Podstawowe definicje ffl wektory: E, B, ffl nośniki ładunku: elektrony i dziury, ffl podział ciał stałych ze względu na własności elektryczne:

Bardziej szczegółowo

Temat ćwiczenia. Pomiary przemieszczeń metodami elektrycznymi

Temat ćwiczenia. Pomiary przemieszczeń metodami elektrycznymi POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temat ćwiczenia Pomiary przemieszczeń metodami elektrycznymi Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z elektrycznymi metodami pomiarowymi wykorzystywanymi

Bardziej szczegółowo

Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH. Nr 2

Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH. Nr 2 Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH Nr 2 POMIAR I KASOWANIE LUZU W STOLE OBROTOWYM NC Poznań 2008 1. CEL ĆWICZENIA Celem ćwiczenia jest

Bardziej szczegółowo

Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą.

Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą. Ćwiczenie nr 9 Pomiar rezystancji metodą porównawczą. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne poznanie różnych metod pomiaru rezystancji, a konkretnie zapoznanie się z metodą porównawczą. 2. Dane

Bardziej szczegółowo

Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i prędkości.

Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i prędkości. Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych CięŜkich PW Laboratorium Elektrotechniki i Elektroniki Ćwiczenie E3 - protokół Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 6 BADANIE TEMPERATUR TOPNIENIA Autorzy:

Bardziej szczegółowo

Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Indukcja elektromagnetyczna Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Strumień indukcji magnetycznej Analogicznie do strumienia pola elektrycznego można

Bardziej szczegółowo

Czujniki i urządzenia pomiarowe

Czujniki i urządzenia pomiarowe Czujniki i urządzenia pomiarowe Czujniki zbliŝeniowe (krańcowe), detekcja obecności Wyłączniki krańcowe mechaniczne Dane techniczne Napięcia znamionowe 8-250VAC/VDC Prądy ciągłe do 10A śywotność mechaniczna

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 BADANIE TRANZYSTORÓW BIAŁYSTOK 2015 1. CEL I ZAKRES

Bardziej szczegółowo

ENS1C BADANIE OBWODU TRÓJFAZOWEGO Z ODBIORNIKIEM POŁĄCZONYM W TRÓJKĄT E10

ENS1C BADANIE OBWODU TRÓJFAZOWEGO Z ODBIORNIKIEM POŁĄCZONYM W TRÓJKĄT E10 Politechnika iałostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii nstrukcja do zajęć laboratoryjnych ENS1200 013 DNE OWOD TRÓJFOWEGO ODORNKEM POŁĄONYM W TRÓJKĄT Numer ćwiczenia

Bardziej szczegółowo

Ćwiczenie: "Silnik indukcyjny"

Ćwiczenie: Silnik indukcyjny Ćwiczenie: "Silnik indukcyjny" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Zasada

Bardziej szczegółowo

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII

Bardziej szczegółowo

SILNIK INDUKCYJNY KLATKOWY

SILNIK INDUKCYJNY KLATKOWY SILNIK INDUKCYJNY KLATKOWY. Budowa i zasada działania silników indukcyjnych Zasadniczymi częściami składowymi silnika indukcyjnego są nieruchomy stojan i obracający się wirnik. Wewnętrzną stronę stojana

Bardziej szczegółowo

Badanie własności hallotronu, wyznaczenie stałej Halla (E2)

Badanie własności hallotronu, wyznaczenie stałej Halla (E2) Badanie własności hallotronu, wyznaczenie stałej Halla (E2) 1. Wymagane zagadnienia - ruch ładunku w polu magnetycznym, siła Lorentza, pole elektryczne - omówić zjawisko Halla, wyprowadzić wzór na napięcie

Bardziej szczegółowo

Zakład Zastosowań Elektroniki i Elektrotechniki

Zakład Zastosowań Elektroniki i Elektrotechniki Zakład Zastosowań Elektroniki i Elektrotechniki Laboratorium Wytwarzania energii elektrycznej Temat ćwiczenia: Badanie alternatora 52 BADANIE CHARAKTERYSTYK EKSPLOATACYJNYCH ALTERNATORÓW SAMO- CHODOWYCH

