Analiza Matematyczna 3 Całki wielowymiarowe

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Analiza Matematyczna 3 Całki wielowymiarowe"

Transkrypt

1 [wersja z X 008] Analiza Matematyczna 3 Całki wielowymiarowe Konspekt wykładu dla studentów II r. fizyki Uniwersytet Jana Kochanowskiego 008/009 Wojciech Broniowski

2 Powierzchnie kawałkami gładkie RYS Sfera Alexandra Butelka Kleina

3 3

4 Całki wielowymiarowe Uogólnienie calki Riemanna: P= [ a, b] [ a, b ]... [ a, b ] P = ( b a )... ( b a ) δ = ( b a ) ( b a ) n n Dokonujemy podzialu prostokąta n m = inf{ f( x): x P}, M = sup{ f( x): x P} i i i i s = m P m P, S = M P M P k k * * n n n Rozważamy normalny ( δ 0) ciąg podzialów n n n s = lim s calka dolna, S = lim S calka górna funkcji f na prostokącie P S n * * Jeżeli s = to wielkosć tę nazywamy wielokrotną calka Riemanna n k k Notacja: P dxdy f ( x, y), dxdydz g( x, y, z) P 4

5 Całka iterowana P= [ a, b] [ a, b ] b b b b dy dx f ( x, y), dx dy f ( x, y) calki iterowane a a a a Tw. Fubiniego: Jeżeli f : P R jest ciągla, to obie calki iterowane są równe calce Riemanna dxdy f ( x, y). P (analogicznie dla większej liczby wymiarów) Przyklad: P = [0,] [0, ] P xy dxdy (x y + ) = dx dy (x y + ) = dx ( + y) = dx(x + 4) = y= xy y dy dx y + = dy ( + x) = ( ) 4 3 dx + = x= 0 0 = (x ) 0 0 5

6 Całki po dowolnym obszarze A R n f( x) dla x A F( x) = 0 dla x P\ A ϕψ, :[ ab, ] R A= {( x, y) : a x b, ϕ( x) y ψ( x)} zbiór normalny względem Ox Tw. Jeżeli f : A R jest ciągla, to jest calkowalna, oraz ψ ( x) dxdy f ( x, y) = dx dy f ( x, y) A a ϕ ( x) b Przyklad: A={( xy, ) : 0 x, 0 y x} trójkąt x dxdy dx dy dx x x xy = xy = ( ) = 4 A

7 Zastosowania całek wielokrotnych V = A dxdydz A= {( x, y, z): x, y, x 0, x+ y+ z } xy, ustalone z x y x ustalone, szukamy największego możliwego y: y x z, ponieważ najmniejsze z = 0 y x x x y x ( x) V = dx dy dz = dx dy( x y) = dx ( x) = Jest to tzw. objetosć sympleksu. W n wymiarach V = n! 7

8 Środek ciężkości x = x dxdy y y dxdy A = A A figura -wym. x = x dxdydz, z z dxdydz bryla V = V V A V Objętosć bryly obrotowej powstalej w wyniku obrotu regularnego zbioru A wokól Ox: V = π y dxdy Reguly Guldina: V = πη A, η = y dxdy, A Dla torusa V = πa πr Podobnie dla powierzchni powstalej w wyniku obrotu luku mamy S = πξ L, ξ = ydt - odleglosc srodka ciężkosci luku od osi obrotu L Dla torusa S = πa πr β α A A 8

9 Pole powierzchni z = f( x, y), ( x, y) A f f S = dxdy + + x y A Wzór wynika z konstrukcji przybliżającej powierzchnię równoleglobokami Przyklad: f( x, y) = x y A= {( x, y) : x, y 0, x+ y } S = dxdy 3 = A 3 9

10 Zamiana zmiennych - dyfeomorfizm n n f C R U V R :, homeomorfizm rzędu n - (bijekcja, pochodna Frecheta odwracalna, f i f ciągle) ϕ ( b) Pamiętamy, że dla jednej zmiennej dy f( y) = dx f [ ϕ( x)] ϕ'( x), y = ϕ( x) n n Tw. ϕ : X R Y R klasy C ϕ ( a) J( x) = 0 jakobian przeksztalcenia ϕ Wtedy... f( y) dy.. dy =... Y ϕ x ϕn x n ϕ x n ϕn x n X f[ ϕ( x)] J( x) dx.. dx, y = ϕ ( x,..., x ) b a n i i n 0

11 Podstawowe układy współrzędnych Współrzędne biegunowe (osiowe) Φ: R R Φ xr (, φ) Φ (, r φ) = =, x= rcos φ, y = rsinφ Φ yr (, φ) rxy (, ) y Φ ( xy, ) =, r= x + y, φ=arctg φ( xy, ) x x x r φ cosφ r sinφ Φ '( r, φ) = = y y sinφ rcosφ r φ cosφ r sinφ J = = r (, ) ( (, ), (, )) sinφ r cosφ dxdy f x y = rdrdφ f x x φ y r φ Homeomorfizm regularny dla r 0, rząd Φ ' =. Dla r = 0 jest osobliwosć, bo w tym punkcie nie można okreslić kąta

12 Przyklady: dxdy x y rdrdφ r π = = dr dφ = Rπ r x + y R r R I = e dxdy = e rdrdφ = π rdre = π e = π πe I R = lim I = π R R x y r r r R x + y R r R R R x y x x I = dxe dye = dxe dxe = 0 π Całka Gaussa r= 0

13 Współrzędne eliptyczne x= arcosφ y = brsinφ x a y + = = b r, J abr Współrzędne walcowe (cylindryczne) x= rcosφ y = rsinφ z = z J = r Liniowa zmiana skali x= ax' y = by' z = cz' J = abc 3

14 Współrzędna sferyczne (kuliste) Φ: R R 3 3 x= rsinθcosφ y = rsinθsinφ z = rcosθ θ [0, π] - kąt osiowy(szerokosć geogr.), φ [0, π) - kąt biegunowy (azymutalny, dlugosć geogr.) sinθcosφ rcosθcosφ rsinθsinφ Φ ' = sinθsinφ rcosθsinφ rsinθ cosφ cosθ r sinθ 0 J = r sinθ r = 0 rz Φ ' = w srodku kuli nie można okreslić kątów θ = 0 θ = π rz Φ ' = na biegunach nie można okrelić kąta φ 4

15 Przyklad: Objętosć kuli π π R π 3 R 4 3 V = dxdydz = dr dθ dφr sinθ = dr d cosθ dφr = π = πr 3 3 x + y + z < R ( dcosθ = sin θdθ) R Srodek ciężkosci pólkuli: η = x + y + z < R z> 0 x + y + z < R z> 0 zdxdydz dxdydz R π / π dr d d r r = θ φ sin θ cosθ = π R 3 R π 4 3 R 3 3 πr = dr d cos θ dφ r cosθ = π = R πr 4 8 5

16 Równanie prostej i płaszczyzny 6

17 Płaszczyzna styczna Płaszczyzna styczna do powierzchni gładkiej o równaniu f(x,y,z)=0 dana jest równaniem f( x0, y0, z0) f( x0, y0, z0) f( x0, y0, z0) ( x x0) + ( y y0) + ( z z0) = 0 x y z f( x0, y0, z0) f( x0, y0, z0) f( x0, y0, z0) Wektor,, jest prostopadly do x y z powierzchni w punkcie ( x, y, z ). Prosta prostopadla do powierzchni w tym punkcie ma więc równanie parametryczne f( x, y, z ) f( x, y, z ) f( x, y, z ) t+ x, t+ y, t+ z x y z Dla sfery f = x + y + z R, więc prosta prostopadla ma równanie ( xt 0 + x0, y 0t+ y0, z0t+ z 0 ) 7

18 Plaszczyzna styczna do powierzchni w punkcie x jest przestrzenią liniową. Niech Φ: V R R, e, e,..., e tworzą bazę w R, oraz y =Φ( x). Wtedy u i k n k k =Φ'( x) e tworzą bazę w przestrzeni stycznej. i Przyklad: 0 Dla powierzchni danej jako Φ ( xy, ) = ( xyf,, ( xy, )) mamy Φ'= 0, fx f y u =Φ ' e = 0 = 0, v 'e 0 0 =Φ = = fx f y f x fx f y f y 8

19 Orientacja k Rozważmy bazy w przestrzeni R : ( v,..., v ) oraz ( w,..., w ). Bazy te powiazane są n i ij j j= k przeksztalceniem liniowym w = a v, przy czym musi zachodzić warunek a 0 aby zachować liniową niezależnosć. Jeżeli a > 0, to mówimy, że bazy są zgodnie zorintowane, a gdy a < 0, to mówimy, że są zorientowane przeciwnie. k Dla k = mamy jedną bazę jednoelementową v = i drugą w =. 0 0 Dla k = przykladowe bazy v =, v = i baza w =, w = są powiązane przeksztaceniem o macierzy a =, zatem a = > 0 i bazy są zorientowane zgodnie, natomiast dla bazy u =, u =, a=, a = < 0, 0 0 więc ta baza jest zorientowana przeciwnie do poprzednich. Orientację bazy kanonicznej nazywamy prawoskretną (zorientowaną dodatnio). 9

20 Wektor normalny 3 Niech M będzie powierzchnią dwuwymiarową w R, T x plaszczyzną styczną do M w punkcie x, a wektory ( u, v) bazą na plaszczyźnie stycznej. Wektor normalny definiujemy u v jako n =. Wektor ten wskazuje zewnętrzną (wewnętrzna) stronę powierzchni u v orientowalnej jesli baza jest prawoskrętna (lewoskrętna). c. d. przykladu: 0 uv uv u = 0, v =, u v = u v uv f x f y uv u v fx fx = fy, n = f y f x + fy + x x y f = R x y = z f = f = n = y z z x + y + z z Dla górnej pólsfery, x, y, f = R x y = z Dla dolnej pólsfery wynik taki sam (jeż!) 0

21 Powierzchnie orientowalne (mają stronę wewnętrzną i zewnętrzną) i nieorientowalne (nie można wyznaczyć strony) Wstęga Möbiusa Butelka Kleina

22 t t t x= ( R+ scos )cos t, y = ( R+ scos )sin t, z = ssin t [0, π ), s [ w, w] (M.C Escher)

23 Całka krzywoliniowa zorientowana F = ( F, F,..., Fk ), C - krzywa gladka I = F dx + F dx F dx = F dx C k k C I = I + I, I = I C + C C C C C Tw. Calka IC nie zależy od parametryzacji krzywej b dy D: y( t) = x( ϕ( t)) F( y) dy = F( y( t)) dt = dt C a b β dx( ϕ) dϕ dx( ϕ) = F( x( ϕ( t))) dt = F( x( ϕ)) dϕ = F( x) dx dϕ dt dϕ a α C (w konkretnej parametryzacji staje się zwyklą calką Riemanna) Przyklad: C: x( φ) = cos φ, y( φ) = sin φ, φ [0, π] (pólokrąg o promieniu jednostkowym) C π xdx x ydy d d d + ( ) = [cos φ (cos φ) + cos φ φ sin φ (sin φ)] = φ = 0 3 π π cos sin φ π φ π = + = C 3

24 Całka krzywoliniowa niezorientowana b dx dxk JC = f ds = f( x( t)) dt dt dt C a J C C Tw. Związek z calką zorientowaną: Fdx = Fds, F= F F cos α, α kąt miedzy dxi F C = J C s s k Zastosowanie (fizyka): praca W = Fds = F dx+ F dy + F dz π C: x= acos φ, y = bsin φ, φ [0, ] ćwiartka elipsy kx F = sprężyna zamocowana w srodku ky C dx = a φdφ dy = b φdφ F dx + F dy = k a b φ φdφ sin, cos, x y ( )sin cos π / k W = k( a b ) cos φd(cos φ) = ( a b ) 0 s C x y z 4

25 Tw. Greena Krzywą zamkniętą nazywamy konturem. Nich kontur C będzie brzegiem zbioru D. Kontur jest zorientowany dodatnio jeśli okala zbiór D w taki sposób, że D znajduje się po lewej stronie. Zbiór normalny D względem osi Ox to zbiór dający się zapisać jako D= {( x, y): f ( x) y f ( x), x [ a, b]}, f, f :[ a, b] R Zbiór normalny D względem osi Oy to zbiór dający się zapisać jako D= {( x, y) : g ( y) x g Tw. Greena ( y), x [ cd, ]}, g, g :[ cd, ] R D- zbiór normalny ze względu na Ox i Oy, C = D jego brzeg zorientowany dodatnio Q P Wtedy Pdx + Qdy = dxdy. x y D D b f ( x) P P D: dxdy = dx dy = dx[ P( x, f ( )) (, ( ))] y y D a f ( x) a C C = Pdx Pdx = Pdx C C D d g ( y) d b x P x f x = Pdx Pdx= Q Q dxdy = dy dx = dt[ Q( g ( y), y) Q( g ( y), y)] = Qdy Qdy = Qdy x x D c g ( y) c K K D 5

26 Pole potencjalne (fiz.) V( x, y) potencjal F x V V V V F F x =, Fy =, = = x y x y y x y x Fy F x Fxdx + Fydy = dxdy = 0 Fxdx + Fydy = Fxdx + Fydy (rys.) x y C D K K (Praca w polu potencjalnym nie zależy od drogi - można wprowadzić energię potencjalną. W poprzednim przykladzie z pracą na ćwiartce elipsy wynik jest wtedy natychmiastowy: W = V - V ) ( V ) (w powyższym wzorze zauważamy rot grad = 0) z y 6

27 Całka powierzchniowa niezorientowana (wspólrzędne kartezjańskie) Plat regularny S= {( xyz,, ) : z= f( xy, ),( xy, ) D} Element powierzchni : ds = + f + f dxdy x y Pole powierzchni plata regularnego: S = + f + f dxdy Calka powierzchniowa niezorientowana: S S g( x, y, z) ds = g( x, y, f ( x, y) + f + f dxdy D D x y (wspólrzędne krzywoliniowe) x= xuv (, ), y= yuv (, ), z= zuv (, ), ( uv, ) D x y g( x, y, zds ) = g( xuv (, ), y( u, v), z( u, v)) J + J + J dudv D ( yz, ) ( xz, ) ( xy, ) J =, J =, J3 = ( uv, ) ( uv, ) ( uv, ) 3 7

28 Przyklad (wspólrzędne kuliste) x= rsinθcos φ, y = rsinθsin φ, z = rcosθ J J J 3 rcosθsinφ rsinθcosφ = = r r sinθ 0 sin rcosθcosφ rsinθsinφ = = r r sinθ 0 rcosθcosφ rsinθsinφ = = r rcosθsinφ rsinθcosφ J + J + J3 = r sinθ θ cosφ sin θ sinφ sinθ cosθ 8

29 Całka powierzchniowa zorientowana 3 : - pole wektorowe F S S plat regularny n zewnętrzny wektor normalny Calka powierzchniowa zorientowana pola F lub strumień pola F: I= Fxyz (,, ) nxyzds (,, ) strumień S R Niech F = ( F, F, F ). Wtedy oznaczamy I = S 3 x y D 3 Jeżeli S dana jest równaniem z = f( x, y), to n= ( fx, fy,) + f + f Ff x Ff y + F3 I = ds = ( Ff x Ff y + F3) dxdy + f + f S F dydz + F dxdz + F dxdy x y 9

30 V Tw. Gaussa (Ostrogradskiego-Gaussa) div Fdxdydz = F nds S Slownie: calka po objętosci V z dywergencji z pola F równa się strumieniowi wyplywającemu przez powierzchnie S ograniczającą V F F F3 + + dxdydz = Fdydz + Fdxd dx dy dz z + F3 dxdy V S D: Niech V będzie obszarem normalnym względem plaszczyzny Oxy, ograniczonym funkcjami gxy (, ) i dxy (, ). Wtedy g( x, y) F 3 F 3 I3 = dxdydz = dz dxdy F3( x, y, g( x, y)) F3( x, y, d( x dz = dz (, y)) ) dxdy V D d( x, y) D Oznaczmy S = S + S, gdzie S dana jest przez z = g( x, y) a S przez z = d( x, y). I ' = F dxdy = F dxdy ( ) F dxdy = F ( x, y, g( x, y)) dxdy F ( x, y, d( x, y)) dxdy S S S D D Znak (-) wynika z przeciwnej orientacji S. Zatem I = I '. Podobnie pokazujemy, że I = I ' oraz I = I 3 3 '. Jeżeli V nie jest normalny, to dzielimy go na podzbiory normalne. 30

31 Tw. Stokesa Tw. Niech K będzie regularnym konturem bedącym brzegiem plata regularnego S. Orientacje K i S są zgodne. Niech Fi mają ciągle pochodne. Wtedy F dl = rot F n ds K S Cyrkulacja pola F po krzywej zamkniętej K jest równa calce zorientowanej z rotacji pola F po placie S. Inna notacja: F F F F F F 3 3 Fdx + Fdy + Fdz 3 = dydz + dzdx + dxdy y z z x x y K S 3

32 Formy różniczkowe (fiz. *) Różniczka zewnętrzna stopnia p : ax (,..., x) dx dx... dx, p n, wszystkie i różne i... i n i i i k dx dx = dx dx dx dx = 0 i j j i i i Suma różniczek tego samego stopnia: forma różniczkowa zewnętrzna α = i... i p a p ( x,..., x ) dx dx... dx n i i i i... ip j... j p Przyklady: Pdx + Qdy, Pdy dz + Qdz dx + Rdx dy, A dx dy dz Dodawanie analogiczne do dodawania wielomianów. p+ q Mnożenie: α β= a b dx... dx dx... dx = ( ) β α q i... i j... j i i j p q p p p Różniczkowanie: α P Q Q P d( Pdx+ Qdy) = dy dx+ dx dy = dx dy y x x y d( Pdy dz + Qdz dx + Rdx dy) = ( P + Q + R ) dx dy dz p ai... i ai... i d = dx + + dx dx dx i... i x p x n x y z j q n i i p 3

33 ai... i a p i... ip = dda ( ) = 0 x x x x k l l k α jest formą zupelną, jeżeli γ : α = dγ, α jest formą zamknietą, jeżeli dα = 0 Zamiana zmiennych x t: ( xi,..., xi ) a= a x x dt dt V p (,..., )... p i... i n p i... i ( t,..., tp ) p Calkowanie po hiperpowierzchni V: a= Atdt ( )... dt = Atdt ( )... dt (zwykla calka Riemanna) D p D Ogólne Tw. Stokesa: V hiperpowierzchnia zorientowana, V jej brzeg Jeżeli wspólczynniki formy a= to V a = V da i... i p a p i... i ( x) dxi... dxi są klasy C na V + V, p p Przyklady: Tw. Greena, Gaussa, Stokesa, także f( x) dx= F( b) - F( a), bo df( x) df( x) = dx = f ( x) dx, V = { a, b} dx [ ab, ] 33

Analiza Matematyczna część 4

Analiza Matematyczna część 4 [wersja z 6 III 7] Analiza Matematyczna część 4 Konspekt wykładu dla studentów fizyki/informatyki Akademia Świętokrzyska 5/6 Wojciech Broniowski Analiza funkcji wielu zmiennych Przestrzeń wektorowa (liniowa)

Bardziej szczegółowo

22. CAŁKA KRZYWOLINIOWA SKIEROWANA

22. CAŁKA KRZYWOLINIOWA SKIEROWANA CAŁA RZYWOLINIOWA SIEROWANA Niech łuk o równaniach parametrycznych: x x(t), y y(t), a < t < b, będzie łukiem regularnym skierowanym, tzn łukiem w którym przyjęto punkt A(x(a), y(a)) za początek łuku, zaś

Bardziej szczegółowo

Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.Długość l łuku zwykłego gładkiego Γ

Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.Długość l łuku zwykłego gładkiego Γ Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.ługość l łuku zwykłego gładkiego l = 1dl = b a (x (t)) 2 + (y (t) 2 ) + (z (t)) 2 dt 2.Pole powierzchni walcowej = {(x, y, z) : (x, y), 0 z

Bardziej szczegółowo

[wersja z 5 X 2010] Wojciech Broniowski

[wersja z 5 X 2010] Wojciech Broniowski [wersja z 5 X 1] Analiza Matematyczna część 4 Konspekt wykładu dla studentów fizyki Akademia Świętokrzyska 1/11 Wojciech Broniowski 1 Analiza funkcji wielu zmiennych Przestrzeń wektorowa unormowana : X

Bardziej szczegółowo

24. CAŁKA POWIERZCHNIOWA ZORIENTOWANA

24. CAŁKA POWIERZCHNIOWA ZORIENTOWANA 4. CAŁA POWIERZCHNIOWA ZORIENTOWANA Płat powierzchniowy gładki o równaniach parametrycznych: x = x( u, v ), y = y( u, v ), z = z( u, v ),, (u,v) w którym rozróżniamy dwie jego stron dodatnią i ujemną.

Bardziej szczegółowo

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej Definicja całki podwójnej Katedra Matematyki i Ekonomii Matematycznej 25 maja 2016 Definicja całki podwójnej Załóżmy, że f : K R, gdzie K = a, b c, d R 2, jest funkcją ograniczoną. Niech x 0, x 1,...,

Bardziej szczegółowo

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1 SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

Całki krzywoliniowe skierowane

Całki krzywoliniowe skierowane Całki krzywoliniowe skierowane Zamiana całki krzywoliniowej skierowanej na całkę pojedyńcza. Twierdzenie Greena. Zastosowania całki krzywoliniowej skierowanej. Małgorzata Wyrwas Katedra Matematyki Wydział

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

Rachunek całkowy funkcji wielu zmiennych

Rachunek całkowy funkcji wielu zmiennych Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1

Bardziej szczegółowo

Analiza Matematyczna. Zastosowania Całek

Analiza Matematyczna. Zastosowania Całek Analiza Matematyczna. Zastosowania Całek Aleksander Denisiuk denisiuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 8-45 Gdańsk 9 maja 217

Bardziej szczegółowo

opracował Maciej Grzesiak Całki krzywoliniowe

opracował Maciej Grzesiak Całki krzywoliniowe opracował Maciej Grzesiak Całki krzywoliniowe 1. Definicja całki krzywoliniowej nieskierowanej Rozważmy następujący problem. Dany jest przewód elektryczny na którym rozmieszczone są ładunki. Przypuśćmy,

Bardziej szczegółowo

Całki krzywoliniowe wiadomości wstępne

Całki krzywoliniowe wiadomości wstępne Całki krzywoliniowe wiadomości wstępne Łuk na płaszczyźnie to zbiór punktów (x, y o współrzędnych x = x(t, y = y(t, gdzie (x(t, y(t są funkcjami ciągłymi określonymi na przedziale bez punktów wielokrotnych.

Bardziej szczegółowo

2 Całkowanie form różniczkowych i cykle termodynamiczne

2 Całkowanie form różniczkowych i cykle termodynamiczne 2 Całkowanie form różniczkowych i cykle termodynamiczne 2.1 Definicja całki z formy różniczkowej ymbol ω oznacza całka z formy ω po obszarze Ω. To jak praktycznie obliczyć Ω taką całkę zależy jakiego stopnia

Bardziej szczegółowo

Całki powierzchniowe w R n

Całki powierzchniowe w R n Całki powierzchniowe w R n Na początek małe uzupełnienie z algebry liniowej. Niech R n k oznacza przestrzeń liniową macierzy o n wierszach i k kolumnach. Dla dowolnej macierzy A R n k, gdzie k n, połóżmy

Bardziej szczegółowo

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki WYKŁA Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2005 Spis treści 1. Przestrzenie metryczne. 4 2. Granica i ciągłość funkcji

Bardziej szczegółowo

1 Funkcje dwóch zmiennych podstawowe pojęcia

1 Funkcje dwóch zmiennych podstawowe pojęcia 1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej

Bardziej szczegółowo

Analiza wektorowa. Teoria pola.

Analiza wektorowa. Teoria pola. Analiza wektorowa. Teoria pola. Pole skalarne Pole wektorowe ϕ = ϕ(x, y, z) A = A x (x, y, z) i x + A y (x, y, z) i y + A z (x, y, z) i z Gradient grad ϕ = ϕ x i x + ϕ y i y + ϕ z i z Jeśli przemieścimy

Bardziej szczegółowo

i = [ 0] j = [ 1] k = [ 0]

i = [ 0] j = [ 1] k = [ 0] Ćwiczenia nr TEMATYKA: Układy współrzędnych: kartezjański, walcowy (cylindryczny), sferyczny (geograficzny), Przekształcenia: izometryczne, nieizometryczne. DEFINICJE: Wektor wodzący: wektorem r, ρ wodzącym

Bardziej szczegółowo

Matematyka 2. Elementy analizy wektorowej cz V Całka powierzchniowa zorientowana

Matematyka 2. Elementy analizy wektorowej cz V Całka powierzchniowa zorientowana Matematyka 2 Elementy analizy wektorowej cz V Całka powierzchniowa zorientowana Literatura M.Gewert, Z.Skoczylas; Elementy analizy wektorowej; Oficyna Wydawnicza GiS, Wrocław, 2000 W.Żakowski, W.Kołodziej;

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................

Bardziej szczegółowo

Rozdział 5. Twierdzenia całkowe. 5.1 Twierdzenie o potencjale. Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej C w przestrzeni

Rozdział 5. Twierdzenia całkowe. 5.1 Twierdzenie o potencjale. Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej C w przestrzeni Rozdział 5 Twierdzenia całkowe 5.1 Twierdzenie o potencjale Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej w przestrzeni trójwymiarowej, I) = A d r, 5.1) gdzie A = A r) jest funkcją polem)

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................

Bardziej szczegółowo

x y = 2z. + 2y f(x, y) = ln(x3y ) y x

x y = 2z. + 2y f(x, y) = ln(x3y ) y x . Funkcje wielu zmiennych i funkcje uwikłane Zad.. Obliczyć przybliżoną wartość wyrażenia (, 4) (,). Zad.. Wykazać, że każda funkcja z(x, y) = x f ( ) y x, gdzie f jest funkcją różniczkowalną jednej zmiennej,

Bardziej szczegółowo

x y = 2z, + 2y f(x, y) = ln(x3y ) y x

x y = 2z, + 2y f(x, y) = ln(x3y ) y x . Funkcje wielu zmiennych i funkcje uwikłane Zad.. Obliczyć przybliżoną wartość wyrażenia (, 4) (,), Zad.. Obliczyć przybliżoną wartość wyrażenia, 8, 5, Zad. 3. Wykazać, że każda funkcja z(x, y) = x f

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych Wykresy i warstwice funkcji wielu zmiennych. Granice i ciagłość funkcji wielu zmiennych. Pochodne czastkowe funkcji wielu zmiennych. Gradient. Pochodna kierunkowa. Różniczka zupełna.

Bardziej szczegółowo

Podstawy elektromagnetyzmu. Wykład 1. Rachunek wektorowy

Podstawy elektromagnetyzmu. Wykład 1. Rachunek wektorowy Podstawy elektromagnetyzmu Wykład 1 Rachunek wektorowy Co to jest,,pole? Matematyka: odwzorowanie Rn Rm które przypisuje każdemu punktowi wartość (skalarną lub wektorową). Fizyka: Własność przestrzeni

Bardziej szczegółowo

Spis treści 1. Macierze, wyznaczniki, równania liniowe 2 2. Geometria analityczna 7 3. Granice, pochodne funkcji i ich zastosowania 10 4.

Spis treści 1. Macierze, wyznaczniki, równania liniowe 2 2. Geometria analityczna 7 3. Granice, pochodne funkcji i ich zastosowania 10 4. Spis treści Macierze wyznaczniki równania liniowe Geometria analityczna 7 Granice pochodne funkcji i ich zastosowania 0 4 Liczby zespolone 6 5 Całki nieoznaczone 8 6 Zastosowania geometryczne całek 0 7

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Wstęp. W razie zauważenia jakichś błędów w tym tekście proszę o sygnał, na przykład mailowy: michal.musielak@utp.edu.pl.

Wstęp. W razie zauważenia jakichś błędów w tym tekście proszę o sygnał, na przykład mailowy: michal.musielak@utp.edu.pl. Wstęp Niniejsze opracowanie zawiera notatki z ćwiczeń z matematyki prowadzonych na UTP kierunkach: Budownictwo, Mechanika i Budowa Maszyn, Inżynieria Odnawialnych Źródeł Energii, Transport, Teleinformatyka,

Bardziej szczegółowo

Notatki do wykładu Geometria Różniczkowa I

Notatki do wykładu Geometria Różniczkowa I Notatki do wykładu Geometria Różniczkowa I Katarzyna Grabowska, KMMF 22 października 2013 1 Przestrzeń styczna i kostyczna c.d. Pora na podsumowanie: Zdefiniowaliśmy przestrzeń styczną do przestrzeni afinicznej

Bardziej szczegółowo

Spis treści 1. Liczby zespolone 2 2. Macierze, wyznaczniki, równania liniowe 4 3. Geometria analityczna 9 4. Granice, pochodne funkcji i ich

Spis treści 1. Liczby zespolone 2 2. Macierze, wyznaczniki, równania liniowe 4 3. Geometria analityczna 9 4. Granice, pochodne funkcji i ich Spis treści Liczby zespolone Macierze wyznaczniki równania liniowe 4 Geometria analityczna 9 4 Granice pochodne funkcji i ich zastosowania 5 Całki nieoznaczone 8 6 Zastosowania geometryczne całek 0 7 Pochodne

Bardziej szczegółowo

Rachunek całkowy - całka oznaczona

Rachunek całkowy - całka oznaczona SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw 1 1. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y 1+x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

Wykład 11 i 12. Matematyka 3, semestr zimowy 2011/ i 18 listopada 2011

Wykład 11 i 12. Matematyka 3, semestr zimowy 2011/ i 18 listopada 2011 Wykład 11 i 12 Matematyka 3, semestr zimowy 2011/2012 15 i 18 listopada 2011 Zanim przejdziemy do formułowaniu lematu Poincaré musimy zdefiniować pojęcie transportu formy. Dyskutowaliśmy już wcześniej

Bardziej szczegółowo

SIMR 2012/2013, Analiza 2, wykład 14,

SIMR 2012/2013, Analiza 2, wykład 14, IMR 2012/2013, Analiza 2, wykład 14, 2012-06-03 Całka powierzchniowa efinicja gładkiego płata powierzchni Gładkim płatem powierzchni nazywamy zbiór : = {(x, y, z) : z = g(x, y), (x, y) }, gdzie R 2 jest

Bardziej szczegółowo

Więzy i ich klasyfikacja Wykład 2

Więzy i ich klasyfikacja Wykład 2 Więzy i ich klasyfikacja Wykład 2 Karol Kołodziej (przy współpracy Bartosza Dziewita) Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna

Bardziej szczegółowo

Rozdział 3. Tensory. 3.1 Krzywoliniowe układy współrzędnych

Rozdział 3. Tensory. 3.1 Krzywoliniowe układy współrzędnych Rozdział 3 Tensory 3.1 Krzywoliniowe układy współrzędnych W kartezjańskim układzie współrzędnych punkty P są scharakteryzowane przez współrzędne kartezjańskie wektora wodzącego r = x 1 i 1 + x 2 i 2 +

Bardziej szczegółowo

Liczby zespolone. Zadanie 1. Oblicz: a) ( 3+i)( 1 3i) b) (3+i)2 (4i+1) i

Liczby zespolone. Zadanie 1. Oblicz: a) ( 3+i)( 1 3i) b) (3+i)2 (4i+1) i Zadanie. Oblicz: a) ( 3+i)( 3i) +i b) (3+i)2 (4i+) i (2+i) 3 Liczby zespolone Zadanie 2. Zaznacz na płaszczyźnie Gaussa zbiór: a) {z : z > 3} b) {z : z i } c) {z : 4 z + + i < 9} Zadanie 3. Wykaż, że suma

Bardziej szczegółowo

lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów

lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów 9. CAŁKA POWÓJNA 9.. Całka podwójna w prostokącie Niech P będzie prostokątem opisanm na płaszczźnie OXY nierównościami: a < < b, c < < d, a f(,) funkcją określoną i ograniczoną w tm prostokącie. Prostokąt

Bardziej szczegółowo

Zastosowania geometryczne całek

Zastosowania geometryczne całek Matematyka Zastosowania geometryczne całek Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-3 Elblag Matematyka p. 1 Zastosowania geometryczne całek

Bardziej szczegółowo

Jacek Cichoń Katedra Informatyki Wydział Podstawowych Problemów Techniki Politechniki Wrocławskiej

Jacek Cichoń Katedra Informatyki Wydział Podstawowych Problemów Techniki Politechniki Wrocławskiej Jacek Cichoń Katedra Informatyki Wydział Podstawowych Problemów Techniki Politechniki Wrocławskiej MAP1156: Analiza Matematyczna II Wykład przeznaczony jest dla studentów I roku I stopnia Inżynierii Biomedycznej

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Analiza matematyczna II Rok akademicki: 2013/2014 Kod: MIS-1-202-s Punkty ECTS: 5 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Informatyka Stosowana Specjalność: - Poziom

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści strona główna 1 Wyrażenia algebraiczne, indukcja matematyczna 2 2 Geometria analityczna w R 2 Liczby zespolone 4 4 Wielomiany

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki opracowanie Spis treści I Wyrażenia algebraiczne, indukcja matematyczna 2 II Geometria analityczna w R 2 4 III Liczby zespolone 5

Bardziej szczegółowo

Wstęp. W razie zauważenia jakichś błędów w tym tekście proszę o sygnał, na przykład mailowy:

Wstęp. W razie zauważenia jakichś błędów w tym tekście proszę o sygnał, na przykład mailowy: Wstęp Niniejsze opracowanie zawiera notatki z ćwiczeń z matematyki prowadzonych na UTP kierunkach: Budownictwo, Mechanika i Budowa Maszyn, Inżynieria Odnawialnych Źródeł Energii, Transport, Teleinformatyka,

Bardziej szczegółowo

Repetytorium z analizy i rachunku całkowego funkcji wielu zmiennych. Wiadomości wstępne.

Repetytorium z analizy i rachunku całkowego funkcji wielu zmiennych. Wiadomości wstępne. SPIS TREŚCI 1 Repetytorium z analizy i rachunku całkowego funkcji wielu zmiennych. Wiadomości wstępne. Spis treści 1 Repetytorium 2 2 Wiadomości wstępne 5 1 Repetytorium 2 1 Repetytorium 1. Rozwia zać

Bardziej szczegółowo

ef 3 (dziedzina, dziedzina naturalna) Niech f : A R, gdzie A jest podzbiorem płaszczyzny lub przestrzeni Zbiór A nazywamy dziedziną funcji f i oznacza

ef 3 (dziedzina, dziedzina naturalna) Niech f : A R, gdzie A jest podzbiorem płaszczyzny lub przestrzeni Zbiór A nazywamy dziedziną funcji f i oznacza FUNKCJE WÓCH I TRZECH ZMIENNYCH (było w semestrze II) ef 1 (funcja dwóch zmiennych) Funcją f dwóch zmiennych oreśloną na zbiorze A R o wartościach w R nazywamy przyporządowanie ażdemu puntowi ze zbioru

Bardziej szczegółowo

Elementy równań różniczkowych cząstkowych

Elementy równań różniczkowych cząstkowych Elementy równań różniczkowych cząstkowych Magdalena Jakubek kwiecień 2016 1 Równania różniczkowe cząstkowe Problem brzegowy i problem początkowy Klasyfikacja równań Rodzaje warunków brzegowych Najważniejsze

Bardziej szczegółowo

Wykład z analizy. Tydzień 10 i 11. Różniczkowanie funkcji wielu zmiennych

Wykład z analizy. Tydzień 10 i 11. Różniczkowanie funkcji wielu zmiennych Wykład z analizy Tydzień 1 i 11. Różniczkowanie funkcji wielu zmiennych 1.1 Niech f(x, y) będzie funkcją dwóch zmiennych, i niech druga współrzędna będzie ustalona y = y. Rozważana funkcja zależy tylko

Bardziej szczegółowo

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 45 45

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 45 45 Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: ANALIZA MATEMATYCZNA M3 Nazwa w języku angielskim: MATHEMATICAL ANALYSIS M3 Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

Mechanika. Wykład 2. Paweł Staszel

Mechanika. Wykład 2. Paweł Staszel Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu

Bardziej szczegółowo

Analiza Matematyczna część 5

Analiza Matematyczna część 5 [wersja z 14 V 6] Analiza Matematyczna część 5 Konspekt wykładu dla studentów fizyki/informatyki Akademia Świętokrzyska 5/6 Wojciech Broniowski 1 Równania różniczkowe Definicje, klasyfikacja Równanie różniczkowe

Bardziej szczegółowo

AB = x a + yb y a + zb z a 1

AB = x a + yb y a + zb z a 1 1. Wektory w przestrzeni trójwymiarowej EFINICJA. Uporzadkowana pare punktów (A, B) nazywamy wektorem i oznaczamy AB. Punkt A to poczatek wektora, punkt B to koniec wektora. EFINICJA. Je±li B = A, to wektor

Bardziej szczegółowo

Analiza matematyczna 2 zadania z odpowiedziami

Analiza matematyczna 2 zadania z odpowiedziami Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści I Całki niewłaściwe pierwszego rodzaju II Całki niewłaściwe drugiego rodzaju 5 III Szeregi liczbowe 6 IV Szeregi potęgowe

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )

Bardziej szczegółowo

Układy równań liniowych, macierze, Google

Układy równań liniowych, macierze, Google Układ równań linowych { x+2y = 6, 3x y = 4 (0) Spotkania z Matematyka Układy równań liniowych, macierze, Google Aleksander Denisiuk denisjuk@matman.uwm.edu.pl Uniwersytet Warmińsko-Mazurski w Olsztynie

Bardziej szczegółowo

J. Szantyr - Wykład 3 Równowaga płynu

J. Szantyr - Wykład 3 Równowaga płynu J. Szantyr - Wykład 3 Równowaga płynu Siły wewnętrzne wzajemne oddziaływania elementów mas wydzielonego obszaru płynu, siły o charakterze powierzchniowym, znoszące się parami. Siły zewnętrzne wynik oddziaływania

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami ANALIZA MATEMATYCZNA zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Całki niewłaściwe pierwszego rodzaju Całki niewłaściwe drugiego rodzaju Szeregi liczbowe 4 4 Szeregi potęgowe 5 5

Bardziej szczegółowo

Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/

Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści 1 Wyrażenia algebraiczne indukcja matematyczna 1 Geometria analityczna w R 3 3 Liczby zespolone

Bardziej szczegółowo

Analiza matematyczna w zadaniach. [Cz.] 2 / W. Krysicki, L. Włodarski. - wyd. 27, dodr. 6. Warszawa, Spis rzeczy

Analiza matematyczna w zadaniach. [Cz.] 2 / W. Krysicki, L. Włodarski. - wyd. 27, dodr. 6. Warszawa, Spis rzeczy Analiza matematyczna w zadaniach. [Cz.] 2 / W. Krysicki, L. Włodarski. - wyd. 27, dodr. 6. Warszawa, 2010 Spis rzeczy Przedmowa do wydania pierwszego 5 Przedmowa do wydania dziesiątego 6 Rozdział I. Funkcje

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA W PRZESTRZENI

GEOMETRIA ANALITYCZNA W PRZESTRZENI GEOMETRIA ANALITYCZNA W PRZESTRZENI Położenie punktu w przestrzeni określamy za pomocą trzech liczb (x, y, z). Liczby te odpowiadają rzutom na osie układu współrzędnych: każdy rzut wzdłuż płaszczyzny równoległej

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

Całki podwójne. Małgorzata Wyrwas. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Całki podwójne. Małgorzata Wyrwas. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Całki podwójne Całki podwójne po prostokacie. Całki podwójne po obszarach normalnych. Zamiana zmiennych w całkach podwójnych. Zastosowania całek podwójnych. Małgorzata Wyrwas Katedra Matematyki Wydział

Bardziej szczegółowo

3. Znaleźć długość krzywej l = {y = x, 0 x 1}. 4. Obliczyć objętość bryły powstałej w wyniku obrotu dookoła osi OX krzywej

3. Znaleźć długość krzywej l = {y = x, 0 x 1}. 4. Obliczyć objętość bryły powstałej w wyniku obrotu dookoła osi OX krzywej eria. Obliczyć całki (A) 2 x 2 dx (z definicji); 2 xe x dx; e 2xe x2 dx. 2. Obliczyć pole obszaru (A) {(x, y) : < x < 3, < y < x 2 +}; {(x, y) : 6x x 2 < y < x 2 6x+}. 3. Znaleźć długość krzywej l = {y

Bardziej szczegółowo

Wykład z modelowania matematycznego.

Wykład z modelowania matematycznego. Załóżmy, że równanie różniczkowe x (t) = f (t, x) (1) ma rozwiązanie ogólne x(t) = ϕ(t, c). (2) Załóżmy, że równanie różniczkowe x (t) = f (t, x) (1) ma rozwiązanie ogólne x(t) = ϕ(t, c). (2) Rodzina funkcji

Bardziej szczegółowo

Prosta i płaszczyzna w przestrzeni

Prosta i płaszczyzna w przestrzeni Prosta i płaszczyzna w przestrzeni Wybrane wzory i informacje Równanie prostej przechodzącej przez punkt P 0 = (x 0, y 0, z 0 ) o wektorze wodzącym r 0 i równoległej do wektora v = [a, b, c] : postać parametrycznego

Bardziej szczegółowo

Obliczanie indukcyjności cewek

Obliczanie indukcyjności cewek napisał Michał Wierzbicki Obliczanie indukcyjności cewek Indukcyjność dla cewek z prądem powierzchniowym Energia zgromadzona w polu magnetycznym dwóch cewek, przez uzwojenia których płyną prądy I 1 i I

Bardziej szczegółowo

Wykład 15. Matematyka 3, semestr zimowy 2011/ listopada 2011

Wykład 15. Matematyka 3, semestr zimowy 2011/ listopada 2011 Wykład 5 Matematyka 3, semestr zimowy / 9 listopada W trakcie tego i następnych kilku wykładów zajmować się będziemy analizą zespoloną, czyli różniczkowaniem i całkowaniem funkcji argumentu zespolonego

Bardziej szczegółowo

Układy współrzędnych

Układy współrzędnych Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych

Bardziej szczegółowo

WYKŁAD 2: CAŁKI POTRÓJNE

WYKŁAD 2: CAŁKI POTRÓJNE WYKŁAD : CAŁKI OTRÓJNE 1 CAŁKI OTRÓJNE O ROSTOADŁOŚCIANIE Oznaczenia w definicji całi po prostopadłościanie: = {(: a x, c y d, p z q} prostopadłościan w przestrzeni; = { 1,,, n } podział prostopadłościanu

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Funkcje dwóch zmiennych 1. Funkcje dwóch zmiennych: pojęcia podstawowe Definicja 1. Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach

Bardziej szczegółowo

Obliczanie długości łuku krzywych. Autorzy: Witold Majdak

Obliczanie długości łuku krzywych. Autorzy: Witold Majdak Obliczanie długości łuku krzywych Autorzy: Witold Majdak 7 Obliczanie długości łuku krzywych Autor: Witold Majdak DEFINICJA Definicja : Długość łuku krzywej zadanej parametrycznie Rozważmy krzywą Γ zadaną

Bardziej szczegółowo

Równania różniczkowe cząstkowe drugiego rzędu

Równania różniczkowe cząstkowe drugiego rzędu Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

Określenie całki oznaczonej na półprostej

Określenie całki oznaczonej na półprostej Określenie całki oznaczonej na półprostej Definicja 1 Niech funkcja f : [a, ) R będzie całkowalna na przedziałach [a, T ] dla każdego T > a. Całkę niewłaściwą funkcji f na półprostej [a, ) określamy wzorem

Bardziej szczegółowo

Elementy analizy wektorowej

Elementy analizy wektorowej Elementy analizy wektorowej Całki powierzchniowe wykład z MATEMATKI Automatyka i robotyka studia niestacjonarne sem. II, rok ak. 2009/2010 Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

Zagadnienie dwóch ciał

Zagadnienie dwóch ciał Zagadnienie dwóch ciał Rysunek : Rysunek ilustrujący zagadnienie dwóch ciał. Wektor R określa położenie środka masy, wektor x położenie masy m, a wektor x 2 położenie masy m 2. Położenie masy m 2 względem

Bardziej szczegółowo

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo

Rozdział XV CAŁKI KRZYWOLINIOWE. CAŁKA STIELTJESA

Rozdział XV CAŁKI KRZYWOLINIOWE. CAŁKA STIELTJESA Księgarnia PWN: Grigorij M. Fichtenholz Rachunek różniczkowy i całkowy. T. 3 Rozdział XV CAŁKI KRZYWOLINIOWE. CAŁKA STIELTJESA 1. Całki krzywoliniowe pierwszego rodzaju 543. Definicja całki krzywoliniowej

Bardziej szczegółowo

Spis wszystkich symboli

Spis wszystkich symboli 1 Spis wszystkich symboli Symbole podstawowe - pojedyncze znaki, alfabet grecki α β γ Γ δ ξ η ε ϕ ν ρ τ θ Θ ψ Ψ φ Φ Ω Υ Σ -alfa -beta - gamma - gamma (duże) - delta (małe) - delta (duże) -ksi -eta - epsilon

Bardziej szczegółowo

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5 Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................

Bardziej szczegółowo

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe. Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie

Bardziej szczegółowo

ZAKRESY NATERIAŁU Z-1:

ZAKRESY NATERIAŁU Z-1: Załącznik nr 2 do SIWZ Nr postępowania: ZP/47/055/U/13 ZAKRESY NATERIAŁU Z-1: 1) Funkcja rzeczywista jednej zmiennej: ciąg dalszy a) Definicja granicy funkcji, b) Twierdzenie o trzech funkcjach, o granicy

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

ABC matematyki dla początkujących fizyków. Elementy analizy wektorowej

ABC matematyki dla początkujących fizyków. Elementy analizy wektorowej AB matematyki dla początkujących fizyków Elementy analizy wektorowej polewektoroweipoleskalarne różniczkowaniefunkcjiwektorowej operatornabla gradient, dywergencja,rotacja gradient,laplasjanwukładziesferycznym

Bardziej szczegółowo

Geometria analityczna - przykłady

Geometria analityczna - przykłady Geometria analityczna - przykłady 1. Znaleźć równanie ogólne i równania parametryczne prostej w R 2, któr przechodzi przez punkt ( 4, ) oraz (a) jest równoległa do prostej x + 5y 2 = 0. (b) jest prostopadła

Bardziej szczegółowo

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści 0 Wyrażenia algebraiczne, indukcja matematyczna 2 2 2 1 Geometria analityczna w R 2 3 3 3 2 Liczby zespolone 4 4 4 3

Bardziej szczegółowo

Teoria pola elektromagnetycznego

Teoria pola elektromagnetycznego Teoria pola elektromagnetycznego Odpowiedzialny za przedmiot (wykłady): prof. dr hab. inż. Stanisław Gratkowski Ćwiczenia i laboratoria: dr inż. Krzysztof Stawicki ks@zut.edu.pl e-mail: w temacie wiadomości

Bardziej szczegółowo

R o z d z i a ł 2 KINEMATYKA PUNKTU MATERIALNEGO

R o z d z i a ł 2 KINEMATYKA PUNKTU MATERIALNEGO R o z d z i a ł KINEMATYKA PUNKTU MATERIALNEGO Kinematyka zajmuje się opisem ruchu ciał bez uwzględniania ich masy i bez rozpatrywania przyczyn, które ten ruch spowodowały. Przez punkt materialny rozumiemy

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

MATEMATYKA. audytoryjne),

MATEMATYKA. audytoryjne), Nazwa przedmiotu: MATEMATYKA 1. Wydział: InŜynierii Środowiska i Geodezji 2. Kierunek studiów: InŜynieria Środowiska 3. Rodzaj i stopień studiów: studia I stopnia, inŝynierskie, stacjonarne 4. Nazwa przedmiotu:

Bardziej szczegółowo

Wektory. Algebra. Aleksander Denisiuk. Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi Gdańsk

Wektory. Algebra. Aleksander Denisiuk. Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi Gdańsk Algebra Wektory Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p. 1 Wektory Najnowsza wersja

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo