Wykład 4 Kryształy i struktury molekularne

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wykład 4 Kryształy i struktury molekularne"

Transkrypt

1 Wykład 4 Kryształy i struktury molekularne

2 W4. Rodzaje struktur molekularnych Różnorodność cząsteczek organicznych i ich własności prowadzi do powstawania różnorodnych struktur molekularnych. Formy molekularnego ciała stałego: KRYSZTAŁY - Kryształy molekularne - Kryształy jednowymiarowe - Kryształy polimerowe - Kryształy typu charge-transfer - Ciekłe kryształy NANOCZĄSTKI - Fulereny, nanorurki WARSTWY - Warstwy Langmuir-Blodgett - Warstwy napylane próżniowo - Warstwy wytwarzane z roztworów (spin-coating, dip coating, inject itp.)

3 W4. Kryształy molekularne Tetracen Tc Pentacen Pc C 18 H 12 C 22 H 14 system trójskośny trójskośny krystalograficzny grupa przestrzenna a [Å] b [Å] c [Å] [ 0 ] [ 0 ] [ 0 ] V [Å 3 ] Z 2 2 Z - liczba cząsteczek przypadająca na komórkę elementarną - Kryształy molekularne są tworzone przez cząsteczki niepolarne - Parametry sieciowe kryształów molekularnych są o rząd wielkości większe od tych dla kryształów atomowych

4 W4. Kryształy jednowymiarowe - Tworzone są przez cząsteczki płaskie - Kryształy wykazują się wyróżniającymi się właściwościami w jednym kierunku MePTCDI POCHODNE PERYLENU

5 W4. Kryształy polimerowe Większość POLIMERÓW nie tworzy dobrych struktur krystalicznych. PROCES POLIMERYZACJI w strukturze krystalicznej zbudowanej z pojedynczych monomerów pozwala na utworzenie kryształu polimerowego UZASADNIENIE: POLIMERY posiadają długie łańcuchy węglowe, których ulokowanie w węzłach sieci jest mało prawdopodobne. PRZYKŁAD: Fotopolimeryzacja diaacetylenu, która prowadzi do powstania polidiacetylenu ŻRÓDŁO:

6 W4. Kryształy typu charge-transfer - tworzone są przez cząsteczki o własnościach akceptorowych i donorowych, pomiędzy którymi występuje wymiana nośników ładunku DONORY MOLEKULARNE - TETRATIAFULWALEN TTF - HEKSANETYLOBENZEN HMB - ANTRACEN - NAFTALEN AKCEPTORY MOLEKULARNE - TETRACYJANO p chimodimetan TCNQ - Tetracyjanoetylen TCNE - 1,2,3,4,5-tetracyjanobenzen TCNB ŻRÓDŁO: Figure 1: Charge transfer in the TTF TCNQ system.ab, The TTF and TCNQ molecules (a) are well known since their use in the synthesis of the first metallic charge-transfer compound, TTF TCNQ, the structure of which (b) (ref. 34) consists of a quasione-dimensional, chain-like arrangement of the TTF and TCNQ molecules. In TTF TCNQ crystals, electrons from the HOMO of the TTF molecules are transferred into the LUMO of the TCNQ molecules, leading to a stable charge-transfer state (as indicated in the diagram in a). c, Our work investigates whether a similar charge transfer occurs at the interface between a TTF and TCNQ crystal (green shaded region), leading to the occurrence of a metallic state. d,e, Top view of the structure of the molecular planes (note the characteristic herringbone configuration) where conduction takes place in (-phase) TTF (d) (ref. 35) and TCNQ (e) (ref. 36). In our samples, these molecular planes are parallel to (and form) the TTF TCNQ interface. All structures shown are courtesy of the Cambridge Structural Database. nature materials VOL 7 JULY

7 W4. Warstwy Langmuir-Blodgett Monowarstwa Langmuira - nierozpuszczalna, monomolekularna warstwa substancji filmotwórczej, pozostałą po odparowaniu lotnego rozpuszczalnika na powierzchni subfazy, tj. wody lub innej cieczy. Warstwę taką można poddać procesowi sprężania do zadanego ciśnienia powierzchniowego i przenieść na substrat, tj. ciało stałe tworząc film Langmuira-Blodgett

8 W4. Fulereny i nanorurki ŹRÓDŁO: Struktura i przekroje poprzeczne trzech rodzajów SWCNTs. Przykłady fulerenów (a, b, c) oraz nanorurek węglowych (d, e)

9 W4. Ciekłe kryształy - uporządkowane (w pewnym przedziale temperatur) struktury krystaliczne w fazie ciekłej Uporządkowanie cząsteczek w fazie nematycznej, smektycznej i cholesteryktycznej ŹRÓDŁO:

10 W4. Metody wytwarzania molekularnych ciał stałych Fizyczne osadzanie z fazy gazowej (PVD, Physical Vapour Deposition) thermal evaporation, molecular beam epitaxy, sputtering Chemiczne osadzanie z fazy gazowej (CVD, Chemical Vapour Deposition) Uzyskiwanie cienkich warstw z roztworu Powlekanie wirowe spin coating Zanurzenie podłoża w roztworze dip coating Rozprowadzanie roztworu na podłożu za pomocą ostrza doctor-blading Rozpylanie roztworu na podłożu spray-coating Wykorzystanie technik druku: Inject Printing, Roll to roll Metody elektrochemiczne Technika Sol-Gel

11 W4. Spin coating - metoda nakładania cienkich warstw z roztworu na płaskim podłożu - metoda wykorzystywana do nakładania emulsji światłoczułej w procesie fotolitografii - metoda stosowana do wytwarzania warstw o grubości 10 nm < h < 500 nm ETAPY procesu SPIN-COATINGU a) Nanoszenie roztworu na podłoże b) Wirowanie podłoża - ciecz spływa promieniowo na zewnątrz w wyniku działania siły odśrodkowej c) Przyspieszenie wirowania podłoża - rośnie lepkość cieczy, zmniejsza się grubość warstwy d) Odparowanie rozpuszczalnika

12 W4. Spin coating MATERIAŁY ORGANICZNE NAKŁADANE METODĄ SPIN-COATING - polimery - ftalocyjaniny - polimery i barwniki do wyświetlaczy elektroluminescencyjnych Najczęściej występujące defekty i niejednorodności warstw wytwarzanych METODĄ SPIN-COATING a) Smugi zanieczyszczenia podłoża b) Niejednorodne rozkładanie roztworu na podłożu podczas wirowania nieidealne zwilżanie podłoża ŹRÓDŁO: c) Niejednorodne pokrycie całej powierzchni podłoża (dewetting) zbyt mała ilość roztworu umieszczona na podłożu NIEDOGODNOŚCI METODY SPIN COATING - Trudności w tworzeniu struktur wielowarstwowych nakładanie kolejnej warstwy może doprowadzić do uszkodzenia poprzedniej. - Zbyt lotne rozpuszczalniki i niezbyt lotne obniżają jakość warstwy.

13 W4. Spin coating opis teoretyczny ZAŁOŻENIA - Rotujący dysk jest płaski i ma kierunek poziomy siła grawitacji nie ma składowej radialnej; - Warstwa roztworu umieszczana na dysku jest cienka można zaniedbać różnicę w wartości potencjału grawitacyjnego; - Prędkość wirowania podłoża jest mała na tyle, że można zaniedbać siłę Coriolisa; - Płaszczyzna dysku jest nieskończenie rozciągła; - Roztwór jest cieczą newtonowską; - Powierzchnia dysku jest całkowicie zwilżona roztworem; - Ścinanie występuje tylko w płaszczyźnie poziomej. Opis w układzie współrzędnych cylindrycznych (r,, z)

14 W4. Spin coating opis teoretyczny NAJWAŻNIEJSZE MODELE TEORETYCZNE BEZ ODPAROWYWANIA ROZPUSZCZALNIKA A.G. Emslie, F. T. Bonner i L. G. Peck, Flow of a viscous liquid on a rotating disk, J. Appl. Phys. 29, (1958), 858. h(t) = dynamiczny współczynnik lepkości gęstość roztworu prędkość kątowa wirowania podłoża h 0 (1 + 4Kh 2 0 t) 1/2 r(t) = r 0 (1 + 4Kh 2 0 t) 3/4 K = 3 3 STAŁA SZYBKOŚĆ ODPAROWYWANIA ROZPUSZCZALNIKA wzór empiryczny D. Meyerhofer, Characteristics of resist films produced by spinning, J. Appl. Phys. 49, (1978), h f = 3 2 1/3 c 0 1 c 0 1/3 2/3 0 1/3 e 1/3 c 0 początkowa koncentracja substancji rozpuszczonej, 0 kinematyczny współczynnik lepkości e szybkość parowania rozpuszczalnika 0 = STAŁA SZYBKOŚĆ ODPAROWYWANIA ROZPUSZCZALNIKA wzór teoretyczny D.E. Bornside, C.W. Macosko i L.E. Scriven, Spin coating: One-dimensional model, J. Appl. Phys. 68, (1989), 5185 h f = k x A 0 x A 1/3 1/2 k = cd g g 1/2 p A M A RT

15 W4. Spin coating opis teoretyczny

16 W4. Spin coating podstawowe r-nia hydrodynamiki z ROZKŁAD PRĘDKOŚCI WARSTW CIECZY z Ciało porusza się w płynie pod wpływem siły F, która jest równoważona poprzez siłę tarcia wewnętrznego cieczy ŹRÓDŁO: Rozkład prędkości warstw cieczy dv dz = v 0 d d głębokość płynu MODEL PŁYNU LEPKIEGO NEWTONOWSKIEGO d v 0 Dla płynu o lepkości (LEPKOŚĆ DYNAMICZNA) gdy warstwy płynu, znajdujące się w odległości d i powierzchni A, przesuwają się ze względną prędkością v 0 to siła niezbędna do utrzymania tych warstw w ruch jest równa: F A = v 0 d F A = dv dz ŹRÓDŁO: NAPĘŻENIE ŚCINAJĄCE F A = RÓWNANIE NEWTONA = dv dz ŻRÓDŁO: WIKIPEDIA Płyny, które spełniają r-nie Newtona płyny newtonowskie

17 W4. Spin coating Siła tarcia wewnętrznego na jednostkę objętości płynu o gęstości

18 W4. Spin coating opis teoretyczny SIŁA TARCIA WEWNĘTRZNEGO (na jednostkę objętości cieczy) = SIŁA ODŚRODKOWA WARUNKI BRZEGOWE: - 2 v z 2 = 2 r Na powierzchni dysku prędkość cieczy równa się zero v(0) = 0 Na powierzchni cieczy o grubości h, tzn dla z = h: v z = 0 Rozwiązanie r-nia przedstawiające radialną składową prędkości cieczy v = rz rhz

19 W4. Spin coating opis teoretyczny Równanie różniczkowe opisujące zmianę grubości warstwy cieczy w czasie otrzymamy uwzględniając r-nie ciągłości dla cieczy. W żadnym punkcie pola masie nie może się tworzyć albo zanikać. Różniczkowa postać r-nia ciągłości + div v =0 t W przypadku układu współrzędnych walcowych i tylko współrzędnej radialnej prędkości cieczy, r-nie ciągłości przyjmuje postać: ds L ds = L dz dq= dq L z dz dq= v ds = v L dz = v dz r h = rq t r Gdzie q oznacza strumień przepływu cieczy w kierunku radialnym na jednostkę długości obwodu dysku Q objętościowe natężenie przepływu = iloczyn prędkości przepływu płynu (v) przez przewód rurowy i powierzchni przekroju tego przewodu (S) Q= v S Strumień przepływu na jednostkę długości obwodu dysku możemy wyrazić wzorem: h q= v dz = 2 rh 3 0 3

20 W4. Spin coating R-nie ciągłości przyjmuje postać: h t = K 1 r r r2 h 3 Gdzie K = 2 3 Po obliczeniu pochodnej cząstkowej po r otrzymamy: 2Kh 3 = h t + 3Krh2 h r (1) Krzywe opisujące powierzchnię płynu definiowane są poprzez r-nie różniczkowe i dane są poprzez chwilowe położenie zbioru punktów, określonych poprzez współrzędne h(t) i r(t). Współrzędna h(t) zmienia się w czasie zgodnie z r-niem: dh dt = h t + h dr r dt (2) Porównując r-nia (1) i (2) rozwiązujemy układ równań różniczkowych: dh dt = 2Kh3 dr dt = 3Krh2

21 W4. Spin coating opis teoretyczny Równania określające współrzędne punktów tworzących powierzchnię płynu w dowolnej chwili czasu: h t = h Kh 0 2 t 1/2 r t = r Kh 0 2 t 3/4 Równania pozwalają określić współrzędne h i r w dowolnej chwili czasu (r(t), h(t)) wszystkich punktów na powierzchni płynu wtedy gdy zadane są współrzędne r i h w chwili początkowej (r 0, h 0 )

22 W4. Analiza h(t) i r(t) dla różnych funkcji opisujących kontur początkowy płynu A) Funkcja Gaussa h 0 a = exp 2 r 0 2 WNIOSKI Wraz z t krzywa staje się bardziej płaska. Dla ka 2 t = 1 płyn tworzy na powierzchni dysku warstwę o jednorodnej grubości. Dla dużych wartości r tworzy się stromy brzeg efekt obserwowany doświadczalnie ale nie uwzględniony w analizie teoretycznej (brak przepływu w kierunku z, a tylko w kierunku r).

23 W4. Analiza h(t) i r(t) dla różnych funkcji opisujących kontur początkowy płynu B) POWOLNY SPADEK h 0 a = r 0 2 1/4 WNIOSKI Powierzchnia spłaszcza się gładko bez żadnych oznak występowania pionowych spadków

24 W4. Analiza h(t) i r(t) dla różnych funkcji opisujących kontur początkowy płynu C) Funkcja Gaussa + funkcja stała h 0 a = 1 + exp 2 r 0 2 WNIOSKI Kontur opisuje powierzchnię warstwy płynu, która wykazuje jednorodną grubość z wyjątkiem obszaru w pobliżu środka dysku osi obrotu. Niejednorodność dla r = 0 zostaje szybko zredukowana wraz z r Nie są obserwowane pionowe spadki

25 W4. Analiza h(t) i r(t) dla różnych funkcji opisujących kontur początkowy płynu D) Funkcja sinusoidalna h 0 = a cos r 0 WNIOSKI Kontur opisuje powierzchnię warstwy płynu z 15% marszczeniem. Efekt wygładzania konturu obserwowany jest wraz z przepływem płynu na powierzchni dysku. Dla określonego zakresu wartości r 0 nie obserwowany jest efekt stromych brzegów

26 W4. Granice stosowania równań przepływu A. SIŁA CORIOLISA Zaniedbanie siły Coriolisa oznacza, że a cor a dośr v r Maksymalna wartość prędkości radialnej płynu: v max = 2 rh 2 2 Stąd wartość współczynnika lepkości h 2 2 WNIOSEK Siłę Coriolisa można zaniedbać dla płynów o dużej lepkości o cienkich warstwach (przy ustalonej wartości prędkości obrotowej dysku ). PRZYKŁAD = 1 g/cm 3 h = 1 mm = 4 rad/s >> 12 cp

27 W4. Granice stosowania równań przepływu B. WPŁYW SIŁY GRAWITACJI Zaniedbanie siły grawitacji (na jednostkę objętości płynu V) w kierunku radialnym oznacza, że F gr V F dośr V g h r 2 r Warunek można przedstawić posługując się promieniem krzywizny powierzchni cieczy w cylindrze obracającym się z prędkością R PRZYKŁAD R = 1 2 h r 2 g 2 = 10 rad/s 100 rpm R >> 10 cm dpress.com/2015/05/05/ciecz-w-wirujacymnaczyniu/

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami

Bardziej szczegółowo

Prędkości cieczy w rurce są odwrotnie proporcjonalne do powierzchni przekrojów rurki.

Prędkości cieczy w rurce są odwrotnie proporcjonalne do powierzchni przekrojów rurki. Spis treści 1 Podstawowe definicje 11 Równanie ciągłości 12 Równanie Bernoulliego 13 Lepkość 131 Definicje 2 Roztwory wodne makrocząsteczek biologicznych 3 Rodzaje przepływów 4 Wyznaczania lepkości i oznaczanie

Bardziej szczegółowo

J. Szantyr Wykład 2 - Podstawy teorii wirnikowych maszyn przepływowych

J. Szantyr Wykład 2 - Podstawy teorii wirnikowych maszyn przepływowych J. Szantyr Wykład 2 - Podstawy teorii wirnikowych maszyn przepływowych a) Wentylator lub pompa osiowa b) Wentylator lub pompa diagonalna c) Sprężarka lub pompa odśrodkowa d) Turbina wodna promieniowo-

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

J. Szantyr - Wykład 3 Równowaga płynu

J. Szantyr - Wykład 3 Równowaga płynu J. Szantyr - Wykład 3 Równowaga płynu Siły wewnętrzne wzajemne oddziaływania elementów mas wydzielonego obszaru płynu, siły o charakterze powierzchniowym, znoszące się parami. Siły zewnętrzne wynik oddziaływania

Bardziej szczegółowo

MECHANIKA PŁYNÓW Płyn

MECHANIKA PŁYNÓW Płyn MECHANIKA PŁYNÓW Płyn - Każda substancja, która może płynąć, tj. pod wpływem znikomo małych sił dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje, oraz może swobodnie się przemieszczać

Bardziej szczegółowo

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A.

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A. Prąd elektryczny Dotychczas zajmowaliśmy się zjawiskami związanymi z ładunkami spoczywającymi. Obecnie zajmiemy się zjawiskami zachodzącymi podczas uporządkowanego ruchu ładunków, który często nazywamy

Bardziej szczegółowo

Właściwości kryształów

Właściwości kryształów Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ Instrukcja do ćwiczenia T-06 Temat: Wyznaczanie zmiany entropii ciała

Bardziej szczegółowo

Przepływy laminarne - zadania

Przepływy laminarne - zadania Zadanie 1 Warstwa cieczy o wysokości = 3mm i lepkości v = 1,5 10 m /s płynie równomiernie pod działaniem siły ciężkości po płaszczyźnie nachylonej do poziomu pod kątem α = 15. Wyznaczyć: a) Rozkład prędkości.

Bardziej szczegółowo

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 1 Temat: Wyznaczanie współczynnika

Bardziej szczegółowo

Wytwarzanie niskowymiarowych struktur półprzewodnikowych

Wytwarzanie niskowymiarowych struktur półprzewodnikowych Większość struktur niskowymiarowych wytwarzanych jest za pomocą technik epitaksjalnych. Najczęściej wykorzystywane metody wzrostu: - epitaksja z wiązki molekularnej (MBE Molecular Beam Epitaxy) - epitaksja

Bardziej szczegółowo

Aerodynamika i mechanika lotu

Aerodynamika i mechanika lotu Prędkość określana względem najbliższej ścianki nazywana jest prędkością względną (płynu) w. Jeśli najbliższa ścianka porusza się względem ciał bardziej oddalonych, to prędkość tego ruchu nazywana jest

Bardziej szczegółowo

Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości

Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości LABORATORIUM MECHANIKI PŁYNÓW Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości dr inż. Jerzy Wiejacha ZAKŁAD APARATURY PRZEMYSŁOWEJ POLITECHNIKA WARSZAWSKA, WYDZ. BMiP, PŁOCK

Bardziej szczegółowo

Wstęp. Krystalografia geometryczna

Wstęp. Krystalografia geometryczna Wstęp Przedmiot badań krystalografii. Wprowadzenie do opisu struktury kryształów. Definicja sieci Bravais go i bazy atomowej, komórki prymitywnej i elementarnej. Podstawowe typy komórek elementarnych.

Bardziej szczegółowo

Kinematyka płynów - zadania

Kinematyka płynów - zadania Zadanie 1 Zadane jest prawo ruchu w zmiennych Lagrange a x = Xe y = Ye t 0 gdzie, X, Y oznaczają współrzędne materialne dla t = 0. Wyznaczyć opis ruchu w zmiennych Eulera. Znaleźć linię prądu. Pokazać,

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA ĆWICZENIE 8 WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA Cel ćwiczenia: Badanie ruchu ciał spadających w ośrodku ciekłym, wyznaczenie współczynnika lepkości cieczy metodą Stokesa

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

Zjawiska powierzchniowe

Zjawiska powierzchniowe Zjawiska powierzchniowe Adsorpcja Model Langmuira Model BET 1 Zjawiska powierzchniowe Adsorpcja Proces gromadzenia się substancji z wnętrza fazy na granicy międzyfazowej; Wynika z tego, że w obszarze powierzchniowym

Bardziej szczegółowo

PVD-COATING PRÓŻNIOWE NAPYLANIE ALUMINIUM NA DETALE Z TWORZYWA SZTUCZNEGO (METALIZACJA PRÓŻNIOWA)

PVD-COATING PRÓŻNIOWE NAPYLANIE ALUMINIUM NA DETALE Z TWORZYWA SZTUCZNEGO (METALIZACJA PRÓŻNIOWA) ISO 9001:2008, ISO/TS 16949:2002 ISO 14001:2004, PN-N-18001:2004 PVD-COATING PRÓŻNIOWE NAPYLANIE ALUMINIUM NA DETALE Z TWORZYWA SZTUCZNEGO (METALIZACJA PRÓŻNIOWA) *) PVD - PHYSICAL VAPOUR DEPOSITION OSADZANIE

Bardziej szczegółowo

Statyka płynów - zadania

Statyka płynów - zadania Zadanie 1 Wyznaczyć rozkład ciśnień w cieczy znajdującej się w stanie spoczynku w polu sił ciężkości. Ponieważ na cząsteczki cieczy działa wyłącznie siła ciężkości, więc składowe wektora jednostkowej siły

Bardziej szczegółowo

Płyny newtonowskie (1.1.1) RYS. 1.1

Płyny newtonowskie (1.1.1) RYS. 1.1 Miniskrypt: Płyny newtonowskie Analizujemy cienką warstwę płynu zawartą pomiędzy dwoma równoległymi płaszczyznami, które są odległe o siebie o Y (rys. 1.1). W warunkach ustalonych następuje ścinanie w

Bardziej szczegółowo

Podstawy fizyki wykład 5

Podstawy fizyki wykład 5 Podstawy fizyki wykład 5 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Grawitacja Pole grawitacyjne Prawo powszechnego ciążenia Pole sił zachowawczych Prawa Keplera Prędkości kosmiczne Czarne

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ . Cel ćwiczenia Pomiar współrzędnych powierzchni swobodnej w naczyniu cylindrycznym wirującym wokół

Bardziej szczegółowo

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03 METODY OBLICZENIOWE Projekt nr 3.4 Dariusz Ostrowski, Wojciech Muła 2FD/L03 Zadanie Nasze zadanie składało się z dwóch części: 1. Sformułowanie, przy użyciu metody Lagrange a II rodzaju, równania różniczkowego

Bardziej szczegółowo

STATYKA I DYNAMIKA PŁYNÓW (CIECZE I GAZY)

STATYKA I DYNAMIKA PŁYNÓW (CIECZE I GAZY) STTYK I DYNMIK PŁYNÓW (CIECZE I GZY) Ciecz idealna: brak sprężystości postaci (czyli brak naprężeń ścinających) Ciecz rzeczywista małe naprężenia ścinające - lepkość F s F n Nawet najmniejsza siła F s

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

Czym się różni ciecz od ciała stałego?

Czym się różni ciecz od ciała stałego? Szkła Czym się różni ciecz od ciała stałego? gęstość Czy szkło to ciecz czy ciało stałe? Szkło powstaje w procesie chłodzenia cieczy. Czy szkło to ciecz przechłodzona? kryształ szkło ciecz przechłodzona

Bardziej szczegółowo

Metody wytwarzania elementów półprzewodnikowych

Metody wytwarzania elementów półprzewodnikowych Metody wytwarzania elementów półprzewodnikowych Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Wytwarzanie

Bardziej szczegółowo

chemia wykład 3 Przemiany fazowe

chemia wykład 3 Przemiany fazowe Przemiany fazowe Przemiany fazowe substancji czystych Wrzenie, krzepnięcie, przemiana grafitu w diament stanowią przykłady przemian fazowych, które zachodzą bez zmiany składu chemicznego. Diagramy fazowe

Bardziej szczegółowo

Wykład FIZYKA I. 3. Dynamika punktu materialnego. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 3. Dynamika punktu materialnego.  Dr hab. inż. Władysław Artur Woźniak Wykład IZYKA I 3. Dynamika punktu materialnego Dr hab. inż. Władysław Artur Woźniak Instytut izyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Dynamika to dział mechaniki,

Bardziej szczegółowo

KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM

KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM WŁASNOŚCI MATERII - Uczeń nie opanował wiedzy i umiejętności niezbędnych w dalszej nauce. - Wie, że substancja występuje w trzech stanach skupienia. - Wie,

Bardziej szczegółowo

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)

Bardziej szczegółowo

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych Ładunek elektryczny Ładunek elektryczny jedna z własności cząstek elementarnych http://pl.wikipedia.org/wiki/%c5%81a dunek_elektryczny ładunki elektryczne o takich samych znakach się odpychają a o przeciwnych

Bardziej szczegółowo

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa Kinematyka 1. Podstawowe własności wektorów 5 1.1 Dodawanie (składanie) wektorów 7 1.2 Odejmowanie wektorów 7 1.3 Mnożenie wektorów przez liczbę 7 1.4 Wersor 9 1.5 Rzut wektora 9 1.6 Iloczyn skalarny wektorów

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody

Bardziej szczegółowo

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA Ćwiczenie 8 WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA Cel ćwiczenia: Badanie ruchu ciał spadających w ośrodku ciekłym, wyznaczenie współczynnika lepkości cieczy metodą Stokesa,

Bardziej szczegółowo

3. Przejścia fazowe pomiędzy trzema stanami skupienia materii:

3. Przejścia fazowe pomiędzy trzema stanami skupienia materii: Temat: Zmiany stanu skupienia. 1. Energia sieci krystalicznej- wielkość dzięki której można oszacować siły przyciągania w krysztale 2. Energia wiązania sieci krystalicznej- ilość energii potrzebnej do

Bardziej szczegółowo

Modele matematyczne procesów, podobieństwo i zmiana skali

Modele matematyczne procesów, podobieństwo i zmiana skali Modele matematyczne procesów, podobieństwo i zmiana skali 20 kwietnia 2015 Zadanie 1 konstrukcji balonu o zadanej sile oporu w ruchu. Obiekt do konstrukcji (Rysunek 1) opisany jest następującą F = Φ(d,

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1

Bardziej szczegółowo

Zasady dynamiki Isaak Newton (1686 r.)

Zasady dynamiki Isaak Newton (1686 r.) Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają

Bardziej szczegółowo

Wykład 14: Indukcja cz.2.

Wykład 14: Indukcja cz.2. Wykład 14: Indukcja cz.. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 10.05.017 Wydział Informatyki, Elektroniki i 1 Przykład

Bardziej szczegółowo

Szkła specjalne Wykład 11 Metoda zol żel, aerożele Część 3 Cienkie warstwy nieorganiczne wytwarzane metodą zol żel

Szkła specjalne Wykład 11 Metoda zol żel, aerożele Część 3 Cienkie warstwy nieorganiczne wytwarzane metodą zol żel Szkła specjalne Wykład 11 Metoda zol żel, aerożele Część 3 Cienkie warstwy nieorganiczne wytwarzane metodą zol żel Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego Cienkie warstwy

Bardziej szczegółowo

MECHANIKA II. Praca i energia punktu materialnego

MECHANIKA II. Praca i energia punktu materialnego MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl

Bardziej szczegółowo

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL We wstępnej analizie przyjęto następujące założenia: Dwuwymiarowość

Bardziej szczegółowo

WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ

WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ INSYU INFORMAYKI SOSOWANEJ POLIECHNIKI ŁÓDZKIEJ Ćwiczenie Nr2 WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ 1.WPROWADZENIE. Wymiana ciepła pomiędzy układami termodynamicznymi może być realizowana na

Bardziej szczegółowo

I Pracownia Fizyczna Dr Urszula Majewska dla Biologii

I Pracownia Fizyczna Dr Urszula Majewska dla Biologii Ćw. 6/7 Wyznaczanie gęstości cieczy za pomocą wagi Mohra. Wyznaczanie gęstości ciał stałych metodą hydrostatyczną. 1. Gęstość ciała. 2. Ciśnienie hydrostatyczne. Prawo Pascala. 3. Prawo Archimedesa. 4.

Bardziej szczegółowo

REAKCJA HYDRODYNAMICZNA STRUMIENIA NA NIERUCHOMĄ PRZESZKODĘ.

REAKCJA HYDRODYNAMICZNA STRUMIENIA NA NIERUCHOMĄ PRZESZKODĘ. REAKCJA HYDRODYNAMICZNA STRUMIENIA NA NIERUCHOMĄ PRZESZKODĘ. Reakcją hydrodynamiczną nazywa się siłę, z jaką strumień cieczy działa na przeszkodę /zaporę / ustawioną w jego linii działania. W technicznych

Bardziej szczegółowo

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał. ZASADY DYNAMIKI Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał Dynamika klasyczna zbudowana jest na trzech zasadach podanych przez Newtona w 1687 roku I zasada dynamiki Istnieją

Bardziej szczegółowo

. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz

. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz ZAKŁAD MECHANIKI PŁYNÓW I AERODYNAMIKI ABORATORIUM MECHANIKI PŁYNÓW ĆWICZENIE NR DOŚWIADCZENIE REYNODSA: WYZNACZANIE KRYTYCZNEJ ICZBY REYNODSA opracował: Piotr Strzelczyk Rzeszów 997 . Cel ćwiczenia Celem

Bardziej szczegółowo

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów ANALIZA PRZEKAZYWANIA CIEPŁA I FORMOWANIA SIĘ PROFILU TEMPERATURY DLA NIEŚCIŚLIWEGO, LEPKIEGO PRZEPŁYWU LAMINARNEGO W PRZEWODZIE ZAMKNIĘTYM Cel ćwiczenia Celem ćwiczenia będzie obserwacja procesu formowania

Bardziej szczegółowo

Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu

Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu Ćw. 4 Kinetyka reakcji chemicznych Zagadnienia do przygotowania: Szybkość reakcji chemicznej, zależność szybkości reakcji chemicznej

Bardziej szczegółowo

I. DYNAMIKA PUNKTU MATERIALNEGO

I. DYNAMIKA PUNKTU MATERIALNEGO I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć

Bardziej szczegółowo

Różniczkowe prawo Gaussa i co z niego wynika...

Różniczkowe prawo Gaussa i co z niego wynika... Różniczkowe prawo Gaussa i co z niego wynika... Niech ładunek będzie rozłożony w objętości V z ciągłą gęstością ρ(x,y,z). Wytworzone przez ten ładunek pole elektryczne będzie również zmieniać się w przestrzeni

Bardziej szczegółowo

Fizyczne właściwości materiałów rolniczych

Fizyczne właściwości materiałów rolniczych Fizyczne właściwości materiałów rolniczych Właściwości mechaniczne TRiL 1 rok Stefan Cenkowski (UoM Canada) Marek Markowski Katedra Inżynierii Systemów WNT UWM Podstawowe koncepcje reologii Reologia nauka

Bardziej szczegółowo

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności Zasady dynamiki Newtona Pęd i popęd Siły bezwładności Copyright by pleciuga@o2.pl Inercjalne układy odniesienia Układy inercjalne to takie układy odniesienia, względem których wszystkie ciała nie oddziałujące

Bardziej szczegółowo

WYDZIAŁ LABORATORIUM FIZYCZNE

WYDZIAŁ LABORATORIUM FIZYCZNE 1 W S E i Z W WARSZAWIE WYDZIAŁ LABORATORIUM FIZYCZNE Ćwiczenie Nr 3 Temat: WYZNACZNIE WSPÓŁCZYNNIKA LEPKOŚCI METODĄ STOKESA Warszawa 2009 2 1. Podstawy fizyczne Zarówno przy przepływach płynów (ciecze

Bardziej szczegółowo

Wykład 2. Anna Ptaszek. 7 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 2. Anna Ptaszek 1 / 1

Wykład 2. Anna Ptaszek. 7 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 2. Anna Ptaszek 1 / 1 Wykład 2 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 7 października 2015 1 / 1 Zjawiska koligatywne Rozpuszczenie w wodzie substancji nielotnej powoduje obniżenie prężności pary nasyconej P woda

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,

Bardziej szczegółowo

Ćwiczenie N 13 ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO

Ćwiczenie N 13 ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO . Cel ćwiczenia Doświadczalne wyznaczenie rozkładu ciśnienia piezometrycznego w zwęŝce Venturiego i porównanie go z

Bardziej szczegółowo

WYKŁAD 8 RÓWNANIE NAVIERA-STOKESA 1/17

WYKŁAD 8 RÓWNANIE NAVIERA-STOKESA 1/17 WYKŁAD 8 RÓWNANIE NAVIERA-STOKESA /7 Zaczniemy od wyprowadzenia równania ruchu dla płynu newtonowskiego. Wcześniej wyprowadziliśmy z -ej Zasady Dynamiki ogólne równanie ruchu, którego postać indeksowa

Bardziej szczegółowo

Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5. Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego

Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5. Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5 Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego Czy przejście szkliste jest termodynamicznym przejściem fazowym?

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo

Bardziej szczegółowo

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów Fizyka dla Informatyków Wykład 8 Katedra Informatyki Stosowanej PJWSTK 2008 Spis treści Spis treści 1 Podstawowe równania hydrodynamiki 2 3 Równanie Bernoulliego 4 Spis treści Spis treści 1 Podstawowe

Bardziej szczegółowo

BUDOWA KRYSTALICZNA CIAŁ STAŁYCH. Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale

BUDOWA KRYSTALICZNA CIAŁ STAŁYCH. Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale BUDOWA KRYSTALICZNA CIAŁ STAŁYCH Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale na: kryształy ciała o okresowym regularnym uporządkowaniu atomów, cząsteczek w całej swojej

Bardziej szczegółowo

Ciśnienie definiujemy jako stosunek siły parcia działającej na jednostkę powierzchni do wielkości tej powierzchni.

Ciśnienie definiujemy jako stosunek siły parcia działającej na jednostkę powierzchni do wielkości tej powierzchni. Ciśnienie i gęstość płynów Autorzy: Zbigniew Kąkol, Bartek Wiendlocha Powszechnie przyjęty jest podział materii na ciała stałe i płyny. Pod pojęciem substancji, która może płynąć rozumiemy zarówno ciecze

Bardziej szczegółowo

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane

Bardziej szczegółowo

Zasady dynamiki Newtona. WPROWADZENIE DO MECHANIKI PŁYNÓW

Zasady dynamiki Newtona. WPROWADZENIE DO MECHANIKI PŁYNÓW Zasady dynamiki Newtona. I. Jeżeli na ciało nie działają siły, lub działające siły równoważą się, to ciało jest w spoczynku lub porusza się ruchem jednostajnym. II. Jeżeli siły się nie równoważą, to ciało

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Pojęcia podstawowe Punkt materialny Ciało, którego rozmiary można w danym zagadnieniu zaniedbać. Zazwyczaj przyjmujemy, że punkt materialny powinien być dostatecznie mały. Nie jest

Bardziej szczegółowo

Czy równowaga jest procesem korzystnym? dr hab. prof. nadzw. Małgorzata Jóźwiak

Czy równowaga jest procesem korzystnym? dr hab. prof. nadzw. Małgorzata Jóźwiak Czy równowaga jest procesem korzystnym? dr hab. prof. nadzw. Małgorzata Jóźwiak 1 Pojęcie równowagi łańcuch pokarmowy równowagi fazowe równowaga ciało stałe - ciecz równowaga ciecz - gaz równowaga ciało

Bardziej szczegółowo

Transport masy w ośrodkach porowatych

Transport masy w ośrodkach porowatych grudzień 2013 Dyspersja... dyspersja jest pojęciem niesłychanie uniwersalnym. Możemy zrekapitulować: dyspersja to w ogólnym znaczeniu rozproszenie, rozrzut, rozcieńczenie. Możemy nazywać dyspersją roztwór

Bardziej szczegółowo

wymiana energii ciepła

wymiana energii ciepła wymiana energii ciepła Karolina Kurtz-Orecka dr inż., arch. Wydział Budownictwa i Architektury Katedra Dróg, Mostów i Materiałów Budowlanych 1 rodzaje energii magnetyczna kinetyczna cieplna światło dźwięk

Bardziej szczegółowo

RHEOTEST Medingen Reometr rotacyjny RHEOTEST RN oraz lepkościomierz kapilarny RHEOTEST LK Zastosowanie w chemii polimerowej

RHEOTEST Medingen Reometr rotacyjny RHEOTEST RN oraz lepkościomierz kapilarny RHEOTEST LK Zastosowanie w chemii polimerowej RHEOTEST Medingen Reometr rotacyjny RHEOTEST RN oraz lepkościomierz kapilarny RHEOTEST LK Zastosowanie w chemii polimerowej Zadania w zakresie badań i rozwoju Roztwory polimerowe stosowane są w różnych

Bardziej szczegółowo

Treści dopełniające Uczeń potrafi:

Treści dopełniające Uczeń potrafi: P Lp. Temat lekcji Treści podstawowe 1 Elementy działań na wektorach podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy wektora, dodać wektory, odjąć wektor od wektora, pomnożyć

Bardziej szczegółowo

Ruch jednowymiarowy. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Ruch jednowymiarowy. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Ruch jednowymiarowy Autorzy: Zbigniew Kąkol Kamil Kutorasiński 017 Ruch jednowymiarowy Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Dział Fizyki zajmujący się opisem ruchu ciał nazywamy kinematyką. Definicja

Bardziej szczegółowo

J. Szantyr -Wykład 2 Poważne wprowadzenie do Mechaniki Płynów

J. Szantyr -Wykład 2 Poważne wprowadzenie do Mechaniki Płynów J. Szantyr -ykład Poważne wprowadzenie do Mechaniki Płynów Stany skupienia materii: ciała stałe płyny, czyli ciecze i gazy -Ciała stałe przenoszą obciążenia zewnętrzne w taki sposób, że ulegają deformacji

Bardziej szczegółowo

Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 7 Elektrodynamika 3 7.1 Siła elektromotoryczna................ 3 7.2

Bardziej szczegółowo

Konwekcja - opisanie zagadnienia.

Konwekcja - opisanie zagadnienia. Konwekcja - opisanie zagadnienia. Magdalena Włodarz Konwekcja - to proces przenoszenia ciepła wynikający z makroskopowego ruchu materii w dowolnej substancji, np. rozgrzanego powietrza, wody, piasku itp.

Bardziej szczegółowo

Zastosowania Równania Bernoullego - zadania

Zastosowania Równania Bernoullego - zadania Zadanie 1 Przez zwężkę o średnicy D = 0,2 m, d = 0,05 m przepływa woda o temperaturze t = 50 C. Obliczyć jakie ciśnienie musi panować w przekroju 1-1, aby w przekroju 2-2 nie wystąpiło zjawisko kawitacji,

Bardziej szczegółowo

ZAMRAŻANIE PODSTAWY CZ.1

ZAMRAŻANIE PODSTAWY CZ.1 METODY PRZECHOWYWANIA I UTRWALANIA BIOPRODUKTÓW ZAMRAŻANIE PODSTAWY CZ.1 Opracował: dr S. Wierzba Katedra Biotechnologii i Biologii Molekularnej Uniwersytetu Opolskiego Zamrażaniem produktów nazywamy proces

Bardziej szczegółowo

WIROWANIE. 1. Wprowadzenie

WIROWANIE. 1. Wprowadzenie WIROWANIE 1. Wprowadzenie Rozdzielanie układów heterogonicznych w polu sił grawitacyjnych może być procesem długotrwałym i mało wydajnym. Sedymentacja może zostać znacznie przyspieszona, kiedy pole sił

Bardziej szczegółowo

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów FORMOWANIE SIĘ PROFILU PRĘDKOŚCI W NIEŚCIŚLIWYM, LEPKIM PRZEPŁYWIE PRZEZ PRZEWÓD ZAMKNIĘTY Cel ćwiczenia Celem ćwiczenia będzie analiza formowanie się profilu prędkości w trakcie przepływu płynu przez

Bardziej szczegółowo

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:

Bardziej szczegółowo

Fizyka 1(mechanika) AF14. Wykład 5

Fizyka 1(mechanika) AF14. Wykład 5 Fizyka 1(mechanika) 1100-1AF14 Wykład 5 Jerzy Łusakowski 30.10.2017 Plan wykładu Ziemia jako układ nieinercjalny Fizyka 1(mechanika) 1100-1AF14 Wykład 5 Dwaj obserwatorzy- związek między mierzonymi współrzędnymi

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej

WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej OSIĄGNIĘCIA UCZNIÓW Z ZAKRESIE KSZTAŁCENIA W kolumnie "wymagania na poziom podstawowy" opisano wymagania

Bardziej szczegółowo

Szczegółowy rozkład materiału z fizyki dla klasy II gimnazjum zgodny z nową podstawą programową.

Szczegółowy rozkład materiału z fizyki dla klasy II gimnazjum zgodny z nową podstawą programową. Szczegółowy rozkład materiału z fizyki dla klasy gimnazjum zgodny z nową podstawą programową. Lekcja organizacyjna. Omówienie programu nauczania i przypomnienie wymagań przedmiotowych Tytuł rozdziału w

Bardziej szczegółowo

Materiały pomocnicze z Aparatury Przemysłu Chemicznego

Materiały pomocnicze z Aparatury Przemysłu Chemicznego Materiały pomocnicze z Aparatury Przemysłu Chemicznego Odstojnik dr inż. Szymon Woziwodzki Materiały dydaktyczne v.1. Wszelkie prawa zastrzeżone. Szymon.Woziwodzki@put.poznan.pl Strona 1 POLITECHNIKA POZNAŃSKA

Bardziej szczegółowo

WYZNACZANIE ROZMIARÓW

WYZNACZANIE ROZMIARÓW POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 6 WYZNACZANIE ROZMIARÓW MAKROCZĄSTECZEK I. WSTĘP TEORETYCZNY Procesy zachodzące między atomami lub cząsteczkami w skali molekularnej

Bardziej szczegółowo

przepływ Hagena-Poseuille a 22 października 2013 Hydrodynamika równanie Naviera-Stokesa przepły

przepływ Hagena-Poseuille a 22 października 2013 Hydrodynamika równanie Naviera-Stokesa przepły Hydrodynamika równanie Naviera-Stokesa przepływ Hagena-Poseuille a 22 października 2013 Ośrodki ciągłe równanie ruchu Zjawiska zachodzące w poruszających się płynach (cieczach lub gazach) traktujemy makroskopowo

Bardziej szczegółowo

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ . Cel ćwiczenia Doświadczalne i teoretyczne wyznaczenie profilu prędkości w rurze prostoosiowej 2. Podstawy teoretyczne:

Bardziej szczegółowo

TERMODYNAMIKA TECHNICZNA I CHEMICZNA

TERMODYNAMIKA TECHNICZNA I CHEMICZNA TERMODYNAMIKA TECHNICZNA I CHEMICZNA WYKŁAD IX RÓWNOWAGA FAZOWA W UKŁADZIE CIAŁO STAŁE-CIECZ (krystalizacja) ADSORPCJA KRYSTALIZACJA, ADSORPCJA 1 RÓWNOWAGA FAZOWA W UKŁADZIE CIAŁO STAŁE-CIECZ (krystalizacja)

Bardziej szczegółowo

Warunki izochoryczno-izotermiczne

Warunki izochoryczno-izotermiczne WYKŁAD 5 Pojęcie potencjału chemicznego. Układy jednoskładnikowe W zależności od warunków termodynamicznych potencjał chemiczny substancji czystej definiujemy następująco: Warunki izobaryczno-izotermiczne

Bardziej szczegółowo

Gęstość i ciśnienie. Gęstość płynu jest równa. Gęstość jest wielkością skalarną; jej jednostką w układzie SI jest [kg/m 3 ]

Gęstość i ciśnienie. Gęstość płynu jest równa. Gęstość jest wielkością skalarną; jej jednostką w układzie SI jest [kg/m 3 ] Mechanika płynów Płyn każda substancja, która może płynąć, tj. dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje oraz może swobodnie się przemieszczać (przepływać), np. przepompowywana

Bardziej szczegółowo

STRUKTURA CIAŁA STAŁEGO

STRUKTURA CIAŁA STAŁEGO STRUKTURA CIAŁA STAŁEGO Podział ciał stałych Ciała - bezpostaciowe (amorficzne) Szkła, żywice, tłuszcze, niektóre proszki. Nie wykazują żadnych regularnych płaszczyzn ograniczających, nie można w nich

Bardziej szczegółowo

WYKONUJEMY POMIARY. Ocenę DOSTATECZNĄ otrzymuje uczeń, który :

WYKONUJEMY POMIARY. Ocenę DOSTATECZNĄ otrzymuje uczeń, który : WYKONUJEMY POMIARY Ocenę DOPUSZCZAJĄCĄ otrzymuje uczeń, który : wie, w jakich jednostkach mierzy się masę, długość, czas, temperaturę wie, do pomiaru jakich wielkości służy barometr, menzurka i siłomierz

Bardziej szczegółowo

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej termodynamika - podstawowe pojęcia Układ termodynamiczny - wyodrębniona część otaczającego nas świata. Parametry układu termodynamicznego - wielkości fizyczne, za pomocą których opisujemy stan układu termodynamicznego,

Bardziej szczegółowo