Bardziej szczegółowo

Laboratorium Elementów i Układów Automatyzacji

Laboratorium Elementów i Układów Automatyzacji Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Instytut Technologii Mechanicznej Laboratorium Elementów i Układów Automatyzacji Wzmacniacz pomiarowy Instrukcja do ćwiczenia OGÓLNE ZASADY BEZPIECZEŃSTWA

Bardziej szczegółowo

KARTA MODUŁU / KARTA PRZEDMIOTU

KARTA MODUŁU / KARTA PRZEDMIOTU KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Pomiary elektryczne wielkości nieelektrycznych Electrical measurements

Bardziej szczegółowo

LABORATORIUM PRZETWORNIKÓW ELEKTROMECHANICZNYCH

LABORATORIUM PRZETWORNIKÓW ELEKTROMECHANICZNYCH -CEL- LABORATORIUM PRZETWORNIKÓW ELEKTROMECHANICZNYCH PODSTAWOWE CHARAKTERYSTYKI I PARAMETRY SILNIKA RELUKTANCYJNEGO Z KLATKĄ ROZRUCHOWĄ (REL) Zapoznanie się z konstrukcją silników reluktancyjnych. Wyznaczenie

Bardziej szczegółowo

ENS1C BADANIE DŁAWIKA E04

ENS1C BADANIE DŁAWIKA E04 Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych ENS00 03 BADANIE DŁAWIKA Numer ćwiczenia E04 Opracowanie: Dr inż. Anna

Bardziej szczegółowo

Laboratorium techniki światłowodowej. Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia

Laboratorium techniki światłowodowej. Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia Laboratorium techniki światłowodowej Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie

Bardziej szczegółowo

Silniki prądu stałego z komutacją bezstykową (elektroniczną)

Silniki prądu stałego z komutacją bezstykową (elektroniczną) Silniki prądu stałego z komutacją bezstykową (elektroniczną) Silnik bezkomutatorowy z fototranzystorami Schemat układu przekształtnikowego zasilającego trójpasmowy silnik bezszczotkowy Pojedynczy cykl

Bardziej szczegółowo

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza Efekt Halla Cel ćwiczenia Celem ćwiczenia jest zbadanie efektu Halla. Wstęp Siła Loretza Na ładunek elektryczny poruszający się w polu magnetycznym w kierunku prostopadłym do linii pola magnetycznego działa

Bardziej szczegółowo

1.Wstęp. Prąd elektryczny

1.Wstęp. Prąd elektryczny 1.Wstęp. Celem ćwiczenia pierwszego jest zapoznanie się z metodą wyznaczania charakterystyki regulacyjnej silnika prądu stałego n=f(u), jako zależności prędkości obrotowej n od wartości napięcia zasilania

Bardziej szczegółowo

Miernictwo - W10 - dr Adam Polak Notatki: Marcin Chwedziak. Miernictwo I. dr Adam Polak WYKŁAD 10

Miernictwo - W10 - dr Adam Polak Notatki: Marcin Chwedziak. Miernictwo I. dr Adam Polak WYKŁAD 10 Miernictwo I dr Adam Polak WYKŁAD 10 Pomiary wielkości elektrycznych stałych w czasie Pomiary prądu stałego: Technika pomiaru prądu: Zakresy od pa do setek A Czynniki wpływające na wynik pomiaru (jest

Bardziej szczegółowo

Zakład Teorii Maszyn i Układów Mechatronicznych. LABORATORIUM Podstaw Mechatroniki. Sensory odległości

Zakład Teorii Maszyn i Układów Mechatronicznych. LABORATORIUM Podstaw Mechatroniki. Sensory odległości Zakład Teorii Maszyn i Układów Mechatronicznych LABORATORIUM Podstaw Mechatroniki Sensory odległości Podstawy Mechatroniki Nazwa Stanowiska: Stanowisko do badania sensorów odległości Widok Stanowiska:

Bardziej szczegółowo

BEZDOTYKOWY CZUJNIK ULTRADŹWIĘKOWY POŁOŻENIA LINIOWEGO

BEZDOTYKOWY CZUJNIK ULTRADŹWIĘKOWY POŁOŻENIA LINIOWEGO Temat ćwiczenia: BEZDOTYKOWY CZUJNIK ULTRADŹWIĘKOWY POŁOŻENIA LINIOWEGO 1. Wprowadzenie Ultradźwiękowy bezdotykowy czujnik położenia liniowego działa na zasadzie pomiaru czasu powrotu impulsu ultradźwiękowego,

Bardziej szczegółowo

Laboratorium Podstaw Pomiarów

Laboratorium Podstaw Pomiarów Laboratorium Podstaw Pomiarów Ćwiczenie 5 Pomiary rezystancji Instrukcja Opracował: dr hab. inż. Grzegorz Pankanin, prof. PW Instytut Systemów Elektronicznych Wydział Elektroniki i Technik Informacyjnych

Bardziej szczegółowo

Ćwiczenie 3 Falownik

Ćwiczenie 3 Falownik Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Automatyzacja i Nadzorowanie Maszyn Zajęcia laboratoryjne Ćwiczenie 3 Falownik Poznań 2012 Opracował: mgr inż. Bartosz Minorowicz Zakład Urządzeń

Bardziej szczegółowo

Ćwiczenie nr 10. Pomiar rezystancji metodą techniczną. Celem ćwiczenia jest praktyczne zapoznanie się z różnymi metodami pomiaru rezystancji.

Ćwiczenie nr 10. Pomiar rezystancji metodą techniczną. Celem ćwiczenia jest praktyczne zapoznanie się z różnymi metodami pomiaru rezystancji. Ćwiczenie nr 10 Pomiar rezystancji metodą techniczną. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne zapoznanie się z różnymi metodami pomiaru rezystancji. 2. Dane znamionowe Przed przystąpieniem do

Bardziej szczegółowo

Ćwiczenie EA1 Silniki wykonawcze prądu stałego

Ćwiczenie EA1 Silniki wykonawcze prądu stałego Akademia Górniczo-Hutnicza im.s.staszica w Krakowie KATEDRA MASZYN ELEKTRYCZNYCH Ćwiczenie EA1 Silniki wykonawcze prądu stałego Program ćwiczenia: A Silnik wykonawczy elektromagnetyczny 1. Zapoznanie się

Bardziej szczegółowo

3. Przebieg ćwiczenia I. Porównanie wskazań woltomierza wzorcowego ze wskazaniami woltomierza badanego.

3. Przebieg ćwiczenia I. Porównanie wskazań woltomierza wzorcowego ze wskazaniami woltomierza badanego. Badanie woltomierza 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z rożnymi układami nastawienia napięcia oraz metodami jego pomiaru za pomocą rożnych typów woltomierzy i nabranie umiejętności posługiwania

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 41: Busola stycznych

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 41: Busola stycznych Nazwisko i imię: Zespół: Data: Ćwiczenie nr 41: Busola stycznych Cel ćwiczenia: Wyznaczenie składowej poziomej ziemskiego pola magnetycznego. Literatura [1] Kąkol Z., Fizyka dla inżynierów, OEN Warszawa,

Bardziej szczegółowo

Uśrednianie napięć zakłóconych

Uśrednianie napięć zakłóconych Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Miernictwa Elektronicznego Uśrednianie napięć zakłóconych Grupa Nr ćwicz. 5 1... kierownik 2... 3... 4... Data Ocena I.

Bardziej szczegółowo

Katedra Elektroniki ZSTi. Lekcja 12. Rodzaje mierników elektrycznych. Pomiary napięći prądów

Katedra Elektroniki ZSTi. Lekcja 12. Rodzaje mierników elektrycznych. Pomiary napięći prądów Katedra Elektroniki ZSTi Lekcja 12. Rodzaje mierników elektrycznych. Pomiary napięći prądów Symbole umieszczone na przyrządzie Katedra Elektroniki ZSTiO Mierniki magnetoelektryczne Budowane: z ruchomącewkąi

Bardziej szczegółowo

Systemy pomiarowe. Ćwiczenie Nr 4 BADANIE WŁAŚCIWOŚCI PRZETWORNIKA INDUKCYJNOŚCIOWEGO TRANSFORMATOROWEGO

Systemy pomiarowe. Ćwiczenie Nr 4 BADANIE WŁAŚCIWOŚCI PRZETWORNIKA INDUKCYJNOŚCIOWEGO TRANSFORMATOROWEGO POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Systemy pomiarowe Kod przedmiotu: KS05456, KN05456 Ćwiczenie Nr 4 BADANIE WŁAŚCIWOŚCI PRZETWORNIKA

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 2. Analiza kinematyczna napędu z przekładniami

INSTRUKCJA DO ĆWICZENIA NR 2. Analiza kinematyczna napędu z przekładniami INSTRUKCJA DO ĆWICZENIA NR 2 Analiza kinematyczna napędu z przekładniami 1. Wprowadzenie Układ roboczy maszyny, cechuje się swoistą charakterystyką ruchowoenergetyczną, często odmienną od charakterystyki

Bardziej szczegółowo

WYZNACZENIE CHARAKTERYSTYK STATYCZNYCH PRZETWORNIKÓW POMIAROWYCH

WYZNACZENIE CHARAKTERYSTYK STATYCZNYCH PRZETWORNIKÓW POMIAROWYCH Zakład Metrologii i Systemów Pomiarowych P o l i t e c h n i k a P o z n ańska ul. Jana Pawła II 4 60-96 POZNAŃ (budynek Centrum Mechatroniki, Biomechaniki i Nanoinżynierii) www.zmisp.mt.put.poznan.pl

Bardziej szczegółowo

Elementy indukcyjne. duża czułość i sztywność układu stateczne i bezstopniowe przekazywanie sygnału mała siła oddziaływania duża pewność ruchu

Elementy indukcyjne. duża czułość i sztywność układu stateczne i bezstopniowe przekazywanie sygnału mała siła oddziaływania duża pewność ruchu Elementy indukcyjne Elementem indukcyjnym nazywamy urządzenie, którego zadaniem jest przetworzenie dowolnej wielkości nieelektrycznej lub elektrycznej na elektryczny sygnał napięciowy lub prądowy. Sygnał

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą

Bardziej szczegółowo

Spis treści Wstęp Rozdział 1. Metrologia przedmiot i zadania

Spis treści Wstęp Rozdział 1. Metrologia przedmiot i zadania Spis treści Wstęp Rozdział 1. Metrologia przedmiot i zadania 1.1. Przedmiot metrologii 1.2. Rola i zadania metrologii współczesnej w procesach produkcyjnych 1.3. Główny Urząd Miar i inne instytucje ważne

Bardziej szczegółowo

Czujniki. Czujniki służą do przetwarzania interesującej nas wielkości fizycznej na wielkość elektryczną łatwą do pomiaru. Najczęściej spotykane są

Czujniki. Czujniki służą do przetwarzania interesującej nas wielkości fizycznej na wielkość elektryczną łatwą do pomiaru. Najczęściej spotykane są Czujniki Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Czujniki Czujniki służą do przetwarzania interesującej

Bardziej szczegółowo

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Mechatronika (WM) Laboratorium Elektrotechniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Bardziej szczegółowo

KARTA MODUŁU / KARTA PRZEDMIOTU

KARTA MODUŁU / KARTA PRZEDMIOTU KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu E-1EZ2-1002-s2 Pomiary elektryczne wielkości Nazwa modułu nieelektrycznych_e2n Electrical measurements of non-electrical Nazwa modułu w języku angielskim quantities

Bardziej szczegółowo

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO POLITECHNIKA ŚLĄSKA WYDZIAŁ TRANSPORTU KATEDRA LOGISTYKI I TRANSPORTU PRZEMYSŁOWEGO NR 1 POMIAR PRZESUNIĘCIA FAZOWEGO Katowice, październik 5r. CEL ĆWICZENIA Poznanie zjawiska przesunięcia fazowego. ZESTAW

Bardziej szczegółowo

Badanie silnika bezszczotkowego z magnesami trwałymi (BLCD)

Badanie silnika bezszczotkowego z magnesami trwałymi (BLCD) Badanie silnika bezszczotkowego z magnesami trwałymi (BLCD) Badane silniki BLCD są silnikami bezszczotkowymi prądu stałego (odpowiednikami odwróconego konwencjonalnego silnika prądu stałego z magnesami

Bardziej szczegółowo

ĆWICZENIE 5. POMIARY NAPIĘĆ I PRĄDÓW STAŁYCH Opracowała: E. Dziuban. I. Cel ćwiczenia

