PROCES PRODUKCJI, CYKL PRODUKCYJNY

Wielkość: px
Rozpocząć pokaz od strony:

Download "PROCES PRODUKCJI, CYKL PRODUKCYJNY"

Transkrypt

1 PROCES PRODUKCJI, CYKL PRODUKCYJNY PRZEWODNIK DO ĆWICZEŃ 3 1. Proces produkcji Definicja Proces produkcyjny wyrobu zbiór operacji produkcyjnych realizowanych w uporządkowanej kolejności w celu wytworzenia określonego wyrobu. Obraz graficzny procesu produkcji Proces produkcji ma miejsce na 4 stanowiskach pracy: (stanowisko 3 jest pomijane) 2. Operacja produkcyjna i jej typy Definicja Operacja produkcyjna (technologiczna) część procesu produkcyjnego, która jest wykonywana na określonym przedmiocie (lub grupie) przez pracownika (lub kilku) na jednym (bądź wielu) stanowiskach pracy bez przerw. Typy operacji produkcyjnych: bezpośrednio produkcyjne (na lewo) oraz pośrednio produkcyjne (na prawo) Wyższa Szkoła Logistyki w Poznaniu, październik

2 3. Przerwa międzyoperacyjna Definicja Przerwa międzyoperacyjna ( mo ) czas pomiędzy wykonaniem dwóch kolejnych operacji technologicznych; w czasie przerwy międzyoperacyjnej mają miejsce operacje pośrednio produkcyjne (logistyka) Obraz graficzny przerwy międzyoperacyjnej Sekwencja procesu produkcji: operacja 1 na stanowisku 1 operacja 2 na stanowisku 2 operacja 3 na stanowisku 4 operacja 4 na stanowisku 5 (miejsce występowania przerw międzyoperacyjnych znaczono strzałkami) 4. Cykl produkcyjny Definicja Cykl produkcyjny czas niezbędny do wykonania wszystkich operacji w procesie produkcyjnym danego wyrobu łącznie z czasem wszystkich koniecznych przerw Obraz graficzny cyklu produkcyjnego Cykl produkcyjny wizualizuje najgrubsza ze strzałek (czas od momentu rozpoczęcia do momentu zakończenia wszelkich operacji w procesie prod.) Wyższa Szkoła Logistyki w Poznaniu, październik

3 5. Wielkość partii produkcji Partia optymalna Idea optymalnej partii produkcji koresponduje z koncepcją optymalnej partii dostawy w zaopatrzeniu i dystrybucji (EWZ, EWP, EWD, EOQ). W obszarach tych występują koszty magazynowania i zamawiania, którym w sferze wytwarzania odpowiadają odpowiednio koszty produkcji (roboty w toku) i koszty przygotowania produkcji (przezbrojenia). W każdym z przypadków poszukuje się wielkości optymalnej minimum kosztów całkowitych (suma obu kosztów) - wykres. Wielkość partii optymalnej obliczamy według wzoru: gdzie: T pz T j q suma czasów przygotowawczo-zakończeniowych [należy dla wszystkich operacji zsumować podane czasy t pz ] suma czasów jednostkowych [należy dla wszystkich operacji zsumować podane czasy t j ] współczynnik proporcjonalności kosztów przygotowania produkcji do kosztów produkcji (jest on zależny od skali produkcji) [zawsze w zadaniach należy przyjmować warunki produkcji średnioseryjnej, dla której q=0,05] Partia ekonomiczna Jest to zakres wielkości partii optymalnej, w którym odchylenie kosztów jest akceptowane przez organizatora. Partia jest uzasadniona ekonomicznie w następujących granicach: Zatem otrzymaną wielkość partii optymalnej można dalej kształtować: pomniejszając ją maksymalnie o 30% (w dół) albo powiększając maksymalnie o 50% (w górę); należy unikać wielkości skrajnych, wybierając wartości bliskie optimum. Wyższa Szkoła Logistyki w Poznaniu, październik

4 Partia transportowa (występuje w przebiegu równoległym i szeregowo-równoległym) W przebiegu równoległym i szeregowo-równoległym przekazywanie detali między stanowiskami nie odbywa się całą partią (optymalną, ekonomiczną), ale w partiach transportowych (pakietach). Wielkość partii transportowej obliczamy według wzoru: gdzie: n op k t wielkość partii optymalnej (ekonomicznej) [obliczona wg wzoru na n op, ewentualnie następnie skorygowana wg wzoru na n ek ] liczba partii transportowych [zawsze w zadaniach będzie podawana arbitralnie przez prowadzącego zajęcia; w praktyce ilość partii transportowych podyktowana jest wielkością pojemnika, w którym przekazuje się detale z operacji na operację] Przykład obliczania wielkości partii Dane: Op 10 tpz = 0,25 tj = 0,15 Op 20 tpz = 0,50 tj = 0,25 Op 30 tpz = 0,75 tj = 0,50 Op 40 tpz = 0,25 tj = 0,10 Rozwiązanie: n op = (0,25 + 0,50 + 0,75 + 0,25) / (0,15 + 0,25 + 0,50 + 0,10) * 0,05 = 1,75 / 1 * 0,05 = = 35 sztuk/ partię Uzyskaną wielkość partii optymalnej możemy skorygować ekonomicznie: n ek = <0,7 1,5> n op = <0,7 1,5> * 35 = <24,5 52,5> Przyjmujemy (arbitralnie) do dalszych obliczeń n ek = 40 sztuk/partię (nieznacznie ją powiększyliśmy). Przyjmując (arbitralnie), iż liczba partii transportowych będzie równa dwa (k t = 2), otrzymujemy wielkość partii transportowej: n t = 40 / 2 = 20 sztuk/partię transportową Uwaga: wielkość partii zawsze musi być liczbą całkowitą; ułamki należy zaokrąglać w górę. Wyższa Szkoła Logistyki w Poznaniu, październik

5 6. Cykl produkcyjny pojedynczej operacji Długotrwałość wiązania przedmiotu z operacją Relacja ta informuje jak długo wykonujemy daną operację (jaka jest długotrwałość pracy; kolokwialnie mówiąc: ile zajmie nam robota?) gdzie: n op t j wielkość partii optymalnej (ekonomicznej) [obliczona wg wzoru na n op, ewentualnie następnie skorygowana wg wzoru na n ek ] czas jednostkowy [dana z dokumentacji technologicznej] Długotrwałość wiązania stanowiska z operacją Relacja ta informuje jak długo stanowisko będzie zajęte w związku z wykonywaniem danej operacji (jaka jest dostępność stanowiska; kolokwialnie mówiąc: ile zajmie nam robota wraz z przezbrojeniem stanowiska?) gdzie: n op t j t j wielkość partii optymalnej (ekonomicznej) [obliczona wg wzoru na n op, ewentualnie następnie skorygowana wg wzoru na n ek ] czas jednostkowy [dana z dokumentacji technologicznej] czas przygotowawczo-zakończeniowy [dana z dokumentacji technologicznej] 7. Cykl produkcyjny wyrobu prostego Istnieją trzy podstawowe formy przejścia partii detali z jednej operacji na drugą: 1. przebieg szeregowy 2. przebieg równoległy 3. przebieg szeregowo równoległy Wyższa Szkoła Logistyki w Poznaniu, październik

6 8. Wariant szeregowy istota: następna operacja rozpoczyna się po zakończeniu operacji poprzedniej dla wszystkich sztuk w partii zalety: organizacyjnie najłatwiejszy do realizacji najmniejsza liczba operacji transportowych wada: największy czas trwania cyklu produkcyjnego zastosowanie: niskie typy produkcji (specjalizacja technologiczna) warunki większej seryjności (małe tj; Τ niewielki) wzór: gdzie: n op t j τ mo wielkość partii optymalnej (ekonomicznej) [obliczona wg wzoru na n op, ewentualnie następnie skorygowana wg wzoru na n ek ] czas jednostkowy [dana z dokumentacji technologicznej] czas przerw międzyoperacyjnych [należy dokonać zliczenia ilości przerw między operacjami, przemnażając tę wartość przez czas trwania przerwy; zawsze w zadaniach czas przerwy będzie podawany arbitralnie przez prowadzącego zajęcia; także zakładamy iż cykl produkcyjny kończy się w momencie przekazania wyrobu na magazyn tzn. zawsze po ostatniej operacji będzie występowała jeszcze przerwa międzyoperacyjna rekapitulując: ile operacji tyle przerw międzyoperacyjnych] wykres przebiegu: Wyższa Szkoła Logistyki w Poznaniu, październik

7 9. Wariant równoległy istota: poszczególne detale przechodzą na następne stanowisko natychmiast po wykonaniu operacji poprzedniej zaleta: największe skrócenie cyklu produkcyjnego wady: może powodować przestoje maszyn (~ synchronizacji) zwiększa liczbę operacji transportowych (koszty) zastosowanie: wyższe typy produkcji (specjalizacja przedmiotowa) wzór: gdzie: n t n op t j t jmax τ mo wielkość partii transportowej [obliczona wg wzoru na n t ] wielkość partii optymalnej (ekonomicznej) [obliczona wg wzoru na n op, ewentualnie następnie skorygowana wg wzoru na n ek ] czas jednostkowy [dana z dokumentacji technologicznej] maksymalny czas jednostkowy (t j najdłużej operacji) [dana z dokumentacji technologicznej] czas przerw międzyoperacyjnych [należy dokonać zliczenia ilości przerw między operacjami, przemnażając tę wartość przez czas trwania przerwy; zawsze w zadaniach czas przerwy będzie podawany arbitralnie przez prowadzącego zajęcia; także zakładamy iż cykl produkcyjny kończy się w momencie przekazania wyrobu na magazyn tzn. zawsze po ostatniej operacji będzie występowała jeszcze przerwa międzyoperacyjna rekapitulując: ile operacji tyle przerw międzyoperacyjnych] Wyższa Szkoła Logistyki w Poznaniu, październik

8 wykres przebiegu: Proces produkcji, cykl produkcyjny 10. Wariant szeregowo-równoległy istota: kolejna operacja rozpoczyna się przed zakończeniem operacji poprzedzającej (zapewnienie największej ciągłości obróbki) zaleta: skrócenie cyklu produkcyjnego wada: wzrost liczby operacji transportowych, przezbrojeń zastosowanie: asynchroniczne procesy produkcyjne wzór: gdzie: n op n t t j wielkość partii optymalnej (ekonomicznej) [obliczona wg wzoru na n op, ewentualnie następnie skorygowana wg wzoru na n ek ] wielkość partii transportowej [obliczona wg wzoru na n t ] czas jednostkowy [dana z dokumentacji technologicznej] Wyższa Szkoła Logistyki w Poznaniu, październik

9 t jmin τ mo Proces produkcji, cykl produkcyjny minimalne czasy jednostkowe (najkrótszy t j z dwóch t j operacji, które porównuje się parami: tj op10 z tj op20 wybierz krótszy, tj op20 z tj op30 wybierz krótszy itd.; zsumuj wszystkie wybrane) [dana z dokumentacji technologicznej] czas przerw międzyoperacyjnych [należy dokonać zliczenia ilości przerw między operacjami, przemnażając tę wartość przez czas trwania przerwy; zawsze w zadaniach czas przerwy będzie podawany arbitralnie przez prowadzącego zajęcia; także zakładamy iż cykl produkcyjny kończy się w momencie przekazania wyrobu na magazyn tzn. zawsze po ostatniej operacji będzie występowała jeszcze przerwa międzyoperacyjna rekapitulując: ile operacji tyle przerw międzyoperacyjnych] wykres przebiegu: 11. Rysowanie harmonogramów uwagi ogólne Na samym początku rysujemy układ współrzędnych, w którym na osi x oznaczamy czas (τ) zaś na osi y stanowiska (r) względnie operacje (op). Rozpoczynamy od narysowania pierwszego czasu przygotowawczo-zakończeniowego przed osią stanowisk/operacji (chodzi o to, aby obróbka dla pierwszej z operacji rozpoczęła się dokładnie w chwili 0). Tpz dla op 10 wynosi w tym przypadku 0,5 siwy prostokąt (wykres). Wyższa Szkoła Logistyki w Poznaniu, październik

10 Dalej należy dokonać obliczenia długotrwałości wykonania operacji 10 wg wzoru na (τ op ): pomnożyć wielkość partii (n) przez czas wykonania jednej sztuki (tj). Przyjmując, iż partia liczy 50 szt., a czas wykonania 1 sztuki w operacji 10 wynosi 0,05 otrzymujemy czas równy 2,5 jednostki. Czas wykonania operacji 10 zaznaczamy na harmonogramie niebieski prostokąt. Następnie należy dokonać przejścia do obliczeń kolejnej operacji. Zanim jednak się ona rozpocznie, należy dokonać odczekania pewnego interwału czasu (musi się dokonać chociażby transport ze stanowiska na stanowisko). Przyjmijmy, iż przerwa międzyoperacyjna wynosi 1 jednostkę czasu. Dalsza praca obróbcza (operacja 20) będzie mogła mieć miejsce równo po jednostce czasu od chwili zakończenia operacji 10 (reprezentuje ją czerwona pionowa kreska w operacji 20). Aby otrzymać na wykresie moment rozpoczęcia dalszej pracy należy dokonać rzutowania momentu zakończenia operacji 10 na operację 20 i doliczyć czas przerwy międzyoperacyjnej (przerwę obrazuje czerwona strzałka). W ramach przerwy międzyoperacyjnej możliwe jest przezbrajanie stanowisk (należy wrysowywać czasy tpz w ramach tego okresu). Zakładamy, iż tpz dla operacji 20 także wynosi 0,5. Otrzymujemy tym samym siwy prostokąt (przezbrojenie) w operacji 20. Wyższa Szkoła Logistyki w Poznaniu, październik

11 Pozostaje wyznaczenie czasu wykonania operacji 20 (wg poznanego już schematu). Liczebność partii to 50 szt, zaś przyjęty czas wykonania operacji 20 to 0,06. W efekcie otrzymujemy czas wykonania operacji 20 równy 3 jednostki czasu niebieski prostokąt w kolejnej operacji. Dalej postępujemy w sposób analogiczny, aż do ostatniej operacji. Na końcu należy dokonać pokazania przejść detalu z operacji na operację obrazuje się to relacjami od momentu zakończenia operacji poprzedniej, do momentu rozpoczęcia operacji kolejnej (czarna przerywana linia na wykresie). Wyższa Szkoła Logistyki w Poznaniu, październik

12 12. Przebieg szeregowy zadanie z komentarzem Oblicz i przedstaw graficznie długość cyklu produkcji partii przy założeniu przebiegu szeregowego na podstawie poniższej technologii: op 10 cięcie t pz = 0,1 t j =0,05 op 20 toczenie t pz = 0,2 t j =0,06 op 30 wiercenie t pz = 0,2 t j =0,05 op 40 szlifowanie t pz = 0,1 t j =0,04 mo = 1 q = 0,05 Obliczenia: Wykres przebiegu: Część C2 wchodzi w skład: zespołu Z2 w ilości 3 szt. oraz zespołu Z3 w ilości 1 szt. Zapotrzebowanie na zespół Z2 wynosi 2 szt, więc ilość C2 wzrasta do 6 szt (2 Z2 x 3 C2). Dalej jednak Z2 wchodzi w skład zespołu Z1, potrzebnego w ilości 2 szt. Tym samym ilość C2 rośnie do 12 szt (obliczone wcześniej 6szt x 2 Z1). Analogicznie należy dokonać Przebieg szeregowy jest bardzo prosty wyjaśnienia do obliczeń jak i postępowania przy sporządzaniu wykresu przebiegu znajdują się w materiale powyżej, stąd w tym miejscu pominięto wyczerpujący komentarz do zadania. 13. Przebieg równoległy zadanie z komentarzem Oblicz i przedstaw graficznie długość cyklu produkcji partii przy założeniu przebiegu równoległego na podstawie poniższej technologii: op 10 cięcie t pz = 0,1 t j =0,05 op 20 toczenie t pz = 0,3 t j =0,20 op 30 frezowanie t pz = 0,2 t j =0,10 mo = 2 q = 0,05 kt = 4 Wyższa Szkoła Logistyki w Poznaniu, październik

13 Obliczenia: Proces produkcji, cykl produkcyjny W przypadku obliczeń tego wariantu należy zwrócić uwagę na operację o najdłuższym czasie jednostkowym (tj max): w tym celu należy dokonać przeglądu technologii wykonania (czasy tj) i wybrać do obliczeń największy spośród nich. Wykres przebiegu: W przypadku rysowania wykresu postępujemy dokładnie tak samo, tylko że obliczamy długotrwałość wykonania każdej z partii transportowej w operacji 10 wg poznanego wzoru na (τ op ): pomnożyć wielkość partii transportowej (nt) przez czas wykonania jednej sztuki (tj). Takich partii będzie w ramach operacji tyle ile wynosi parametr kt (liczba partii transportowych) w zadaniu 4; na wykresie czas wykonania każdej partii transportowej został zobrazowana prostokątem w innym odcieniu koloru niebieskiego. Logika rysowania: wykres należy rysować tak jak w przebiegu szeregowym, tyle że po partii transportowej, aż do momentu dojścia do operacji maksymalnej rysujemy tpz operacji 10 przed osią obliczamy i rysujemy czas wykonania 1 partii transportowej w operacji 10 niebieski prostokąt oznaczony 1 zaznaczamy przerwę międzyoperacyjną czerwona strzałka w ramach przerwy międzyoperacyjnej wrysowujemy tpz operacji 20 obliczamy i rysujemy czas wykonania 1 partii transportowej w operacji 20 niebieski prostokąt oznaczony 1 dotarliśmy do operacji maksymalnej: będzie ona zawsze wykonywana bez przerw (poszczególne partie transportowe będą wykonywane jedna za drugą) powielamy zatem pierwszą partię transportową trzykrotnie otrzymując w operacji 20 stan: tpz, 1 partia transportowa, 2 partia transportowa, 3 partia transportowa, 4 partia transportowa Wyższa Szkoła Logistyki w Poznaniu, październik

14 (równe prostokąty, gdyż czasy wykonania poszczególnych partii transportowych są takie same) następnie postępujemy tak jak w przebiegu szeregowym: patrzymy gdzie skończyliśmy 1 partię transportową w operacji 20 i zaznaczamy przerwę między operacyjną czerwona strzałka w ramach przerwy międzyoperacyjnej zaznaczamy czas tpz operacji 30 obliczamy i rysujemy czas wykonania 1 partii transportowej w operacji 30 niebieski prostokąt oznaczony 1 potem postępujemy następująco: patrzymy gdzie skończyliśmy 2 partię transportową w operacji 20 i zaznaczamy przerwę między operacyjną czerwona strzałka rysujemy czas wykonania 2 partii transportowej w operacji 30 (jej wykonanie jest czasowo takie samo jak 1 partii transportowej) niebieski prostokąt oznaczony 2; przed tą partią transportową (jak i kolejnymi) nie zaznaczamy czasu tpz, gdyż stanowisko jest już przygotowane do tego typu pracy (swoją pracę już wykonało i oczekuje teraz na kolejną partię detali do obróbki) dalej w ramach operacji 30 identycznie postępujemy w przypadku partii transportowych numer 3 i 4 pozostały do narysowania partie transportowe 2-4 w operacji 10; logika postępowania jest dokładnie taka sama jak przedstawiona powyżej, tyle że w odwrotnym kierunku (w lewo) patrzymy gdzie rozpocząć się musi praca nad 2 partią transportową w operacji 20 zaznaczamy przerwę międzyoperacyjną czerwona strzałka (w lewo); wyznacza nam ona moment zakończenia obróbki 2 partii transportowej w operacji 10 rysujemy czas wykonania 2 partii transportowej w operacji 10 w lewo, do tyłu (jej wykonanie jest czasowo takie samo jak 1 partii transportowej) niebieski prostokąt oznaczony 2 potem patrzymy gdzie rozpocząć się musi praca nad 3 partią transportową w operacji 20 zaznaczamy przerwę międzyoperacyjną czerwona strzałka (w lewo); wyznacza nam ona moment zakończenia obróbki 3 partii transportowej w operacji 10 rysujemy czas wykonania 3 partii transportowej w operacji 10 w lewo (do tyłu) niebieski prostokąt oznaczony 3 w przypadku 4 partii transportowej w operacji 10 postępujemy identycznie na koniec zaznaczamy przejścia poszczególnych partii transportowych czarne przerywane linie Wyższa Szkoła Logistyki w Poznaniu, październik

15 Maksymalna partia transportowa może wystąpić w dowolnym miejscu marszruty technologicznej wyrobu. W zadaniu miał miejsce wariant w środku procesu technologicznego. Zdarzyć się mogą również dwa inne: na początku pierwsza operacja maksymalna (narysowana łącznie), pozostałe operacje mające nieciągłość prac oraz na końcu wszystkie operacje będą wykonywane z przerwami poza ostatnią, maksymalną (rysowaną łącznie). 14. Przebieg szeregowo-równoległy zadanie z komentarzem Oblicz i przedstaw graficznie długość cyklu produkcji partii przy założeniu przebiegu szeregowo-równoległego na podstawie poniższej technologii: op 10 toczenie t pz = 0,1 t j =0,05 op 20 frezowanie t pz = 0,2 t j =0,20 op 30 wiercenie t pz = 0,2 t j =0,10 op 40 szlifowanie t pz = 0,1 t j =0,05 mo = 1 q = 0,05 kt = 3 Obliczenia: W przypadku obliczeń tego wariantu należy zwrócić uwagę na sumę czasów jednostkowych (tj min): w celu jej wyznaczenia należy porównywać czasy tj parami tj operacji 10 z tj operacji 20 i wybrać krótszy z nich; następnie tj operacji 20 z tj operacji 30 i wybrać krótszy z nich itd.; na końcu należy wszystkie tj minimalne (wyniki porównania par tj) zsumować. Wykres przebiegu: Wyższa Szkoła Logistyki w Poznaniu, październik

16 W przypadku rysowania wykresu postępujemy dokładnie tak samo, tylko że obliczamy długotrwałość wykonania każdej z partii transportowej w operacji 10 wg poznanego wzoru na (τ op ): pomnożyć wielkość partii transportowej (nt) przez czas wykonania jednej sztuki (tj). Takich partii będzie w ramach operacji tyle ile wynosi parametr kt (liczba partii transportowych) w zadaniu 3; na wykresie czas wykonania każdej partii transportowej został zobrazowana prostokątem w innym odcieniu koloru niebieskiego. Logika rysowania: wykres należy rysować według zasad przebiegu szeregowego i równoległego rysujemy tpz operacji 10 przed osią obliczamy i rysujemy czas wykonania 1 partii transportowej w operacji 10 niebieski prostokąt oznaczony 1 następnie za nim dorysowujemy kolejne partie transportowe w operacji 10 (kolejne prostokąty) analogia do operacji maksymalnej przebiegu równoległego patrzymy, czy czas tj kolejnej operacji 20 jest dłuższy czy krótszy od bieżącej; w naszym przypadku dłuższy, co oznacza iż kolejną operację będziemy rysowali od przodu: wariant: przejście z operacji krótszej (tj mniejszy) na operację dłuższą (tj większy) zaznaczamy przerwę międzyoperacyjną z przodu czerwona strzałka w ramach przerwy międzyoperacyjnej wrysowujemy tpz operacji 20 obliczamy i rysujemy czas wykonania 1 partii transportowej w operacji 20 niebieski prostokąt oznaczony 1 następnie za nim dorysowujemy kolejne partie transportowe w operacji 20 (kolejne prostokąty) patrzymy, czy czas tj kolejnej operacji 30 jest dłuższy czy krótszy od bieżącej; w naszym przypadku krótszy, co oznacza iż kolejną operację będziemy rysowali od tyłu: wariant: przejście z operacji dłuższej (tj większy) na operację krótszą (tj mniejszy) zaznaczamy przerwę międzyoperacyjną od tyłu czerwona strzałka; obejmuje ona okres czasu od momentu zakończenia pracy ostatniej partii transportowej w bieżącej operacji do momentu rozpoczęcia obróbki tej partii w kolejnej operacji analogia do przebiegu szeregowego ale po ostatniej z partii transportowych pozostałe partie transportowe wrysowujemy z przodu, podobnie jak i tpz kolejne operacje rysujemy tak samo, w zależności z którym z dwóch wariantów operacji (krótsza/dłuższą czy dłuższa/krótszą) mamy do czynienia na koniec zaznaczamy przejścia poszczególnych partii transportowych czarne przerywane linie Wyższa Szkoła Logistyki w Poznaniu, październik

17 15. Wykresy przebiegów (duży format) a) szeregowy b) równoległy Wyższa Szkoła Logistyki w Poznaniu, październik

18 c) szeregowo-równoległy Wyższa Szkoła Logistyki w Poznaniu, październik

PROCES PRODUKCJI CYKL PRODUKCYJNY SZEREGOWO-RÓWNOLEGŁY RYSOWANIE HARMONOGRAMU

PROCES PRODUKCJI CYKL PRODUKCYJNY SZEREGOWO-RÓWNOLEGŁY RYSOWANIE HARMONOGRAMU PROCES PRODUKCJI CYKL PRODUKCYJNY SZEREGOWO-RÓWNOLEGŁY RYSOWANIE HARMONOGRAMU 1. Proces produkcji Definicja Proces produkcyjny wyrobu zbiór operacji produkcyjnych realizowanych w uporządkowanej kolejności

Bardziej szczegółowo

PRZEWODNIK DO NARYSOWANIA HARMONOGRAMU WZORCOWEGO

PRZEWODNIK DO NARYSOWANIA HARMONOGRAMU WZORCOWEGO PRZEWODNIK DO NARYSOWANIA HARMONOGRAMU WZORCOWEGO PRACY GNIAZDA PRODUKCYJNEGO 1. Proces produkcji Definicja Proces produkcyjny wyrobu zbiór operacji produkcyjnych realizowanych w uporządkowanej kolejności

Bardziej szczegółowo

Metody planowania i sterowania produkcją BUDOWA HARMONOGRAMU, CYKL PRODUKCYJNY, DŁUGOTRWAŁOŚĆ CYKLU PRODUKCYJNEGO.

Metody planowania i sterowania produkcją BUDOWA HARMONOGRAMU, CYKL PRODUKCYJNY, DŁUGOTRWAŁOŚĆ CYKLU PRODUKCYJNEGO. Metody planowania i sterowania produkcją BUDOWA HARMONOGRAMU, CYKL PRODUKCYJNY, DŁUGOTRWAŁOŚĆ CYKLU PRODUKCYJNEGO. Proces produkcyjny. Proces produkcyjny wyrobu można zdefiniować jako zbiór operacji produkcyjnych

Bardziej szczegółowo

ORGANIZACJA I ZARZĄDZANIE

ORGANIZACJA I ZARZĄDZANIE P O L I T E C H N I K A W A R S Z A W S K A WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ ORGANIZACJA I ZARZĄDZANIE Analiza okresu technologicznego produkcji wyrobu prostego

Bardziej szczegółowo

METODY PLANOWANIA I STEROWANIA PRODUKCJĄ OBLICZENIA NA POTRZEBY OPRACOWANI HARMONOGRAMU PRACY GNIAZDA. AUTOR: dr inż.

METODY PLANOWANIA I STEROWANIA PRODUKCJĄ OBLICZENIA NA POTRZEBY OPRACOWANI HARMONOGRAMU PRACY GNIAZDA. AUTOR: dr inż. 1 METODY PLANOWANIA I STEROWANIA PRODUKCJĄ OBLICZENIA NA POTRZEBY OPRACOWANI HARMONOGRAMU PRACY GNIAZDA AUTOR: dr inż. ROMAN DOMAŃSKI 2 1. DANE PROJEKTOWE 1.1. DANE WEJŚCIOWE DO PROJEKTU 3 1.1. Asortyment

Bardziej szczegółowo

Harmonogramowanie produkcji

Harmonogramowanie produkcji Harmonogramowanie produkcji Przedmiot: Zarządzanie zasobami przedsiębiorstwa Moduł: 4/4 Opracował: mgr inż. Paweł Wojakowski Instytut Technologii Maszyn i Automatyzacji Produkcji Zakład Projektowania Procesów

Bardziej szczegółowo

Harmonogramowanie produkcji

Harmonogramowanie produkcji Harmonogramowanie produkcji Przedmiot: Zarządzanie produkcją Moduł: 2/3 Prowadzący: mgr inż. Paweł Wojakowski Instytut Technologii Maszyn i Automatyzacji Produkcji Zakład Projektowania Procesów Wytwarzania

Bardziej szczegółowo

Planowanie i organizacja produkcji Zarządzanie produkcją

Planowanie i organizacja produkcji Zarządzanie produkcją Planowanie i organizacja produkcji Zarządzanie produkcją Materiały szkoleniowe. Część 2 Zagadnienia Część 1. Parametry procesu produkcyjnego niezbędne dla logistyki Część 2. Produkcja na zapas i zamówienie

Bardziej szczegółowo

Planowanie i sterowanie zapasami międzyoperacyjnymi

Planowanie i sterowanie zapasami międzyoperacyjnymi L. Wicki - Materiały pomocnicze do ćwiczeń (0) 0-0-6 Planowanie i sterowanie zapasami międzyoperacyjnymi ZPiU Schemat zasileń materiałowych - system planowania wg okresu powtarzalności produkcji Wydział

Bardziej szczegółowo

Logistyka produkcji i dystrybucji MSP ćwiczenia 4 CRP PLANOWANIE ZAPOTRZEBOWANIA POTENCJAŁU. mgr inż. Roman DOMAŃSKI Katedra Systemów Logistycznych

Logistyka produkcji i dystrybucji MSP ćwiczenia 4 CRP PLANOWANIE ZAPOTRZEBOWANIA POTENCJAŁU. mgr inż. Roman DOMAŃSKI Katedra Systemów Logistycznych Logistyka produkcji i dystrybucji MSP ćwiczenia 4 CRP PLANOWANIE ZAPOTRZEBOWANIA POTENCJAŁU mgr inż. Roman DOMAŃSKI Katedra Systemów Logistycznych 1 Literatura Marek Fertsch Zarządzanie przepływem materiałów

Bardziej szczegółowo

Zarządzanie produkcją.

Zarządzanie produkcją. Zarządzanie produkcją i usługami Zarządzanie produkcją. mgr inż. Martyna Malak Katedra Systemów Logistycznych martyna.malak@wsl.com.pl Zarządzanie produkcją Ćwiczenia 5 BILANSOWANIE ZADAŃ PRODUKCYJNYCH

Bardziej szczegółowo

Sterowanie wykonaniem produkcji

Sterowanie wykonaniem produkcji STEROWANIE WYKONANIEM PRODUKCJI (Production Activity Control - PAC) Sterowanie wykonaniem produkcji (SWP) stanowi najniŝszy, wykonawczy poziom systemu zarządzania produkcją, łączący wyŝsze poziomy operatywnego

Bardziej szczegółowo

Optymalizacja harmonogramów budowlanych - szeregowanie zadań. Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie

Optymalizacja harmonogramów budowlanych - szeregowanie zadań. Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie Optymalizacja harmonogramów budowlanych - szeregowanie zadań Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie Opis zagadnienia Zadania dotyczące szeregowania zadań należą do szerokiej

Bardziej szczegółowo

STRUKTURA WYROBU, SPECYFIKACJE WYROBU przewodnik do ćwiczeń z zadaniem. Obraz graficzny struktury wyrobu graf typu drzewo

STRUKTURA WYROBU, SPECYFIKACJE WYROBU przewodnik do ćwiczeń z zadaniem. Obraz graficzny struktury wyrobu graf typu drzewo STRUKTURA WYROBU, SPECYFIKACJE WYROBU przewodnik do ćwiczeń z zadaniem 1. Struktura wyrobu Definicja Struktura wyrobu jest odzwierciedleniem relacji panujących pomiędzy zespołami i częściami (przedmiotami)

Bardziej szczegółowo

LOGISTYKA PRODUKCJI. dr inż. Andrzej KIJ

LOGISTYKA PRODUKCJI. dr inż. Andrzej KIJ LOGISTYKA PRODUKCJI dr inż. Andrzej KIJ TEMAT ĆWICZENIA: PLANOWANIE POTRZEB MATERIAŁOWYCH METODA MRP Opracowane na podstawie: Praca zbiorowa pod redakcją, A. Kosieradzkiej, Podstawy zarządzania produkcją

Bardziej szczegółowo

Zarządzanie Produkcją III

Zarządzanie Produkcją III Zarządzanie Produkcją III Dr Janusz Sasak Operatywne zarządzanie produkcją pojęcia podstawowe Asortyment produkcji Program produkcji Typ produkcji ciągła dyskretna Tempo i takt produkcji Seria i partia

Bardziej szczegółowo

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci

Bardziej szczegółowo

Studia stacjonarne I stopnia

Studia stacjonarne I stopnia Studia stacjonarne I stopnia Kierunek Logistyka sem. 1 Logistyka Ćwiczenia 7 Zapas bezpieczeństwa i systemy zamawiania Agnieszka Stachowiak Podstawowy model zapasu Ilość Z max N D n p Z d Z o Moment wysłania

Bardziej szczegółowo

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności I. Pojęcie funkcji definicja różne sposoby opisu funkcji określenie dziedziny, zbioru wartości, miejsc zerowych. Należy

Bardziej szczegółowo

9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI

9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Ekstrema i monotoniczność funkcji Oznaczmy przez D f dziedzinę funkcji f Mówimy, że funkcja f ma w punkcie 0 D f maksimum lokalne (minimum lokalne), gdy dla każdego

Bardziej szczegółowo

mapowania strumienia wartości

mapowania strumienia wartości Przykład obliczeń do mapowania strumienia wartości Prowadzący: mgr inż. Paweł Wojakowski, mgr inż. Łukasz Gola Instytut Technologii Maszyn i Automatyzacji Produkcji Zakład Projektowania Procesów Wytwarzania

Bardziej szczegółowo

LABORATORIUM Z INŻYNIERII ZARZĄDZANIA- MRP II

LABORATORIUM Z INŻYNIERII ZARZĄDZANIA- MRP II LABORATORIUM Z INŻYNIERII ZARZĄDZANIA- MRP II Ćwiczenie 4 Temat: Wprowadzanie struktury produkcyjnej i marszrut technologicznych. Opracowali: Sitek Paweł Jarosław Wikarek Kielce 2004 Wydziały produkcyjne

Bardziej szczegółowo

Zarządzanie płynnością finansową przedsiębiorstwa

Zarządzanie płynnością finansową przedsiębiorstwa Zarządzanie płynnością finansową przedsiębiorstwa Cz. 4 Zarządzanie zapasami Składniki zapasów Konieczność utrzymywania zapasów Koszty zapasów 1. Koszty utrzymania zapasów - kapitałowe, - magazynowania,

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

Optymalizacja zapasów magazynowych przykład optymalizacji

Optymalizacja zapasów magazynowych przykład optymalizacji Optymalizacja zapasów magazynowych przykład optymalizacji www.strattek.pl Strona 1 Spis 1. Korzyści z optymalizacji zapasów magazynowych 3 2. W jaki sposób przeprowadzamy optymalizację? 3 3. Przykład optymalizacji

Bardziej szczegółowo

3.3. dwie płaszczyzny równoległe do siebie α β Dwie płaszczyzny równoległe do siebie mają ślady równoległe do siebie

3.3. dwie płaszczyzny równoległe do siebie α β Dwie płaszczyzny równoległe do siebie mają ślady równoległe do siebie Widoczność A. W rzutowaniu europejskim zakłada się, że przedmiot obserwowany znajduje się między obserwatorem a rzutnią, a w amerykańskim rzutnia rozdziela przedmiot o oko obserwatora. B. Kierunek patrzenia

Bardziej szczegółowo

Analiza czasowo-kosztowa

Analiza czasowo-kosztowa Analiza czasowo-kosztowa Aspekt ekonomiczny: należy rozpatrzyć techniczne możliwości skrócenia terminu wykonania całego przedsięwzięcia, w taki sposób aby koszty związane z jego realizacją były jak najniższe.

Bardziej szczegółowo

Instrukcja. Laboratorium Metod i Systemów Sterowania Produkcją.

Instrukcja. Laboratorium Metod i Systemów Sterowania Produkcją. Instrukcja do Laboratorium Metod i Systemów Sterowania Produkcją. 2010 1 Cel laboratorium Celem laboratorium jest poznanie metod umożliwiających rozdział zadań na linii produkcyjnej oraz sposobu balansowania

Bardziej szczegółowo

Rozdział 7 ZARZĄDZANIE PROJEKTAMI

Rozdział 7 ZARZĄDZANIE PROJEKTAMI Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 7 ZARZĄDZANIE PROJEKTAMI 7.2. Ćwiczenia komputerowe Ćwiczenie 7.1 Wykorzystując

Bardziej szczegółowo

HARMONOGRAMOWANIE OPERACYJNE Z OGRANICZENIAMI W IFS APPLICATIONS

HARMONOGRAMOWANIE OPERACYJNE Z OGRANICZENIAMI W IFS APPLICATIONS HARMONOGRAMOWANIE OPERACYJNE Z OGRANICZENIAMI W IFS APPLICATIONS Cele sterowania produkcją Dostosowanie asortymentu i tempa produkcji do spływających na bieżąco zamówień Dostarczanie produktu finalnego

Bardziej szczegółowo

t i L i T i

t i L i T i Planowanie oparte na budowaniu modelu struktury przedsięwzięcia za pomocą grafu nazywa sie planowaniem sieciowym. Stosuje się do planowania i kontroli realizacji założonych przedsięwzięć gospodarczych,

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo

SZCZEGÓŁOWA CHARAKTERYSTYKA METOD USTALANIA WIELKOŚCI PARTII PORADNIK

SZCZEGÓŁOWA CHARAKTERYSTYKA METOD USTALANIA WIELKOŚCI PARTII PORADNIK SZCZEGÓŁOWA CHARAKTERYSTYKA METOD USTALANIA WIELKOŚCI PARTII PORADNIK Stała Wielkość Zamówienia (SWZ) / Fixed Order Quantity (FOQ) Tab. 1. Idea planowania zamówień metodą stałej wielkości zamówienia Pokrycie

Bardziej szczegółowo

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie: Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, 6 11 6 11, tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Uprośćmy najpierw liczby dane w treści zadania: 8 2, 2 2 2 2 2 2 6 11 6 11 6 11 26 11 6 11

Bardziej szczegółowo

Metody określania wielkości partii cz.2. Zajęcia Nr 7

Metody określania wielkości partii cz.2. Zajęcia Nr 7 Metody określania wielkości partii cz.2 Zajęcia Nr 7 Metody Metody dynamiczne -wymagają ciągłego i systematycznego przeliczania potrzeb oraz kalkulowania wielkości zamówień lub wybranych kosztów logistycznych.

Bardziej szczegółowo

Usługi Informatyczne "SZANSA" - Gabriela Ciszyńska-Matuszek ul. Świerkowa 25, Bielsko-Biała

Usługi Informatyczne SZANSA - Gabriela Ciszyńska-Matuszek ul. Świerkowa 25, Bielsko-Biała Usługi Informatyczne "SZANSA" - Gabriela Ciszyńska-Matuszek ul. Świerkowa 25, 43-305 Bielsko-Biała NIP 937-22-97-52 tel. +48 33 488 89 39 zwcad@zwcad.pl www.zwcad.pl Aplikacja do rysowania wykresów i oznaczania

Bardziej szczegółowo

KALKULACJE KOSZTÓW. Dane wyjściowe do sporządzania kalkulacji

KALKULACJE KOSZTÓW. Dane wyjściowe do sporządzania kalkulacji KALKULACJE KOSZTÓW Jednostką kalkulacyjną jest wyrażony za pomocą odpowiedniej miary produkt pracy (wyrób gotowy, wyrób nie zakończony, usługa) stanowiący przedmiot obliczania jednostkowego kosztu wytworzenia

Bardziej szczegółowo

Cechy systemu MRP II: modułowa budowa, pozwalająca na etapowe wdrażanie, funkcjonalność obejmująca swym zakresem obszary technicznoekonomiczne

Cechy systemu MRP II: modułowa budowa, pozwalająca na etapowe wdrażanie, funkcjonalność obejmująca swym zakresem obszary technicznoekonomiczne Zintegrowany System Informatyczny (ZSI) jest systemem informatycznym należącym do klasy ERP, który ma na celu nadzorowanie wszystkich procesów zachodzących w działalności głównie średnich i dużych przedsiębiorstw,

Bardziej szczegółowo

LABORATORIUM 5 / 6 1. ZAŁOŻENIE KONTA

LABORATORIUM 5 / 6 1. ZAŁOŻENIE KONTA LABORATORIUM 5 / 6 Systemy informatyczne w zarządzaniu produkcją Qcadoo MES Qcadoo MES - internetowa aplikacja do zarządzania produkcją dla Małych i Średnich Firm. Pozwala na zarządzanie i monitorowanie

Bardziej szczegółowo

www.streamsoft.pl Katalog rozwiązań informatycznych dla firm produkcyjnych

www.streamsoft.pl Katalog rozwiązań informatycznych dla firm produkcyjnych www.streamsoft.pl Katalog rozwiązań informatycznych dla firm produkcyjnych Obserwować, poszukiwać, zmieniać produkcję w celu uzyskania największej efektywności. Jednym słowem być jak Taiichi Ohno, dyrektor

Bardziej szczegółowo

Informatyczne Systemy Zarządzania Klasy ERP. Produkcja

Informatyczne Systemy Zarządzania Klasy ERP. Produkcja Informatyczne Systemy Zarządzania Klasy ERP Produkcja Produkcja Moduł dostarcza bogaty zestaw narzędzi do kompleksowego zarządzania procesem produkcji. Zastosowane w nim algorytmy pozwalają na optymalne

Bardziej szczegółowo

Projektowanie rozmieszczenia stanowisk roboczych

Projektowanie rozmieszczenia stanowisk roboczych Projektowanie rozmieszczenia stanowisk roboczych Metoda trójkątów Schmigalli Metoda trójkątów Schmigalli Dane wejściowe: - liczba rozmieszczonych stanowisk - macierz powiązań transportowych Metoda trójkątów

Bardziej szczegółowo

PLANOWANIE PRZEZBROJEŃ LINII PRODUKCYJNYCH Z WYKORZYSTANIEM METODY MODELOWANIA I SYMULACJI

PLANOWANIE PRZEZBROJEŃ LINII PRODUKCYJNYCH Z WYKORZYSTANIEM METODY MODELOWANIA I SYMULACJI Dariusz PLINTA Sławomir KUKŁA Akademia Techniczno-Humanistyczna w Bielsku-Białej PLANOWANIE PRZEZBROJEŃ LINII PRODUKCYJNYCH Z WYKORZYSTANIEM METODY MODELOWANIA I SYMULACJI 1. Planowanie produkcji Produkcja

Bardziej szczegółowo

Pojęcie wyrobu, schemat podziału produktów (1)

Pojęcie wyrobu, schemat podziału produktów (1) Pojęcie wyrobu, schemat podziału produktów (1) PRODUKTY Wyroby podstawowe Usługi wg stopnia złożoności Proste wg stopnia gotowości Półwyroby Złożone Wyroby gotowe Transport Magazynowani Remonty Dostawa

Bardziej szczegółowo

Zadania przykładowe na egzamin. przygotował: Rafał Walkowiak

Zadania przykładowe na egzamin. przygotował: Rafał Walkowiak Zadania przykładowe na egzamin z logistyki przygotował: Rafał Walkowiak Punkt zamawiania Proszę określić punkt dokonywania zamawiania jeżeli: zapas bezpieczeństwa wynosi 10 sztuk, czas realizacji zamówienia

Bardziej szczegółowo

Rysowanie punktów na powierzchni graficznej

Rysowanie punktów na powierzchni graficznej Rysowanie punktów na powierzchni graficznej Tworzenie biblioteki rozpoczniemy od podstawowej funkcji graficznej gfxplot() - rysowania pojedynczego punktu na zadanych współrzędnych i o zadanym kolorze RGB.

Bardziej szczegółowo

10 zadań związanych z granicą i pochodną funkcji.

10 zadań związanych z granicą i pochodną funkcji. 0 zadań związanych z granicą i pochodną funkcji Znajdź przedziały monotoniczności funkcji f() 4, określonej dla (0,) W przedziale ( 0,) wyrażenie 4 przyjmuje wartości ujemne, dlatego dla (0,) funkcja f()

Bardziej szczegółowo

PODSTAWY LOGISTYKI ZARZĄDZANIE ZAPASAMI PODSTAWY LOGISTYKI ZARZĄDZANIE ZAPASAMI MARCIN FOLTYŃSKI

PODSTAWY LOGISTYKI ZARZĄDZANIE ZAPASAMI PODSTAWY LOGISTYKI ZARZĄDZANIE ZAPASAMI MARCIN FOLTYŃSKI PODSTAWY LOGISTYKI ZARZĄDZANIE ZAPASAMI WŁAŚCIWIE PO CO ZAPASY?! Zasadniczą przyczyną utrzymywania zapasów jest występowanie nieciągłości w przepływach materiałów i towarów. MIEJSCA UTRZYMYWANIA ZAPASÓW

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór

Bardziej szczegółowo

Matematyka licea ogólnokształcące, technika

Matematyka licea ogólnokształcące, technika Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem

Bardziej szczegółowo

Proces, rozmieszczenie urządzeń, sposoby przepływu produkcji, normy prof. PŁ dr hab. inż. Andrzej Szymonik Łódź 2015

Proces, rozmieszczenie urządzeń, sposoby przepływu produkcji, normy prof. PŁ dr hab. inż. Andrzej Szymonik Łódź 2015 Proces, rozmieszczenie urządzeń, sposoby przepływu produkcji, normy prof. PŁ dr hab. inż. Andrzej Szymonik Łódź 2015 www.gen-prof.pl 1 Def. Procesu: Uporządkowany w czasie ciąg zmian i stanów zachodzących

Bardziej szczegółowo

Zarządzanie Produkcją IV

Zarządzanie Produkcją IV Zarządzanie Produkcją IV Dr Janusz Sasak Sterowanie produkcją Działalność obejmująca planowanie, kontrolę i regulację przepływu materiałów w sferze produkcji, począwszy od określenia zapotrzebowania na

Bardziej szczegółowo

TEMAT : Przykłady innych funkcji i ich wykresy.

TEMAT : Przykłady innych funkcji i ich wykresy. Elżbieta Kołodziej e-mail: efreet@pf.pl matematyka, informatyka Gimnazjum Nr 5 37-450 Stalowa Wola ul. Poniatowskiego 55 SCENARIUSZ LEKCJI PRZEPROWADZONEJ W KLASIE III TEMAT : Przykłady innych funkcji

Bardziej szczegółowo

Rys1 Rys 2 1. metoda analityczna. Rys 3 Oznaczamy prdy i spadki napi jak na powyszym rysunku. Moemy zapisa: (dla wzłów A i B)

Rys1 Rys 2 1. metoda analityczna. Rys 3 Oznaczamy prdy i spadki napi jak na powyszym rysunku. Moemy zapisa: (dla wzłów A i B) Zadanie Obliczy warto prdu I oraz napicie U na rezystancji nieliniowej R(I), której charakterystyka napiciowo-prdowa jest wyraona wzorem a) U=0.5I. Dane: E=0V R =Ω R =Ω Rys Rys. metoda analityczna Rys

Bardziej szczegółowo

EKONOMIA MENEDŻERSKA

EKONOMIA MENEDŻERSKA EKONOMIA MENEDŻERSKA Koszt całkowity produkcji - Jest to suma kosztów stałych całkowitych i kosztów zmiennych całkowitych. K c = K s + K z Koszty stałe produkcji (K s ) to koszty, które nie zmieniają się

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

Informacje o wybranych funkcjach systemu klasy ERP Zarządzanie produkcją

Informacje o wybranych funkcjach systemu klasy ERP Zarządzanie produkcją iscala Informacje o wybranych funkcjach systemu klasy ERP Zarządzanie produkcją Opracował: Grzegorz Kawaler SCALA Certified Consultant III. Zarządzanie produkcją 1. Umieszczanie w bazie informacji o dostawcach

Bardziej szczegółowo

Projektowanie logistycznych gniazd przedmiotowych

Projektowanie logistycznych gniazd przedmiotowych Zygmunt Mazur Projektowanie logistycznych gniazd przedmiotowych Uwagi wstępne Logistyka obejmuje projektowanie struktury przep³ywu w procesie wytwarzania. Projektowanie dotyczy ustalania liczby, kszta³tu

Bardziej szczegółowo

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź. ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla

Bardziej szczegółowo

Logistyka w sferze magazynowania i gospodarowania zapasami analiza ABC i XYZ. prof. PŁ dr hab. inż. Andrzej Szymonik

Logistyka w sferze magazynowania i gospodarowania zapasami analiza ABC i XYZ. prof. PŁ dr hab. inż. Andrzej Szymonik Logistyka w sferze magazynowania i gospodarowania zapasami analiza ABC i XYZ prof. PŁ dr hab. inż. Andrzej Szymonik www.gen-prof.pl Łódź 2015/2016 1 2 Def. zapas: Jest to rzeczowa, niespieniężona część

Bardziej szczegółowo

ZAPRASZA DO SKŁADNIA OFERT

ZAPRASZA DO SKŁADNIA OFERT Legnica, dnia 18.03.2013 r. Zapytanie ofertowe A.T.S. Electro Lube Polska spółka cywilna z siedzibą przy,, Tel. (76) 723 37 73, Faks (76) 722 53 62 NIP 691-100-62-69, REGON 390342110 realizuje projekt

Bardziej szczegółowo

KRZYWA CZĘSTOŚCI, CZĘSTOLIWOŚCI I SUM CZASÓW TRWANIA STANÓW

KRZYWA CZĘSTOŚCI, CZĘSTOLIWOŚCI I SUM CZASÓW TRWANIA STANÓW KRZYWA CZĘSTOŚCI, CZĘSTOLIWOŚCI I SUM CZASÓW TRWANIA STANÓW Wykres codziennych stanów CZĘSTOŚĆ lub LICZEBNOŚĆ KLASOWA ZBARZEŃ (n), jest to liczba zdarzeń przypadających na dany przedział klasowy badanego

Bardziej szczegółowo

ROC Rate of Charge. gdzie ROC wskaźnik szybkości zmiany w okresie n, x n - cena akcji na n-tej sesji,

ROC Rate of Charge. gdzie ROC wskaźnik szybkości zmiany w okresie n, x n - cena akcji na n-tej sesji, ROC Rate of Charge Analityk techniczny, który w swej analizie opierałby się wyłącznie na wykresach uzyskiwałby obraz możliwości inwestycyjnych obarczony sporym ryzykiem. Wnioskowanie z wykresów bazuje

Bardziej szczegółowo

Zarządzanie Produkcją V

Zarządzanie Produkcją V Zarządzanie Produkcją V Dr Janusz Sasak ZP Doświadczenia Japońskie Maksymalizacja tempa przepływu materiałów Stabilizacja tempa przepływu materiałów - unifikacja konstrukcji - normalizacja konstrukcji

Bardziej szczegółowo

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe

Bardziej szczegółowo

do instrukcja while (wyrażenie);

do instrukcja while (wyrażenie); Instrukcje pętli -ćwiczenia Instrukcja while Pętla while (póki) powoduje powtarzanie zawartej w niej sekwencji instrukcji tak długo, jak długo zaczynające pętlę wyrażenie pozostaje prawdziwe. while ( wyrażenie

Bardziej szczegółowo

1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba)

1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) 1. Liczby wymierne. - wartość bezwzględna liczby. dla 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) - dla < 0 ( wartością bezwzględną liczby ujemnej jest liczba do niej przeciwna) W interpretacji

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Organizacja Systemów Produkcyjnych Organization of Production Systems Kierunek: Zarządzanie i Inżynieria Produkcji Management and Production Engineering Rodzaj przedmiotu: obowiązkowy

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

WFiIS CEL ĆWICZENIA WSTĘP TEORETYCZNY

WFiIS CEL ĆWICZENIA WSTĘP TEORETYCZNY WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA Ćwiczenie

Bardziej szczegółowo

3) Naszkicuj wykres funkcji y=-xdo kwadratu+2x+1 i napisz równanie osi symetrii jej wykresu.

3) Naszkicuj wykres funkcji y=-xdo kwadratu+2x+1 i napisz równanie osi symetrii jej wykresu. Zadanie: 1) Dana jest funkcja y=-+7.nie wykonując wykresu podaj a) miejsce zerowe b)czy funkcja jest rosnąca czy malejąca(uzasadnij) c)jaka jest rzędna punktu przecięcia wykresu z osią y. ) Wykres funkcji

Bardziej szczegółowo

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II Wymagania edukacyjne, kontrola i ocena w nauczaniu matematyki w zakresie podstawowym dla uczniów technikum część II Figury na płaszczyźnie kartezjańskiej L.p. Temat lekcji Uczeń demonstruje opanowanie

Bardziej szczegółowo

LOGISTYKA PRODUKCJI C3 TYTUŁ PREZENTACJI: LOGISTYKA PRODUKCJI OBLICZEŃ ZWIĄZANYCH Z KONCEPCJĄ MRP

LOGISTYKA PRODUKCJI C3 TYTUŁ PREZENTACJI: LOGISTYKA PRODUKCJI OBLICZEŃ ZWIĄZANYCH Z KONCEPCJĄ MRP LOGISTYKA PRODUKCJI C3 PREZENTACJA PRZYKŁADOWYCH, PODSTAWOWYCH OBLICZEŃ ZWIĄZANYCH Z KONCEPCJĄ MRP 2 Logistyka materiałowa Logistyka zaopatrzenia Logistyka dystrybucji Magazyn Pośrednictwo Magazyn Surowce

Bardziej szczegółowo

Cykl organizacyjny le Chateliera

Cykl organizacyjny le Chateliera Cykl organizacyjny le Chateliera Cykl organizacyjny Cykl określa etapy postępowania, które należy zachować, jeśli się chce, aby jakiekolwiek działanie przebiegało w sposób sprawny. 1 Etapy w cyklu organizacyjnym

Bardziej szczegółowo

Podstawowe zagadnienia procesu produkcyjnego i jego przepływu Zarządzanie produkcją i usługami

Podstawowe zagadnienia procesu produkcyjnego i jego przepływu Zarządzanie produkcją i usługami Podstawowe zagadnienia procesu produkcyjnego i jego przepływu Zarządzanie produkcją i usługami Materiały szkoleniowe. Część 1 Zagadnienia Część 1. Produkty i systemy produkcyjne Część 2. produkcyjne i

Bardziej szczegółowo

ZMIERZYĆ SIĘ Z KALKULATOREM

ZMIERZYĆ SIĘ Z KALKULATOREM ZMIERZYĆ SIĘ Z KALKULATOREM Agnieszka Cieślak Wyższa Szkoła Informatyki i Zarządzania z siedzibą w Rzeszowie Streszczenie Referat w prosty sposób przedstawia niekonwencjonalne sposoby mnożenia liczb. Tematyka

Bardziej szczegółowo

EKONOMIKA I ORGANIZACJA BUDOWY

EKONOMIKA I ORGANIZACJA BUDOWY EKONOMIKA I ORGANIZACJA BUDOWY EMA: PROJEK ORGANIZACJI WYKONANIA PRZEDSIĘWZIĘCIA INWESYCYJNEGO (p) ćwiczenia projektowe, pracownia specjalistyczna studia niestacjonarne I stopnia, sem. VI, budownictwo

Bardziej szczegółowo

Wyrównanie ciągu poligonowego dwustronnie nawiązanego metodą przybliżoną.

Wyrównanie ciągu poligonowego dwustronnie nawiązanego metodą przybliżoną. Wyrównanie ciągu poligonowego dwustronnie nawiązanego metodą przybliżoną. Uwagi wstępne należy przeczytać przed przystąpieniem do obliczeń W pierwszej kolejności należy wpisać do dostarczonego formularza

Bardziej szczegółowo

Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO

Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO Dział programowy. Zakres realizacji 1. Liczby, działania i procenty Liczby wymierne i liczby niewymierne-działania, kolejność

Bardziej szczegółowo

OPTYMALIZACJA PRZEPŁYWU MATERIAŁU W PRODUKCJI TURBIN W ROLLS-ROYCE DEUTSCHLAND LTD & CO KG

OPTYMALIZACJA PRZEPŁYWU MATERIAŁU W PRODUKCJI TURBIN W ROLLS-ROYCE DEUTSCHLAND LTD & CO KG Andrew Page Rolls-Royce Deutschland Ltd & Co KG Bernd Hentschel Technische Fachhochschule Wildau Gudrun Lindstedt Projektlogistik GmbH OPTYMALIZACJA PRZEPŁYWU MATERIAŁU W PRODUKCJI TURBIN W ROLLS-ROYCE

Bardziej szczegółowo

LOGISTYKA ZAOPATRZENIA I PRODUKCJI ĆWICZENIA 2 MRP I

LOGISTYKA ZAOPATRZENIA I PRODUKCJI ĆWICZENIA 2 MRP I 1 LOGISTYKA ZAOPATRZENIA I PRODUKCJI ĆWICZENIA 2 MRP I Autor: dr inż. Roman DOMAŃSKI LITERATURA: 2 Marek Fertsch Zarządzanie przepływem materiałów w przykładach, Instytut Logistyki i Magazynowania, Poznań

Bardziej szczegółowo

Opis ćwiczenia. Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Henry ego Katera.

Opis ćwiczenia. Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Henry ego Katera. ĆWICZENIE WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO Opis ćwiczenia Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Bardziej szczegółowo

Poziomowany system ssący w systemie Plan-de-CAMpagne

Poziomowany system ssący w systemie Plan-de-CAMpagne Poziomowany system ssący w systemie Plan-de-CAMpagne Współczesne metody zarządzania produkcją jednomyślnie podkreślają zalety produkowania dokładnie tylu wyrobów, ile w danym czasie potrzebują nasi klienci.

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne z. matematyki. dla uczniów klasy IIIa i IIIb. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016

Wymagania na poszczególne oceny szkolne z. matematyki. dla uczniów klasy IIIa i IIIb. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016 Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy IIIa i IIIb Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ 1. FUNKCJE (11h) Uczeń: poda definicję funkcji (2)

Bardziej szczegółowo

2. FUNKCJE. jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy FUNKCJĄ, lub

2. FUNKCJE. jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy FUNKCJĄ, lub WYKŁAD 2 1 2. FUNKCJE. 2.1.PODSTAWOWE DEFINICJE. Niech będą dane zbiory i. Jeżeli każdemu elementowi x ze zbioru,, przyporządkujemy jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy

Bardziej szczegółowo

Badanie diody półprzewodnikowej

Badanie diody półprzewodnikowej Badanie diody półprzewodnikowej Symulacja komputerowa PSPICE 9.1 www.pspice.com 1. Wyznaczanie charakterystyki statycznej diody spolaryzowanej w kierunku przewodzenia Rysunek nr 1. Układ do wyznaczania

Bardziej szczegółowo

Ekstrema globalne funkcji

Ekstrema globalne funkcji SIMR 2013/14, Analiza 1, wykład 9, 2013-12-13 Ekstrema globalne funkcji Definicja: Funkcja f : D R ma w punkcie x 0 D minimum globalne wtedy i tylko (x D) f(x) f(x 0 ). Wartość f(x 0 ) nazywamy wartością

Bardziej szczegółowo

LOGISTYKA ZAOPATRZENIA I PRODUKCJI część pierwsza

LOGISTYKA ZAOPATRZENIA I PRODUKCJI część pierwsza 1 LOGISTYKA ZAOPATRZENIA I PRODUKCJI część pierwsza AUTOR: Dr inż. ŁUKASZ HADAŚ AGENDA 2 Definicje i obszar zainteresowania logistyki zaopatrzenia i produkcji Podział fazowy Podział funkcjonalny Myślenie

Bardziej szczegółowo

Metody sterowania zapasami ABC XYZ EWZ

Metody sterowania zapasami ABC XYZ EWZ Zarządzanie logistyką Dr Mariusz Maciejczak Metody sterowania zapasami ABC XYZ EWZ www.maciejczak.pl Zapasy Zapasy w przedsiębiorstwie można tradycyjnie rozumieć jako zgromadzone dobra, które w chwili

Bardziej szczegółowo

KONSPEKT LEKCJI MATEMATYKI (2 LEKCJE) W III KLASIE GIMNAZJUM OPRACOWAŁA RENATA WOŁCZYŃSKA

KONSPEKT LEKCJI MATEMATYKI (2 LEKCJE) W III KLASIE GIMNAZJUM OPRACOWAŁA RENATA WOŁCZYŃSKA KONSPEKT LEKCJI MATEMATYKI (2 LEKCJE) W III KLASIE GIMNAZJUM OPRACOWAŁA RENATA WOŁCZYŃSKA Temat: Powtórzenie i utrwalenie wiadomości o funkcji liniowej Cel ogólny Przykłady funkcji; odczytywanie własności

Bardziej szczegółowo

PORÓWNANIE KALKULACJI: - tradycyjnej - ABC

PORÓWNANIE KALKULACJI: - tradycyjnej - ABC KOŁO NAUKOWE CONTROLLINGU UNIWERSYTET ZIELONOGÓRSKI PORÓWNANIE KALKULACJI: - tradycyjnej - ABC Spis treści Wstęp... 3 Dane wejściowe... 4 Kalkulacja tradycyjna... 6 Kalkulacja ABC... 8 Porównanie wyników...

Bardziej szczegółowo

System harmonogramowania produkcji KbRS

System harmonogramowania produkcji KbRS System harmonogramowania produkcji KbRS Spis treści O programie... 2 Instalacja... 2 Dane wejściowe... 2 Wprowadzanie danych... 2 Ręczne wprowadzanie danych... 2 Odczyt danych z pliku... 3 Odczyt danych

Bardziej szczegółowo

FORMUŁY AUTOSUMOWANIE SUMA

FORMUŁY AUTOSUMOWANIE SUMA Wskazówki do wykonania Ćwiczenia 1, ocena sprawdzianu (Excel 2007) Autor: dr Mariusz Giero 1. Pobierz plik do pracy. W pracy należy wykonać obliczenia we wszystkich żółtych polach oraz utworzyć wykresy

Bardziej szczegółowo

Wprowadzenie do programu ProjectLibre www.projectlibre.org

Wprowadzenie do programu ProjectLibre www.projectlibre.org Wprowadzenie do programu ProjectLibre www.projectlibre.org prof. UW dr hab. Krzysztof Klincewicz Wydział Zarządzania Uniwersytetu Warszawskiego kklincewicz@mail.wz.uw.edu.pl www.projectlibre.org Nowy projekt

Bardziej szczegółowo

Zarządzanie zapasami zaopatrzeniowymi oraz zapasami wyrobów gotowych

Zarządzanie zapasami zaopatrzeniowymi oraz zapasami wyrobów gotowych Zarządzanie zapasami zaopatrzeniowymi oraz zapasami wyrobów gotowych Cele szkolenia Zasadniczym celem szkolenia jest szczegółowa analiza zapasów w przedsiębiorstwie, określenie optymalnych ilości zapasów

Bardziej szczegółowo

Wykład Zarządzanie projektami Zajęcia 3 Zarządzanie czasem w projekcie Zarządzanie kosztami projektu

Wykład Zarządzanie projektami Zajęcia 3 Zarządzanie czasem w projekcie Zarządzanie kosztami projektu Wykład Zarządzanie projektami Zajęcia Zarządzanie czasem w projekcie Zarządzanie kosztami projektu dr Stanisław Gasik s.gasik@vistula.edu.pl www.sybena.pl/uv/014-wyklad-eko-zp-9-pl/wyklad.pdf Zarządzanie

Bardziej szczegółowo

Systemy rachunku kosztów

Systemy rachunku kosztów Systemy rachunku kosztów Tradycyjny rachunek kalkulacyjny kosztów oparty na rozmiarach produkcji kalkulacja doliczeniowa (zleceniowa), doliczanie kosztów wydziałowych kalkulacja podziałowa (procesowa)

Bardziej szczegółowo

dolar tylko przed numerem wiersza, a następnie tylko przed literą kolumny.

dolar tylko przed numerem wiersza, a następnie tylko przed literą kolumny. Wskazówki do wykonania Ćwiczenia 0, przypomnienie (Excel 2007) Autor: dr Mariusz Giero 1. Pobieramy plik z linku przypomnienie. Należy obliczyć wartości w komórkach zaznaczonych żółtym kolorem. 2. Obliczenie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013 Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo