Wspomaganie planowania finansowego w systemach informatycznych z wykorzystaniem rozwiązań inteligentnych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wspomaganie planowania finansowego w systemach informatycznych z wykorzystaniem rozwiązań inteligentnych"

Transkrypt

1 Wspomaganie planowania finansowego w systemach informatycznych 111 Marcin RELICH Zakład Controllingu i Informatyki Ekonomicznej, Uniwersytet Zielonogórski E mail: Wspomaganie planowania finansowego w systemach informatycznych z wykorzystaniem rozwiązań inteligentnych 1. Wstęp Współcześnie trudno sobie wyobrazić nowoczesne zarządzanie przedsiębiorstwem bez wykorzystania technologii informatycznych. W wielu przypadkach jedynie dzięki systemom komputerowym moŝna zachować niezbędne wyprzedzenie informacyjne, zapewniające odpowiednią rezerwę czasu na staranną analizę informacji i podjęcie właściwej decyzji. Obszarem komputerowego wspomagania objęte są wybrane części systemu informacyjnego przedsiębiorstwa, w których realizowane są procesy gromadzenia, przetwarzania, przekazywania i magazynowania informacji słuŝących do podejmowania decyzji [6]. Automatyzacja przetwarzania informacji, pozwalająca usprawnić procesy informacyjne, jest zwykle realizowana za pomocą systemów komputerowych. Komputerowe systemy automatyzacji procesów informacyjnych zarządzania nazywamy systemami informatycznymi zarządzania (SIZ) [7, 8]. Oferowane obecnie rozwiązania informatyczne występują coraz częściej w postaci systemów zintegrowanych. Cechą tych systemów jest to, Ŝe dane wprowadza się do bazy tylko raz i od momentu wprowadzenia są dostępne dla wszystkich uprawnionych uŝytkowników i aplikacji. Dzięki natychmiastowej aktualizacji i dostępności danych uŝytkownicy posiadają informację oddającą stan rzeczywisty ze stosunkowo niewielkim opóźnieniem. Zintegrowany system informatyczny stanowi modułowo zorganizowany system, obsługujący najwaŝniejsze sfery działalności przedsiębiorstwa, począwszy od marketingu i planowania, poprzez sprzedaŝ, dystrybucję, techniczne przygotowanie produkcji i jej sterowanie, zaopatrzenie, gospodarkę magazynową, zarządzanie zasobami ludzkimi do obszaru finansowo-księgowego oraz rachunku kosztów [4]. Modułowa budowa systemu umoŝliwia etapowe wdraŝanie tych składowych, które z uwagi na charakter i specyfikę działalności przedsiębiorstwa są niezbędne. Zintegrowane systemy informatyczne są coraz częściej wykorzystywane, szczególnie przez firmy średniej wielkości. Większość tego typu systemów dostępnych na rynku to tzw. systemy standardowe, które nie są tworzone na zamówienie konkretnej organizacji, ale zawierają zestaw standardowych funkcji, które dostosowywane są do potrzeb uŝytkownika za pomocą modyfikacji zmiennych parametrów systemu [10]. Spośród syste-

2 112 Marcin Relich mów standardowych jednym z najczęściej wybieranych jest system planowania zasobów przedsiębiorstwa ERP (ang. Enterprise Resource Planning). Systemy ERP w porównaniu do swoich poprzedników systemów MRP/MRP II (ang. Material Requirements Planning/Manufacturing Resource Planning), charakteryzują się pełniejszym wspomaganiem zarządzania zasobami przedsiębiorstwa uwzględniającym równieŝ perspektywę finansową. Pomimo braku formalnego standardu, podstawowy model systemu ERP moŝna opisać w kontekście takich obszarów funkcjonalnych jak na przykład: dane i funkcje podstawowe, sprzedaŝ, gospodarka materiałowa, zakupy, produkcja, zarządzanie projektem, finanse i księgowość [9, 10]. Rozwój systemów informatycznych, w szczególności baz danych i technik elektronicznego rejestrowania informacji, ułatwił gromadzenie bardzo duŝych zbiorów danych. W tej sytuacji wyzwaniem staje się nie tylko przechowywanie takich danych, lecz takŝe ich analiza, zdolność interpretacji i wyciągania uŝytecznych wniosków, które mogą wspomóc człowieka w podejmowaniu lepszych decyzji. Wynikiem wykonanych na danych wielowymiarowych analiz (na przykład z wykorzystaniem technologii OLAP) są informacje przedstawione najczęściej w postaci wykresu czy raportu. W przypadku, gdy nie są one wystarczające dla menedŝera w procesie decyzyjnym, moŝe on zaŝyczyć sobie wykonania dalszych czynności, związanych z poszukiwaniem wśród tych informacji wiedzy. W tej sytuacji mogą zostać wykorzystane techniki drąŝenia danych (ang. data mining), których zadaniem jest między innymi odkrywanie wzorców i trendów w danych, trudnych do odkrycia innymi metodami [17]. Obserwowana w ostatnich latach szybko zwiększająca się ilość nieustrukturalizowanej informacji jest jednym z problemów współczesnego zarządzania. Zwykłe procedury przetwarzania informacji skupiają się jedynie na informacji ustrukturalizowanej, czyli zawartej w bazach danych, gdzie podstawowym wymaganiem jest jednoznaczność i zupełność modelu informacji. Podstawowym problemem jest automatyzacja przetwa-rzania informacji, która wymaga inteligencji, polegającej na interpretacji i prawidłowym wnioskowaniu na podstawie nieustrukturalizowanej informacji pochodzącej z róŝnych źródeł. Rozwiązanie tego problemu nosi niekiedy nazwę inteligencji biznesowej. Sztuczna inteligencja jest dziedziną informatyki, zajmującą się automatyzacją inteligentnego zachowania. Początkowo utoŝsamiano inteligencję ze zdolnością przetwarzania informacji symbolicznej. Późniejsze badania pokazały jednak, Ŝe zagadnienia związane z ludzką inteligencją są znacznie bardziej złoŝone i obejmują nie tylko proces wnioskowania, ale równieŝ takie zdolności, jak rozpoznawanie obrazu, przetwarzanie języka naturalnego, planowanie działań czy uczenie się. Obecnie do największych wyzwań stojących przed sztuczną inteligencją naleŝą: oparta na semantyce eksploracja danych, uczenie maszynowe czy rozwój metod optymalizacji decyzji. Wydaje się, Ŝe dalszy rozwój systemów informatycznych zarządzania będzie silnie związany z rozwojem sztucznej inteligencji [8]. W przypadku przedsiębiorstw problematyka wykorzystania metod sztucznej inteligencji została podjęta na przykład w takich obszarach jak: planowanie produkcji [np.: 2, 8, 11], prognozowanie sprzedaŝy [np.: 12, 19], zarządzanie łańcuchem dostaw czy zarządzanie

3 Wspomaganie planowania finansowego w systemach informatycznych 113 jakością [np.: 12]. Tylko nieliczne opracowania dotyczą natomiast obszaru planowania finansowego [np.: 15, 16, 20]. Planowanie finansowe ma na celu przede wszystkim zapewnienie płynności finansowej oraz minimalizowanie kosztów utraconych korzyści (np. poprzez racjonalne wykorzystanie nadwyŝek finansowych). Biorąc pod uwagę istotność utrzymania płynności finansowej w przedsiębiorstwie w pracy skoncentrowano się na problematyce wykorzystania systemów inteligentnych (uczących się) do wspomagania planowania przepływów pienięŝnych. 2. Sformułowanie problemu Przedsiębiorstwa charakteryzują się bardzo duŝą złoŝonością i róŝnorodnością. W związku z tym opracowanie skutecznej oraz uniwersalnej metody planowania finansowego jest niecelowe. MoŜna jednak oczekiwać dobrych wyników dla pewnych wybranych klas przedsiębiorstw. W pracy rozwaŝa się klasę małych i średnich przedsiębiorstw (MŚP), charakteryzującą się następującymi cechami: funkcjonowanie na rynkach w warunkach wysokiej konkurencji, które wymuszają na przedsiębiorstwie nawiązywanie i podtrzymywanie współpracy z mniej rzetelnymi kooperantami (klientami, dostawcami); większa elastyczność dostosowania się do tendencji rynkowych (zachowań klienta, np. dotyczących wykorzystania e-commerce, m.in. składania zamówień przez Internet); ograniczone moŝliwości pozyskiwania zewnętrznych źródeł finansowania; brak kontroli nad otoczeniem biznesowym; niewielki skład kadry kierowniczej oraz silny wpływ właścicieli, którzy niejednokrotnie pełnią funkcję decydentów w firmie. NaleŜy zaznaczyć, Ŝe MŚP nie moŝna traktować jako mniejszych wersji duŝych przedsiębiorstw. Polskim przedsiębiorstwom produkcyjnym coraz trudniej jest konkurować z przedsiębiorstwami takich krajów jak na przykład Chiny, gdzie występują duŝo niŝsze koszty produkcji. Powoduje to stopniowe odchodzenie od działalności produkcyjnej w kierunku działalności handlowej. W krajach Europy Zachodniej tendencja ta występuje juŝ od kilkunastu lat. W tej sytuacji handlowe MŚP przejmują na siebie rolę pośrednika, kupując towar na przykład z Chin i sprzedając go supermarketom czy hurtownikom, rzadziej końcowemu uŝytkownikowi towaru. W pracy rozwaŝa się wykorzystanie systemów uczących się do wspomagania decyzyjnego w obszarze planowania finansowego w małych i średnich przedsiębiorstwach. Zgodnie z załoŝeniami przyjętymi przez Parlament Europejski małe przedsiębiorstwo definiuje się jako przedsiębiorstwo zatrudniające nie więcej niŝ 50 pracowników, o obrocie oraz sumie bilansowej nie przekraczającej 10 milionów euro. Natomiast do klasy średnich przedsiębiorstw moŝna zaliczyć przedsiębiorstwo zatrudniające poniŝej 250 pracowników, o obrocie nie przekraczającym 50 milionów euro oraz sumie bilansowej nie przekraczającej 43 milionów euro [27].

4 114 Marcin Relich Znaczenie MŚP w polskiej gospodarce moŝna określić poprzez analizę takich wskaźników jak: udział MŚP w tworzeniu PKB, w wielkości zatrudnienia czy teŝ udział MŚP w inwestycjach ogółem. W tabeli 1 przedstawiono wartości tych wskaźników dla roku Rodzaj przedsiębiorstwa Udział w tworzeniu PKB (w %) Liczba pracujących Udział w inwestycjach ogółem (w mln) (w %) (w mld zł) (w %) Małe 37,4 4,601 51,3 22,241 22,4 Średnie 10 1,619 18,1 21,384 21,5 MŚP ogółem 47,4 6,220 69,4 43,625 43,9 DuŜe 33 2,749 30,6 55,793 56,1 Tab. 1. Udział MŚP w tworzeniu PKB oraz w wielkości zatrudnienia w roku 2007 Przedstawione wartości wskazują na istotną rolę MŚP w polskiej gospodarce. Na uwagę zasługuje znaczny udział inwestycji MŚP w inwestycjach ogółem. Wzrost świadomości inwestycyjnej MŚP prawdopodobnie będzie prowadził do dalszego rozwoju tego sektora, z pewnością równieŝ w obszarze wykorzystania systemów informatycznych zarządzania [26, 29]. Często zmieniający się asortyment sprzedaŝy powoduje oprócz trudności określenia prognozy sprzedaŝy, równieŝ zaleganie starszych wersji produktu w magazynie. Innym negatywnym zjawiskiem jest, ze względu na wysoki poziom konkurencji, nawiązywanie i podtrzymywanie przez MŚP współpracy z mniej rzetelnymi kontrahentami. Konsekwencją tej współpracy moŝe być w przypadku klienta regulowanie płatności z du- Ŝym opóźnieniem, w przypadku dostawcy opóźnienie w dostawie zamówionego przez firmę towaru. Nie bez znaczenia jest równieŝ ilość reklamacji i ich wpływ na współpracę z klientem, w tym jego sposób regulowania płatności. W sytuacji, gdy znaczny udział przychodów ze sprzedaŝy zaleŝy od klientów mniej rzetelnych, przedsiębiorstwo powinno skupić na nich swoją uwagę. Jest to szczególnie istotne w sytuacji, gdy w przedsiębiorstwie występują nieznaczne rezerwy środków pienięŝnych, co moŝe skutkować gwałtowną utratą płynności finansowej. W pracy załoŝono, Ŝe przedsiębiorstwo posiada wdroŝony system informatyczny, który rejestruje dane dotyczące realizowanych transakcji biznesowych. Gromadzone w firmie dane mogą mieć charakter precyzyjny (na przykład dane dotyczące ilości czy ceny zakupionego towaru, warunku płatniczego), pewny (na przykład wielkość kosztów stałych w przedsiębiorstwie, związanych z wynagrodzeniami, czynszami itp.), jak równieŝ charakter nieprecyzyjny (związany z błędnie wprowadzonymi do systemu danymi przez pracownika) czy niepewny (dotyczący wielkości, których nie moŝna w zadawalający stopniu oszacować na przykład przyszłą wielkość sprzedaŝy). Danymi wejściowymi dla zadania krótkoterminowego planowania przepływów pienięŝnych są: wartość środków pienięŝnych na początek planowanego okresu; planowane wpływy ze sprzedaŝy oraz inne wpływy (na przykład związane z kredytem bankowym, sprzedaŝą środków trwałych); planowane wydatki, z podziałem na:

5 Wspomaganie planowania finansowego w systemach informatycznych stałe (na przykład wynagrodzenia), - zmienne (w przypadku przedsiębiorstwa handlowego zaleŝne od wielkości sprzedaŝy); prognoza sprzedaŝy według grup towarów oraz według klientów na planowany okres; warunek płatniczy klienta: - okres odroczenia płatności naleŝności, - wielkość skonta za wcześniejszą płatność, - limit udzielonego klientowi kredytu kupieckiego; opóźnienie dostawy towaru do klienta; ilość okresów planowania. Wynikiem planowania przepływów pienięŝnych jest wyszczególnienie płynności finansowej lub jej braku w poszczególnych okresach objętych planem. Następuje to poprzez wyznaczenie róŝnicy pomiędzy wpływami (powiększonymi o wartość początkową środków pienięŝnych) a wydatkami. ZagroŜenie utratą płynności finansowej zwiększa się, ze względu na konieczność odprowadzenia przez przedsiębiorstwo naleŝnego podatku VAT wynikającego ze sprzedaŝy, jeszcze przed uregulowaniem naleŝności przez klienta. Cechą utrudniającą planowanie przepływów pienięŝnych jest brak równości pomiędzy wpływami a przychodami ze sprzedaŝy. Wynika to z oferowanego klientowi odroczenia płatności naleŝności oraz braku rzetelności płatniczej z jego strony. Na funkcjonowanie przedsiębiorstwa nałoŝone są pewne ograniczenia natury finansowej, technologicznej, logistycznej, organizacyjnej itd. Przyjęto, Ŝe przedsiębiorstwo ma ograniczony dostęp do zewnętrznych źródeł finansowania (na przykład kredytów bankowych). Ograniczenia finansowe moŝna uznać za pierwotne w stosunku do pozostałych, na przykład logistycznych (ograniczone środki transportu, optymalna wielkość zamawianej partii towaru, powierzchnia magazynowa itp.) czy personalnych (na przykład niedobór wysokokwalifikowanej kadry). Ograniczony dostęp do zewnętrznych źródeł finansowania działalności przedsiębiorstwa implikuje potrzebę dokładniejszego wyznaczenia prognozy środków pienięŝnych. W szczególności dotyczy to sytuacji, w której prognoza wskazuje utrzymanie płynności, natomiast w rzeczywistości wystąpił jej brak. Problem pracy sprowadza się do odpowiedzi na pytanie: Czy wykorzystując systemy inteligentne moŝna rozszerzyć podstawowe funkcjonalności systemu informatycznego zarządzania dotyczące uzyskiwania precyzyjniejszych prognoz środków pienięŝnych oraz generowania propozycji zmiany warunków płatniczych klienta? Propozycja rozwiązania wyŝej opisanego problemu została poprzedzona przedstawieniem istoty planowania przepływów pienięŝnych (rozdział 3) oraz ich implementacją w standardowym systemie klasy ERP (rozdział 4).

6 116 Marcin Relich 3. Planowanie przepływów pienięŝnych Zachowanie płynności finansowej w przedsiębiorstwie powoduje konieczność bieŝącej kontroli przepływu gotówki. Kontrolę taką umoŝliwia preliminarz obrotów gotówkowych. Obejmuje on planowanie przewidywanych wpływów i wydatków gotówkowych (w odpowiednich przedziałach czasowych). W ten sposób moŝna wyodrębnić okresy ewentualnych niedoborów i nadwyŝek gotówki [3]. Planowanie przewidywanych wpływów oraz wydatków związanych z zakupem towarów od dostawców, wynika z prognozy sprzedaŝy. Prognoza sprzedaŝy odgrywa zasadniczą rolę w planowaniu finansowym przedsiębiorstwa, poniewaŝ od jej wielkości zale-ŝy planowany poziom produkcji, zapasów, poziom kosztów i przychodów oraz zakładane wyniki finansowe [5]. Planowanie sprzedaŝy następuje w oparciu o prognozę sprzedaŝy oraz dodatkowe informacje dotyczące zawartych umów lub otrzymanych od klientów ofert kupna. Planowanie to moŝe uwzględniać róŝne kryteria dotyczące na przykład produktu, klienta, regionu sprzedaŝy. W przypadku preliminarza obrotów gotówkowych szczególnie istotny wydaje się podział według sprzedaŝy gotówkowej oraz z odroczonym terminem płatności (na tzw. kredyt kupiecki). Na podstawie planowanej wielkości przychodów ze sprzedaŝy następuje wyznaczenie wpływów. W pozycji tej ujęte są wpływy ze sprzedaŝy bieŝącej, ze sprzedaŝy okresów poprzednich oraz okresów przyszłych (otrzymane zaliczki). Wpływy ze sprzedaŝy bieŝącej zaleŝą od polityki kredytowej wobec odbiorców (terminy i formy płatności) oraz zwyczajów płatniczych klientów (opóźniony spływ naleŝności) (por. rysunek 1). Wykorzystując dane z okresów poprzednich dotyczące trudności ze ściąganiem naleŝności, naleŝy urealnić wpływy ze sprzedaŝy o odpisy korygujące naleŝności. Odroczenie płatności (kredyt kupiecki) t? Opóźnienie płatności (naleŝności przeterminowane) SprzedaŜ Termin regulowania naleŝności wg umowy sprzedaŝy Wpływ naleŝności Rys. 1. Spływ naleŝności w przypadku sprzedaŝy z odroczonym terminem płatności Planowanie wydatków bieŝących wiąŝe się z uwzględnieniem informacji dotyczących cyklu poszczególnych zobowiązań (np. wobec dostawców, banków), zwyczajów płatniczych przedsiębiorstwa (upusty cenowe, przeterminowania), terminów wypłat wynagrodzeń czy regulowania zobowiązań podatkowych, których przekroczenie niejednokrotnie skutkuje naliczeniem odsetek karnych. RóŜnica między wpływami a wydatkami stanowi saldo środków pienięŝnych z danego miesiąca. Saldo to jest stanem początkowym środków w miesiącu następnym. W ten sposób preliminarz obrotów gotówkowych słuŝy określeniu spodziewanego poziomu środków pienięŝnych.

7 Wspomaganie planowania finansowego w systemach informatycznych 117 W tabeli 2 przedstawiono planowanie przepływów pienięŝnych z wykorzystaniem przedstawionego podejścia, nazywanego dalej klasycznym. W przykładzie przyjęto załoŝenie, Ŝe 60% wpływów okresu t pochodzi ze sprzedaŝy w okresie t, 30% ze sprzedaŝy z okresu t-1, natomiast 10% z okresu t-2. Ponadto przyjęto, Ŝe wydatki są równe kosztom w okresach ich poniesienia i obejmują koszty stałe (0,35 mln euro), koszty zmienne (60% sprzedaŝy danego okresu), natomiast początkowa wartość środków pienięŝnych wynosi 0,15 mln euro. Miesiąc t SprzedaŜ S t 0,72 0,84 0,79 0,91 0,78 0,69 0,93 1,12 Wpływy Wp t 1 Wydatki Wy t 2 Środki pienięŝne Sp t 3 0,798 0,867 0,82 0,739 0,843 1,02 0,824 0,896 0,818 0,764 0,908 1,022 0,124 0,095 0,097 0,072 0,007 0,005 Tab. 2. Klasyczny sposób planowania środków pienięŝnych (w mln euro) Występowanie w działalności przedsiębiorstwa kosztów stałych implikuje większą dokładność prognozy wydatków niŝ prognozy wpływów. Ponadto biorąc pod uwagę fakt, Ŝe przedsiębiorstwo samo decyduje o terminie regulowania swoich zobowiązań, natomiast ma ono ograniczony wpływ na termin regulowania naleŝności przez klienta, w niniejszej pracy skoncentrowano się na planowaniu wpływów. Planowanie wpływów jedynie w oparciu o planowaną wielkość sprzedaŝy oraz terminy odroczenia płatności naleŝności moŝe prowadzić do zniekształcenia wartości wpływów, a tym samym niewykrycia ewentualnych niedoborów środków pienięŝnych. W przypadku, gdy klienci wykazują opóźnienie w spływie naleŝności zasadne wydaje się uwzględnienie ich rzetelności płatniczej. Ma to szczególne znaczenie w przypadku, gdy niska rzetelność płatnicza charakteryzuje kluczowych klientów przedsiębiorstwa, wykazujących znaczny udział w sprzedaŝy. Regulowanie naleŝności przez odbiorców ze stałym opóźnieniem pozwala na precyzyjne ustalenie przewidywanego terminu płatności. JednakŜe taka sytuacja zwykle rzadko występuje. Odbiorcy częściej regulują naleŝności z róŝnym opóźnieniem. Wówczas rzetelność płatniczą odbiorców moŝna spróbować oszacować poprzez wykorzystanie rozkładu empirycznego terminu płatności. UŜyteczność rozkładu empirycznego jest ograniczona wartością odchylenia standardowego. Im mniejsza wartość tego parametru tym więcej obserwacji skupionych jest wokół średniej arytmetycznej i łatwiej jest określić prawdopodobny termin spływu naleŝności. Permanentne zmiany rzetelności płatniczej odbiorców implikują konieczność analizy danych historycznych dotyczących spływu naleŝności w odniesieniu do warunków płatniczych klienta, wartości zakupów w bieŝącym i poprzednich miesiącach, typu kupowanego towaru itp. Do określenia zaleŝności występujących pomiędzy wyŝej wymienionymi danymi zastosowanie znajdują metody inteligentne (por. rozdział 5). Dzięki 1 Wp t = 60%* S t + 30%* S t %* S t-2 2 Wy t = 0, %* S t 3 Sp t = Sp t-1 + Wp t Wy t

8 118 Marcin Relich wykorzystaniu tych metod moŝliwe jest określenie bazy reguł, w oparciu o którą moŝna następnie oszacować na przykład termin regulowania płatności przez odbiorcę i ostatecznie planować poziom środków pienięŝnych. Innym zastosowaniem wyznaczonej bazy reguł moŝe być sterowanie czynnikami wpływającymi na płynność w oparciu o pozyskane informacje [21]. 4. Planowanie przepływów pienięŝnych z wykorzystaniem systemów klasy ERP Na rynku dostępnych jest wiele systemów klasy ERP dedykowanych dla małych i średnich przedsiębiorstw (np. SAP, ABAS, Infor, MS Navision, AP, proal- PHA ). Systemy te umoŝliwiają sporządzanie średniookresowych planów przepływów pienięŝnych opierając się nie tylko na sprawozdaniach finansowych, lecz równieŝ wykorzystując inne informacje zgromadzone w bazie danych przedsiębiorstwa. Funkcjonalność systemów klasy ERP w aspekcie planowania przepływów pienięŝnych zostanie przedstawiona na przykładzie systemu proalpha. System ten na targach CeBIT 2006 wygrał współzawodnictwo z systemem SAP w obszarze potencjalnych moŝliwości wykorzystania systemu w sektorze średnich przedsiębiorstw [28]. W systemie proalpha określenie prognozy środków pienięŝnych polega na zdefiniowaniu [10]: początkowej wartości środków pienięŝnych za pomocą tzw. kont pienięŝnych; wpływów; w planowaniu wyodrębniane są wpływy związane ze zleceniami klientów (rozrachunki) oraz inne wpływy (np. zwroty podatków, sprzedaŝ środków trwałych i materiałów); wydatków; w planowaniu wyodrębniane są wydatki związane z zamówieniami do dostawców (rozrachunki) i inne wydatki (np. płace, ubezpieczenia obowiązkowe). Praktyczna realizacja prognozy środków pienięŝnych w systemie proalpha sprowadza się do określenia wartości planowanych oraz zdefiniowania schematów analiz. Konta pienięŝne definiowane są w module FK (finanse i księgowość) poprzez wybór odpowiednich kont księgowych. Kolejne salda tych kont wyznaczane są w schemacie prognozy środków pienięŝnych za pomocą formuł. Wpływy i wydatki związane są z transakcjami (np. zleceniami od klientów, zamówieniami do dostawców itp.) rejestrowanymi w takich modułach jak sprzedaŝ czy zakupy. Dodatkowo istnieje moŝliwość uwzględnienia opóźnień w płatnościach wynikających z przesunięć w rejestracji rachunków, terminach dostaw oraz wpływach i wydatkach. Opóźnienia w płatnościach określane są zarówno w odniesieniu do poszczególnych kont pienięŝnych, jak i w odniesieniu do terminów realizacji zleceń i dostaw. Opóźnienia te ustalane są w sposób subiektywny przez uŝytkownika systemu. Pozostałe wpływy i wydatki prognozowane są na dwa sposoby. Pierwszy sposób, zwany planowaniem finansowym, dotyczy kont planowania (rysunek 2), dla których wprowadzane są jednostkowe wpłaty i wydatki. Drugi sprowadza się do ręcznego wprowadzania danych planowanych dla poszczególnych miesięcy lub automatycznego wyznaczania danych planowanych na podstawie danych z roku poprzedniego. Automa-

9 Wspomaganie planowania finansowego w systemach informatycznych 119 tyczne planowanie wymaga odpowiedniej definicji kont księgowych w danych podstawowych. Z danych podstawowych kont pobierany jest równieŝ tzw. dzień płatności, który określa dzień miesiąca, w których prognozowany jest odpowiednio wpływ lub wydatek. Sposób ten, zwany planowaniem płynności, dotyczy planowania powtarzalnych miesięcznych płatności. Rys. 2. Rejestrowanie planowanych wpływów i wydatków w systemie proalpha Definiowanie schematu analizy dla prognozy środków pienięŝnych sprowadza się do [10]: wprowadzenia nagłówka analizy; przejęcia wybranych kolumn z zestawu kolumn predefiniowanych w systemie; definicji wierszy analizy, przy czym definiowane są w zasadzie wszystkie transakcje związane z wpływami i wydatkami (w przypadku kont pienięŝnych wprowadzane są wartości początkowe środków pienięŝnych oraz planowania finansowego dla wprowadzenia innych wpływów i wydatków, które zostały zdefiniowane w planowaniu finansowym); pozostałe wpływy i wydatki określane są oddzielnie dla planowania finansowego (z przyporządkowaniem transakcji) i dla planowania przepływów pienięŝnych (bez przyporządkowania). Rys. 3. Przykład dla prognozy środków pienięŝnych w systemie proalpha Prognoza wpływów i wydatków opiera się na danych z faktur sprzedaŝy i zakupów, jak i danych ze zleceń od klientów oraz zamówień dla dostawców (rysunek 3). Analizowane są zatem nie tylko dane z księgowości finansowej, ale równieŝ dane z innych obsza-

10 120 Marcin Relich rów. Jest to zaleta rozwiązań zintegrowanych, które w odróŝnieniu od rozwiązań klasycznych pozwalają na uwzględnienie dokumentów, które nie zostały jeszcze zaksięgowane. Dodatkowo istnieje moŝliwość uwzględnienia zwłoki w płatnościach odbiorców oraz definiowania dowolnej liczby wariantów schematów analiz. Uwzględnienie zwłoki w płatności następuje poprzez przypisanie danemu klientowi wartości opóźnienia ustalonej subiektywnie przez decydenta systemu, zazwyczaj poprzez wyznaczenie średniej dla historii opóźnienia w płatności danego odbiorcy. Inna funkcjonalność systemu ERP w obszarze planowania finansowego dotyczy analizy tzw. nierozliczonych pozycji klienta, czyli naleŝności przedsiębiorstwa. W tym przypadku program udostępnia 3 moŝliwości analizy otwartych płatności: do 30 dni, do 60 dni oraz powyŝej 60 dni (rysunek 4). Rys. 4. Definiowanie raportu nierozliczonych naleŝności w systemie proalpha Na rysunku 5 przedstawiono raport z analizy nierozliczonych płatności naleŝności. Rys. 5. Raport nierozliczonych naleŝności w systemie proalpha Funkcjonalności proponowane w SIZ najczęściej obejmują powszechnie akceptowane i podstawowe rozwiązania dotyczące problematyki zarządzania przedsiębiorstwem.

11 Wspomaganie planowania finansowego w systemach informatycznych 121 W ten sposób oferta firm wdraŝających systemy informatyczne jest odpowiednia dla szerokiego grona odbiorców. JednakŜe występują równieŝ sytuacje, w których przedsiębiorstwu nie wystarczają juŝ oferowane przez system np. klasy ERP funkcjonalności. Przykładem moŝe być przedsiębiorstwo, które ze względu na niską rzetelność płatniczą klientów złoŝyło zamówienie do firmy wdraŝającej system informatyczny, dotyczące wykonania dopasowania raportu dotyczącego nierozliczonych naleŝności. W wersji podstawowej programu występowały 3 moŝliwe okresy agregowania nierozliczonych pozycji (por. rysunek 4). Natomiast do celów kontrolnych i decyzyjnych przedsiębiorstwo zdecydowało o rozszerzeniu podstawowej funkcjonalności do 6 okresów analizy otwartych płatności: do 2, 3, 4, 6, 8, 12 tygodni. Wykorzystanie standardowych funkcji systemów klasy ERP w rozwaŝanym obszarze umoŝliwia włączenie informacji dotyczących długości cykli regulowania naleŝności czy zobowiązań. JednakŜe istniejąca w systemach klasy ERP moŝliwość subiektywnego uwzględnienia opóźnienia w płatności naleŝności traci na uŝyteczności w przypadku zmiennej rzetelności płatniczej odbiorcy. W tej sytuacji zaproponowano rozszerzenie podstawowej funkcjonalności SIZ poprzez zastosowanie metod sztucznej inteligencji. Proponowany system dzięki swoim właściwościom (np. adaptacyjnym) moŝna uznać za system inteligentny. Charakterystyka tych systemów wraz z zastosowaniem w obszarze planowania finansowego została przedstawiona w kolejnym rozdziale. 5. Planowanie przepływów pienięŝnych z wykorzystaniem systemu inteligentnego W przypadku przedsiębiorstw z wdroŝonym systemem informatycznym ustalenie wpływów ze sprzedaŝy następuje zazwyczaj poprzez zestawienie sprzedaŝy dla danych klientów z informacją dotyczącą zaproponowanego klientowi terminu kredytu kupieckiego. Niektóre systemy posiadają równieŝ moŝliwość zadeklarowania stałej wartości przewidywanego opóźnienia w spłacie naleŝności przez klienta, przez co prognoza wpływów jest wyznaczana w sposób bardziej zbliŝony do sytuacji rzeczywistych (por. rozdział 4). JednakŜe często w praktyce występuje sytuacja, Ŝe klient reguluje naleŝności w róŝny sposób i z róŝnym okresem opóźnienia. W przypadku oferowania skont za wcześniejszą spłatę naleŝności klient moŝe skorzystać z upustu cenowego. MoŜe on równieŝ wybrać regulowanie naleŝności z odroczonym terminem płatności (zwanym kredytem kupieckim). W tej sytuacji klient moŝe dokonać płatności za zakupiony towar w terminie, tzn. bezpośrednio po upływie okresu kredytu kupieckiego lub z róŝnym opóźnieniem. Klasyczne podejście pozwala na monitorowanie wieku naleŝności klientów, nie umoŝliwia jednak określenia czynników (zaleŝności) wpływających na dane opóźnienie w płatności naleŝności (por. rozdział 3). Specyfika odkrywania wiedzy nie jest wyłącznie związana z rozmiarem danych, lecz równieŝ dotyczy samej złoŝoności i trudności problemu, który podlega analizie, konieczności uwzględnienia równocześnie zróŝnicowanych typów atrybutów opisujących obserwacje, róŝnego rodzaju niedoskonałości i niepewności obecnych w zapisie danych,

12 122 Marcin Relich a takŝe duŝej liczby moŝliwych wzorców, które moŝna wygenerować z danych. Odkrywanie wiedzy ma więc charakter interdyscyplinarny opierając się na elementach pochodzących głównie ze statystyki, uczenia maszynowego, baz danych, wizualizacji danych, rozpoznawania wzorców czy przetwarzania informacji niepewnej [24]. W procesie odkrywania wiedzy moŝna wykorzystać systemy inteligentne, tzn. systemy których właściwości obejmują: uczenie się (adaptację do zmiennego otoczenia), operowanie na pojęciach nieprecyzyjnych czy proces wnioskowania. Przykładem systemu inteligentnego moŝe być sztuczna sieć neuronowa czy teŝ rozmyto-neuronowy system hybrydowy. Dalej przedstawiono zagadnienie planowania przepływów pienięŝnych z wykorzystaniem tych dwóch typów systemów inteligentnych Przykład planowania opóźnienia w płatności naleŝności z wykorzystaniem sztucznych sieci neuronowych Bardzo rozległy obszar zastosowań sztucznych sieci neuronowych (SSN) obejmuje równieŝ zagadnienia z zakresu nauk ekonomicznych, które wcześniej badano głównie za pomocą modeli statystycznych, ekonometrycznych czy optymalizacyjnych. W odróŝnieniu od klasycznych systemów informatycznych w działaniu SSN moŝna wyraźnie wyróŝnić dwie fazy: fazę treningową oraz fazę reakcji na określony bodziec zewnętrzny. Model rozwiązania nie musi być znany a priori, lecz jest budowany przez sieć w procesie uczenia, na podstawie dostarczonych tzw. danych treningowych. Powoduje to wiele róŝnic w sposobie konstruowania systemów SSN (i ogólnie sztucznej inteligencji) w stosunku do systemów tradycyjnych. Natomiast do największych korzyści wykorzystania SSN moŝna zaliczyć ich zdolność adaptacji do zmieniających się warunków (uczenie się) czy uogólnienie rozwiązania. Do wyznaczenia zaleŝności pomiędzy zmiennymi wejściowymi a opóźnieniem w płatności naleŝności (OP) została wykorzystana jednokierunkowa sieć neuronowa uczona algorytmem wstecznej propagacji błędu, której przykładową strukturę przedstawiono na rysunku 6. Na wejście sieci doprowadzono dane dotyczące wartości transakcji (WT), opóźnienia w dostawie towaru do klienta (OD), długości kredytu kupieckiego (KK) oraz typu towaru (TT, który podzielono na 4 grupy). Zbiór 937 obserwacji podzielono na dwie części: zbiór uczący oraz testowy w proporcjach 80% do 20%. WT OD KK OP TT Rys. 6. Struktura jednokierunkowej sieci neuronowej W tabeli 3 zostały przedstawione wyniki symulacji komputerowych dla trzech algorytmów uczenia sieci: algorytmu największego spadku(a), algorytmu największego spadku z krokiem adaptacyjnym (B) oraz Levenberga-Marquardta (C).

13 Wspomaganie planowania finansowego w systemach informatycznych 123 Rodzaj algorytmu RMSE na zbiorze uczącym RMSE na zbiorze testowym Tab. 3. Porównanie błędów dla róŝnych algorytmów uczenia SSN Wybór struktury SSN nastąpił w sposób eksperymentalny poprzez porównanie wielkości błędu średniokwadratowego (1) dla róŝnych ilości warstw ukrytych oraz liczby neuronów w kaŝdej z warstw. Dla kaŝdego z wariantów struktury sieci (ilości warstw i neuronów ukrytych) przeprowadzono 100 cykli uczenia z wagami początkowymi ustalanymi w sposób losowy. Dla zadanego zbioru danych zaobserwowano występowanie najmniejszych wartości błędów przy jednej warstwie ukrytej zawierającej 5 neuronów. Wartość błędu (ang. Root Mean Square Error) wyznaczono zgodnie z następującym wzorem [25]: gdzie: A 0,0785 0,0799 B 0,0612 0,0644 C 0,0608 0, T 2 RMSE= ( y t yˆ t), T t= 1 ŷ prognozowana wartość wpływów w okresie t, t y t rzeczywista wartość wpływów w okresie t, T horyzont prognozy. Otrzymane wyniki wskazują na uzyskiwanie najmniejszych wartości błędów z wykorzystaniem algorytmu Levenberga-Marquardta w zbiorze uczącym, oraz algorytmu największego spadku z krokiem adaptacyjnym w zbiorze testowym. Jedną z głównych zalet wykorzystania SSN jest ich zdolność uogólniania rozwiązania. Dla przyjętego zbioru danych dokładniejsze wyniki na zbiorze testowym generowała SSN uczona algorytmem największego spadku z krokiem adaptacyjnym. Dalej ta właśnie SSN zostanie porównana z systemem rozmyto-neuronowym oraz podejściem klasycznym do wyznaczania opóźnienia w płatności naleŝności (por. tabela 4) Przykład planowania opóźnienia w płatności naleŝności z wykorzystaniem systemu rozmyto-neuronowego W przypadku sieci neuronowych największą zaletą jest moŝliwość ich uczenia i adaptacji do nowych warunków. Wadą natomiast jest brak algorytmu pozwalającego ustalić optymalną wielkość struktury sieci oraz to, Ŝe nabyta wiedza jest rozproszona w sieci, przez co nie moŝna wyraźnie wyodrębnić wyszukanych zaleŝności, co moŝe obniŝać akceptację ze strony końcowego uŝytkownika. Wady tej są pozbawione układy z logiką rozmytą. Trudności z pozyskaniem wiedzy od eksperta dotyczącej modelowanego systemu spowodowały, zwrócenie się w kierunku pozyskiwania wiedzy z danych pomiarowych wejścia/wyjścia systemu. Doprowadziło to do przekształcenia modeli rozmytych w sieci neuronowe, zwane ze względu na swą specyfikę rozmytymi sieciami neuronowymi. Rozmyta sieć neuronowa moŝe być uczona próbkami pomiarowymi (1)

14 124 Marcin Relich wejścia/wyjścia modelowanego systemu w oparciu o gradientowe metody optymalizacji doboru wag. System wnioskowania rozmytego Takagi-Sugeno-Kanga, którego uczenie przebiega przy zastosowaniu algorytmu wstecznej propagacji błędów jest znany w literaturze pod skrótem ANFIS (ang. Adaptive Neuro Fuzzy Inference System) [1, 14]. Z wykorzystaniem ANFIS następuje wyznaczenie bazy reguł o postaci: R k : IF (x 1 jest A 1 k AND AND x n jest A n k ) THEN (y = f(x n )). Procedura tworzenia reguł składa się zazwyczaj z następujących etapów [14, 18, 22]: ustalenie liczby zbiorów rozmytych oraz wstępnych parametrów funkcji przynaleŝności zbiorów rozmytych, ustalenie struktury systemu rozmyto-neuronowego oraz jego uczenie, ocena wygenerowanej bazy reguł oraz jej wykorzystanie (na przykład do prognozowania opóźnienia w płatności naleŝności). W celu określenia liczby zbiorów rozmytych moŝna wykorzystać podział przestrzeni wejściowej metodą równomiernego podziału siatkowego czy teŝ jedną z metod klasyfikacji bezwzorcowej, na przykład metodę k-środków czy samoorganizujące się sieci neuronowe [13, 23]. Metoda równomiernego podziału siatkowego ma istotną wadę polegającą na wykładniczej zaleŝności liczby reguł od wymiarowości tej przestrzeni (liczby wejść systemu). Metoda k-środków to iteracyjna procedura podziału populacji na k grup (skupień), tak aby zminimalizować wielkość wariancji wewnątrzgrupowej. Metoda ta posiada wiele modyfikacji. MoŜna na przykład łączyć dwie bardzo blisko połoŝone grupy w jedną, czy analizować ilość próbek przyporządkowaną do kaŝdej grupy i likwidować grupy z bardzo małą ilością próbek. Aktualizacja środków moŝe być przeprowadzana metodą kolejnej prezentacji pojedynczych próbek lub teŝ jednoczesnej prezentacji wszystkich próbek. Przyporządkowanie próbek do grup moŝe być dokonywane na podstawie ich euklidesowej odległości od środków grup lub teŝ, w wersji rozmytej, na podstawie funkcji przynaleŝności do grupy. Wówczas jedna próbka pomiarowa moŝe zostać zakwalifikowana z róŝnym stopniem przynaleŝności jednocześnie do kilku grup i odpowiednio do tych stopni wpływać na przesunięcie środków. Najczęściej stosuje się gaussowskie funkcje przynaleŝności, których wierzchołki zlokalizowane zostają w środkach cięŝkości grup. Liczba wyznaczonych funkcji przynaleŝności określa wielkość bazy potencjalnych reguł. Na podstawie wyznaczonych zbiorów rozmytych następuje ustalenie struktury systemu rozmyto-neuronowego. Do systemu zostają równieŝ doprowadzone wstępne wartości parametrów funkcji przynaleŝności zbiorów rozmytych. Następnie z wykorzystaniem danych numerycznych wykonywane jest uczenie parametrów systemu rozmytoneuronowego. W ten sposób ustalona baza reguł jest następnie sprawdzana w aspekcie m.in. spójności bazy (czy reguły pokrywają cały obszar decyzyjny) czy braku sprzeczności reguł (czy dla takich samych przesłanek nie są generowane róŝne konkluzje). Ostatnim etapem procedury jest wykorzystanie otrzymanej bazy reguł do wyznaczenia opóźnienia w płatności naleŝności. Doprowadzając na wejście modelowanego obiektu wartości zmiennych niezaleŝnych następuje wyznaczenie wielkości wyjściowej systemu rozmyto-neuronowego. W pre-

15 Wspomaganie planowania finansowego w systemach informatycznych 125 zentowanym przykładzie zmienne wejściowe zostały wybrane w sposób subiektywny, przy uwzględnieniu ich logicznego związku ze zmienną wyjściową opóźnieniem w płatności naleŝności. Zmienne wejściowe: wartość transakcji i opóźnienie w dostawie towaru do klienta zostały podzielone na 5 zbiorów rozmytych, kredyt kupiecki został podzielony na 3 grupy, natomiast typ towaru na 4. Do ustalenia liczby klas dla zmiennych: wartość transakcji i opóźnienie w dostawie towaru do klienta, wykorzystano metodę subtractive clustering, zaimplementowaną w narzędziu Matlab. Zaletą tej metody klasyfikacji jest brak wymagania dotyczącego deklaracji liczby klas. Zmienna kredyt kupiecki została pogrupowana zgodnie z przypisanym wiodącym klientom warunkom płatniczym. Natomiast zmienna typ towaru została podzielona według głównych grup artykułów nabywanych przez wiodących klientów. Po skończeniu etapu uczenia następuje zapisanie parametrów systemu rozmytoneuronowego. Następnie doprowadzając do wejść systemu wartości transakcji sprzeda- Ŝy ze zbioru testowego, na wyjściu zostaje wyznaczona prognoza opóźnienia w płatności naleŝności. Porównanie jakości prognoz podejścia opartego na metodach inteligentnych oraz podejścia klasycznego przedstawiono w tabeli 4. W podejściu klasycznym ustalono wartość średniego opóźnienia w płatności naleŝności, którą następnie porównano z wartościami rzeczywistymi. Rodzaj algorytmu RMSE - zbiór uczący RMSE - zbiór testowy Sztuczna sieć neuronowa 0,0612 0,0644 System rozmyto-neuronowy 0,0609 0,0669 Podejście klasyczne 0,1942 0,1959 Tab. 4. Porównanie błędów prognozy opóźnienia płatności dla róŝnych podejść Przeprowadzone eksperymenty zostały wygenerowane z wykorzystaniem narzędzia Matlab dla ustawionych w sposób domyślny parametrów uczenia SSN oraz systemu ANFIS. Podobnie jak w poprzednim podrozdziale, obliczenia zostały wykonane w oparciu o zbiór 937 danych, który podzielono na dwie części: zbiór uczący oraz testowy w proporcjach 80% do 20%. Wyniki przeprowadzonych eksperymentów wskazują na generowanie dokładniejszych prognoz z wykorzystaniem metod inteligentnych. NaleŜy zaznaczyć, iŝ system rozmyto-neuronowy nie uzyskał tak dobrych wyników prognozy na zbiorze testowym jak SSN, jednakŝe wyodrębnione przez niego reguły charakteryzują się większą czytelnością niŝ zaleŝności ukryte w strukturze SSN. W ten sposób wyodrębnione reguły moŝna równieŝ wykorzystać w obszarze generowania propozycji zmian czynników wpływających na poprawę płynności finansowej [20, 21]. Wykorzystanie systemów inteligentnych zwiększa dokładność prognozy opóźnienia w płatności naleŝności, w porównaniu do podejść klasycznych (por. tabela 4). Szczególnie wyraźnie jest to widoczne w przypadku znacznej zmienności rzetelności płatniczej klienta. Zwiększenie dokładności prognozy opóźnienia w spływie naleŝności implikuje poprawę ustalania terminów wpływów, co z kolei poprawia planowanie przepływów pienięŝnych. W ten sposób wspomagany jest jeden z najwaŝniejszych elementów działalności przedsiębiorstwa monitorowanie płynności finansowej.

16 126 Marcin Relich Do cech systemu rozmyto-neuronowego moŝna zaliczyć konieczność zadeklarowania szeregu parametrów związanych z jego budową i zasadą działania, takich jak na przykład: algorytm uczenia sieci (współczynnik uczenia, liczba iteracji), kształt funkcji przynaleŝności, metoda wyostrzania, metoda ustalania liczby reguł, podział zbioru danych na uczący i testowy. Parametry te mają wpływ na postać wyników końcowych uzyskiwanych z wykorzystaniem systemu rozmyto-neuronowego, a ich wybór następuje w sposób eksperymentalny poprzez porównanie wielkości generowanych przez nie błędów oraz dodatkowych informacji związanych na przykład ze zbieŝnością czy zło- Ŝonością obliczeniową. Brak jednolitych zasad projektowania systemu moŝe powodować problem akceptacji narzędzia przez uŝytkownika. Dodatkowo do ograniczeń związanych z wykorzystaniem systemu hybrydowego moŝna zaliczyć problem wstępnego przygotowania danych wejściowych do modelu oraz powtarzalność i zbieŝność wyników końcowych. Wydaje się, Ŝe zwiększenie akceptacji uŝytkownika do przedstawionego systemu moŝe nastąpić poprzez zestawienie błędów prognoz wygasłych (dotyczących minionych okresów) generowanych przez klasyczne i proponowane podejście. W ten sposób uŝytkownik ma moŝliwość przekonać się o dokładności prognoz (wielkości ich błędów) i przy nieznajomości zasad funkcjonowania nowych technik obliczeniowych, akceptować je dzięki generowaniu precyzyjniejszych wyników. Wydaje się, Ŝe na wzrost akceptacji zaprezentowanego narzędzia moŝe równieŝ wpływać zdefiniowanie ustawień domyślnych parametrów systemu rozmyto-neuronowego, a takŝe system pomocy kontekstowej. W tym przypadku zadaniem konsultanta jest ustalenie ustawień optymalnych dla danego zbioru danych czy prezentacja uŝytkownikowi zasady działania systemu. Konsultant powinien przykładowo ustalić wartość parametrów algorytmu uczenia systemu rozmyto-neuronowego, takich jak współczynnik uczenia czy warunek stopu. Powinien równieŝ przedstawić róŝnicę pomiędzy prognozami wygasłymi i dotyczącymi przyszłych okresów, a takŝe wyjaśnić znaczenie otrzymanych reguł. Pomoc konsultanta powinna równieŝ dotyczyć przedstawienia zalet zastosowania proponowanego podejścia. Do zalet tych moŝna zaliczyć m.in. niski koszt wykorzystania narzędzia (przy załoŝeniu istnienia zakładowego archiwum danych generowanego przez system informatyczny np. klasy ERP) czy zwiększenie jakości prognozy przypływów pienięŝnych (szczególnie w warunkach znacznej zmienności rzetelności płatniczej klienta). Poprawę jakości prognozy przepływów pienięŝnych moŝna rozwaŝać w dwóch aspektach. Pierwszy dotyczy wykrycia potencjalnych zagroŝeń utraty płynności finansowej i związany z tym niŝszy koszt działań interwencyjnych, np. wynegocjowanie kredytu bankowego na korzystniejszych warunkach, racjonalne zmiany w zakresie wielkości zapasów czy regulowania zobowiązań. W drugim aspekcie dokładniejsza prognoza przepływów pienięŝnych sprzyja zagospodarowaniu wolnych środków pienięŝnych. 6. Podsumowanie W artykule przedstawiono podstawowe funkcjonalności systemów informatycznych w obszarze planowania przepływów pienięŝnych w przedsiębiorstwie. W sytuacji

17 Wspomaganie planowania finansowego w systemach informatycznych 127 znacznej zmienności struktury sprzedaŝy według klientów i ich rzetelności płatniczej, standardowe oprogramowanie klasy ERP nie zapewnia satysfakcjonujących wyników. Zakładając istnienie zakładowego archiwum danych moŝna na jego podstawie, z wykorzystaniem systemów uczących się, pozyskać dodatkowe informacje. UmoŜliwia to dokładniejsze wyznaczenie prognozy przepływów pienięŝnych. Dodatkowym atutem utworzonej przez system uczący się bazy wiedzy moŝe być jej wykorzystanie do sterowania warunkiem płatniczym klienta. Zaprezentowane podejście planowania przepływów pienięŝnych wydaje się szczególnie atrakcyjne w małych i średnich przedsiębiorstwach, które działając zazwyczaj przy silnej konkurencji, zmuszone są do akceptowania wydłuŝonych terminów regulowania naleŝności ze strony swoich klientów i pozyskania dodatkowych źródeł finansowania swojej działalności. Do ograniczeń proponowanego podejścia moŝna zaliczyć między innymi brak jednolitych zasad dotyczących budowy oraz uczenia systemu inteligentnego. Ponadto w przypadku korzystania z tego typu systemu pewnym utrudnieniem moŝe być równieŝ brak zbieŝności czy powtarzalności wyników, co jest następstwem losowego doboru parametrów startowych (inicjujących obliczenia systemu). Wykorzystanie metod sztucznej inteligencji moŝe prowadzić do zwiększenia dokładności wyznaczonych prognoz, lecz z drugiej strony nietransparentność tego typu technik (na przykład sztucznej sieci neuronowej) moŝe powodować problem akceptacji narzędzia przez uŝytkownika. W tym przypadku wydaje się właściwe wykorzystanie doświadczenia konsultanta w przedstawieniu pracownikowi przedsiębiorstwa korzyści z wykorzystania technik odkrywania wiedzy, jak równieŝ pomoc przy interpretacji uzyskiwanych wyników. Na wzrost akceptacji korzystania z proponowanego podejścia moŝe równieŝ wpływać zestawienie prognoz wygasłych z podziałem na podejście klasyczne oraz oparte na systemach inteligentnych. W tej sytuacji uŝytkownik ma okazję przekonać się o skuteczności danego podejścia i nawet nie rozumiejąc zasad jego funkcjonowania, podejście to akceptować. Literatura 1. Badiru A.B., Cheung J.Y., Fuzzy engineering expert systems with neural network applications. John Wiley & Sons, New York Banaszak Z., Bzdyra K., Programowanie z ograniczeniami w systemach wspomagania decyzji MŚP. [w:] J. Józefowska (red.): Zarządzanie i technologie informatyczne. Tom 2: Metody sztucznej inteligencji w zarządzaniu i sterowaniu. Wydawnictwo Uniwersytetu Śląskiego, Katowice 2005, s Bień W., Zarządzanie finansami przedsiębiorstwa. Difin, Warszawa Bytniewski A., Architektura zintegrowanego systemu informatycznego zarządzania. Wydawnictwo Akademii Ekonomicznej, Wrocław Cieślak M. (red.), Prognozowanie gospodarcze. Metody i zastosowania, PWN, Warszawa Czermiński J., Systemy wspomagania decyzji w zarządzaniu przedsiębiorstwem. Towarzystwo Naukowe Organizacji i Kierownictwa, Toruń 2002.

18 128 Marcin Relich 7. Januszewski A., Funkcjonalność informatycznych systemów zarządzania. PWN, Warszawa Józefowska J., (red.): Zarządzanie i technologie informatyczne. Tom 2: Metody sztucznej inteligencji w zarządzaniu i sterowaniu. Wydawnictwo Uniwersytetu Śląskiego, Katowice Kasprzak T. (red.), Integracja i architektury systemów informacyjnych przedsiębiorstw. Uniwersytet Warszawski, Warszawa Kluge P.D., KuŜdowicz P, Orzeszko P., Controlling wspomagany komputerowo z wykorzystaniem systemu ERP. Oficyna Wydawnicza Uniwersytetu Zielonogórskiego, Zielona Góra Knosala R. (red.), Zastosowania metod sztucznej inteligencji w inŝynierii produkcji. Wydawnictwa Naukowo-Techniczne, Warszawa Knosala R. (red.), Komputerowe wspomaganie zarządzania przedsiębiorstwem: nowe metody i systemy. Polskie Wydawnictwo Ekonomiczne, Warszawa Koronacki J., Statystyczne systemy uczące się. Wydawnictwa Naukowo- Techniczne, Warszawa Łęski J., Systemy neuronowo-rozmyte. Wydawnictwa Naukowo-Techniczne, Warszawa McIvor R.T., McCloskey A.G., Humphreys P.K., Maguire L.P., Using a fuzzy approach to support financial analysis in the corporate acquisition process. Expert Systems with Applications 2004, vol. 27, s Mramor D., Valentincic A., Forecasting the liquidity of very small private companies. Journal of Business Venturing 2003, vol. 18, no. 6, s Nycz M., Pozyskiwanie wiedzy menedŝerskiej. Podejście technologiczne. Wydawnictwo Akademii Ekonomicznej we Wrocławiu, Wrocław Piegat A., Modelowanie i sterowanie rozmyte. Akademicka Oficyna Wydawnicza EXIT, Warszawa Relich M., Wykorzystanie sztucznych sieci neuronowych w planowaniu finansowym małego przedsiębiorstwa handlowego. [w:] Modele inŝynierii teleinformatyki: wybrane zastosowania. Wydawnictwo Uczelniane Politechniki Koszalińskiej, Koszalin 2006, s Relich M., Inteligentny system monitorowania przepływów pienięŝnych w przedsiębiorstwie. [w:] A. Balcerak, W. Kwaśnicki (red.): Metody symulacyjne w badaniu organizacji i w dydaktyce menedŝerskiej. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2008, s Relich M., The using of fuzzy-neural system to monitoring and control of liquidity in a small business. Management 2008, vol. 12. no. 1, s Relich M., Zastosowanie technik drąŝenia danych do szacowania opóźnienia w regulowaniu naleŝności. [w:] K. Bzdyra (red.): Modele inŝynierii teleinformatyki: wybrane zastosowania. Wydawnictwo Uczelniane Politechniki Koszalińskiej, Koszalin 2009, s

19 Wspomaganie planowania finansowego w systemach informatycznych Stąpor K., Automatyczna klasyfikacja obiektów. Akademicka Oficyna Wydawnicza EXIT, Warszawa Stefanowski J., Metody odkrywania wiedzy w zastosowaniach ekonomicznych. [w:] J. Józefowska (red.): Zarządzanie i technologie informatyczne. Tom 2: Metody sztucznej inteligencji w zarządzaniu i sterowaniu. Wydawnictwo Uniwersytetu Śląskiego, Katowice 2005, s Witkowska D., Sztuczne sieci neuronowe i metody statystyczne: wybrane zagadnienia finansowe. Wydawnictwo C.H. Beck, Warszawa Wolański R., Wiedza i innowacje w małych i średnich przedsiębiorstwach postęp czy stagnacja. [w:] E. Okoń-Horodyńska, A. Zachorowska-Mazurkiewicz (red.): Innowacje w rozwoju gospodarki i przedsiębiorstw: siły motoryczne i bariery. Instytut Wiedzy i Innowacji, Warszawa Streszczenie Celem pracy jest przedstawienie moŝliwości wykorzystania systemów inteligentnych do wspomagania planowania finansowego. Systemy te mogą stanowić uzupełnienie funkcjonalności systemów informatycznych zarządzania w warunkach znacznej zmienności struktury sprzedaŝy oraz rzetelności płatniczej klientów. W pracy przedstawiono przykład planowania przepływów pienięŝnych z wykorzystaniem systemu klasy ERP dedykowanego klasie małych i średnich przedsiębiorstw oraz z wykorzystaniem podejścia opartego na sztucznych sieciach neuronowych oraz systemie rozmyto-neuronowym.

Prognoza płynności finansowej w zintegrowanym systemie informatycznym na przykładzie rozwiązania proalpha

Prognoza płynności finansowej w zintegrowanym systemie informatycznym na przykładzie rozwiązania proalpha Prognoza płynności finansowej w zintegrowanym systemie informatycznym na przykładzie rozwiązania proalpha Cash forecast with enterprise resource planning system on the example of proalpha solution Paul

Bardziej szczegółowo

Zastosowanie technik drąŝenia danych do szacowania opóźnienia w regulowaniu naleŝności

Zastosowanie technik drąŝenia danych do szacowania opóźnienia w regulowaniu naleŝności Marcin RELICH Zakład Controllingu i Informatyki Ekonomicznej, Wydział Ekonomii i Zarządzania, Uniwersytet Zielonogórski E mail: m.relich@wez.uz.zgora.pl Zastosowanie technik drąŝenia danych do szacowania

Bardziej szczegółowo

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2)

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Ewa Wołoszko Praca pisana pod kierunkiem Pani dr hab. Małgorzaty Doman Plan tego wystąpienia Teoria Narzędzia

Bardziej szczegółowo

technologii informacyjnych kształtowanie , procesów informacyjnych kreowanie metod dostosowania odpowiednich do tego celu środków technicznych.

technologii informacyjnych kształtowanie , procesów informacyjnych kreowanie metod dostosowania odpowiednich do tego celu środków technicznych. Informatyka Coraz częściej informatykę utoŝsamia się z pojęciem technologii informacyjnych. Za naukową podstawę informatyki uwaŝa się teorię informacji i jej związki z naukami technicznymi, np. elektroniką,

Bardziej szczegółowo

20-02-2008. Wprowadzenie. Procesy

20-02-2008. Wprowadzenie. Procesy 4. Typowy obieg dokumentów w przedsiębiorstwie produkcyjnym Wprowadzenie Procesy Wprowadzenie czynniki wpływające na zakres funkcjonalny Główne czynniki wpływające na zakres funkcjonalny systemu ERP: rodzaj

Bardziej szczegółowo

ZASTOSOWANIE TECHNIK DRĄŻENIA DANYCH DO PROGNOZOWANIA WPŁYWU NALEŻNOŚCI W PRZEDSIĘBIORSTWIE

ZASTOSOWANIE TECHNIK DRĄŻENIA DANYCH DO PROGNOZOWANIA WPŁYWU NALEŻNOŚCI W PRZEDSIĘBIORSTWIE Prace Naukowe Instytutu Organizacji i Zarządzania Nr 83 Politechniki Wrocławskiej Nr 83 Studia i Materiały Nr 25 2007 Marcin RELICH * ss. 85-97 ZASTOSOWANIE TECHNIK DRĄŻENIA DANYCH DO PROGNOZOWANIA WPŁYWU

Bardziej szczegółowo

Józef Myrczek, Justyna Partyka Bank Spółdzielczy w Katowicach, Akademia Techniczno-Humanistyczna w Bielsku-Białej

Józef Myrczek, Justyna Partyka Bank Spółdzielczy w Katowicach, Akademia Techniczno-Humanistyczna w Bielsku-Białej Józef Myrczek, Justyna Partyka Bank Spółdzielczy w Katowicach, Akademia Techniczno-Humanistyczna w Bielsku-Białej Analiza wraŝliwości Banków Spółdzielczych na dokapitalizowanie w kontekście wzrostu akcji

Bardziej szczegółowo

Controlling wspomagany komputerowo. Doswiadczenia z zastosowan w średnich przedsiebiorstwach

Controlling wspomagany komputerowo. Doswiadczenia z zastosowan w średnich przedsiebiorstwach P. D. Kluge Controlling wspomagany komputerowo. Doswiadczenia z zastosowan w średnich przedsiebiorstwach (PTE Zielona Góra; 24.09.05) Controlling naleŝy do młodych dziedzin związanych z organizacją i zarządzaniem.

Bardziej szczegółowo

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2007 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę

Bardziej szczegółowo

CONTROLLING W ZINTEGROWANYCH SYSTEMACH ZARZADZANIA ROZDZIAŁ CZWARTY. SYSTEMY ERP DEDYKOWANE DLA MSP

CONTROLLING W ZINTEGROWANYCH SYSTEMACH ZARZADZANIA ROZDZIAŁ CZWARTY. SYSTEMY ERP DEDYKOWANE DLA MSP Kluge P.D. et al.: Skrypt do przedmiotu Controlling w Zintegrowanych systemach zarządzania 1 Prof. dr habil. PaulDieter Kluge Dr inż. Krzysztof Witkowski Mgr inż. Paweł Orzeszko CONTROLLING W ZINTEGROWANYCH

Bardziej szczegółowo

ZINTEGROWANE SYSTEMY INFORMATYCZNE

ZINTEGROWANE SYSTEMY INFORMATYCZNE Państwowa WyŜsza Szkoła Zawodowa w Elblągu Instytut Informatyki Stosowanej ZINTEGROWANE SYSTEMY INFORMATYCZNE Przygotował Podsiadło Robert. 1 Zintegrowany system informatyczny to według Encyklopedii Wikipedia

Bardziej szczegółowo

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Dorota Witkowska Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wprowadzenie Sztuczne

Bardziej szczegółowo

TWORZENIE BAZ WIEDZY W SYSTEMACH EKSPERTOWYCH GOSPODAROWANIA MAJĄTKIEM OBROTOWYM PREDSIĘBIORSTWA

TWORZENIE BAZ WIEDZY W SYSTEMACH EKSPERTOWYCH GOSPODAROWANIA MAJĄTKIEM OBROTOWYM PREDSIĘBIORSTWA TWORZENIE BAZ WIEDZY W SYSTEMACH EKSPERTOWYCH GOSPODAROWANIA MAJĄTKIEM OBROTOWYM PREDSIĘBIORSTWA Leszek Kiełtyka, Waldemar Jędrzejczyk Wprowadzenie Systemy ekspertowe (SE) są to komputerowe programy konsultacyjne,

Bardziej szczegółowo

- nowe wyzwania. Paweł Kominek

- nowe wyzwania. Paweł Kominek Informatyzacja przedsiębiorstw - nowe wyzwania Paweł Kominek Poznań, 05-01-2010 Plan prezentacji Zakres przedmiotu krótkie wprowadzenie Zakres przedmiotu krótkie wprowadzenie Systemy zarządzania Gry i

Bardziej szczegółowo

20-02-2008. 2. Dane podstawowe w systemie klasy ERP. Wprowadzenie. Rodzaje. Przykłady. Kolejność wprowadzania

20-02-2008. 2. Dane podstawowe w systemie klasy ERP. Wprowadzenie. Rodzaje. Przykłady. Kolejność wprowadzania 2. Dane podstawowe w systemie klasy ERP 2. Dane podstawowe w systemie klasy ERP Wprowadzenie Rodzaje Przykłady Kolejność wprowadzania (c) Zakład Controllingu i Informatyki Ekonomicznej & proalpha Software

Bardziej szczegółowo

System Arialis Hurtownia Farmaceutyczna opis systemu. Obsługa cen i upustów - Obsługa kartoteki cen urzędowych

System Arialis Hurtownia Farmaceutyczna opis systemu. Obsługa cen i upustów - Obsługa kartoteki cen urzędowych System Arialis Hurtownia Farmaceutyczna opis systemu System Arialis Hurtownia Farmaceutyczna jest aplikacją dedykowaną dla przedsiębiorstw zajmujących się obrotem środków farmaceutycznych. System jest

Bardziej szczegółowo

Bilans. A. Aktywa trwałe. I. Wartości niematerialne i prawne 1. Koszty zakończonych prac rozwojowych 2. Wartość firmy

Bilans. A. Aktywa trwałe. I. Wartości niematerialne i prawne 1. Koszty zakończonych prac rozwojowych 2. Wartość firmy Bilans Jest to podstawowy dokument księgowy, który jest podstawą dla zamknięcia rachunkowego roku obrotowego - bilans zamknięcia, a takŝe dla otwarcia kaŝdego następnego roku obrotowego - bilans otwarcia.

Bardziej szczegółowo

Prowadzący Andrzej Kurek

Prowadzący Andrzej Kurek Prowadzący Andrzej Kurek Centrala Rzeszów Oddziały Lublin, Katowice Zatrudnienie ponad 70 osób SprzedaŜ wdroŝenia oprogramowań firmy Comarch Dopasowania branŝowe Wiedza i doświadczenie Pełna obsługa: Analiza

Bardziej szczegółowo

Dane Klienta: Staples Polska Sp. z o.o. Bysewska 18 80-298 Gdańsk www.staplesadvantage.pl

Dane Klienta: Staples Polska Sp. z o.o. Bysewska 18 80-298 Gdańsk www.staplesadvantage.pl Dane Klienta: Staples Polska Sp. z o.o. Bysewska 18 80-298 Gdańsk www.staplesadvantage.pl Staples Polska Sp. z o.o. (dawniej Corporate Express Polska Sp. z o.o.) to jeden z największych na świecie dostawców

Bardziej szczegółowo

Controlling operacyjny i strategiczny

Controlling operacyjny i strategiczny Controlling operacyjny i strategiczny dr Piotr Modzelewski Katedra Bankowości, Finansów i Rachunkowości Wydziału Nauk Ekonomicznych Uniwersytetu Warszawskiego Plan zajęć 1, 2. Wprowadzenie do zagadnień

Bardziej szczegółowo

Firma ACEL J.M. Ciskowscy Sp. K. powstała w 1987 roku w Gdańsku. Obecnie. posiada oddziały w Rumi, Gdyni i Warszawie. Zajmuje się hurtową sprzedażą

Firma ACEL J.M. Ciskowscy Sp. K. powstała w 1987 roku w Gdańsku. Obecnie. posiada oddziały w Rumi, Gdyni i Warszawie. Zajmuje się hurtową sprzedażą Dane Klienta: ACEL J.M. Ciskowscy Sp. K. ul. Twarda 6C 80-871 Gdańsk www.acel.pl Firma ACEL J.M. Ciskowscy Sp. K. powstała w 1987 roku w Gdańsku. Obecnie posiada oddziały w Rumi, Gdyni i Warszawie. Zajmuje

Bardziej szczegółowo

Typowe błędy w analizie rynku nieruchomości przy uŝyciu metod statystycznych

Typowe błędy w analizie rynku nieruchomości przy uŝyciu metod statystycznych Typowe błędy w analizie rynku nieruchomości przy uŝyciu metod statystycznych Sebastian Kokot XXI Krajowa Konferencja Rzeczoznawców Majątkowych, Międzyzdroje 2012 Rzetelnie wykonana analiza rynku nieruchomości

Bardziej szczegółowo

Def2000 Nowe moŝliwości biznesowe. 13-14 października 2009 Dorota Szumska

Def2000 Nowe moŝliwości biznesowe. 13-14 października 2009 Dorota Szumska Def2000 Nowe moŝliwości biznesowe 13-14 października 2009 Dorota Szumska Agenda Parametryzacja Konta Oszczędnościowego Uproszczone lokaty Parametryzacja wypłat z bankomatów Prowizja za odrzucenie Polecenia

Bardziej szczegółowo

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu Podstawy baz danych PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych

Bardziej szczegółowo

KANCELARYJNY SYSTEM PODATKOWY

KANCELARYJNY SYSTEM PODATKOWY KANCELARYJNY SYSTEM PODATKOWY Korekta Podatku dochodowego oraz Podatku VAT związana z niezapłaconymi fakturami Opracował: Katowice, Luty 2013 Ze względu na obowiązujące od 2013 roku zmiany dotyczące obliczania

Bardziej szczegółowo

Oprogramowanie dla biznesu Numer 11 (69) Listopad 2009 JAK SZYBKO I SKUTECZNIE ZAMKNĄĆ ROK?

Oprogramowanie dla biznesu Numer 11 (69) Listopad 2009 JAK SZYBKO I SKUTECZNIE ZAMKNĄĆ ROK? Oprogramowanie dla biznesu Numer 11 (69) Listopad 2009 JAK SZYBKO I SKUTECZNIE ZAMKNĄĆ ROK? CZY TO MOśLIWE, ABY PRZEZ PROCES ZAMKNIĘCIA ROKU W DUśEJ FIRMIE LEASINGOWEJ PRZEJŚĆ SZYBKO I BEZBOLEŚNIE? MY

Bardziej szczegółowo

Objaśnienia wartości przyjętych w Wieloletniej Prognozie Finansowej na lata 2012 2039 Gminy Miasta Radomia.

Objaśnienia wartości przyjętych w Wieloletniej Prognozie Finansowej na lata 2012 2039 Gminy Miasta Radomia. Objaśnienia wartości przyjętych w Wieloletniej Prognozie Finansowej na lata 2012 2039 Gminy Miasta Radomia. Za bazę do opracowania Wieloletniej Prognozy Finansowej na kolejne lata przyjęto projekt budŝetu

Bardziej szczegółowo

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego IBS PAN, Warszawa 9 kwietnia 2008 Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego mgr inż. Marcin Jaruszewicz promotor: dr hab. inż. Jacek Mańdziuk,

Bardziej szczegółowo

KOMPUTEROWE WSPOMAGANIE ZARZĄDZANIA PROJEKTAMI W PRZEDSIĘBIORSTWIE

KOMPUTEROWE WSPOMAGANIE ZARZĄDZANIA PROJEKTAMI W PRZEDSIĘBIORSTWIE KOMPUTEROWE WSPOMAGANIE ZARZĄDZANIA PROJEKTAMI W PRZEDSIĘBIORSTWIE Seweryn SPAŁEK Streszczenie: Zarządzanie projektami staje się coraz bardziej powszechne w przedsiębiorstwach produkcyjnych, handlowych

Bardziej szczegółowo

Przepływy wartości w zintegrowanym systemie informatycznym. 1. Wstęp. Adriana ADAMCZYK *, Paweł KUŻDOWICZ **, Marcin RELICH *** Streszczenie

Przepływy wartości w zintegrowanym systemie informatycznym. 1. Wstęp. Adriana ADAMCZYK *, Paweł KUŻDOWICZ **, Marcin RELICH *** Streszczenie Adriana ADAMCZYK *, Paweł KUŻDOWICZ **, Marcin RELICH *** Przepływy wartości w zintegrowanym systemie informatycznym Streszczenie Artykuł podejmuje problematykę integracji danych oraz przepływów wartości

Bardziej szczegółowo

Automatyzacja Procesów Biznesowych. Systemy Informacyjne Przedsiębiorstw

Automatyzacja Procesów Biznesowych. Systemy Informacyjne Przedsiębiorstw Automatyzacja Procesów Biznesowych Systemy Informacyjne Przedsiębiorstw Rodzaje przedsiębiorstw Produkcyjne największe zapotrzebowanie na kapitał, największe ryzyko Handlowe kapitał obrotowy, średnie ryzyko

Bardziej szczegółowo

PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY

PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY Joanna Chrabołowska Joanicjusz Nazarko PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY NA PRZYKŁADZIE PRZEDSIĘBIORSTWA HANDLOWEGO TYPU CASH & CARRY Wprowadzenie Wśród wielu prognoz szczególną rolę w zarządzaniu

Bardziej szczegółowo

Zintegrowane planowanie płynności finansowej w przedsiębiorstwie

Zintegrowane planowanie płynności finansowej w przedsiębiorstwie Zintegrowane planowanie płynności finansowej w przedsiębiorstwie mgr inŝ. Dorota KuŜdowicz Zakład Controllingu i Informatyki Ekonomicznej Seminarium dyplomowe, 17.11.2005 r. 1 Plan wystąpienia 1. Podstawy

Bardziej szczegółowo

Spis treści. Wstęp... 11

Spis treści. Wstęp... 11 Spis treści Wstęp... 11 1. WPROWADZENIE DO TERMINOLOGII I ARCHITEKTURY SAP ERP (Mariusz Żytniewski)... 13 1.1. Rozwój systemów informatycznych zarządzania... 13 1.2. Zakres funkcjonalny systemu SAP ERP...

Bardziej szczegółowo

Zakupy i kooperacje. Rys.1. Okno pracy technologów opisujące szczegółowo proces produkcji Wałka fi 14 w serii 200 sztuk.

Zakupy i kooperacje. Rys.1. Okno pracy technologów opisujące szczegółowo proces produkcji Wałka fi 14 w serii 200 sztuk. Zakupy i kooperacje Wstęp Niewątpliwie, planowanie i kontrola procesów logistycznych, to nie lada wyzwanie dla przedsiębiorstw produkcyjnych. Podejmowanie trafnych decyzji zależy od bardzo wielu czynników.

Bardziej szczegółowo

Szkolenia Podatki. Temat szkolenia

Szkolenia Podatki. Temat szkolenia Podatek VAT warsztaty podatkowe Podatkowe aspekty transakcji wewnątrzwspólnotowych Świadczenia pozapłacowe dla pracowników skutki w PIT oraz ZUS, obowiązki płatników Szkolenie skierowane jest do księgowych

Bardziej szczegółowo

Bibby Financial Services

Bibby Financial Services Bibby Financial Services Bibby Financial Services Łukasz Sadowski Kierownik Zespołu SprzedaŜy Jak działa faktoring? Krok 1 - SprzedaŜ towaru i wystawienie faktury Dostawca dostarcza towar, bądź usługę

Bardziej szczegółowo

Utrata wartości aktywów w rachunku przepływów pienięŝnych

Utrata wartości aktywów w rachunku przepływów pienięŝnych Utrata wartości aktywów w rachunku przepływów pienięŝnych Maciej Jurczyga Celem artykułu jest przybliŝenie czytelnikom zagadnień związanych z prawidłowym ujęciem skutków utraty wartości aktywów w rachunku

Bardziej szczegółowo

Faktoring w KUKE Finance. Finansujemy rozwój Twojego biznesu

Faktoring w KUKE Finance. Finansujemy rozwój Twojego biznesu Faktoring w KUKE Finance Finansujemy rozwój Twojego biznesu Chcesz rozwijać swoją firmę, ale potrzebna do tego gotówka jest zamrożona w niezapłaconych fakturach? Potrzebujesz wzmocnić swoją pozycję konkurencyjną

Bardziej szczegółowo

Zastosowanie sieci neuronowej do oceny klienta banku pod względem ryzyka kredytowego Streszczenie

Zastosowanie sieci neuronowej do oceny klienta banku pod względem ryzyka kredytowego Streszczenie Adam Stawowy Paweł Jastrzębski Wydział Zarządzania AGH Zastosowanie sieci neuronowej do oceny klienta banku pod względem ryzyka kredytowego Streszczenie Jedną z najczęściej podejmowanych decyzji w działalności

Bardziej szczegółowo

Krótkoterminowe planowanie finansowe na przykładzie przedsiębiorstw z branży wydawniczej

Krótkoterminowe planowanie finansowe na przykładzie przedsiębiorstw z branży wydawniczej Uniwersytet Ekonomiczny we Wrocławiu Krótkoterminowe planowanie finansowe na przykładzie przedsiębiorstw z branży wydawniczej Karolina Piątkowska Wrocław 2013 Spis treści: Wstęp... 3 I. Opis teoretyczny

Bardziej szczegółowo

INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH

INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH 1. Czym jest eksploracja danych Eksploracja danych definiowana jest jako zbiór technik odkrywania nietrywialnych zależności i schematów w dużych

Bardziej szczegółowo

Sterowanie wielkością zamówienia w Excelu - cz. 3

Sterowanie wielkością zamówienia w Excelu - cz. 3 Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji

Bardziej szczegółowo

PLAN ZARZĄDZANIA WYMAGANIAMI PROJEKT WERSJA

PLAN ZARZĄDZANIA WYMAGANIAMI PROJEKT <NAZWA PROJEKTU> WERSJA <NUMER WERSJI DOKUMENTU> Załącznik nr 4.4 do Umowy nr 35-ILGW-253-.../20.. z dnia... MINISTERSTWO FINANSÓW DEPARTAMENT INFORMATYKI PLAN ZARZĄDZANIA WYMAGANIAMI PROJEKT WERSJA numer wersji

Bardziej szczegółowo

Istnieje możliwość prezentacji systemu informatycznego MonZa w siedzibie Państwa firmy.

Istnieje możliwość prezentacji systemu informatycznego MonZa w siedzibie Państwa firmy. system informatyczny wspomagający monitorowanie i planowanie zapasów w przedsiębiorstwie System informatyczny MonZa do wspomagania decyzji managerskich w obszarze zarządzania zapasami jest odpowiedzią

Bardziej szczegółowo

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2008 Zagadnienia do omówienia 1. 2. Przegląd architektury HD 3. Warsztaty

Bardziej szczegółowo

ALGORYTM RANDOM FOREST

ALGORYTM RANDOM FOREST SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM

Bardziej szczegółowo

Informatyzacja przedsiębiorstw. Cel przedsiębiorstwa. Komputery - potrzebne? 23-02-2012. Systemy zarządzania ZYSK! Metoda: zarządzanie

Informatyzacja przedsiębiorstw. Cel przedsiębiorstwa. Komputery - potrzebne? 23-02-2012. Systemy zarządzania ZYSK! Metoda: zarządzanie Informatyzacja przedsiębiorstw Systemy zarządzania Cel przedsiębiorstwa ZYSK! maksimum przychodów minimum kosztów podatki (lobbing...) Metoda: zarządzanie Ludźmi Zasobami INFORMACJĄ 2 Komputery - potrzebne?

Bardziej szczegółowo

Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów

Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów Eksploracja danych Piotr Lipiński Informacje ogólne Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów UWAGA: prezentacja to nie

Bardziej szczegółowo

Opracowanie narzędzi informatycznych dla przetwarzania danych stanowiących bazę wyjściową dla tworzenia map akustycznych

Opracowanie narzędzi informatycznych dla przetwarzania danych stanowiących bazę wyjściową dla tworzenia map akustycznych Opracowanie zasad tworzenia programów ochrony przed hałasem mieszkańców terenów przygranicznych związanych z funkcjonowaniem duŝych przejść granicznych Opracowanie metody szacowania liczebności populacji

Bardziej szczegółowo

www.comarch.pl/erp 20.10.2009 r. Opis wdroŝenia PROFIS Poligrafia + Comarch OPT!MA w DRUKARNIA T-ś Sp. z o.o.

www.comarch.pl/erp 20.10.2009 r. Opis wdroŝenia PROFIS Poligrafia + Comarch OPT!MA w DRUKARNIA T-ś Sp. z o.o. 20.10.2009 r. Opis wdroŝenia PROFIS Poligrafia + Comarch OPT!MA w DRUKARNIA T-ś Sp. z o.o. DRUKARNIA T-ś Sp. z o.o. z siedzibą we Wrocławiu działa na rynku usług poligraficznych od 1991 r. Swoim klientom

Bardziej szczegółowo

Transformacja wiedzy w budowie i eksploatacji maszyn

Transformacja wiedzy w budowie i eksploatacji maszyn Uniwersytet Technologiczno Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy Wydział Mechaniczny Transformacja wiedzy w budowie i eksploatacji maszyn Bogdan ŻÓŁTOWSKI W pracy przedstawiono proces

Bardziej szczegółowo

Wykorzystanie nowoczesnych technik prognozowania popytu i zarządzania zapasami do optymalizacji łańcucha dostaw na przykładzie dystrybucji paliw cz.

Wykorzystanie nowoczesnych technik prognozowania popytu i zarządzania zapasami do optymalizacji łańcucha dostaw na przykładzie dystrybucji paliw cz. 14.12.2005 r. Wykorzystanie nowoczesnych technik prognozowania popytu i zarządzania zapasami do optymalizacji łańcucha dostaw na przykładzie dystrybucji paliw cz. 2 3.2. Implementacja w Excelu (VBA for

Bardziej szczegółowo

2. Ogólne narzędzia controllingowe

2. Ogólne narzędzia controllingowe Kluge et al.: Arbeitsmaterial Controlling w zintegrowanych systemach zarzadzania 1 Prof. dr hab. Paul-Dieter Kluge Dr inż. Krzysztof Witkowski Mgr. inż. Paweł Orzeszko Controlling w zintegrowanych systemach

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie. SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

Odchudzanie magazynu dzięki kontroli przepływów materiałów w systemie Plan de CAMpagne

Odchudzanie magazynu dzięki kontroli przepływów materiałów w systemie Plan de CAMpagne Odchudzanie magazynu dzięki kontroli przepływów materiałów w systemie Plan de CAMpagne Wstęp Jednym z powodów utraty płynności finansowej przedsiębiorstwa jest utrzymywanie zbyt wysokich poziomów zapasów,

Bardziej szczegółowo

Niepewność metody FMEA. Wprowadzenie 2005-12-28

Niepewność metody FMEA. Wprowadzenie 2005-12-28 5-1-8 Niepewność metody FMEA Wprowadzenie Doskonalenie produkcji metodą kolejnych kroków odbywa się na drodze analizowania przyczyn niedociągnięć, znajdowania miejsc powstawania wad, oceny ich skutków,

Bardziej szczegółowo

Zintegrowany System Informatyczny (ZSI)

Zintegrowany System Informatyczny (ZSI) Zintegrowany System Informatyczny (ZSI) ZSI MARKETING Modułowo zorganizowany system informatyczny, obsługujący wszystkie sfery działalności przedsiębiorstwa PLANOWANIE ZAOPATRZENIE TECHNICZNE PRZYGOTOWANIE

Bardziej szczegółowo

...Gospodarka Materiałowa

...Gospodarka Materiałowa 1 Gospodarka Materiałowa 3 Obsługa dokumentów magazynowych 4 Ewidencja stanów magazynowych i ich wycena 4 Inwentaryzacja 4 Definiowanie indeksów i wyrobów 5 Zaopatrzenie magazynowe 5 Kontrola jakości 5

Bardziej szczegółowo

DOTACJE NA INNOWACJE

DOTACJE NA INNOWACJE Rzeszów, 15.04.2013 Ogłoszenie o zamówieniu kompleksowego wdrożenia systemu B2B do współpracy handlowej pomiędzy firmą Francoise a Partnerami Zamawiający: Studio Mody FRANCOISE Franciszka Znamirowska ul.

Bardziej szczegółowo

KOMPUTEROWE SYSTEMY FINANSÓW I KSIĘGOWOŚCI

KOMPUTEROWE SYSTEMY FINANSÓW I KSIĘGOWOŚCI Rafik Nafkha Marta Żółtowska KOMPUTEROWE SYSTEMY FINANSÓW I KSIĘGOWOŚCI Podejście praktyczne w Comarch ERP XL Wydawnictwo SGGW Warszawa 2013 Spis treści Wstęp... 11 1. Pojęcie i rozwój systemów informatycznych...

Bardziej szczegółowo

11. INFORMATYCZNE WSPARCIE LOGISTYKI

11. INFORMATYCZNE WSPARCIE LOGISTYKI 11. INFORMATYCZNE WSPARCIE LOGISTYKI 56 11.1. Informacja i jej przetwarzanie Do zarządzania dowolną organizacją potrzebna jest określona informacja. Według Cz. Cempla: informacja to zawartość przekazu

Bardziej szczegółowo

Przewodnik po nowej wersji serwisu Pekao24Makler. 2. Przelew jednorazowy...str.5. 3. Przelewy cykliczne...str.6. 3.1. Nowy przelew cykliczny... str.

Przewodnik po nowej wersji serwisu Pekao24Makler. 2. Przelew jednorazowy...str.5. 3. Przelewy cykliczne...str.6. 3.1. Nowy przelew cykliczny... str. PEKAO24MAKLER PODRĘCZNIK UśYTKOWNIKA RACHUNEK PIENIĘśNY 1. Szczegóły rachunku pienięŝnego...str.2 2. Przelew jednorazowy...str.5 2.1. Przelew na rachunek bieŝący zdefiniowany... str.5 3. Przelewy cykliczne...str.6

Bardziej szczegółowo

Faktoring jako jedna z form finansowania przedsiębiorstw

Faktoring jako jedna z form finansowania przedsiębiorstw jako jedna z form finansowania przedsiębiorstw Michał Wójcik Kierownik Zespołu Produktów Finansowych Biuro Produktów Finansowania Handlu, Bank Pekao SA Warszawa, piątek, 6 marca 2009 AGENDA Istota transakcji,

Bardziej szczegółowo

Zarządzanie ryzykiem w projektach inwestycyjnych Sposoby ograniczania

Zarządzanie ryzykiem w projektach inwestycyjnych Sposoby ograniczania Zarządzanie ryzykiem w projektach Sposoby ograniczania DR WALDEMAR ROGOWSKI WROGOW@SGH.WAW.PL WALDEMARROGOWSKI@WP.PL KATEDRA ANALIZY DZIAŁALNOŚCI PRZEDSIĘBIORSTWA SGH 1 Ograniczanie w projektach Matryca

Bardziej szczegółowo

bo od managera wymaga się perfekcji

bo od managera wymaga się perfekcji bo od managera wymaga się perfekcji MODELOWANIE PROCESÓW Charakterystyka modułu Modelowanie Procesów Biznesowych (BPM) Modelowanie procesów biznesowych stanowi fundament wdroŝenia systemu zarządzania jakością

Bardziej szczegółowo

Dane Klienta: PUW Torpol Sp. z o.o. ul. Wały Piastowskie 1. 80-855 Gdańsk. www.torpol.eu

Dane Klienta: PUW Torpol Sp. z o.o. ul. Wały Piastowskie 1. 80-855 Gdańsk. www.torpol.eu Dane Klienta: PUW Torpol Sp. z o.o. ul. Wały Piastowskie 1 80-855 Gdańsk www.torpol.eu PUW Torpol Sp. z o.o. rozpoczęło działalność w 1987 roku. W branży tekstylnej obecni są od 1994 roku. Torpol jest

Bardziej szczegółowo

Wprowadzenie do systemu ERP: CDN XL

Wprowadzenie do systemu ERP: CDN XL Wprowadzenie do systemu ERP: CDN XL Przedmiot: Lk: 1/7 Opracował: mgr inż. Paweł Wojakowski Instytut Technologii Maszyn i Automatyzacji Produkcji Zakład Projektowania Procesów Wytwarzania Pokój: 3/7 B,

Bardziej szczegółowo

Rachunek kosztów działań sterowany czasem (Time-Driven ABC)

Rachunek kosztów działań sterowany czasem (Time-Driven ABC) Rachunek kosztów działań sterowany czasem (Time-Driven ABC) Spis treści I. Rachunek kosztów działań sterowany czasem (time-driven ABC)... 2 1. Geneza time-driven ABC... 2 2. Ogólna koncepcja TD ABC....

Bardziej szczegółowo

Metody sporządzania rachunku przepływów pieniężnych. Wpisany przez Agnieszka Tłaczała

Metody sporządzania rachunku przepływów pieniężnych. Wpisany przez Agnieszka Tłaczała Rachunek ten, zgodnie z ustawą o rachunkowości, może być sporządzany metodą bezpośrednią albo pośrednią, zależnie od wyboru dokonanego przez kierownika jednostki. Rachunek przepływów pieniężnych, zgodnie

Bardziej szczegółowo

Systemy IT w e-biznesie

Systemy IT w e-biznesie Systemy IT w e-biznesie Łukasz Tkacz 1 Dr. Zdzisław Pólkowski 1 Dolnośląska Wyższa Szkoła Przedsiębiorczości i Techniki w Polkowicach Spis treści ABSTRACT... 3 1 WPROWADZENIE... 3 2 POLSKI RYNEK SYSTEMÓW

Bardziej szczegółowo

M. Jarosz. Uniwersytet Ekonomiczny we Wrocławiu. Krótkoterminowe planowanie finansowe na przykładzie przedsiębiorstwa

M. Jarosz. Uniwersytet Ekonomiczny we Wrocławiu. Krótkoterminowe planowanie finansowe na przykładzie przedsiębiorstwa M. Jarosz Uniwersytet Ekonomiczny we Wrocławiu Krótkoterminowe planowanie finansowe na przykładzie przedsiębiorstwa z branży magazynowanie i działalność usługowa wspomagająca transport JEL Classification:

Bardziej szczegółowo

E-logistyka Redakcja naukowa Waldemar Wieczerzycki

E-logistyka Redakcja naukowa Waldemar Wieczerzycki E-logistyka Redakcja naukowa Waldemar Wieczerzycki E-logistyka to szerokie zastosowanie najnowszych technologii informacyjnych do wspomagania zarządzania logistycznego przedsiębiorstwem (np. produkcją,

Bardziej szczegółowo

Tworzenie Biznes Planu

Tworzenie Biznes Planu Tworzenie Biznes Planu Opracowanie: GraŜyna Pawlisz Co to jest biznes plan? Biznes plan jest zestawem dokumentów (analiz i programów), w których na podstawie oceny sytuacji strategicznej firmy oraz danych

Bardziej szczegółowo

Dokumenty - ruch towaru

Dokumenty - ruch towaru Dokumenty - ruch towaru Autor: Tomasz Zasadziński Data: luty, 2007 Spis treści WSTĘP... 2 WYSTAWIANIE DOKUMENTÓW A SKUTEK MAGAZYNOWY... 2 WYSTAWIANIE DOKUMENTÓW FINANSOWYCH I MAGAZYNOWYCH DLA FIRM W UKŁADZIE

Bardziej szczegółowo

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2012 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę

Bardziej szczegółowo

Biznes elektroniczny - co to takiego?

Biznes elektroniczny - co to takiego? Andrzej Kurek Biznes elektroniczny - co to takiego? Handel elektroniczny zazwyczaj jest dzielony na trzy podstawowe sektory : Sektor I - business-to-business (firma-firma) - twierdzi się ogólnie, Ŝe jest

Bardziej szczegółowo

Dane Klienta: Staples Polska Sp. z o.o. ul. Bysewska 18 80-298 Gdańsk www.staplesadvantage.pl

Dane Klienta: Staples Polska Sp. z o.o. ul. Bysewska 18 80-298 Gdańsk www.staplesadvantage.pl Dane Klienta: Staples Polska Sp. z o.o. ul. Bysewska 18 80-298 Gdańsk www.staplesadvantage.pl Staples Inc. jest największym na świecie przedsiębiorstwem zajmującym się dostawą rozwiązań biurowych. Istnieje

Bardziej szczegółowo

Zarządzanie finansami przedsiębiorstw

Zarządzanie finansami przedsiębiorstw Zarządzanie finansami przedsiębiorstw Opracowała: Dr hab. Gabriela Łukasik, prof. WSBiF I. OGÓLNE INFORMACJE O PRZEDMIOCIE Cele przedmiotu:: - przedstawienie podstawowych teoretycznych zagadnień związanych

Bardziej szczegółowo

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Anna Manerowska, Michal Kozakiewicz 2.12.2009 1 Wstęp Jako projekt na przedmiot MEUM (Metody Ewolucyjne Uczenia Maszyn)

Bardziej szczegółowo

SYSTEM LOJALNOŚCIOWY. Opis wersji PLUS programu

SYSTEM LOJALNOŚCIOWY. Opis wersji PLUS programu SYSTEM LOJALNOŚCIOWY Opis wersji PLUS programu Program Kontrahent 2.0 to system lojalnościowy przeznaczony do róŝnego rodzaju punktów sprzedaŝy, takich jak: stacje paliw, apteki, bary, restauracje, hotele,

Bardziej szczegółowo

Operacje gospodarcze. Bilans spółki akcyjnej, prowadzącej działalność handlową, zawiera następujące składniki aktywów i pasywów: Wartość w zł

Operacje gospodarcze. Bilans spółki akcyjnej, prowadzącej działalność handlową, zawiera następujące składniki aktywów i pasywów: Wartość w zł SPIS TREŚCI Wstęp................................................................ 5 Rozdział 1 Ogólne zagadnienia rachunkowości.............................. 7 Rozdział 2 Aktywa i pasywa jednostek gospodarujących......................

Bardziej szczegółowo

ZARZĄDZANIE ŚRODKAMI PIENIĘśNYMI W MAŁYCH PRZEDSIĘBIORSTWACH

ZARZĄDZANIE ŚRODKAMI PIENIĘśNYMI W MAŁYCH PRZEDSIĘBIORSTWACH ZARZĄDZANIE ŚRODKAMI PIENIĘśNYMI W MAŁYCH PRZEDSIĘBIORSTWACH Anna KIWAŁA Streszczenie: W artykule przedstawiono metody i narzędzia stosowane w zarządzaniu środkami pienięŝnymi w małych przedsiębiorstwach

Bardziej szczegółowo

URZĄD STATYSTYCZNY W SZCZECINIE

URZĄD STATYSTYCZNY W SZCZECINIE URZĄD STATYSTYCZNY W SZCZECINIE Opracowania sygnalne Szczecin, styczeń 2010 r. DZIAŁALNOŚĆ INNOWACYJNA PRZEDSIĘBIORSTW W LATACH 2006-2008 W WOJEWÓDZTWIE ZACHODNIOPOMORSKIM Wyniki badania działalności innowacyjnej

Bardziej szczegółowo

3. Typowy obieg dokumentów w przedsiębiorstwie produkcyjnym

3. Typowy obieg dokumentów w przedsiębiorstwie produkcyjnym Kluge P.D. et al.: Skrypt do przedmiotu Systemy informatyczne zarządzania 19 3. Typowy obieg dokumentów w przedsiębiorstwie produkcyjnym Bardziej złożone od danych podstawowych są funkcje, które wspomagają

Bardziej szczegółowo

Co matematyka może dać bankowi?

Co matematyka może dać bankowi? Co matematyka może dać bankowi? Biznes zakres pracy matematyków Pomiar i analiza miar detalicznych procesów kredytowych i ubezpieczeniowych, inicjowanie działań zapewniających poprawę efektywności i obniżenie

Bardziej szczegółowo

NajwyŜsza Izba Kontroli Delegatura w Rzeszowie ul. Kraszewskiego 8, 35-016 Rzeszów Rzeszów, dnia kwietnia 2009 r.

NajwyŜsza Izba Kontroli Delegatura w Rzeszowie ul. Kraszewskiego 8, 35-016 Rzeszów Rzeszów, dnia kwietnia 2009 r. NajwyŜsza Izba Kontroli Delegatura w Rzeszowie ul. Kraszewskiego 8, 35-016 Rzeszów Rzeszów, dnia kwietnia 2009 r. P/08/037 LRZ-410-05-1/09 Pan Piotr Daniel Dyrektor Izby Celnej w Przemyślu Na podstawie

Bardziej szczegółowo

F.H. Nowalijka: efektywna integracja różnych źródeł informacji z SAP Business One

F.H. Nowalijka: efektywna integracja różnych źródeł informacji z SAP Business One F.H. Nowalijka: efektywna integracja różnych źródeł informacji z SAP Business One Partner wdrożeniowy Nazwa firmy F.H. Nowalijka Branża Handel Produkty i usługi Obrót owocami i warzywami Strona WWW www.nowalijka.pl

Bardziej szczegółowo

Kontrola płatności z uwagi na KUP i VAT

Kontrola płatności z uwagi na KUP i VAT Kontrola płatności z uwagi na KUP i VAT Materiały aktualne na dzień 05.03.2012 Zgodnie z nowymi przepisami ustaw podatkowych, obowiązujących od 01.01.2013, przedsiębiorcy, którzy zalegają ze swoimi płatnościami

Bardziej szczegółowo

Technologia informacyjna

Technologia informacyjna Technologia informacyjna Pracownia nr 9 (studia stacjonarne) - 05.12.2008 - Rok akademicki 2008/2009 2/16 Bazy danych - Plan zajęć Podstawowe pojęcia: baza danych, system zarządzania bazą danych tabela,

Bardziej szczegółowo

Oferta Banku Zachodniego WBK S.A. na usługę Elektronicznej Identyfikacji NaleŜności dla. Warszawa, 2008-11- 14

Oferta Banku Zachodniego WBK S.A. na usługę Elektronicznej Identyfikacji NaleŜności dla. Warszawa, 2008-11- 14 Oferta Banku Zachodniego WBK S.A. na usługę Elektronicznej Identyfikacji NaleŜności dla Warszawa, 2008-11- 14 I. Opis usługi Elektroniczna Identyfikacja NaleŜności Elektroniczna Identyfikacja NaleŜności

Bardziej szczegółowo

Warszawa, dnia 4 stycznia 2013. Główne zmiany podatkowe wchodzące w Ŝycie z dniem 1 stycznia 2013. PODATEK VAT

Warszawa, dnia 4 stycznia 2013. Główne zmiany podatkowe wchodzące w Ŝycie z dniem 1 stycznia 2013. PODATEK VAT Warszawa, dnia 4 stycznia 2013 Główne zmiany podatkowe wchodzące w Ŝycie z dniem 1 stycznia 2013. PODATEK VAT 1. NajwaŜniejsze zmiany dotyczące podatku VAT, które weszły w Ŝycie 1 stycznia 2013 dotyczą:

Bardziej szczegółowo

Dane Klienta: PHP Maritex. ul. Rdestowa 53D. 81-577Gdynia. www.maritex.com.pl

Dane Klienta: PHP Maritex. ul. Rdestowa 53D. 81-577Gdynia. www.maritex.com.pl Dane Klienta: PHP Maritex ul. Rdestowa 53D 81-577Gdynia www.maritex.com.pl Firma P.H.P. Maritex została założona w 1987 roku i jest obecnie jedną z największych, dynamicznie rozwijających się hurtowni

Bardziej szczegółowo

Stawiamy na specjalizację. by CSB-System AG, Geilenkirchen Version 1.1

Stawiamy na specjalizację. by CSB-System AG, Geilenkirchen Version 1.1 1 Business Intelligence Jak najlepiej wykorzystać dostępne źródła informacji, czyli Business Intelligence w zarządzaniu III Konferencja i warsztaty dla branży mięsnej Potencjał rynku potencjał firmy 2

Bardziej szczegółowo

Regulamin wymiany walutowej Domu Maklerskiego Banku Ochrony Środowiska S.A. ( Regulamin wymiany)

Regulamin wymiany walutowej Domu Maklerskiego Banku Ochrony Środowiska S.A. ( Regulamin wymiany) Regulamin wymiany walutowej Domu Maklerskiego Banku Ochrony Środowiska S.A. ( Regulamin wymiany) 1 Postanowienia ogólne 1. Niniejszy Regulamin wymiany walutowej Domu Maklerskiego Banku Ochrony Środowiska

Bardziej szczegółowo

Funkcje biznesowe, procesy biznesowe, dane

Funkcje biznesowe, procesy biznesowe, dane Funkcje biznesowe, procesy biznesowe, dane Aby zrozumieć, jak działają systemy klasy ERP, należy najpierw zrozumieć, jak funkcjonuje biznes Politechnika Poznańska - Instytut Informatyki 1/16 Obszary Funkcjonalne

Bardziej szczegółowo

3 Zasady funkcjonowania kont księgowych

3 Zasady funkcjonowania kont księgowych Kluge P.D., Kużdowicz D., Kużdowicz P., Materiały do zajęć z przedmiotu Rachunkowość finansowa 10 3 Zasady funkcjonowania kont księgowych 3.1 Pojęcie i cechy konta Konto jest urządzeniem ewidencyjnym służącym

Bardziej szczegółowo

Zalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel

Zalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel według przewidywań internetowego magazynu ZDNET News z 8 lutego 2001 roku eksploracja danych (ang. data mining ) będzie jednym z najbardziej rewolucyjnych osiągnięć następnej dekady. Rzeczywiście MIT Technology

Bardziej szczegółowo

ZASADY RACHUNKOWOŚCI

ZASADY RACHUNKOWOŚCI Joanna Piecyk ZASADY RACHUNKOWOŚCI SKRYPT CZĘŚĆ II Wydanie IV Wrocław 2005 1. ZAKUP I SPRZEDAŻ NA PODSTAWIE FA VAT 1.1. Istota podatku vat Opodatkowaniu podatkiem VAT podlega sprzedaż towarów i usług we

Bardziej szczegółowo

1. Czy u podatników, którzy zlikwidowali działalność gospodarczą, dopuszczalna jest kontrola podatkowa?

1. Czy u podatników, którzy zlikwidowali działalność gospodarczą, dopuszczalna jest kontrola podatkowa? 13 czerwca 11 (nr 113) SIEDEM PYTAŃ DO Karoliny Brzozowskiej, konsultanta podatkowego w ECDDP Czy moŝna kontrolować podatnika po zamknięciu firmy 1. Czy u podatników, którzy zlikwidowali działalność gospodarczą,

Bardziej szczegółowo