ĆWICZENIE 5. POMIARY NAPIĘĆ I PRĄDÓW STAŁYCH Opracowała: E. Dziuban. I. Cel ćwiczenia ĆWICZEIE 5 I. Cel ćwiczenia POMIAY APIĘĆ I PĄDÓW STAŁYCH Opracowała: E. Dziuban Celem ćwiczenia jest zaznajomienie z przyrządami do pomiaru napięcia i prądu stałego: poznanie budowy woltomierza i amperomierza

Bardziej szczegółowo

Silniki indukcyjne. Ze względu na budowę wirnika maszyny indukcyjne dzieli się na: -Maszyny indukcyjne pierścieniowe. -Maszyny indukcyjne klatkowe.

Silniki indukcyjne. Ze względu na budowę wirnika maszyny indukcyjne dzieli się na: -Maszyny indukcyjne pierścieniowe. -Maszyny indukcyjne klatkowe. Silniki indukcyjne Ze względu na budowę wirnika maszyny indukcyjne dzieli się na: -Maszyny indukcyjne pierścieniowe. -Maszyny indukcyjne klatkowe. Silniki pierścieniowe to takie silniki indukcyjne, w których

Bardziej szczegółowo

POMIARY TEMPERATURY I

POMIARY TEMPERATURY I Cel ćwiczenia Ćwiczenie 5 POMIARY TEMPERATURY I Celem ćwiczenia jest poznanie budowy i zasady działania rezystancyjnych czujników temperatury, układów połączeń czujnika z elektrycznymi układami przetwarzającymi

Bardziej szczegółowo

3.5 Wyznaczanie stosunku e/m(e22)

3.5 Wyznaczanie stosunku e/m(e22) Wyznaczanie stosunku e/m(e) 157 3.5 Wyznaczanie stosunku e/m(e) Celem ćwiczenia jest wyznaczenie stosunku ładunku e do masy m elektronu metodą badania odchylenia wiązki elektronów w poprzecznym polu magnetycznym.

Bardziej szczegółowo

Badziak Zbigniew Kl. III te. Temat: Budowa, zasada działania oraz rodzaje mierników analogowych i cyfrowych.

Badziak Zbigniew Kl. III te. Temat: Budowa, zasada działania oraz rodzaje mierników analogowych i cyfrowych. Badziak Zbigniew Kl. III te Temat: Budowa, zasada działania oraz rodzaje mierników analogowych i cyfrowych. 1. MIERNIKI ANALOGOWE Mierniki magnetoelektryczne. Miernikami magnetoelektrycznymi nazywamy mierniki,

Bardziej szczegółowo

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika

Bardziej szczegółowo

Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, Spis treści

Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, Spis treści Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, 2015 Spis treści Przedmowa 7 Wstęp 9 1. PODSTAWY ELEKTROTECHNIKI 11 1.1. Prąd stały 11 1.1.1. Podstawowe

Bardziej szczegółowo

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA E1. OBWODY PRĄDU STŁEGO WYZNCZNIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁ tekst opracowała: Bożena Janowska-Dmoch Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych wywołany

Bardziej szczegółowo

SILNIK INDUKCYJNY KLATKOWY

SILNIK INDUKCYJNY KLATKOWY SILNIK INDUKCYJNY KLATKOWY 1. Budowa i zasada działania silników indukcyjnych Zasadniczymi częściami składowymi silnika indukcyjnego są nieruchomy stojan i obracający się wirnik. Wewnętrzną stronę stojana

Bardziej szczegółowo

Podstawy Badań Eksperymentalnych

Podstawy Badań Eksperymentalnych Podstawy Badań Eksperymentalnych Katedra Pojazdów Mechanicznych i Transportu Wojskowa Akademia Techniczna Instrukcja do ćwiczenia. Temat 01 Pomiar siły z wykorzystaniem czujnika tensometrycznego Instrukcję

Bardziej szczegółowo

Oddziaływanie wirnika

Oddziaływanie wirnika Oddziaływanie wirnika W każdej maszynie prądu stałego, pracującej jako prądnica lub silnik, może wystąpić taki szczególny stan pracy, że prąd wirnika jest równy zeru. Jedynym przepływem jest wówczas przepływ

Bardziej szczegółowo

LABORATORIUM PKM. Katedra Konstrukcji i Eksploatacji Maszyn. Badanie statycznego i kinetycznego współczynnika tarcia dla wybranych skojarzeń ciernych

LABORATORIUM PKM. Katedra Konstrukcji i Eksploatacji Maszyn. Badanie statycznego i kinetycznego współczynnika tarcia dla wybranych skojarzeń ciernych LABORATORIUM PKM Badanie statycznego i kinetycznego współczynnika tarcia dla wybranych skojarzeń ciernych Katedra Konstrukcji i Eksploatacji Maszyn Katedra Konstrukcji i Eksploatacji Maszyn Opracowanie

Bardziej szczegółowo

Sensoryka i pomiary przemysłowe Kod przedmiotu

Sensoryka i pomiary przemysłowe Kod przedmiotu Sensoryka i pomiary przemysłowe - opis przedmiotu Informacje ogólne Nazwa przedmiotu Sensoryka i pomiary przemysłowe Kod przedmiotu 06.0-WE-AiRD-SiPP Wydział Kierunek Wydział Informatyki, Elektrotechniki

Bardziej szczegółowo

Badanie prądnicy prądu stałego

Badanie prądnicy prądu stałego POLTECHNKA ŚLĄSKA WYDZAŁ NŻYNER ŚRODOWSKA ENERGETYK NSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH LABORATORUM ELEKTRYCZNE Badanie prądnicy prądu stałego (E 18) Opracował: Dr inż. Włodzimierz OGULEWCZ 3 1. Cel

Bardziej szczegółowo

Zakład Metrologii i Systemów Pomiarowych Laboratorium Metrologii I. Grupa. Nr ćwicz.

Zakład Metrologii i Systemów Pomiarowych Laboratorium Metrologii I. Grupa. Nr ćwicz. Laboratorium Metrologii I Politechnika zeszowska akład Metrologii i Systemów Pomiarowych Laboratorium Metrologii I Mostki niezrównoważone prądu stałego I Grupa Nr ćwicz. 12 1... kierownik 2... 3... 4...

Bardziej szczegółowo

OBWODY MAGNETYCZNIE SPRZĘŻONE

OBWODY MAGNETYCZNIE SPRZĘŻONE Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych Tytuł ENS1C200 013 ćwiczenia OBWODY MAGNETYCZNIE SPRZĘŻONE Numer ćwiczenia

Bardziej szczegółowo

LABORATORIUM PKM. Katedra Konstrukcji i Eksploatacji Maszyn. Badanie statycznego i kinetycznego współczynnika tarcia dla wybranych skojarzeń ciernych

LABORATORIUM PKM. Katedra Konstrukcji i Eksploatacji Maszyn. Badanie statycznego i kinetycznego współczynnika tarcia dla wybranych skojarzeń ciernych LABORATORIUM PKM Badanie statycznego i kinetycznego współczynnika tarcia dla wybranych skojarzeń ciernych Katedra Konstrukcji i Eksploatacji Maszyn Katedra Konstrukcji i Eksploatacji Maszyn Opracowanie

Bardziej szczegółowo

1 Źródła i detektory. I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego

1 Źródła i detektory. I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego 1 I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego Cel ćwiczenia: Wyznaczenie charakterystyki spektralnej nietermicznego źródła promieniowania (dioda LD

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH

POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH Gliwice, wrzesień 2007 Cyfrowe pomiary częstotliwości oraz parametrów RLC Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z budową,

Bardziej szczegółowo

4.8. Badania laboratoryjne

4.8. Badania laboratoryjne BOTOIUM EEKTOTECHNIKI I EEKTONIKI Grupa Podgrupa Numer ćwiczenia 4 p. Nazwisko i imię Ocena Data wykonania ćwiczenia Podpis prowadzącego zajęcia 4. 5. Temat Wyznaczanie indukcyjności własnej i wzajemnej

Bardziej szczegółowo

Struktura układu pomiarowego drgań mechanicznych

Struktura układu pomiarowego drgań mechanicznych Wstęp Diagnostyka eksploatacyjna maszyn opiera się na obserwacji oraz analizie sygnału uzyskiwanego za pomocą systemu pomiarowego. Pomiar sygnału jest więc ważnym, integralnym jej elementem. Struktura

Bardziej szczegółowo