POLITECHNIKA WROCŁAWSKA INSTYTUT TECHNIKI CIEPLNEJ I MECHANIKI PŁYNÓW ZAKŁAD TERMODYNAMIKI

Wielkość: px
Rozpocząć pokaz od strony:

Download "POLITECHNIKA WROCŁAWSKA INSTYTUT TECHNIKI CIEPLNEJ I MECHANIKI PŁYNÓW ZAKŁAD TERMODYNAMIKI"

Transkrypt

1 POLITECHNIKA WROCŁAWSKA INSTYTUT TECHNIKI CIEPLNEJ I MECHANIKI PŁYNÓW ZAKŁAD TERMODYNAMIKI Materiały omocnicze do ćiczeń rachunkoych z rzedmiotu Termodynamika tooana CZĘŚĆ 1: GAZY WILGOTNE mr inż. Piotr Kolaińki Oracoano na odtaie odręcznika S. Wiśniekieo Termodynamika techniczna Wrocła, 2007

2 I. PODSTAWOWE WŁAŚCIWOŚCI GAZÓW WILGOTNYCH Gazem ilotnym nienayconym nazyamy roztór ary rzerzanej i azu ucheo. Gazem ilotnym nayconym nazyamy roztór ary nayconej uchej i azu ucheo Gazem ilotnym rzeyconym nazyamy roztór ary ilotnej, mły ciekłej lub lodoej i azu ucheo. Wielkości dotyczące ary będziemy oznaczać dolnym indekem, zaś azu indekem. 1. Ciśnienie azu ilotneo: + ciśnienie azu ciśnienie ary 2. Temeratura roy ( ) T T r Temeraturą roy nazyamy temeraturę naycenia ary rzy jej ciśnieniu kładnikoym. 3. Wilotność bezzlędna iloć Wilotnością bezzlędną ary nazyamy jej ętość rzy ciśnieniu kładnikoym i temeraturze azu ilotneo. m ρ V R T ; 0 ρ ρ ρ max ρ R T Wilotność bezzlędna jet makymalna i róna ętości ary nayconej uchej dy ciśnienie kładnikoe ary jet róne ciśnieniu naycenia, tj. dy temeratura azu taje ię róna temeraturze roy.

3 4. Wilotność zlędna azu ϕ Wilotnością zlędną azu nazyamy tounek ilotności bezzlędnej ρ do makymalnej ilotności bezzlędnej ρ dla tej amej temeratury. Może być rónież określona jako tounek ciśnienia kładnikoeo ary do jej ciśnienia makymalneo max rzy tej amej temeraturze. ρ ϕ ρ T max T ; 0 ϕ 1 5. Stoień iloci (zailżenie) azu Jet tounkiem ilości ary lotnej m i eentualnie kondenoanej m ( otaci mły ciekłej lub lodoej) do ilości azu ucheo m, któreo ilość ię nie zmienia trakcie rozażania ielu zjaik m + m ; 0 m Stoień iloci ilotneo azu nienayconeo rzy ϕ ynoi: m ρ R M M M ϕ m ρ R M M M ϕ ( ) ; 0 Dla oietrza i ary odnej: M 18,015k kmol ; M 28,967k kmol ϕ 0,6219 ϕ Stoień iloci ilotneo azu nayconeo (ϕ1) ynoi: M M a dla oietrza i ary odnej 0,6219

4 Moloy toień iloci: z n + n ϕ n ϕ 6. Stała azoa azu ilotneo dla oietrza i ary odnej R 7. Gętość ilotneo azu R + R R R 1+ R ϕ 1 1 R 461,52 J kk ; R 287,03 J kk 0, R 461,52 1+ ϕ 1 0, ρ ρ + ρ + + R R T RT ( 1 ) 8. Objętość (łaścia) (1+) k ilotneo azu, czyli 1 k ucheo azu ynoi T R T R v1 + R + R R + dla oietrza i ary odnej 9. Entalia 3 v T m 1 461,52( 0, ) k ( 1+ ) Entalia (1+) k ilotneo azu nienayconeo lub nayconeo ( ) arą o entalii aroania r 0, tanie odnieienia o temeraturze T 0 ynoi: ( ) ( ) i1 + i + i c T T0 + r0 + c T T 0

5 Entalia (1+) k ilotneo azu rzeyconeo (> ) z młą ciekłą o ciele łaściym c 1 jet róna: ( ) ( ) ( ) ( ) i + c T T + c T T + r + c T T Entalia (1+) k ilotneo azu rzeyconeo (> ) z młą lodoą o ciele łaściym c i entalii tonienia q t ynoi: ( ) ( ) ( ) ( ) i + c T T + c T T + r + q c T T t 0 Dla oietrza zaierająceo arę odną, młę ciekłą lub lodoą za tan odnieienia rzyjmuje ię unkt otrójny ody T Tr 237,16K oraz łaściości fizyczne ody: c + T 6 1, C 1,006 kk r k c 1,864+ 0,0002TC 1,87 kk c 1 4,19 kk c q t 2,09 kk 334,1 k o odtaieniu tych artości do oyżzych rónań otrzymujemy: entalia łaścia oietrza ucheo ( ) i 1,006 T 273,16 1,006T 275 k entalia łaścia ary odnej i ,87( T 273,16) ,87T k

6 entalia łaścia oietrza ilotneo nienayconeo ( ) ( ) ( ) i1 + 1,006 T 273, ,87T 1,006T ,87T 275 k ( 1+ ) entalia łaścia oietrza ilotneo rzeyconeo młą ciekłą ( ) ( ) ( )( ) i1 + 1,006 T 273,16 + 1,87 T 273, ,19 Τ 273,16 1,006Τ+ ( ,32T) ( ,19T) 275 k ( 1+ ) entalia łaścia oietrza ilotneo rzeyconeo młą lodoą ( ) ( ) ( ) ( ) i1 + 1,006 T 273,16 + 1,87 T 273, ,1 2,09 Τ 273,16 1,006Τ+ ( ,22T) ( 905 2,09T) 275 k ( 1+ ) II. RÓWNANIA STANU GAZU WILGOTNEGO V ( ) + mrt 1 V V mrt m RT V V mrt m RT III. PRZEMIANY WILGOTNEGO POWIETRZA Ry.1. Odczytyanie ciśnienia naycenia i temeratury roy z ykreu i 1+.

7 Ry.2. Odczytyanie ilotności zlędnej z ykreu i Ouzanie oietrza Ry.3. Ouzanie ilotneo oietrza na ykreie i 1+. Ouzanie oietrza (ze tanu 1 na ry.3) ymaa najier izobaryczneo ochłodzenia oietrza nienayconeo, odcza któreo toień iloci nie zmienia ię. Początkoo zrata ilotność zlędna do ϕ1, o czym otaje oietrze rzeycone, które tanoi roztór oietrza nayconeo i mły (tan 2).

8 Doroadzenie lub odroadzenie cieła bez zmiany tonia iloci (idem) iąże ię ze zmianą entalii ( i ) ( i ) ( c + c )( T T ) ( + )( T T ) ,006 1,87 Stan oietrza nayconeo zmienia ię natęnie zdłuż linii naycenia (toień iloci i entalia maleją) aż do tanu 3, yznaczoneo rzez unkt rzecięcia linii naycenia z izotermą odoiadającą tanoi końcoemu 2 oietrza rzeyconeo. Ilość krolonej ody ynoi ( 1 3) m m 2. Miezanie izobaryczno-adiabatyczne dóch trumieni oietrza ilotneo Ry.4. Miezanie izobaryczno-adiabatyczne dóch trumieni ilotneo oietrza na ykreie i 1+. Rozażmy da trumienie may ucheo oietrza 1 oraz 2 i tanach określonych rzez artości 1, T 1 oraz 2, T 2. Zmiezanie tych trumieni ooduje utorzenie trumienia oietrza ilotneo o tanie 3, T 3 i trumieniu may oietrza ucheo Z rónania bilanu ilości ody otrzymuje ię toień iloci:

9 Z rónania bilanu entalii ynika ( i ) 1+ 3 ( ) + ( ) i m i Po yeliminoaniu trumieni may ucheo oietrza z rónań bilanó otrzymuje ię ( 1+ ) ( 1+ ) ( ) ( ) i i i i Stan trumienia otrzymaneo o zmiezaniu leży na ykreie o ółrzędnych i 1+ (ry.4) na rotej łączącej tany 1 i 2 miezanych trumieni ilotneo oietrza. Punkt 3 dzieli odcinek 1-2 tounku trumieni may lub udziałó maoych oietrza ucheo miezanych trumieni. x x Należy zauażyć, że miezanie dóch trumieni ilotneo oietrza nienayconeo o tanach 4 i 5 może doroadzić do otania trumienia oietrza rzeyconeo (tan 6 z młą), dy rota 4-5 rzecina linię naycenia (ry.4) W zczeólnym rzyadku, kiedy drui trumień jet trumieniem ary odnej lub ciekłej ody o trumieniu may, tedy jeo tan o 2 nie może być rzedtaiony na ykreie. Z rónania ilości ubtancji ynika 3 1 m 1 natomiat z rónania bilanu entalii jet m i i i ( ) ( ) m1 dzie i oznacza entalię łaścią ary odnej lub ciekłej ody.

10 Ry.5. Miezanie trumienia ilotneo oietrza z arą odną na ykreie i 1+. Stan 3 otały o zmiezaniu trumieni znajduje ię na rotej ychodzącej z unktu 1 (ry.5) kierunku ( i ) ( i ) i i i1 + rónolełym do linii łączącej bieun B z artością na dodatkoej odziałce umiezczonej okół ykreu. Położenie unktu 3 na tej linii yznacza artość 3.

Gazy wilgotne i suszenie

Gazy wilgotne i suszenie Gazy wilgotne i uzenie Teoria gazów wilgotnych dotyczy gazów, które w ąiedztwie cieczy wchłaniają ary cieczy i tają ię wilgotne. Zmiana warunków owoduje, że część ary ulega kroleniu. Najbardziej tyowym

Bardziej szczegółowo

TERMODYNAMIKA TECHNICZNA I CHEMICZNA

TERMODYNAMIKA TECHNICZNA I CHEMICZNA TERMODYNAMIKA TECHNICZNA I CHEMICZNA WYKŁAD IX RÓWNOWAGA FAZOWA W UKŁADZIE CIAŁO STAŁE-CIECZ (krystalizacja) ADSORPCJA KRYSTALIZACJA, ADSORPCJA 1 RÓWNOWAGA FAZOWA W UKŁADZIE CIAŁO STAŁE-CIECZ (krystalizacja)

Bardziej szczegółowo

A - przepływ laminarny, B - przepływ burzliwy.

A - przepływ laminarny, B - przepływ burzliwy. PRZEPŁYW CZYNNIK ŚCIŚLIWEGO. Definicje odstaoe Rys... Profile rędkości rurze. - rzeły laminarny, B - rzeły burzliy. Liczba Reynoldsa Re D [m/s] średnia rędkość kanale D [m] średnica enętrzna kanału ν [m

Bardziej szczegółowo

Spalanie. 1. Skład paliw. 1.1. Paliwa gazowe (1) kmol C. kmol H 2. gdzie: H. , itd. udziały molowe składników paliwa w gazie. suchym. kmol.

Spalanie. 1. Skład paliw. 1.1. Paliwa gazowe (1) kmol C. kmol H 2. gdzie: H. , itd. udziały molowe składników paliwa w gazie. suchym. kmol. Salae / 1 Salae Salae jet zybko rzebegającym roceem utleaa ołączoym z ydzelaem ę ceła. Salau z reguły toarzyzy emja śatła. Podtaoym eratkam alym alach ą ęgel odór. W ale moża yróżć część alą ealy balat.

Bardziej szczegółowo

Fizykochemiczne podstawy inżynierii procesowej

Fizykochemiczne podstawy inżynierii procesowej Fizykohemizne odtay inżynierii roeoej Wykład III Prote rzemiany termodynamizne Prote rzemiany termodynamizne Sośród bardzo ielu możliyh rzemian termodynamiznyh zzególną rolę odgryają rzemiany ełniająe

Bardziej szczegółowo

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI.

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI. 0. FALE, ELEMENY ERMODYNAMIKI I HYDRODY- NAMIKI. 0.9. Podstawy termodynamiki i raw gazowych. Podstawowe ojęcia Gaz doskonały: - cząsteczki są unktami materialnymi, - nie oddziałują ze sobą siłami międzycząsteczkowymi,

Bardziej szczegółowo

Własności koligatywne

Własności koligatywne Własności koligatyne Własnościami koligatynymi nazyamy łasności roztorach rozcieńczonych zależne yłącznie od liczby cząsteczek (a naet szerzej indyiduó chemicznych) substancji rozuszczonej a nie od ich

Bardziej szczegółowo

Ćwiczenia do wykładu Fizyka Statystyczna i Termodynamika

Ćwiczenia do wykładu Fizyka Statystyczna i Termodynamika Ćwiczenia do wykładu Fizyka tatystyczna i ermodynamika Prowadzący dr gata Fronczak Zestaw 5. ermodynamika rzejść fazowych: równanie lausiusa-laeyrona, własności gazu Van der Waalsa 3.1 Rozważ tyowy diagram

Bardziej szczegółowo

KATEDRA SYSTEMÓW ENERGETYCZNYCH i URZĄDZEŃ OCHRONY ŚRODOWISKA. Termodynamika LABORATORIUM PRZEMIANY POWIETRZA WILGOTNEGO

KATEDRA SYSTEMÓW ENERGETYCZNYCH i URZĄDZEŃ OCHRONY ŚRODOWISKA. Termodynamika LABORATORIUM PRZEMIANY POWIETRZA WILGOTNEGO KATEDRA SYSTEMÓW ENERGETYCZNYCH i URZĄDZEŃ OCHRONY ŚRODOWISKA Termodynamika LABORATORIUM PRZEMIANY POWIETRZA WILGOTNEGO Oracował: dr inż. Jerzy Wojciechowski AGH WIMiR KSEIUOŚ KRAKÓW Ćwiczenie Temat: Przemiany

Bardziej szczegółowo

Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI. Wyznaczanie ciepła właściwego c p dla powietrza

Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI. Wyznaczanie ciepła właściwego c p dla powietrza Katedra Silików Saliowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Wyzaczaie cieła właściweo c dla owietrza Wrowadzeie teoretycze Cieło ochłoięte rzez ciało o jedostkowej masie rzy ieskończeie małym rzyroście

Bardziej szczegółowo

Ćwiczenie nr 3. Wyznaczanie współczynnika Joule a-thomsona wybranych gazów rzeczywistych.

Ćwiczenie nr 3. Wyznaczanie współczynnika Joule a-thomsona wybranych gazów rzeczywistych. Termodynamika II ćwiczenia laboratoryjne Ćwiczenie nr 3 Temat: Wyznaczanie wsółczynnika Joule a-tomsona wybranyc gazów rzeczywistyc. Miejsce ćwiczeń: Laboratorium Tecnologii Gazowyc Politecniki Poznańskiej

Bardziej szczegółowo

Kalorymetria paliw gazowych

Kalorymetria paliw gazowych Katedra Termodynamiki, Teorii Maszyn i Urządzeń Cielnych W9/K2 Miernictwo energetyczne laboratorium Kalorymetria aliw gazowych Instrukcja do ćwiczenia nr 7 Oracowała: dr inż. Elżbieta Wróblewska Wrocław,

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Procesów i Konstrukcji Inżynierskich Teoria kinetyczna Kierunek Wyróżniony rzez PKA 1 Termodynamika klasyczna Pierwsza zasada termodynamiki to rosta zasada zachowania energii, czyli ogólna reguła

Bardziej szczegółowo

Wykład 2. Przemiany termodynamiczne

Wykład 2. Przemiany termodynamiczne Wykład Przemiany termodynamiczne Przemiany odwracalne: Przemiany nieodwracalne:. izobaryczna = const 7. dławienie. izotermiczna = const 8. mieszanie. izochoryczna = const 9. tarcie 4. adiabatyczna = const

Bardziej szczegółowo

Jest to zasada zachowania energii w termodynamice - równoważność pracy i ciepła. Rozważmy proces adiabatyczny sprężania gazu od V 1 do V 2 :

Jest to zasada zachowania energii w termodynamice - równoważność pracy i ciepła. Rozważmy proces adiabatyczny sprężania gazu od V 1 do V 2 : I zasada termodynamiki. Jest to zasada zachowania energii w termodynamice - równoważność racy i cieła. ozważmy roces adiabatyczny srężania gazu od do : dw, ad - wykonanie racy owoduje rzyrost energii wewnętrznej

Bardziej szczegółowo

Termodynamika 1. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Termodynamika 1. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Termodynamika Projekt wsółfinansowany rzez Unię Euroejską w ramach Euroejskiego Funduszu Sołecznego Układ termodynamiczny Układ termodynamiczny to ciało lub zbiór rozważanych ciał, w którym obok innych

Bardziej szczegółowo

Entalpia swobodna (potencjał termodynamiczny)

Entalpia swobodna (potencjał termodynamiczny) Entalia swobodna otencjał termodynamiczny. Związek omiędzy zmianą entalii swobodnej a zmianami entroii Całkowita zmiana entroii wywołana jakimś rocesem jest równa sumie zmiany entroii układu i otoczenia:

Bardziej szczegółowo

Pomiar wilgotności względnej powietrza

Pomiar wilgotności względnej powietrza Katedra Silników Salinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Pomiar wilgotności względnej owietrza - 1 - Wstę teoretyczny Skład gazu wilgotnego. Gazem wilgotnym nazywamy mieszaninę gazów, z których

Bardziej szczegółowo

Ć W I C Z E N I E N R C-5

Ć W I C Z E N I E N R C-5 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII ATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ECHANIKI I CIEPŁA Ć W I C Z E N I E N R C-5 WYZNACZANIE CIEPŁA PAROWANIA WODY ETODĄ KALORYETRYCZNĄ

Bardziej szczegółowo

Wykład 4 Gaz doskonały, gaz półdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstępstwa gazów

Wykład 4 Gaz doskonały, gaz półdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstępstwa gazów Wykład 4 Gaz doskonały, gaz ółdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstęstwa gazów rzeczywistych od gazu doskonałego: stoień ściśliwości Z

Bardziej szczegółowo

Rys. 1. Temperatura punktu rosy na wykresie p-t dla wody.

Rys. 1. Temperatura punktu rosy na wykresie p-t dla wody. F-Pow wlot / Powetrze wlotne. Defncje odstawowe Powetrze wlotne jest roztwore (lub eszanną) owetrza sucheo wody w ostac: a) ary rzerzanej lub b) ary nasyconej suchej lub c) ary nasyconej suchej ły cekłej

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych. Sterowanie dławieniowe-równoległe prędkością ruchu odbiornika hydraulicznego

Instrukcja do ćwiczeń laboratoryjnych. Sterowanie dławieniowe-równoległe prędkością ruchu odbiornika hydraulicznego Intrukcja o ćwiczeń laboratoryjnych Sterowanie ławieniowe-równoległe rękością ruchu obiornika hyraulicznego Wtę teoretyczny Niniejza intrukcja oświęcona jet terowaniu ławieniowemu równoległemu jenemu ze

Bardziej szczegółowo

Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI. Pomiar ciepła spalania paliw gazowych

Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI. Pomiar ciepła spalania paliw gazowych Katedra Silników Salinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Pomiar cieła salania aliw gazowych Wstę teoretyczny. Salanie olega na gwałtownym chemicznym łączeniu się składników aliwa z tlenem, czemu

Bardziej szczegółowo

Laboratorium Fizykochemiczne podstawy inżynierii procesowej. Pomiar wilgotności powietrza

Laboratorium Fizykochemiczne podstawy inżynierii procesowej. Pomiar wilgotności powietrza Zakład Inżynierii Biorocesoej i Biomedycznej Politechniki Wrocłaskiej Laboratorium Fizykochemiczne odstay inżynierii rocesoej Pomiar ilgotności oietrza Wrocła 2016 Dr inż. Michał Araszkieicz 1 Wstę 1.

Bardziej szczegółowo

13) Na wykresie pokazano zależność temperatury od objętości gazu A) Przemianę izotermiczną opisują krzywe: B) Przemianę izobaryczną opisują krzywe:

13) Na wykresie pokazano zależność temperatury od objętości gazu A) Przemianę izotermiczną opisują krzywe: B) Przemianę izobaryczną opisują krzywe: ) Ołowiana kula o masie kilograma sada swobodnie z wysokości metrów. Który wzór służy do obliczenia jej energii na wysokości metrów? ) E=m g h B) E=m / C) E=G M m/r D) Q=c w m Δ ) Oblicz energię kulki

Bardziej szczegółowo

Doświadczenie Joule a i jego konsekwencje Ciepło, pojemność cieplna sens i obliczanie Praca sens i obliczanie

Doświadczenie Joule a i jego konsekwencje Ciepło, pojemność cieplna sens i obliczanie Praca sens i obliczanie Pierwsza zasada termodynamiki 2.2.1. Doświadczenie Joule a i jego konsekwencje 2.2.2. ieło, ojemność cielna sens i obliczanie 2.2.3. Praca sens i obliczanie 2.2.4. Energia wewnętrzna oraz entalia 2.2.5.

Bardziej szczegółowo

SUSZENIE MATERIAŁÓW CERAMICZNYCH dyfuzyjna operacja jednostkowa

SUSZENIE MATERIAŁÓW CERAMICZNYCH dyfuzyjna operacja jednostkowa SUSZENIE MATERIAŁÓW CERAMICZNYCH dyfuzyjna oeracja jednostkowa PAROWANIE WODY ZE SWOBODNEJ POWIERZCHNI W wyniku arowania nad cieczą tworzy się warstewka ary nasyconej o teeraturze równej teeraturze arującej

Bardziej szczegółowo

FALE MECHANICZNE C.D. W przypadku fal mechanicznych energia fali składa się z energii kinetycznej i energii

FALE MECHANICZNE C.D. W przypadku fal mechanicznych energia fali składa się z energii kinetycznej i energii FALE MECHANICZNE CD Gętość energii ruchu alowego otencjalnej W rzyadku al mechanicznych energia ali kłada ię z energii kinetycznej i energii Energia kinetyczna Energia kinetyczna małego elementu ośrodka

Bardziej szczegółowo

TERMODYNAMIKA. Przedstaw cykl przemian na wykresie poniższym w układach współrzędnych przedstawionych poniżej III

TERMODYNAMIKA. Przedstaw cykl przemian na wykresie poniższym w układach współrzędnych przedstawionych poniżej III Włodzimierz Wolczyński 44 POWÓRKA 6 ERMODYNAMKA Zadanie 1 Przedstaw cykl rzemian na wykresie oniższym w układach wsółrzędnych rzedstawionych oniżej Uzuełnij tabelkę wisując nazwę rzemian i symbole: >0,

Bardziej szczegółowo

TERMODYNAMIKA. Termodynamika jest to dział nauk przyrodniczych zajmujący się własnościami

TERMODYNAMIKA. Termodynamika jest to dział nauk przyrodniczych zajmujący się własnościami TERMODYNAMIKA Termodynamika jest to dział nauk rzyrodniczych zajmujący się własnościami energetycznymi ciał. Przy badaniu i objaśnianiu własności układów fizycznych termodynamika osługuje się ojęciami

Bardziej szczegółowo

GAZ DOSKONAŁY W TERMODYNAMICE TO POJĘCIE RÓŻNE OD GAZU DOSKONAŁEGO W HYDROMECHANICE (ten jest nielepki)

GAZ DOSKONAŁY W TERMODYNAMICE TO POJĘCIE RÓŻNE OD GAZU DOSKONAŁEGO W HYDROMECHANICE (ten jest nielepki) Właściwości gazów GAZ DOSKONAŁY Równanie stanu to zależność funkcji stanu od jednoczesnych wartości parametrów koniecznych do określenia stanów równowagi trwałej. Jest to zwykle jednowartościowa i ciągła

Bardziej szczegółowo

Bilans cieplny suszarni teoretycznej Termodynamika Techniczna materiały dla studentów

Bilans cieplny suszarni teoretycznej Termodynamika Techniczna materiały dla studentów Bilans cieplny suszarni teoretycznej Termodynamika Techniczna materiały dla studentó K. Kyzioł, J. Szczerba Bilans cieplny suszarni teoretycznej Na rysunku 1 przedstaiono przykładoy schemat suszarni jednostopnioej

Bardziej szczegółowo

max = p WILGOTNOŚĆ MAS I SUROWCÓW WILGOTNOŚĆ BEZWZGLĘDNA odniesiona do masy materiału bezwzględnie suchego m s

max = p WILGOTNOŚĆ MAS I SUROWCÓW WILGOTNOŚĆ BEZWZGLĘDNA odniesiona do masy materiału bezwzględnie suchego m s SUSZENIE PAROWANIE WODY ZE SWOBODNEJ POWIERZCHNI W wyniku arowania nad cieczą tworzy się warstewka ary nasyconej o temeraturze równej temeraturze arującej cieczy. Parowanie jest to zatem dyfuzja ary rzez

Bardziej szczegółowo

Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia.

Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia. PARA WODNA 1. PRZEMIANY FAZOWE SUBSTANCJI JEDNORODNYCH Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia. Przy niezmiennym ciśnieniu zmiana wody o stanie początkowym odpowiadającym

Bardziej szczegółowo

11. O ROZWIĄZYWANIU ZADAŃ

11. O ROZWIĄZYWANIU ZADAŃ . O ROZWIĄZYWANIU ZADAŃ Oberwowanym w realnym świecie zjawikom rzyiuje ię rote modele idee. Idee te z lezą lub gorzą recyzją odzwierciedlają zjawika świata realnego zjawika fizykalne. Treści zadań rachunkowych

Bardziej szczegółowo

Termodynamika 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Termodynamika 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego ermodynamika Projekt wsółfinansowany rzez Unię Euroejską w ramach Euroejskiego Funduszu Sołecznego Siik ciey siikach (maszynach) cieych cieło zamieniane jest na racę. Elementami siika są: źródło cieła

Bardziej szczegółowo

2. RÓWNOWAGI FAZOWE. Zadania przykładowe

2. RÓWNOWAGI FAZOWE. Zadania przykładowe 1. RÓWOWAGI FAZOWE Zadania rzykładowe.1. Obliczyć wyrażenia d/dp dla roceu arowania wody i tonienia lodu, jeżeli cieło arowania wody w temeraturze 100 o C wynoi 40,66 kj mol -1, a cieło tonienia lodu wynoi

Bardziej szczegółowo

1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej

1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej 1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej 2. 1 kmol każdej substancji charakteryzuje się taką samą a) masą b) objętością

Bardziej szczegółowo

Budowa materii Opis statystyczny - NAv= 6.022*1023 at.(cz)/mol Opis termodynamiczny temperatury -

Budowa materii Opis statystyczny - NAv= 6.022*1023 at.(cz)/mol Opis termodynamiczny temperatury - ermoynamika Pojęcia i zaganienia ostawowe: Buowa materii stany skuienia: gazy, ciecze, ciała stale Ois statystyczny wielka liczba cząstek - N A 6.0*0 at.(cz)/mol Ois termoynamiczny Pojęcie temeratury -

Bardziej szczegółowo

Termodynamika Termodynamika

Termodynamika Termodynamika Termodynamika 1. Wiśniewski S.: Termodynamika techniczna, WNT, Warszawa 1980, 1987, 1993. 2. Jarosiński J., Wiejacki Z., Wiśniewski S.: Termodynamika, skrypt PŁ. Łódź 1993. 3. Zbiór zadań z termodynamiki

Bardziej szczegółowo

TERMODYNAMIKA PROCESOWA I TECHNICZNA

TERMODYNAMIKA PROCESOWA I TECHNICZNA ERMODYNAMIKA PROCESOWA I ECHNICZNA Wykład II Podstawowe definicje cd. Podstawowe idealizacje termodynamiczne I i II Zasada termodynamiki Proste rzemiany termodynamiczne Prof. Antoni Kozioł, Wydział Chemiczny

Bardziej szczegółowo

WYKŁAD 2_2. 1.Entropia definicja termodynamiczna. przemiana nieodwracalna. Sumaryczny zapis obu tych relacji

WYKŁAD 2_2. 1.Entropia definicja termodynamiczna. przemiana nieodwracalna. Sumaryczny zapis obu tych relacji .Entroia definicja termodynamiczna. d d rzemiana odwracaa rzemiana nieodwracaa umaryczny zais obu tych relacji Q d el WYKŁAD _ rzykład a Obliczyć zmianę entroii, gdy 5 moli wodoru rozręŝa się odwracaie

Bardziej szczegółowo

TERMODYNAMIKA PROCESOWA. Wykład VI. Równania kubiczne i inne. Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej

TERMODYNAMIKA PROCESOWA. Wykład VI. Równania kubiczne i inne. Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej ERMODYNAMIKA PROCESOWA Wykład VI Równania kubiczne i inne Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej Komunikat Wstęne terminy egzaminu z ermodynamiki rocesowej : I termin środa 15.06.016

Bardziej szczegółowo

Wykład 12 Silnik Carnota z gazem doskonałym Sprawność silnika Carnota z gazem doskonałym Współczynnik wydajności chłodziarki i pompy cieplnej Carnota

Wykład 12 Silnik Carnota z gazem doskonałym Sprawność silnika Carnota z gazem doskonałym Współczynnik wydajności chłodziarki i pompy cieplnej Carnota Wykła Silnik Carnota z azem oskonałym Sprawność silnika Carnota z azem oskonałym Współczynnik wyajności chłoziarki i pompy cieplnej Carnota z azem oskonałym RównowaŜność skali temperatury termoynamicznej

Bardziej szczegółowo

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami WYKŁAD 2 TERMODYNAMIKA Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami Zasada zerowa Kiedy obiekt gorący znajduje się w kontakcie cieplnym z obiektem zimnym następuje

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA ZAKŁADZIE BIOFIZYKI Ćwiczenie 7 KALORYMETRIA

POLITECHNIKA ŁÓDZKA ZAKŁADZIE BIOFIZYKI Ćwiczenie 7 KALORYMETRIA POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćiczenie 7 KALORYMETRIA I. WSTĘP TEORETYCZNY Kalorymetria jest działem fizyki zajmującym się metodami pomiaru ciepła ydzielanego bądź

Bardziej szczegółowo

Chłodnictwo i Kriogenika - Ćwiczenia Lista 3

Chłodnictwo i Kriogenika - Ćwiczenia Lista 3 Chłodnictwo i Kriogenika - Ćwiczenia Lista 3 dr hab. nż. Bartosz Zajączkowski bartosz.zajaczkowski@pwr.edu.pl Politechnika Wrocławska Wydział Mechaniczno-Energetyczny Katedra Termodynamiki, Teorii Maszyn

Bardziej szczegółowo

Metodyka szacowania niepewności w programie EMISJA

Metodyka szacowania niepewności w programie EMISJA mgr inż. Ryzard Samoć rzeczoznawca Minitra Ochrony Środowika Zaobów Naturalnych i Leśnictwa nr. 556 6-800 Kaliz, ul. Biernackiego 8 tel. (0-6) 7573-987, 766-39 Metodyka zacowania niepewności w programie

Bardziej szczegółowo

4.3. Obliczanie przewodów grzejnych metodą elementu wzorcowego (idealnego)

4.3. Obliczanie przewodów grzejnych metodą elementu wzorcowego (idealnego) .3. Obliczanie rzeodó grzejnych metodą elementu zorcoego (idealnego) Wzorcoy element grzejny jest umieszczony iecu o doskonałej izolacji cielnej i stanoi ciągłą oierzchnię otaczającą ad (rys..3). Rys..3.

Bardziej szczegółowo

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 14. Termodynamika fenomenologiczna cz.ii Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html GAZY DOSKONAŁE Przez

Bardziej szczegółowo

Metodyka obliczenia natężenia przepływu za pomocą anemometru skrzydełkowego.

Metodyka obliczenia natężenia przepływu za pomocą anemometru skrzydełkowego. ZAŁĄCZNIK Metoyka obliczenia natężenia rzełyu za omocą anemometru skrzyełkoego. Prękość oietrza osi symetrii kanału oblicza się ze zoru: S max τ gzie: S roga rzebyta rzez gaz ciągu czasu trania omiaru

Bardziej szczegółowo

4. 1 bar jest dokładnie równy a) Pa b) 100 Tr c) 1 at d) 1 Atm e) 1000 niutonów na metr kwadratowy f) 0,1 MPa

4. 1 bar jest dokładnie równy a) Pa b) 100 Tr c) 1 at d) 1 Atm e) 1000 niutonów na metr kwadratowy f) 0,1 MPa 1. Adiatermiczny wymiennik ciepła to wymiennik, w którym a) ciepło płynie od czynnika o niższej temperaturze do czynnika o wyższej temperaturze b) nie ma strat ciepła na rzecz otoczenia c) czynniki wymieniające

Bardziej szczegółowo

[ ] 1. Zabezpieczenia instalacji ogrzewań wodnych systemu zamkniętego. 1. 2. Przeponowe naczynie wzbiorcze. ν dm [1.4] 1. 1. Zawory bezpieczeństwa

[ ] 1. Zabezpieczenia instalacji ogrzewań wodnych systemu zamkniętego. 1. 2. Przeponowe naczynie wzbiorcze. ν dm [1.4] 1. 1. Zawory bezpieczeństwa . Zabezieczenia instalacji ogrzewań wodnych systemu zamkniętego Zabezieczenia te wykonuje się zgodnie z PN - B - 0244 Zabezieczenie instalacji ogrzewań wodnych systemu zamkniętego z naczyniami wzbiorczymi

Bardziej szczegółowo

Ćwiczenie - Fale ciśnieniowe w gazach

Ćwiczenie - Fale ciśnieniowe w gazach MIERNICTWO CIEPLNO - PRZE- PŁYWOWE - LABORATORIUM Ćwiczenie - Fale ciśnieniowe w gazach Cel ćwiczenia: Celem ćwiczenia jet zaoznanie ię ze zjawikami rzeływu nieutalonego w rzewodach, wyznaczenie rędkości

Bardziej szczegółowo

= T. = dt. Q = T (d - to nie jest różniczka, tylko wyrażenie różniczkowe); z I zasady termodynamiki: przy stałej objętości. = dt.

= T. = dt. Q = T (d - to nie jest różniczka, tylko wyrażenie różniczkowe); z I zasady termodynamiki: przy stałej objętości. = dt. ieło właściwe gazów definicja emiryczna: Q = (na jednostkę masy) T ojemność cielna = m ieło właściwe zależy od rocesu: Q rzy stałym ciśnieniu = T dq = dt rzy stałej objętości Q = T (d - to nie jest różniczka,

Bardziej szczegółowo

Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem

Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem pustego zbiornika rzy metody obliczeń entalpii gazu doskonałego

Bardziej szczegółowo

Wykład 4. Przypomnienie z poprzedniego wykładu

Wykład 4. Przypomnienie z poprzedniego wykładu Wykład 4 Przejścia fazowe materii Diagram fazowy Ciepło Procesy termodynamiczne Proces kwazistatyczny Procesy odwracalne i nieodwracalne Pokazy doświadczalne W. Dominik Wydział Fizyki UW Termodynamika

Bardziej szczegółowo

3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach?

3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach? 1. Która z podanych niżej par wielkości fizycznych ma takie same jednostki? a) energia i entropia b) ciśnienie i entalpia c) praca i entalpia d) ciepło i temperatura 2. 1 kj nie jest jednostką a) entropii

Bardziej szczegółowo

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej w Systemach Technicznych Symulacja prosta dyszy pomiarowej Bendemanna Opracował: dr inż. Andrzej J. Zmysłowski

Bardziej szczegółowo

Badanie kotła parowego

Badanie kotła parowego Badanie kotła aoego Instukcja do ćiczenia n 14 Badanie maszyn - laboatoium Oacoał: d inŝ. Andzej Tataek Zakład Mienicta i Ochony Atmosfey Wocła, gudzień 2006. 1. Cel i zakes ćiczenia Celem ćiczenia jest

Bardziej szczegółowo

STEROWANIE WG. ZASADY U/f = const

STEROWANIE WG. ZASADY U/f = const STEROWANIE WG. ZASADY U/f = cont Rozruch bezpośredni ilnika aynchronicznego (bez układu regulacji, odpowiedź na kok wartości zadanej napięcia zailania) Duży i niekontrolowany prąd przy rozruchu Ocylacje

Bardziej szczegółowo

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku TERMODYNAMIKA przykłady zastosowań I.Mańkowski I LO w Lęborku 2016 UKŁAD TERMODYNAMICZNY Dla przykładu układ termodynamiczny stanowią zamknięty cylinder z ruchomym tłokiem, w którym znajduje się gaz tak

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwiczenia: WYZNACZANIE WILGOTNOŚCI WZGLĘDNEJ I STOPNIA ZAWILŻENIA POWIETRZA HIGROMETREM

Bardziej szczegółowo

Stan wilgotnościowy przegród budowlanych. dr inż. Barbara Ksit

Stan wilgotnościowy przegród budowlanych. dr inż. Barbara Ksit Stan wilgotnościowy rzegród budowlanych dr inż. Barbara Ksit barbara.ksit@ut.oznan.l Przyczyny zawilgocenia rzegród budowlanych mogą być nastęujące: wilgoć budowlana wrowadzona rzy rocesach mokrych odczas

Bardziej szczegółowo

Wykład 3. Prawo Pascala

Wykład 3. Prawo Pascala 018-10-18 Wykład 3 Prawo Pascala Pływanie ciał Ściśliwość gazów, cieczy i ciał stałych Przemiany gazowe Równanie stanu gazu doskonałego Równanie stanu gazu van der Waalsa Przejścia fazowe materii W. Dominik

Bardziej szczegółowo

K raków 26 ma rca 2011 r.

K raków 26 ma rca 2011 r. K raków 26 ma rca 2011 r. Zadania do ćwiczeń z Podstaw Fizyki na dzień 1 kwietnia 2011 r. r. dla Grupy II Zadanie 1. 1 kg/s pary wo dne j o ciśnieniu 150 atm i temperaturze 342 0 C wpada do t urbiny z

Bardziej szczegółowo

I zasada termodynamiki

I zasada termodynamiki W3 30 Układ termodynamizny ównowaga termodynamizna Praa I zasada dla układu zamkniętego Entalia I zasada dla układu otwartego Cieło o właśiwew К Srawność jest zastosowaniem zasady zahowania energii do

Bardziej szczegółowo

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23 Stany materii Masa i rozmiary cząstek Masą atomową ierwiastka chemicznego nazywamy stosunek masy atomu tego ierwiastka do masy / atomu węgla C ( C - izoto węgla o liczbie masowej ). Masą cząsteczkową nazywamy

Bardziej szczegółowo

Obiegi termodynamiczne

Obiegi termodynamiczne Obiegi termo / Obiegi termoynamiczne. nformacje ogólne Obiegiem termoynamicznym nazyamy zespół kolejnych przemian termoynamicznych, yających się kłazie zamkniętym lb zespole maszyn (trbiny, sprężarki,

Bardziej szczegółowo

3. Numeryczne modelowanie procesów krzepnięcia

3. Numeryczne modelowanie procesów krzepnięcia 3. Numeryczne modeowanie roceów krzenięcia Modeowanie numeryczne rzeływów, którym towarzyzą rzemiany fazowe ub rzeływy ze wobodną owierzchnią, wciąż tanowi wyzwanie da naukowców zajmujących ię mechaniką

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: Przedmiot do realizacji treści kierunkowych podstawowych Rodzaj zajęć: wykład, ćwiczenia, laboratorium TERMODYNAMIKA TECHNICZNA

Bardziej szczegółowo

[1] CEL ĆWICZENIA: Identyfikacja rzeczywistej przemiany termodynamicznej poprzez wyznaczenie wykładnika politropy.

[1] CEL ĆWICZENIA: Identyfikacja rzeczywistej przemiany termodynamicznej poprzez wyznaczenie wykładnika politropy. [1] CEL ĆWICZENIA: Identyfikacja rzeczywistej przemiany termodynamicznej poprzez wyznaczenie wykładnika politropy. [2] ZAKRES TEMATYCZNY: I. Rejestracja zmienności ciśnienia w cylindrze sprężarki (wykres

Bardziej szczegółowo

MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA II. Zdający może rozwiązać zadania każdą poprawną metodą. Otrzymuje wtedy maksymalną liczbę punktów.

MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA II. Zdający może rozwiązać zadania każdą poprawną metodą. Otrzymuje wtedy maksymalną liczbę punktów. MODEL ODOWEDZ SCHEMAT OCENANA AKUSZA Zdający może rozwiązać zadania każdą poprawną metodą. Otrzymuje wtedy makymalną liczbę punktów.. Amperomierz należy podłączyć zeregowo. Zadanie. Żaróweczki... Obliczenie

Bardziej szczegółowo

Modelowanie matematyczne procesów transportu w mikroskali

Modelowanie matematyczne procesów transportu w mikroskali METRO MEtaurgicn TRening On-ine Modeoanie matematcne proceó tranportu mikrokai Piotr Furmańki IT PW Edukaca i Kutura Modeoanie arodkoania Tempo arodkoania dn dt f T N N cr gdie: N -gętość obętościoa aktnc

Bardziej szczegółowo

Zadania domowe z termodynamiki I dla wszystkich kierunków A R C H I W A L N E

Zadania domowe z termodynamiki I dla wszystkich kierunków A R C H I W A L N E Zadania domowe z termodynamiki I dla wszystkich kierunków A R C H I W A L N E ROK AKADEMICKI 2015/2016 Zad. nr 4 za 3% [2015.10.29 16:00] Ciepło właściwe przy stałym ciśnieniu gazu zależy liniowo od temperatury.

Bardziej szczegółowo

MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA II. Zdający może rozwiązać zadania każdą poprawną metodą. Otrzymuje wtedy maksymalną liczbę punktów.

MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA II. Zdający może rozwiązać zadania każdą poprawną metodą. Otrzymuje wtedy maksymalną liczbę punktów. MODEL ODOWEDZ SCHEMAT OCENANA AKUSZA Zdający może rozwiązać zadania każdą poprawną metodą. Otrzymuje wtedy makymalną liczbę punktów. Numer zadania Czynności unktacja Uwagi. Amperomierz należy podłączyć

Bardziej szczegółowo

TERMODYNAMIKA FENOMENOLOGICZNA

TERMODYNAMIKA FENOMENOLOGICZNA TERMODYNAMIKA FENOMENOLOGICZNA Przedmiotem badań są własności układów makroskopowych w zaleŝności od temperatury. Układ makroskopowy Np. 1 mol substancji - tyle składników ile w 12 gramach węgla C 12 N

Bardziej szczegółowo

Materiały pomocnicze do ćwiczeń z przedmiotu: Termodynamika techniczna

Materiały pomocnicze do ćwiczeń z przedmiotu: Termodynamika techniczna Materiały omocnicze do ćwiczeń z rzedmiotu: Termodynamika techniczna Materiały omocnicze do rzedmiotu Termodynamika techniczna. Sis treści Sis treści... 3 Gaz jako czynnik termodynamiczny... 5. Prawa

Bardziej szczegółowo

Mechanika płynp. Wykład 9 14-I Wrocław University of Technology

Mechanika płynp. Wykład 9 14-I Wrocław University of Technology Mechanika łyn ynów Wykład 9 Wrocław University of Technology 4-I-0 4.I.0 Płyny Płyn w odróŝnieniu od ciała stałego to substancja zdolna do rzeływu. Gdy umieścimy go w naczyniu, rzyjmie kształt tego naczynia.

Bardziej szczegółowo

TERMODYNAMIKA. Bada zjawiska cieplne i procesy mające charakter przemian energetycznych

TERMODYNAMIKA. Bada zjawiska cieplne i procesy mające charakter przemian energetycznych ERMODYNAMIKA Nauka o ciele i rocesach cielnych Bada zjawiska cielne i rocesy mające charakter rzemian energetycznych Dwa odejścia: - termodynamika klasyczna - doświadczalna (fenomenologiczna) - termodynamika

Bardziej szczegółowo

WARUNKI RÓWNOWAGI UKŁADU TERMODYNAMICZNEGO

WARUNKI RÓWNOWAGI UKŁADU TERMODYNAMICZNEGO WARUNKI RÓWNOWAGI UKŁADU ERMODYNAMICZNEGO Proces termodynamiczny zachodzi doóty, doóki układ nie osiągnie stanu równowagi. W stanie równowagi odowiedni otencjał termodynamiczny układu osiąga minimum, odczas

Bardziej szczegółowo

PODSTAWY TERMODYNAMIKI

PODSTAWY TERMODYNAMIKI ODAWY ERMODYNAMIKI ( punkty (OŚ_3--7 Zad.. W zbiorniku zamkniętym tłokiem znajduje się moli metanu, który można z powodzeniem potraktować jako az doskonały. emperatura początkowa metanu wynosi 5 C a ciśnienie

Bardziej szczegółowo

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,

Bardziej szczegółowo

POLITECHNIKA RZESZOWSKA

POLITECHNIKA RZESZOWSKA POLITECHNIKA RZESZOWSKA Katedra Termodynamiki Instrukcja do ćwiczenia laboratoryjnego pt. WYZNACZANIE WYKŁADNIKA ADIABATY Opracowanie: Robert Smusz 1. Cel ćwiczenia Podstawowym celem niniejszego ćwiczenia

Bardziej szczegółowo

(3.1) oznacza spadek entalpii w procesie idealnym. oznacza spadek entalpii w procesie rzeczywistym, natomiast ha

(3.1) oznacza spadek entalpii w procesie idealnym. oznacza spadek entalpii w procesie rzeczywistym, natomiast ha M. Chorowki Podtawy Kriogeniki, wykład 3. 3. Metody uzykiwania nikich temeratur. Uzykiwanie nikich temeratur może odbywać ię orzez realizację wielu roceów, z których tylko niektóre ą wykorzytywane w raktyce.

Bardziej szczegółowo

). Uzyskanie temperatur rzędu pojedynczych kalwinów wymaga użycia helu ( Tw

). Uzyskanie temperatur rzędu pojedynczych kalwinów wymaga użycia helu ( Tw WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1 2 TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do orawy: Data oddania: Data zliczenia: OCENA Cel ćwiczenia Zaoznanie się z

Bardziej szczegółowo

Temperatura i ciepło E=E K +E P +U. Q=c m T=c m(t K -T P ) Q=c przem m. Fizyka 1 Wróbel Wojciech

Temperatura i ciepło E=E K +E P +U. Q=c m T=c m(t K -T P ) Q=c przem m. Fizyka 1 Wróbel Wojciech emeratura i cieło E=E K +E P +U Energia wewnętrzna [J] - ieło jest energią rzekazywaną między układem a jego otoczeniem na skutek istniejącej między nimi różnicy temeratur na sosób cielny rzez chaotyczne

Bardziej szczegółowo

1 Wstp... 2 2 Własnoci materiału wilgotnego... 3 2.1 Podział materiałów suszonych... 3. 2.2 Własnoci strukturalne materiałów suszonych...

1 Wstp... 2 2 Własnoci materiału wilgotnego... 3 2.1 Podział materiałów suszonych... 3. 2.2 Własnoci strukturalne materiałów suszonych... 1 Wst... 2 2 Własnoci ateriału ilgotnego... 3 2.1 Podział ateriałó suszonych... 3 2.2 Własnoci strukturalne ateriałó suszonych... 3 2.3 Wilgotno ateriału... 4 2.4 Mechaniz izania ilgoci ateriale... 4 2.5

Bardziej szczegółowo

Wydział Samochodów i Maszyn Roboczych Instytut Pojazdów LABORATORIUM TERMODYNAMIKI. Wykres indykatorowy silnika spalinowego

Wydział Samochodów i Maszyn Roboczych Instytut Pojazdów LABORATORIUM TERMODYNAMIKI. Wykres indykatorowy silnika spalinowego Wydział Samochodów i Mazyn Roboczych Intytut Pojazdów LABORATORIUM TERMODYNAMIKI Wykre indykatorowy ilnika alinowego Oracowanie Dr inż. Ewa Fudalej-Kotrzewa Warzawa, wrzeień 016 SPIS TREŚCI Wykre indykatorowy...

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 18 TERMODYNAMIKA 1. GAZY

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 18 TERMODYNAMIKA 1. GAZY autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 18 TERMODYNAMIKA 1. GAZY Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie 1 1 punkt TEST JEDNOKROTNEGO WYBORU

Bardziej szczegółowo

Pomiar stopnia suchości pary wodnej

Pomiar stopnia suchości pary wodnej Katedra Silnió Spalinoych i Pojazdó ATH ZAKŁAD TERMODYNAMIKI Pomiar stopnia suchości pary odnej - - Podstay teoretyczne. Para mora jest uładem dufazoym stanie rónoagi. Stanoi ją mieszaniny drobnych ropele

Bardziej szczegółowo

Wyznaczanie gęstości cieczy i ciał stałych za pomocą wagi hydrostatycznej FIZYKA. Ćwiczenie Nr 3 KATEDRA ZARZĄDZANIA PRODUKCJĄ

Wyznaczanie gęstości cieczy i ciał stałych za pomocą wagi hydrostatycznej FIZYKA. Ćwiczenie Nr 3 KATEDRA ZARZĄDZANIA PRODUKCJĄ POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja o zajęć laboratoryjnych z przemiotu: FIZYKA Ko przemiotu: KS07; KN07; LS07; LN07 Ćiczenie Nr Wyznaczanie gęstości cieczy i ciał stałych

Bardziej szczegółowo

5.4.1. Ruch unoszenia, względny i bezwzględny

5.4.1. Ruch unoszenia, względny i bezwzględny 5.4.1. Ruch unozeni, zględny i bezzględny Przy ominiu ruchu punktu lub bryły zkłdliśmy, że punkt lub brył poruzły ię zględem ukłdu odnieieni x, y, z użnego z nieruchomy. Możn rozptrzyć tki z przypdek,

Bardziej szczegółowo

Mechanika płynów. Wykład 9. Wrocław University of Technology

Mechanika płynów. Wykład 9. Wrocław University of Technology Wykład 9 Wrocław University of Technology Płyny Płyn w odróżnieniu od ciała stałego to substancja zdolna do rzeływu. Gdy umieścimy go w naczyniu, rzyjmie kształt tego naczynia. Płyny od tą nazwą rozumiemy

Bardziej szczegółowo

Ciśnienie i temperatura model mikroskopowy

Ciśnienie i temperatura model mikroskopowy Ciśnienie i temperatura model mikroskopowy Mikroskopowy model ciśnienia gazu wzór na ciśnienie gazu Mikroskopowa interpretacja temperatury Średnia energia cząsteczki gazu zasada ekwipartycji energii Czy

Bardziej szczegółowo

Przemiany termodynamiczne

Przemiany termodynamiczne Przemiany termodynamiczne.:: Przemiana adiabatyczna ::. Przemiana adiabatyczna (Proces adiabatyczny) - proces termodynamiczny, podczas którego wyizolowany układ nie nawiązuje wymiany ciepła, lecz całość

Bardziej szczegółowo

Rys. 1. Temperatura punktu rosy na wykresie p-t dla wody.

Rys. 1. Temperatura punktu rosy na wykresie p-t dla wody. Powetrze wlotne. Defncje odstawowe Powetrze wlotne jest roztwore (lub eszanną) owetrza sucheo wody w ostac: a) ary rzerzanej lub b) ary nasyconej suchej lub c) ary nasyconej suchej ły cekłej lub lodowej.

Bardziej szczegółowo

16 GAZY CZ. I PRZEMIANY.RÓWNANIE CLAPEYRONA

16 GAZY CZ. I PRZEMIANY.RÓWNANIE CLAPEYRONA Włodzimierz Wolczyński 16 GAZY CZ. PRZEMANY.RÓWNANE CLAPEYRONA Podstawowy wzór teorii kinetyczno-molekularnej gazów N ilość cząsteczek gazu 2 3 ś. Równanie stanu gazu doskonałego ż ciśnienie, objętość,

Bardziej szczegółowo

Zasada ruchu środka masy i zasada d Alemberta 6

Zasada ruchu środka masy i zasada d Alemberta 6 Zaada ruchu środka ay i zaada d Aleerta 6 Wprowadzenie Zaada ruchu środka ay Środek ay układu punktów aterialnych poruza ię tak, jaky w ty punkcie yła kupiona cała aa układu i jaky do teo punktu przyłożone

Bardziej szczegółowo

GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych.

GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych. TERMODYNAMIKA GAZ DOSKONAŁY Gaz doskonały to abstrakcyjny, matematyczny model gazu, chociaż wiele gazów (azot, tlen) w warunkach normalnych zachowuje się w przybliżeniu jak gaz doskonały. Model ten zakłada:

Bardziej szczegółowo