Metody statystyczne w zarządzaniu jakością 1

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metody statystyczne w zarządzaniu jakością 1"

Transkrypt

1 jakością 1 Metody statystyczne w zarządzaniu jakością Statystyczne sterowanie procesem Rozwój metod statystycznych 1980 Shewhart 191 Deming 195+

2 I Metody statystyczne w zarządzaniu jakością Podział metod statystycznych Statystyczna kontrola jakości (SKJ) adanie zdolności jakościowej (p, m) METODY STTYSTYZNE W ZRZĄDZNIU JKOŚIĄ Statystyczne sterowanie procesami (SP, SSP) Zaawansowane metody statystyczne (DOE) Zakres SP SP SP, statystyczne sterowanie procesami, to zbiór narzędzi służących do oceny stabilności procesu. Narzędzia te dostarczają informacji czy proces przebiega w sposób uporządkowany, bez nietypowych zachowań. SP w Polskich Normach Statystyczne sterowanie jakością. Statystyka. Terminologia. PNISO 5:199 PN90/N01051 Wyznaczanie liczby próbek PN7/N0009 Zasady prowadzenia badań statystycznych PN8/N Losowy wybór wyrobów PN8/N0010 adanie rozkładu właściwości PN8/N PN85/N PN89/N0105 PN90/N01055 Karty kontrolne Shewharta PNISO 858+1:1996 Karty sum skumulowanych PN88/N PN86/N PN85/N PN87/N Obliczanie średniej PNISO 60:199 PN8/N Wykrywanie grubych błędów PN87/N adanie losowości ciągu obserwacji PN85/N Wskaźnik struktury PN8/N Obliczanie odchylenia średniego PN8/N Testy związane z wartościami średnimi i wariancjami PNISO 85:199 PNISO 9:199 Porównanie wartości średnich lub wariancji w różnych populacjach PNISO 01:199 PN8/N PN8/N PN85/N adanie zależności pomiędzy właściwościami PN86/N PN86/N PN86/N II III IV V

3 jakością Przyczyny (zakłócenia) losowe Wbudowane w proces i będące jego nierozerwalną częścią granica kontrolna granica kontrolna granica kontrola = granica naturalnej zmienności procesu Przyczyny (zakłócenia) wyznaczalne Wpływające z zewnątrz na proces, nieprzewidywalne granica kontrolna granica kontrolna granica kontrola = granica naturalnej zmienności procesu SP, karty kontrolne Wprowadzenie do tematyki

4 jakością Krzywa rozkładu Krzywa rozkładu Rozkład normalny f(x) σ σ µ x

5 ,999 0,995 0,990 0,950 0,900 0,800 0,700 0,600 0,500 0,00 0,00 0,00 0,100 0,050 0,010 0,005 0,001 Metody statystyczne w zarządzaniu jakością 5 Rozkład normalny zasada s σ σ σ X σ σ σ 68,7% 95,5% 99,7% adanie normalności rozkładu testy statystyczne (np. Kołmogorowa, Pearsona) x y = µ σ P metoda graficzna 1,0 1,0 1,0 1,50 1,60 1,70 1,80 1,90,00,10,0,0,0,50 x σ x Opracował: +σ Tomasz Greber y x = µ σ Wykreślna P metoda przykład 0,999 Przedziały Liczność Liczność Dystrybuanta 0,995 0,990 klasowe skumulowana empiryczna ,950 0,900 0,800 0,700 0,600 0,500 0,00 0,00 0,00 1,01,0 1,01,0 1,01,50 1,501,60 1,601,70 1,701,80 1,801,90 1,90,00,00,10,10,0,0,0,0,0,0, ,005 0,010 0,0 0,11 0,10 0,557 0,79 0,889 0,96 0,978 0,989 0,99 1 0,100 0,050 Dystrybuanta empiryczna: Sk = n sk/n 0,010 0,005 0,001 1,0 1,0 1,0 1,50 1,60 1,70 1,80 1,90,00 σ x +σ,10,0,0,0,50 x gdzie: n liczność próby, n sk liczność skumulowana w danej grupie.

6 jakością 6 Karta kontrolna "Metka" karty kontrolnej Pomiary 1 SIZE FSM NO DWG NO REV Dane z pomiarów i wyniki obliczeń Górna linia kontrolna Linia centralna Wykres mierzonej cechy Dolna linia kontrolna Linie na karcie kontrolnej GGK DGK s wartość średnia s σ σ σ σ σ σ o daje monitorowanie procesów? Przewidywanie zas? Przewidywanie zas

7 jakością 7 Podział kart kontrolnych Karty kontrolne ocena alternatywna ocena liczbowa p np c u XR XS IXMR USUM k. specjalne Karty kontrolne przy ocenie liczbowej Jak sterować procesami, gdy mamy wyniki pomiarów Karta X średnie R Karta X R Górna linia kontrolna UL = X + R UL = D R Linia środkowa X = X k Dolna linia kontrolna LL = X R Wykreślany punkt LL = D R R R = k X X = R = X max X n min UL górna linia kontrolna LL dolna linia kontrolna R rozstęp X wartość mierzonej cechy k liczba próbek n liczba pomiarów w próbce, D, D stałe

8 jakością 8 Stałe statystyczne Współczynniki n c d D D 0,797 1,18 1,880,659 0,67 0,67 0,886 1,69 1,0 1,95 0,568 0,575 0,91,059 0,79 1,68 0,66 0,8 5 0,90,6 0,577 1,7 0,089 0, ,951,5 0,8 1,87 0,00 1,970 0,00 7 0,959,70 0,0 1,18 0,118 1,88 0,076 1,9 8 0,965,87 0,7 1,009 0,185 1,815 0,16 1,86 9 0,969,970 0,7 1,0 0,9 1,761 0,18 1, ,97,078 0,08 0,975 0,8 1,716 0, 1,777 Nr próbki POMIRY Karta X R X 6 R Wartości średnie Rozstępy UL=,98 L=,00 LL=1,0 UL=6,19 L=,71 LL=0 Sygnały alarmowe UL UL L L Jeden punkt poza strefą LL Piętnaście kolejnych punktów w strefie powyżej lub poniżej linii centralnej LL UL UL L L Dziewięć kolejnych punktów w strefie lub poza nią po tej samej stronie linii centralnej LL Sześć kolejnych punktów stale rosnących lub malejących LL

9 jakością 9 Sygnały alarmowe UL UL L L zternaście punktów po kolei przemiennie rosnących i malejących LL Dwa z trzech kolejnych punktów w strefie lub poza nią LL UL UL L L LL ztery z pięciu kolejnych punktów w strefie lub poza nią LL Osiem kolejnych punktów po obu stronach linii centralnej lecz żaden w strefie Karta X średnie S Karta X S Górna linia kontrolna Linia środkowa Dolna linia kontrolna Wykreślany punkt UL = X + S X = X k UL górna linia kontrolna LL dolna linia kontrolna S odchylenie standardowe X wartość mierzonej cechy k liczba próbek n liczba pomiarów w próbce,, stałe S S = k LL = X S LL = S X = n ( X X ) i i= 1 X n UL = S S = n 1 Karta IXMR Karta IX MR Górna linia kontrolna UL = X + (,66 MR) UL =,7 MR Linia środkowa X = X k MR MR = k Dolna linia kontrolna LL = X (,66 MR) brak Wykreślany punkt X MR = X i X i 1 UL LL MR X k górna linia kontrolna dolna linia kontrolna ruchomy rozstęp wartość mierzonej cechy liczba próbek

10 jakością 10 Nr próbki POMIRY IXMR MR UL=9,7 8 7 Wartości zmierzone L=5,9 LL=1,0 Ruchome rozstępy UL=5,90 L=1,50 Opracował: Tomasz LL=0 Greber Karty kontrolne przy ocenie alternatywnej Jak sterować procesami bez mierzenia wyrobów Wada Ocena alternatywna Niespełnienie wymagania zawiązanego z zamierzonym użytkowaniem lub uzasadnionymi oczekiwaniami, włączając te, które są związane z bezpieczeństwem Niezgodność Niespełnienie wyspecyfikowanego wymagania

11 jakością 11 Karty p i np Karta p np Górna linia kontrolna Linia środkowa ( ) UL = p + p 1 p n ( ) Dolna linia kontrolna UL = np + np( 1 p) p = p np np = k k LL = p p 1 p n LL = np np( 1 p) Wykre ślany punkt p k wn = n np UL LL k kwn n np górna linia kontrolna dolna linia kontrolna liczba próbek liczba wyrobów niezgodnych w próbce liczba pomiarów w próbce liczba braków w próbce 11 Karta kontrolna p Nr próbki Liczność próbki Ilość braków Frakcja braków ,1 0, 0,10 0,08 0,1 0 0,11 0,0 0,5 Frakcja braków 0,0 0,15 0,10 UL=0,0 L=0,11 0,05 0 LL=0,0 Karta kontrolna p Nr próbki Liczność próbki Ilość braków Frakcja braków ,1 0,19 0,1 0,08 0,1 0 0,1 0,0 0,5 Frakcja braków 0,0 0,15 0,10 L=0,11 0,05 0

12 jakością 1 Karta kontrolna p Nr próbki Liczność próbki Ilość braków Frakcja braków ,1 0,19 0,1 0,08 0,1 0 0,1 0,0 0,5 Frakcja braków 0,0 0,15 0,10 UL=0,0 L=0,11 0,05 0 LL=0,0 naliza kart alternatywnych (aspekty) naliza przebiegów (np. trendów) Inna analiza przy przekroczeniu górnej inna przy przekroczeniu dolnej granicy kontrolnej Karta kontrolna np Nr próbki Ilość braków Ilość braków UL=0 L= LL=

13 jakością 1 Karty c i u Karta c u Górna linia kontrolna UL = c + c UL = u + u n i Linia środkowa c c = c u = k n Dolna linia kontrolna LL = c c LL = u u n i Wykreślany punkt c c u = n UL LL c u n k górna linia kontrolna dolna linia kontrolna liczba niezgodności w próbce średnia liczba niezgodności na jednostkę liczba jednostek w próbce liczba próbek Karta kontrolna u Nr próbki Ilość jednostek Ilość wad Średnia liczba wad , 1,0 1,99 1,89 1,09 0,6 0,5,0,5,0 Ilość wad 1,5 1,0 L=1,0 0,5 0 Karta kontrolna c Nr próbki Liczba wad UL=8,59 Liczba wad L=16, 5 0 LL=,7

14 jakością 1 Specjalne karty kontrolne Karty do nadzorowania specyficznych procesów Karta celu Karta X R Górna linia kontrolna UL = prz.x + R UL = D R Linia środkowa prz. X prz. X = k R R = k Dolna linia kontrolna LL = prz.x R LL = D R Wykre ślany punkt prz. X = X w. cel. R = X X max min UL górna linia kontrolna LL dolna linia kontrolna R rozst ęp X warto ść średnia w próbce prz. X przeliczona warto ść średnia w próbce k liczba próbek, D, D sta łe Karta celu Karta stosowana przy krótkich seriach produkcyjnych Wartością monitorowaną jest różnica pomiędzy wartością zakładaną (nominalną) a zmierzoną Monitorowane jest odchylenie parametrów wyrobu od ideału prz. X = X w. cel.

15 jakością 15 Karta celu Karta celu WRUNKI DO SPEŁNIENI stała wielkość podgrup podobne średnie rozstępy co najmniej 0 próbek do obliczenia granic kontrolnych Karta celu Nr próbki POMIRY X EL,6,,1,,5,1,5,5,5,,5,6,1,6,,5,,5,,,,6,,,,,16,5,5,5,,,5,5,5 Wartości średnie przeliczone 0, 0,1 0 0,1 0, UL= 0,0 L= 0,07 Xprz. 0,0 0,1 0,06 0,1 0,07 0, 0 0, LL= 0, R 0, 0, 0, 0, 0, 0, 0, 0,6 UL=0,66 0,5 0, Rozstępy 0, 0, 0,1 0 L=0,6 LL=0 Karta proporcjonalna Karta X R Górna linia kontrolna UL = prz.x + R UL = D R Linia środkowa prz. X prz. X = k R R = k Dolna linia kontrolna LL = prz. X R LL = D R Wykreślany punkt prz. X = X w. cel R = X max X UL górna linia kontrolna LL dolna linia kontrolna R rozstęp X wartość średnia w próbce prz. X przeliczona wartość średnia w próbce k liczba próbek, D, D stałe min

16 jakością 16 Karta proporcjonalna Karta stosowana przy krótkich seriach produkcyjnych Wartością monitorowaną jest stosunek wartości uzyskanej do wartości nominalnej Monitorowane jest odchylenie parametrów wyrobu od ideału prz. X = X w. cel Karta proporcjonalna Karta proporcjonalna WRUNKI DO SPEŁNIENI stała wielkość podgrup zmiana rozrzutu proporcjonalna do zmiany wartości nominalnej mierzony jest ten sam wymiar co najmniej 0 próbek do obliczenia granic kontrolnych Karta M Karta X R Górna linia kontrolna UL X R = + w Linia środkowa X = X k Dolna linia kontrolna LL X R = w UL = D R R R = k LL = D R Wykreślany punkt n X i i X = = (n w) w R = X X max min X Xi k w wartość średnia w podgrupie wartość średnia w itej próbce liczba próbek liczba próbek w podgrupie

17 jakością 17 Karta M Karta stosowana do obserwowania przesunięć w procesie, które ciężko zobaczyć na kartach typu XR Można regulować czułość karty na przesunięcia procesu Karta M () Nr próbki X 6 6 R =,5 =,5 Wartości średnie 5 UL L LL 1 Karta M przykład

18 jakością 18 Karta dla grup wartość największa wartość najmniejsza Karta dla grup Karta dla grup

19 jakością 19 Karta USUM z maską Karta USUM Nominał =,5 Nominał = 5,5 Karta USUM

20 jakością 0 Wskaźniki zdolności Ile produkujemy braków (wadliwość obliczeniowa) Wskaźniki zdolności jakościowej adać można zdolność całych procesów lub tylko poszczególnych maszyn Na podstawie wskaźnika, określić można m.in. wadliwość produkcji jakiej należy się spodziewać przy danym procesie (lub maszynie) Jak rozkładają się wyniki? Tolerancja dolna Tolerancja górna [mm]

21 jakością 1 Wskaźniki zdolności precyzja jaką jest w stanie zapewnić firma precyzja jaką jest w stanie zapewnić firma tolerowany przez nas zakres tolerancji U kogo kupować? p = Wskaźniki zdolności szerokość pola tolerancji " możliwości produkcyjne" Przekracza zakładaną tolerancję p = = 0,75 Mieści się w tolerancji p = = 1,5 Wskaźnik zdolności p p USL LSL = 6 s = USL (LSL) górna (dolna) granica tolerancji 6σ naturalny rozrzut procesu

22 15 Metody statystyczne w zarządzaniu jakością LSL Wskaźniki zdolności założone pole tolerancji USL naturalny rorzut procesu (6 σ) Wskaźnik zdolności p USL LSL p = 6σ p = 1,7 USL (LSL) górna (dolna) granica tolerancji 6σ naturalny rozrzut procesu LSL założone pole tolerancji USL p = 1,7 naturalny rorzut procesu (6σ) Wskaźnik zdolności pk pk USL x x LSL = min ; s s USL (LSL) górna (dolna) granica tolerancji LSL USL Zachowanie p Wartość wskaźnika p [mm]

23 jakością Zachowanie pk LSL [mm] USL Wartość wskaźnika pk pk Wskaźniki LSL p=pk< 1 USL LSL p=1 > pk USL X śr.=x nomin. X śr. X nomin. LSL p=pk=1 USL LSL p=1 > pk USL ' X śr.=x nomin. X śr. X nomin. Wskaźniki LSL p=pk=1,7 USL X śr = X nomin. LSL p=1,7 > pk USL LSL p=1,7 > pk ' USL X śr. X nomin. X śr. X nomin.

24 jakością Usterkowość procesu [sztuk wadliwych na milion] Wartość ( p pk ) p 0 0,1 0, 0, 0, 0,5 0, , , adanie zdolności jakościowej maszyn Źródła zmienności złowiek Materiał Maszyna Własność wyrobu ma zmienną wartość Zarządzanie Pomiar Technologia

25 jakością 5 Eliminowanie źródeł zmienności zapewnić powtarzalne pomiary wykorzystać tylko jednego operatora zapewnić jednorodny surowiec (w miarę możliwości) adanie zdolności Procesu p i pk badania systematyczne wykorzystanie wyników z kart kontrolnych Maszyny m i mk badania krótkotrwałe wykorzystanie dużej próbki wyrobów (min. 50) Wskaźnik m m Tg T = 6 σ d lub m Tg T = 8 σ d

26 jakością 6 Wskaźnik mk mk x T = min σ d Tg x ; σ Przykładowe wartości wskaźników m i mk Td Tg Td Tg m =1; mk =1 m =0,9; mk =0,8 Td Tg Td Tg m =; mk = m =; mk =0,1 Kiedy badać zdolność maszyny? zakup nowej maszyny odbiór maszyny po remoncie rozpoczynanie produkcji seria próbna

27 jakością 7 Planowanie eksperymentów zyli jak zachowa się proces Planowanie eksperymentów zynniki niekontrolowalne zynniki kontrolowalne PROES TRNSFORMJI Wyrób Na każdy proces wpływają dwa rodzaje czynników: czynniki kontrolowalne które jesteśmy w stanie kontrolować, czyli np. parametry maszyny, rodzaj materiału itp., czynniki niekontrolowalne które wpływają w jakiś sposób na proces, ale nie można ich kontrolować (czynniki zakłócające), np. wpływ środowiska, humory operatora maszyny itp. SP a planowanie eksperymentów SP DOE monitorowanie procesu sygnalizowanie rozregulowania procesu projektowanie procesu przywracanie procesu w stan równowagi

28 jakością 8 ele planowania eksperymentów Zbadanie, które zmienne najbardziej wpływają na wyniki procesu (wyrób). Określenie, jak powinny być ustawione czynniki kontrolowalne, aby uzyskać optymalny wynik. Określenie, jakie powinno być ustawienie czynników kontrolowalnych, aby zmienność wyrobu była jak najmniejsza. Określenie, jak powinny być ustawione czynniki kontrolowalne, aby wpływ czynników zakłócających był minimalny. Planowanie eksperymentów poziom wysoki (+) (b) (ab) zynnik nazwa przebiegu przy danym poziomie czynników = a + ab b + ( 1) = 1 n n n a + b b poziom niski (1) (a) () poziom niski zynnik poziom wysoki () (+) Przebiegi w planowaniu eksperymentów [ ( 1) ] = b + ab + = 1 [ + ( 1) ] n a ( 1) n n b ab a ( ) = ab + 1 a + b = 1 [ ( ) ] n n n ab + 1 a b Eksperyment czynnikowy +1 c bc ac abc 1 b ab (1) 1 +1 a 1 +1 Przebiegi w planowaniu eksperymentów

29 jakością 9 Eksperymenty wieloczynnikowe Eksperyment ośmioczynnikowy (program Statistica) MS liczbowe zy możemy polegać na naszych pomiarach? naliza systemu pomiarowego Trzeba potrafić określić, czy nasz system pomiarowy jest wiarygodny Należy sprawdzić na ile wyniki pomiarów zależą od operatora oraz przyjętej metody dokonywania pomiarów

30 jakością 0 Dokładność Jest to odchylenie wartości średniej z pomiarów od faktycznej wielkości mierzonej właściwości Dokładność Wartość średnia z dokonanych pomiarów Wartość rzeczywista Powtarzalność Jest to wariancja, zmienność wyników pomiarów uzyskanych przy mierzeniu przez danego operatora jednej, tej samej części kilkanaście razy Operator zęść nr 1 Powtarzalność Odtwarzalność Jest to zmienność występująca pomiędzy wartościami średnimi z pomiarów dokonywanych przez różnych operatorów, podczas mierzenia tym samym przyrządem tych samych części Operator zęść nr 1 Operator zęść nr 1 Operator zęść nr 1 Odtwarzalność

31 jakością 1 Liniowość (Linearity) Liniowość jest to zmienność dokładności pomiaru określana w odniesieniu do wielkości pomiaru (np. im większy wymiar do zmierzenia tym mniejsza jest dokładność takiego pomiaru) Wartość średnia z pomiarów Wartość rzeczywista Powtarzalność (EV) R 1 = = =, Rop = = = 1,5 + 1,5 R = = = 1,65 op EV = R K1 = 1,65 0,886 = 1, K 1 =0,886 (dla dwóch powtórzeń) K 1 =0,5908 (dla trzech powtórzeń) Odtwarzalność (V) X DIFF V = V = V = 0 = X max X min = 1,5 1,15 = 0,15 ( X DIFF K ) ( EV /( n r) ) ( 0,15 0,7071) ( 1, /( ) ) n liczba części r liczba powtórzeń K =0,7071 (dla dwóch operatorów) K =0,51 (dla trzech operatorów)

32 jakością R&R GRR = EV + V = 1, + 0 = 1, Zmienność części (PV) zęści K 0,7071 0,51 0,67 5 0,00 6 0,7 7 0,5 8 0,75 9 0,9 10 0,16 R p = 171,5 =,75 PV = Rp K =,75 0,67 =,1 Zmienność procesu (TV) TV = GRR + PV = 1, +,1 =,56

33 jakością Wyniki analizy % GRR = 100 ( GRR / TV ) = 100(1, /,56) = 56,16 %GRR<10% %GRR = <10%, 0%> %GRR>0% system pomiarowy jest akceptowalny może być warunkowo zaakceptowany (po przeanalizowaniu znaczenia pomiarów, kosztów przyrządów pomiarowych, kosztów napraw itp.) system nie jest do zaakceptowania Liczba klas Number of distinct categories (ndc) PV,1 ndc= 1,1 = 1,1 =,08 GRR 1, Wymaganie: ndc równe lub większe od 5 Wskaźnik zdolności g 6σ proces 0,15 6σ proces 6 s przyrząd pomiarowy

34 jakością Wskaźnik g (metoda Forda) Obliczenia w oparciu o rozrzut procesu g = 0, 15 s s procesu pomiarów gk ( X = nominalne + 0,5 s procesu s pomiarów ) X pomiarów dla X pomiarów > X nominalne lub wartość rzeczywista wzorca gk X = pomiarów ( X nominalne s 0,5 s procesu) pomiarów dla < Xpomiarów X nominalne Obliczanie g i gk,001,001 1,999,000,00,000 1,999,000,001 1,999,00,000,000,00,001,001 1,999,001,000,000 1,999,000,00,000,001 1,998,001 1,999,001 1,999,000,001,001 1,999,00,001,000 1,999 1,999,001,00,00,000 1,998,00,000,001 1,999,001,001 Metoda Forda (w oparciu o tolerancje): X nominalne =,000 Tolerancja = ±0,05 s pomiarów = 0,001 X pomiarów =,000 0,15 Tolerancja 0,15 0,1 g = = =,08 6 s pomiarów 6 0,001 ( Xnominalne+ 0,075 Tolerancja) X pomiarów (+ 0,075 0,1),000 gk = = = 1,97 spomiarów 0,001 MS dla danych alternatywnych (atrybutowych)

35 jakością 5 MS dla atrybutów Ten typ MS jest stosowany przy pomiarach, gdzie uzyskany w pomiarach wynik pochodzi ze skończonej liczby możliwości (np. pomiar typu Go/NoGo dwie możliwości, ocena wzrokowa wyrobu) Rodzaje MS dla atrybutów harakterystyka jest mierzalna (po przeprowadzeniu pomiaru sprawdzianem, wyroby są dokładnie mierzone i ocenia się trafność kontroli) harakterystyka nie jest mierzalna (zgodność oceny odnosi się do specjalnie przygotowanych próbek wzorcowych o ustalonej jakości) Elementy MS atrybutowego Ocena skuteczności ogólnej Skuteczność poszczególnych mierzących Ocena missów, falsów i mixów Obliczenie kappa Definicje miss zły wyrób zakwalifikowano jako dobry false dobry wyrób zakwalifikowano jako zły mix oceniający wyrób raz zakwalifikował go jako dobry, a raz jako zły

36 jakością 6 Przypadek optymalny 1 wyrób dobry 0 wyrób zły Miss (przykład) Trzykrotny miss u operatora.. False (przykład) Trzykrotny false u operatora..

37 jakością 7 Wskaźniki Miss rate liczba missów * liczba przeprowadzonych ocen False rate liczba falsów * liczba przeprowadzonych ocen Skuteczność liczba poprawnych ocen * liczba przeprowadzonych ocen * liczba przeprowadzonych ocen odnosi się do możliwości podjęcia błędnej decyzji (czasami dotyczy ilości dobrych, a czasami złych wyrobów) Wskaźniki wymagania Kappa Kappa może być traktowana jako miara zgodności w ocenach poszczególnych oceniających po pe kappa = N p N liczba obserwacji p o suma obserwacji rzeczywistych po przekątnej p e suma obserwacji oczekiwanych po przekątnej e kappa>0,75 zadowalająca zgodność oceny kappa<0,0 system pomiarowy nie może byś wykorzystywany

38 jakością 8 Kappa 10* 51 = 5,0 150 Kappa * kappa = ( + 9) ( ) = 0, ( ) Statystyczna kontrola odbiorcza Kontrola odbiorcza Kontrola odbiorcza są to działania prowadzone w celu ustalenia, czy dostarczona lub oferowana do dostarczenia jednostka wyrobu, partia wyrobów lub usługa jest możliwa do przyjęcia. Jej podstawowym zadaniem jest więc niedopuszczenie do przyjęcia niezgodnej z założeniami (określonymi w specyfikacji technologicznej, normach, umowach z klientem itp.) partii surowca lub wyrobów gotowych.

39 jakością 9 Próba Próba jest to dobieranie elementów z większej ich grupy Rodzaje prób: losowe zależne, systematyczne itd., prosta próba losowa (niezależna), podczas której każdy element zbiorowości ma taką samą szansę na znalezienie się w próbce. ardzo ważne jest zapewnienie losowości prób! Próbka Próbką jest jedna lub więcej jednostek losowo pobranych z partii przeznaczonej do oceny, służących dostarczeniu informacji o tej partii Statystyka wymaga, aby wiarygodna (dostarczająca prawdziwych informacji o partii) próbka była: reprezentatywna tzn. była odpowiednio liczna w stosunku do badanej partii wyrobów (im liczniejsza próbka tym dokładniejsze i bardziej wiarygodne informacje o partii wyrobów), pobrana losowo prawdopodobieństwo wybrania każdego wyrobu do próbki ma być takie same. Liczebność próbki Liczebność próbki ma bardzo duże znaczenie dla wiarygodności otrzymanych wyników. Im mniej liczna próbka tym mniej wiarygodny jest wynik. Ponieważ w praktyce zwykle nie można sobie pozwolić na badanie wszystkich elementów zbiorowości trzeba zastosować próbkowanie i pogodzić się z dopuszczeniem pewnego określonego błędu statystycznego.

40 jakością 0 Zastosowanie kontroli wyrywkowej Metody statystyczne w kontroli odbiorczej stosować można, gdy: bezpieczeństwo użytkowania produktu nie wymaga kontroli stuprocentowej, nie ma technicznego i ekonomicznego uzasadnienia do stosowania kontroli stuprocentowej, w wyniku kontroli następuje zniszczenie produktu lub taka zmiana jego właściwości, która powoduje nieprzydatność tego produktu do użytkowania zgodnie z przeznaczeniem. W pozostałych przypadkach stosować należy kontrolę stuprocentową. Podział kontroli statystycznej znane odchylenie średnie σ metoda σ kontrola wg oceny liczbowej właściwości nieznane odchylenie średnie σ metoda s Wyrób sztukowy lub umownie sztukowy metoda R kontrola wg oceny alternatywnej plany jednostopniowe plany dwustopniowe STTYSTYZN KONTROL JKOŚI PROEDURY ODIORZE plany wielostopniowe plany sekwencyjne plany specjalne luzem Wyrób bezkształtny w opakowaniu jednostkowy m Ocena alternatywna Ocena alternatywna polega na rejestrowaniu występowania lub niewystępowania określonej, interesującej odbiorcę cechy w zbiorze kontrolowanych jednostek, a następnie zliczeniu liczby takich wystąpień (lub niewystąpień) w kontrolowanej jednostce, grupie produktów itd. Podstawą oceny jest zazwyczaj procent jednostek niezgodnych w kontrolowanej grupie.

41 jakością 1 Ocena liczbowa Ocena liczbowa polega na mierzeniu i rejestrowaniu wartości liczbowych właściwości każdej jednostki z kontrolowanego zbioru. Podstawą oceny partii ze względu na daną własność są wyniki pomiarów uzyskane z próbki. Porównanie Kryterium mierzalność i typ rozkładu liczba kontrolowanych właściwości sposób kontroli rodzaj uzyskiwanych informacji liczność próbek Kontrola wg oceny alternatywnej możliwość kontrolowania właściwości mierzalnych i niemierzalnych; rozkład danych dowolnych bez ograniczeń przy każdym badaniu klasyfikowanie alternatywne badanych jednostek (dobraniedobra, występujenie występuje itd.) liczba sztuk wadliwych (lub liczba niezgodności) w próbce większe próbki niż w kontroli wg wartości liczbowej Kontrola wg oceny liczbowej kontrolowanie jedynie właściwości mierzalnych; rozkład danych normalny dla każdego planu badania kontrolowanie tylko jednej właściwości pomiar wartości właściwości (otrzymuje się konkretny wynik liczbowy) wartości indywidualne właściwości w kontrolowanych sztukach i oszacowanie wartości średniej oraz odchylenia średniego właściwości mniejsze próbki niż w kontroli wg oceny alternatywnej Źródło: opracowanie własne na podstawie PN86/N000 Porównanie liczności próbek Liczność próbki n w jednostopniowym planie badania przy kontroli normalnej Znak badania metoda metoda metoda σ przy wadliwości dopuszczalnej w literowy alternat. s R 0,10 0,15 0,5 0,0 0,65 1,0 1,5,5,0 6,5 10,0 5 D E F G H I J K L M N P Q 150 R 000

42 jakością Definicje Partia jest to określona ilość danego wyrobu, materiału lub usługi tworząca całość, przedstawiona jednorazowo do kontroli. Próbka jest to jedna lub więcej jednostek losowo pobranych z partii przeznaczonej do oceny, służących dostarczeniu informacji o tej partii (próbka musi być reprezentatywna i losowa). Rodzaje kontroli Kontrola normalna kontrola stosowana wówczas, gdy nie ma podstaw do przypuszczenia, że poziom jakości wyrobu różni się od poziomu akceptowanego. Kontrola ulgowa, mniej ostra od kontroli normalnej, stosowana jest wtedy, gdy z badania określonej liczby kolejnych partii za pomocą kontroli normalnej wynika, że poziom jakości wyrobów jest wyższy od założonego. Kontrola obostrzona, ostrzejsza od kontroli normalnej, stosowana jest wtedy, gdy z badania określonej liczby kolejnych partii za pomocą kontroli normalnej wynika, że poziom jakości wyrobów jest niższy od założonego. Rodzaje kontroli 10 z kolei zgodnych oraz: partie były przyjęte wg planu badania o wadliwości w o jedną klasę niżej proces produkcyjny jest ustabilizowany odbiorca wyraża zgodę na stosowanie kontroli ulgowej KONTROL NORMLN KONTROL ULGOW 1 partia niezgodna lub: nastąpiło rozregulowanie procesu produkcyjnego z innych przyczyn powinna być stosowana kontrola normalna KONTROL NORMLN z 5 niezgodne 5 kolejnych zgodnych KONTROL OOSTRZON 10 kolejnych niezgodnych PRZERWNIE KONTROLI

43 jakością Wybór rodzaju kontroli Pobrać próbkę TK zy dane mają rozkład normalny? NIE Zastosować ocenę alternatywną zy odchylenie standardowe jest znane? TK NIE Stosować metodę s lub R Stosować metodę σ TK zy odchylenie standardowe jest stałe? NIE Kontrola wg oceny liczbowej Warunkiem jej stosowania jest spełnienie następujących wymagań: badana własność musi być określona liczbowo, a jej rozkład musi być normalny (lub zbliżony do normalnego), wyrób nie może być oceniany ze względu na zbyt wiele właściwości (w przeciwnym razie koszty oceny znacząco rosną i poleca się stosowanie kontroli wg oceny alternatywnej), personel powinien być wykwalifikowany, tzn. być w stanie stosować tego typu metody. Wady oceny liczbowej Podstawowe utrudnienia związane ze stosowaniem kontroli wg oceny liczbowej to: pracochłonność pomiarów, konieczność oddzielnej oceny każdej właściwości wyrobu wpływającej na jego jakość, to, że nie wszystkie właściwości wyrobów są mierzalne i często można je oceniać jedynie alternatywnie.

44 jakością Znaki literowe ocena liczbowa Liczność Specjalne poziomy kontroli Ogólne poziomy kontroli partii S S II I III do 8 9 do 15 D 16 do 5 E 6 do 50 D F 51 do 90 D E G 91 do 150 E F H 151 do 80 D F G I 81 do 500 E G H/I 1 J 501 do 100 D F H J K 101 do 00 E G I K L 01 do F H J L M do 5000 G I K M N 5001 do H J L do H (I dla m. R) K M i więcej H (J dla m. R) K (L dla m. R) N 1 stosować H dla liczności partii 81 do 00 oraz I dla liczności partii 01 do 500 N P P P P P Metoda R Postępowanie: określić poziom i rodzaj kontroli, ustalić dopuszczalną wadliwość w, z tabeli odczytać znak literowy planu badania, a następnie właściwą dla danego planu badania liczność próbki n oraz parametr k, obliczyć wartość średnią z pobranej próbki oraz rozstęp R, obliczyć Tg x x Td Qg = Qd = R R jeżeli Q g k g i Q d k d partię uznać za zgodną z wymaganiami, Q g < k g lub Q d < k d partię uznać za niezgodną z wymaganiami. Metoda R Wadliwość dopuszczalna w kontrola normalna 0,0 0,65 1,00 1,50 0,10 0,15 0,5,50,00 6,50 10,0 n k k k k k k k k k k k k 0,587 0,50 0,01 0,96 0,651 0,598 0,55 0,50 0,6 0,76 D 5 0,66 0,61 0,565 0,98 0,1 0,5 0,7 D E 7 0,70 0,659 0,61 0,569 0, 55 0,65 0,05 0,6 0,66 E F 10 0,916 0,86 0,811 0,755 0,70 0,650 0,579 0,507 0, 0,1 F G 15 1,0 0,999 0,958 0,90 0,850 0,79 0,78 0,68 0,610 0,56 0,5 0,68 G H 5 1,10 1,05 1,01 0,951 0,896 0,85 0,779 0,7 0,67 0,571 0,8 0,98 H I 0 1,10 1,06 1,0 0,959 0,90 0,8 0,787 0,70 0,65 0,577 0,90 0,0 I J 0 1,1 1,08 1,0 0,978 0,91 0,860 0,80 0,76 0,668 0,591 0,50 0,15 J K 60 1,16 1,11 1,06 1,00 0,98 0,885 0,86 0,768 0,689 0,610 0,51 0, K L 85 1,17 1,1 1,08 1,0 0,96 0,899 0,89 0,780 0,701 0,61 0,50 0,1 L M 115 1,19 1,1 1,09 1,0 0,975 0,911 0,851 0,791 0,711 0,61 0,59 0,9 M N 175 1,1 1,16 1,11 1,05 0,99 0,99 0,868 0,807 0,76 0,6 0,55 0,60 N P 0 1,1 1,16 1,1 1,06 0,996 0,91 0,870 0,809 0,78 0,66 0,55 0,6 P k k k k k k k k k k k k 0,10 0,15 0,5 0,0 0,65 1,00 1,50,50,00 6,50 10,0 Wadliwość dopuszczalna w kontrola obostrzona

45 jakością 5 Metoda s Postępowanie: określić poziom i rodzaj kontroli, ustalić dopuszczalną wadliwość w, z tabeli odczytać znak literowy planu badania, a następnie właściwą dla danego planu badania liczność próbki n oraz parametr k, obliczyć wartość średnią z pobranej próbki oraz odchylenie s, obliczyć Tg x x Td Qg = Qd = s s jeżeli Q g k g i Q d k d partię uznać za zgodną z wymaganiami, Q g < k g lub Q d < k d partię uznać za niezgodną z wymaganiami. Kontrola wg oceny alternatywnej Zastosowanie: Wady: trudno jest ocenićwyrób metodą liczbową, ważny jest prosty sposób kontroli, nie są potrzebne dokładne informacje o kontrolowanej partii wyrobów. mała dokładność uzyskanych wyników, potrzebna jest większa liczność próbki w porównaniu z kontrolą wg oceny liczbowej. Znaki literowe ocena alternatywna Liczność Specjalne poziomy kontroli Ogólne poziomy kontroli partii S1 S S S I II III do 8 9 do do 5 D 6 do 50 D E 51 do 90 E F 91 do 150 D D F G 151 do 80 D E E G H 81 do 500 D E F H J 501 do 100 E F G J K 101 do 00 D E G H K L 01 do D F G J L M do 5000 D F H K M N 5001 do D E G J L N P do D E G J M P Q i więcej D E H K N Q R

Sterowanie procesem i jego zdolność. Zbigniew Wiśniewski

Sterowanie procesem i jego zdolność. Zbigniew Wiśniewski Sterowanie procesem i jego zdolność Zbigniew Wiśniewski Wybór cech do kart kontrolnych Zaleca się aby w pierwszej kolejności były brane pod uwagę cechy dotyczące funkcjonowania wyrobu lub świadczenia usługi

Bardziej szczegółowo

Rodzaje Kontroli. SPC Statystyczna kontrola procesu. Rodzaje kontroli 2013-12-07. Uproszczony cykl życia wyrobu. Kontrola odbiorcza - stuprocentowa

Rodzaje Kontroli. SPC Statystyczna kontrola procesu. Rodzaje kontroli 2013-12-07. Uproszczony cykl życia wyrobu. Kontrola odbiorcza - stuprocentowa Uproszczony cykl życia projektowanie projektowanie procesów i planowanie prod. zakupy Rodzaje Kontroli marketing i badanie rynku pozbycie się lub odzysk dbałość o wyrób po sprzedaży faza przedprodukcyjna

Bardziej szczegółowo

ANALIZA SYSTEMU POMIAROWEGO (MSA)

ANALIZA SYSTEMU POMIAROWEGO (MSA) StatSoft Polska, tel. 1 484300, 601 414151, info@statsoft.pl, www.statsoft.pl ANALIZA SYSTEMU POMIAROWEGO (MSA) dr inż. Tomasz Greber, Politechnika Wrocławska, Instytut Organizacji i Zarządzania Wprowadzenie

Bardziej szczegółowo

Statystyczne sterowanie procesem

Statystyczne sterowanie procesem Statystyczne sterowanie procesem SPC (ang. Statistical Process Control) Trzy filary SPC: 1. sporządzenie dokładnego diagramu procesu produkcji; 2. pobieranie losowych próbek (w regularnych odstępach czasu

Bardziej szczegółowo

Katedra Technik Wytwarzania i Automatyzacji STATYSTYCZNA KONTROLA PROCESU

Katedra Technik Wytwarzania i Automatyzacji STATYSTYCZNA KONTROLA PROCESU Katedra Technik Wytwarzania i Automatyzacji METROLOGIA I KONTKOLA JAKOŚCI - LABORATORIUM TEMAT: STATYSTYCZNA KONTROLA PROCESU 1. Cel ćwiczenia Zapoznanie studentów z podstawami wdrażania i stosowania metod

Bardziej szczegółowo

Zarządzanie jakością ćwiczenia

Zarządzanie jakością ćwiczenia Zarządzanie jakością ćwiczenia mgr inż. Anna Wąsińska Zakład Zarządzania Jakością pok. 311 B1, tel. 320-42-82 anna.wasinska@pwr.wroc.pl Statystyczne sterowanie procesami SPC kontrolna Konsultacje: SO 13:00

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 8 Temat: Statystyczna kontrola procesu SPC przy pomocy

Bardziej szczegółowo

Metrologia: powtarzalność i odtwarzalność pomiarów. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: powtarzalność i odtwarzalność pomiarów. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: powtarzalność i odtwarzalność pomiarów dr inż. Paweł Zalewski Akademia Morska w Szczecinie Definicje: Pojęciami związanymi z metodami diagnozowania procesów i oceny ich bezpieczeństwa oraz

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Karta kontrolna budowa i zastosowanie

Karta kontrolna budowa i zastosowanie STATYSTYCZNE STEROWANIE PROCESAMI PRAKTYCZNE PRZYKŁADY ZASTOSOWANIA Tomasz Greber, Politechnika Wrocławska, Instytut Organizacji i Zarządzania, Zakład Zarządzania Jakością; Magazyn ZARZĄDZANIE JAKOŚCIĄ

Bardziej szczegółowo

Walidacja metod analitycznych Raport z walidacji

Walidacja metod analitycznych Raport z walidacji Walidacja metod analitycznych Raport z walidacji Małgorzata Jakubowska Katedra Chemii Analitycznej WIMiC AGH Walidacja metod analitycznych (według ISO) to proces ustalania parametrów charakteryzujących

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 1 Temat: Kontrola odbiorcza partii wyrobów z selekcją

Bardziej szczegółowo

KARTY KONTROLNE PRZY OCENIE LICZBOWEJ W STEROWANIU PROCESAMI ZAŁOŻENIA I ANALIZA

KARTY KONTROLNE PRZY OCENIE LICZBOWEJ W STEROWANIU PROCESAMI ZAŁOŻENIA I ANALIZA KRTY KONTROLNE PRZY OENIE LIZOWEJ W STEROWNIU PROESMI ZŁOŻENI I NLIZ dr inż. Tomasz Greber, Politechnika Wrocławska, Instytut Organizacji i Zarządzania Wprowadzenie Metody statystycznego sterowania procesami

Bardziej szczegółowo

Sterowanie jakością badań i analiza statystyczna w laboratorium

Sterowanie jakością badań i analiza statystyczna w laboratorium Sterowanie jakością badań i analiza statystyczna w laboratorium CS-17 SJ CS-17 SJ to program wspomagający sterowanie jakością badań i walidację metod badawczych. Może działać niezależnie od innych składników

Bardziej szczegółowo

LINIOWOŚĆ METODY OZNACZANIA ZAWARTOŚCI SUBSTANCJI NA PRZYKŁADZIE CHROMATOGRAFU

LINIOWOŚĆ METODY OZNACZANIA ZAWARTOŚCI SUBSTANCJI NA PRZYKŁADZIE CHROMATOGRAFU LINIOWOŚĆ METODY OZNACZANIA ZAWARTOŚCI SUBSTANCJI NA PRZYKŁADZIE CHROMATOGRAFU Tomasz Demski, StatSoft Polska Sp. z o.o. Wprowadzenie Jednym z elementów walidacji metod pomiarowych jest sprawdzenie liniowości

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Przykład. Producent pewnych detali twierdzi, że wadliwość jego produkcji nie przekracza 2%. Odbiorca pewnej partii tego produktu chce sprawdzić, czy może wierzyć producentowi.

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA

POLITECHNIKA WARSZAWSKA POLITECHNIKA WARSZAWSKA WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ STATYSTYCZNA KONTROLA PROCESU (SPC) Ocena i weryfikacja statystyczna założeń przyjętych przy sporządzaniu

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

Oszacowanie i rozkład t

Oszacowanie i rozkład t Oszacowanie i rozkład t Marcin Zajenkowski Marcin Zajenkowski () Oszacowanie i rozkład t 1 / 31 Oszacowanie 1 Na podstawie danych z próby szacuje się wiele wartości w populacji, np.: jakie jest poparcie

Bardziej szczegółowo

Wprowadzenie. Typowe i nietypowe sytuacje

Wprowadzenie. Typowe i nietypowe sytuacje NIESTANDARDOWE KARTY KONTROLNE CZYLI JAK SOBIE RADZIĆ W NIETYPOWYCH SYTUACJACH dr inż. Tomasz Greber, Politechnika Wrocławska, Instytut Organizacji i Zarządzania Wprowadzenie SPC (statystyczne sterowanie

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela

Statystyka w pracy badawczej nauczyciela Statystyka w pracy badawczej nauczyciela Wykład 1: Terminologia badań statystycznych dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka (1) Statystyka to nauka zajmująca się zbieraniem, badaniem

Bardziej szczegółowo

Dokładność pomiaru: Ogólne informacje o błędach pomiaru

Dokładność pomiaru: Ogólne informacje o błędach pomiaru Dokładność pomiaru: Rozumny człowiek nie dąży do osiągnięcia w określonej dziedzinie większej dokładności niż ta, którą dopuszcza istota przedmiotu jego badań. (Arystoteles) Nie można wykonać bezbłędnego

Bardziej szczegółowo

Statystyka i Analiza Danych

Statystyka i Analiza Danych Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania analizy wariancji w opracowywaniu wyników badań empirycznych Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki -

Bardziej szczegółowo

Analiza wariancji. dr Janusz Górczyński

Analiza wariancji. dr Janusz Górczyński Analiza wariancji dr Janusz Górczyński Wprowadzenie Powiedzmy, że badamy pewną populację π, w której cecha Y ma rozkład N o średniej m i odchyleniu standardowym σ. Powiedzmy dalej, że istnieje pewien czynnik

Bardziej szczegółowo

METODY STATYSTYCZNEGO STEROWANIA JAKOŚCIĄ

METODY STATYSTYCZNEGO STEROWANIA JAKOŚCIĄ METODY STATYSTYCZNEGO STEROWANIA JAKOŚCIĄ prof. dr hab. inż. Jacek Koronacki, Wyższa Szkoła Informatyki Stosowanej i Zarządzania pod auspicjami Polskiej Akademii Nauk Uwagi wstępne Tekst ten należy traktować

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych

Bardziej szczegółowo

Sterowanie wielkością zamówienia w Excelu - cz. 3

Sterowanie wielkością zamówienia w Excelu - cz. 3 Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY Liczebności i częstości Liczebność liczba osób/respondentów/badanych, którzy udzielili tej konkretnej odpowiedzi. Podawana w osobach. Częstość odsetek,

Bardziej szczegółowo

Systemy zapewnienia jakości w laboratorium badawczym i pomiarowym

Systemy zapewnienia jakości w laboratorium badawczym i pomiarowym Systemy zapewnienia jakości w laboratorium badawczym i pomiarowym Narzędzia statystyczne w zakresie kontroli jakości / nadzoru nad wyposażeniem pomiarowym M. Kamiński Jednym z ważnych narzędzi statystycznej

Bardziej szczegółowo

Zasady wykonania walidacji metody analitycznej

Zasady wykonania walidacji metody analitycznej Zasady wykonania walidacji metody analitycznej Walidacja metod badań zasady postępowania w LOTOS Lab 1. Metody badań stosowane w LOTOS Lab należą do następujących grup: 1.1. Metody zgodne z uznanymi normami

Bardziej szczegółowo

OPTYMALIZACJA PROCESÓW TECHNOLOGICZNYCH W ZAKŁADZIE FARMACEUTYCZNYM

OPTYMALIZACJA PROCESÓW TECHNOLOGICZNYCH W ZAKŁADZIE FARMACEUTYCZNYM OPTYMALIZACJA PROCESÓW TECHNOLOGICZNYCH W ZAKŁADZIE FARMACEUTYCZNYM POZNAŃ / kwiecień 2013 Wasilewski Cezary 1 Cel: Obniżenie kosztów wytwarzania Kontrolowanie jakości wyrobu Zasady postępowania Odpowiednio

Bardziej szczegółowo

ZALICZENIA. W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III

ZALICZENIA. W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III ZALICZENIA W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III 1 Wariant I. PROBLEM WŁASNY Sformułować własne zadanie statystyczne związane z własną pracą badawczą

Bardziej szczegółowo

Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl

Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych

Bardziej szczegółowo

Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl

Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

METODY STATYSTYCZNE W BIOLOGII

METODY STATYSTYCZNE W BIOLOGII METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

Zadanie 2.Na III roku bankowości złożonym z 20 studentów i 10 studentek przeprowadzono test pisemny ze statystyki. Oto wyniki w obu podgrupach.

Zadanie 2.Na III roku bankowości złożonym z 20 studentów i 10 studentek przeprowadzono test pisemny ze statystyki. Oto wyniki w obu podgrupach. Zadanie 1.Wiadomo, że dominanta wagi tuczników jest umiejscowiona w przedziale [120 kg, 130 kg] i wynosi 122,5 kg. Znane są również liczebności przedziałów poprzedzającego i następnego po przedziale dominującym:

Bardziej szczegółowo

EFEKTYWNE STATYSTYCZNE STEROWANIE PROCESAMI (SPC) Z WYKORZYSTANIEM PAKIETU STATISTICA. Wprowadzenie

EFEKTYWNE STATYSTYCZNE STEROWANIE PROCESAMI (SPC) Z WYKORZYSTANIEM PAKIETU STATISTICA. Wprowadzenie EFEKTYWNE STATYSTYCZNE STEROWANIE PROCESAMI (SPC) Z WYKORZYSTANIEM PAKIETU STATISTICA prof. dr hab. Olgierd Hryniewicz, Wyższa Szkoła Informatyki Stosowanej i Zarządzania, Instytut Badań Systemowych PAN

Bardziej szczegółowo

Wyznaczanie minimalnej odważki jako element kwalifikacji operacyjnej procesu walidacji dla wagi analitycznej.

Wyznaczanie minimalnej odważki jako element kwalifikacji operacyjnej procesu walidacji dla wagi analitycznej. Wyznaczanie minimalnej odważki jako element kwalifikacji operacyjnej procesu walidacji dla wagi analitycznej. Andrzej Hantz Dyrektor Centrum Metrologii RADWAG Wagi Elektroniczne Pomiary w laboratorium

Bardziej szczegółowo

LABORATORIUM METROLOGII

LABORATORIUM METROLOGII AKADEMIA MORSKA W SZCZECINIE Centrum Inżynierii Ruchu Morskiego LABORATORIUM METROLOGII Ćwiczenie 6 Analiza karty kontrolnej dla cech mierzalnych procesu manewrowania statkiem Szczecin, 2010 Zespół wykonawczy:

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Sposób wykorzystywania świadectw wzorcowania do ustalania okresów między wzorcowaniami

Sposób wykorzystywania świadectw wzorcowania do ustalania okresów między wzorcowaniami EuroLab 2010 Warszawa 3.03.2010 r. Sposób wykorzystywania świadectw wzorcowania do ustalania okresów między wzorcowaniami Ryszard Malesa Polskie Centrum Akredytacji Kierownik Działu Akredytacji Laboratoriów

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura

Bardziej szczegółowo

PRZYKŁAD WDROŻENIA KART KONTROLNYCH KROK PO KROKU

PRZYKŁAD WDROŻENIA KART KONTROLNYCH KROK PO KROKU PRZYKŁAD WDROŻENIA KART KONTROLNYCH KROK PO KROKU Tomasz Demski, StatSoft Polska Sp. z o.o. Przykład przedstawia tworzenie karty kontrolnej p dla nowego procesu, określanie wartości granic kontrolnych

Bardziej szczegółowo

Ćwiczenie: "Mierniki cyfrowe"

Ćwiczenie: Mierniki cyfrowe Ćwiczenie: "Mierniki cyfrowe" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Próbkowanie

Bardziej szczegółowo

Temat: SZACOWANIE NIEPEWNOŚCI POMIAROWYCH

Temat: SZACOWANIE NIEPEWNOŚCI POMIAROWYCH Temat: SZCOWNIE NIEPEWNOŚCI POMIROWYCH - Jak oszacować niepewność pomiarów bezpośrednich? - Jak oszacować niepewność pomiarów pośrednich? - Jak oszacować niepewność przeciętną i standardową? - Jak zapisywać

Bardziej szczegółowo

WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO

WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO Mirosław KAŹMIERSKI Okręgowy Urząd Miar w Łodzi 90-132 Łódź, ul. Narutowicza 75 oum.lodz.w3@gum.gov.pl WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO 1. Wstęp Konieczność

Bardziej szczegółowo

PRZYKŁAD AUTOMATYZACJI STATYSTYCZNEJ OBRÓBKI WYNIKÓW

PRZYKŁAD AUTOMATYZACJI STATYSTYCZNEJ OBRÓBKI WYNIKÓW PRZYKŁAD AUTOMATYZACJI STATYSTYCZNEJ OBRÓBKI WYNIKÓW Grzegorz Migut, StatSoft Polska Sp. z o.o. Teresa Topolnicka, Instytut Chemicznej Przeróbki Węgla Wstęp Zasady przeprowadzania eksperymentów zmierzających

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin. Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Zadania analityczne (1) Analiza przewiduje badanie podobieństw

Bardziej szczegółowo

KARTA INFORMACYJNA PRZEDMIOTU

KARTA INFORMACYJNA PRZEDMIOTU Uniwersytet Rzeszowski WYDZIAŁ KIERUNEK Matematyczno-Przyrodniczy Fizyka techniczna SPECJALNOŚĆ RODZAJ STUDIÓW stacjonarne, studia pierwszego stopnia KARTA INFORMACYJNA PRZEDMIOTU NAZWA PRZEDMIOTU WG PLANU

Bardziej szczegółowo

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Michał Łasica klasa IIId nr 13 22 grudnia 2006 1 1 Doświadczalne wyznaczanie ogniskowej soczewki 1.1

Bardziej szczegółowo

Metrologia: definicje i pojęcia podstawowe. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: definicje i pojęcia podstawowe. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: definicje i pojęcia podstawowe dr inż. Paweł Zalewski Akademia Morska w Szczecinie Pojęcia podstawowe: Metrologia jest nauką zajmująca się sposobami dokonywania pomiarów oraz zasadami interpretacji

Bardziej szczegółowo

Wprowadzenie 2010-10-20

Wprowadzenie 2010-10-20 PODSTAWY STATYSTYKI Dr hab. inż. Piotr Konieczka piotr.konieczka@pg.gda.pl 1 Wprowadzenie Wynik analityczny to efekt przeprowadzonego pomiaru(ów). Pomiar to zatem narzędzie wykorzystywane w celu uzyskania

Bardziej szczegółowo

PRZYKŁAD TWORZENIA KART KONTROLNYCH W STATISTICA

PRZYKŁAD TWORZENIA KART KONTROLNYCH W STATISTICA PRZYKŁAD TWORZENIA KART KONTROLNYCH W STATISTICA Tomasz Demski, StatSoft Polska Sp. z o.o. Karty kontrolne są jednym z najczęściej wykorzystywanych narzędzi analizy danych. Zaproponowane w latach dwudziestych

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu Statystyka w analizie i planowaniu eksperymentu Wprowadzenie Prowadzący zajęcia: dr Janusz Piechota Zakład Biofizyki Kierownik zajęć: dr Paweł Błażej Zakład Genomiki Na zajęciach przydają się: dobre chęci,

Bardziej szczegółowo

Analiza zdolności procesu

Analiza zdolności procesu Analiza zdolności - przegląd Analiza zdolności procesu Zdolność procesu dla danych alternatywnych Obliczanie DPU, DPM i DPMO. Obliczanie poziomu sigma procesu. Zdolność procesu dla danych liczbowych Obliczanie

Bardziej szczegółowo

Niepewność pomiaru masy w praktyce

Niepewność pomiaru masy w praktyce Niepewność pomiaru masy w praktyce RADWAG Wagi Elektroniczne Z wszystkimi pomiarami nierozłącznie jest związana Niepewność jest nierozerwalnie związana z wynimiarów niepewność ich wyników. Podając wyniki

Bardziej szczegółowo

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k:

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k: Statystyczne opracowanie danych pomiarowych W praktyce pomiarowej często spotykamy się z pomiarami wielokrotnymi, gdy podczas pomiaru błędy pomiarowe (szumy miernika, czynniki zewnętrzne) są na tyle duże,

Bardziej szczegółowo

Podstawowe definicje statystyczne

Podstawowe definicje statystyczne Podstawowe definicje statystyczne 1. Definicje podstawowych wskaźników statystycznych Do opisu wyników surowych (w punktach, w skali procentowej) stosuje się następujące wskaźniki statystyczne: wynik minimalny

Bardziej szczegółowo

Statystyka. Tematyka wykładów. Przykładowe pytania. dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl. wersja 20.01.2013/13:40

Statystyka. Tematyka wykładów. Przykładowe pytania. dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl. wersja 20.01.2013/13:40 Statystyka dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl wersja 20.01.2013/13:40 Tematyka wykładów 1. Definicja statystyki 2. Populacja, próba 3. Skale pomiarowe 4. Miary położenia (klasyczne i pozycyjne)

Bardziej szczegółowo

ANALIZA ZDOLNOŚCI PROCESU O ZALEŻNYCH CHARAKTERYSTYKACH

ANALIZA ZDOLNOŚCI PROCESU O ZALEŻNYCH CHARAKTERYSTYKACH Małgorzata Szerszunowicz Uniwersytet Ekonomiczny w Katowicach ANALIZA ZDOLNOŚCI PROCESU O ZALEŻNYCH CHARAKTERYSTYKACH Wprowadzenie Statystyczna kontrola jakości ma na celu doskonalenie procesu produkcyjnego

Bardziej szczegółowo

Metody badań kamienia naturalnego: Oznaczanie wytrzymałości na zginanie pod działaniem siły skupionej

Metody badań kamienia naturalnego: Oznaczanie wytrzymałości na zginanie pod działaniem siły skupionej Metody badań kamienia naturalnego: Oznaczanie wytrzymałości na zginanie pod działaniem siły skupionej 1. Zasady metody Zasada metody polega na stopniowym obciążaniu środka próbki do badania, ustawionej

Bardziej szczegółowo

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć: Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Karty kontrolne obrazem zmienności procesu

Karty kontrolne obrazem zmienności procesu Warsztaty menedżerskie Marek Bartkowiak Karty kontrolne obrazem zmienności procesu 63 Jednym z elementów zarządzania jakością oraz źródłem wiedzy o zmienności procesu są karty kontrolne. Ich twórcą był

Bardziej szczegółowo

INFILTRACJA POWIETRZA WSPÓŁCZYNNIK a

INFILTRACJA POWIETRZA WSPÓŁCZYNNIK a www.ltb.org.pl strona 1 / 5 INFILTRACJA POWIETRZA WSPÓŁCZYNNIK a Wymagania krajowe a norma PN-EN 14351-1:2006 mgr inż. Andrzej Żyła Norma europejska PN-EN 14351-1:2006 Okna i drzwi. Norma wyrobu, właściwości

Bardziej szczegółowo

Fizyka (Biotechnologia)

Fizyka (Biotechnologia) Fizyka (Biotechnologia) Wykład I Marek Kasprowicz dr Marek Jan Kasprowicz pokój 309 marek.kasprowicz@ur.krakow.pl www.ar.krakow.pl/~mkasprowicz Marek Jan Kasprowicz Fizyka 013 r. Literatura D. Halliday,

Bardziej szczegółowo

STATYSTYKA wykład 5-6

STATYSTYKA wykład 5-6 TATYTYKA wykład 5-6 Twierdzenia graniczne Rozkłady statystyk z próby Wanda Olech Twierdzenia graniczne Jeżeli rozpatrujemy ciąg zmiennych losowych {X ; X ;...; X n }, to zdarza się, że ich rozkłady przy

Bardziej szczegółowo

Wykład 10 Zrandomizowany plan blokowy

Wykład 10 Zrandomizowany plan blokowy Wykład 10 Zrandomizowany plan blokowy Staramy się kontrolować efekty zróżnicowania badanych jednostek eksperymentalnych poprzez zapewnienie ich ``jednorodności wewnątrz każdej grupy zabiegowej. Dzielimy

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Statystyka w sterowaniu i kontroli procesów odlewniczych

Statystyka w sterowaniu i kontroli procesów odlewniczych METRO MEtalurgiczny TRening On-line Statystyka w sterowaniu i kontroli procesów odlewniczych Przegląd metod podstawowych oraz metodyka SixSigma TM Marcin Perzyk PW Edukacja i Kultura Statystyczne sterowanie

Bardziej szczegółowo

STATYSTYKA W LABORATORIUM BADAWCZYM I POMIAROWYM. dr inż. Roman Tabisz, Politechnika Rzeszowska; Laboratorium Badań i Kalibracji LABBiKAL

STATYSTYKA W LABORATORIUM BADAWCZYM I POMIAROWYM. dr inż. Roman Tabisz, Politechnika Rzeszowska; Laboratorium Badań i Kalibracji LABBiKAL STATYSTYKA W LABORATORIUM BADAWCZYM I POMIAROWYM dr inż. Roman Tabisz, Politechnika Rzeszowska; Laboratorium Badań i Kalibracji LABBiKAL Wprowadzenie Skuteczność metod statystycznego sterowania procesami

Bardziej szczegółowo

4. Metody systemowe zarządzania jakością

4. Metody systemowe zarządzania jakością Zarządzanie jakością w praktyce inżynierskiej 4. Metody systemowe zarządzania jakością 4.1 Metody statystyczne w zarządzaniu jakością Do podstawowych instrumentów monitorowania procesów wytwórczych należą

Bardziej szczegółowo

Test lewostronny dla hipotezy zerowej:

Test lewostronny dla hipotezy zerowej: Poznajemy testowanie hipotez statystycznych w środowisku R Zajęcia z dnia 11 maja 2011 roku Najpierw teoria TESTY ISTOTNOŚCI WARTOŚCI ŚREDNIEJ W POPULACJI GENERALNEJ gdy znana jest wariancja!!! Test prawostronny

Bardziej szczegółowo

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ Dopasowanie rozkładów Dopasowanie rozkładów- ogólny cel Porównanie średnich dwóch zmiennych 2 zmienne posiadają rozkład normalny -> test parametryczny (t- studenta) 2

Bardziej szczegółowo

STATYSTYCZNE OPRACOWANIE WYNIKÓW KONTROLI JAKOŚCI ROBÓT ZIEMNYCH

STATYSTYCZNE OPRACOWANIE WYNIKÓW KONTROLI JAKOŚCI ROBÓT ZIEMNYCH Dane bibliograiczne o artykule: http://mieczyslaw_polonski.users.sggw.pl/mppublikacje STATYSTYCZNE OPRACOWANIE WYNIKÓW KONTROLI JAKOŚCI ROBÓT ZIEMNYCH Mieczysław Połoński 1 1. Metodyka statystycznego opracowania

Bardziej szczegółowo

ANALIZA TRENDÓW DANYCH MIKROBIOLOGICZNYCH Z ZASTOSOWANIEM KART KONTROLNYCH

ANALIZA TRENDÓW DANYCH MIKROBIOLOGICZNYCH Z ZASTOSOWANIEM KART KONTROLNYCH ANALIZA TRENDÓW DANYCH MIKROBIOLOGICZNYCH Z ZASTOSOWANIEM KART KONTROLNYCH Konrad Mysiakowski, FSP Galena; Dariusz Danel, Polska Akademia Nauk, Zakład Antropologii we Wrocławiu Wprowadzenie Obowiązujące

Bardziej szczegółowo

Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2000, 2008

Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2000, 2008 Redaktor: Alicja Zagrodzka Korekta: Krystyna Chludzińska Projekt okładki: Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2000, 2008 ISBN 978-83-7383-296-1 Wydawnictwo Naukowe Scholar

Bardziej szczegółowo

Statystyka Opisowa z Demografią oraz Biostatystyka. Aleksander Denisiuk. denisjuk@euh-e.edu.pl

Statystyka Opisowa z Demografią oraz Biostatystyka. Aleksander Denisiuk. denisjuk@euh-e.edu.pl Statystyka Opisowa z Demografią oraz Biostatystyka TesttStudenta Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.

Bardziej szczegółowo

Badania marketingowe

Badania marketingowe Wiesz już co chcesz osiągnąć w badaniu marketingowym i jak to (idealnie) zorganizować. Ale jakimi metodami? Skąd pewność, że będą efektywne? Ćwiczenie: jaką metodą zbadasz co koledzy/koleżanki na sali

Bardziej szczegółowo

Outlier to dana (punkt, obiekt, wartośd w zbiorze) znacznie odstająca od reszty. prezentacji punktów odstających jest rysunek poniżej.

Outlier to dana (punkt, obiekt, wartośd w zbiorze) znacznie odstająca od reszty. prezentacji punktów odstających jest rysunek poniżej. Temat: WYKRYWANIE ODCHYLEO W DANYCH Outlier to dana (punkt, obiekt, wartośd w zbiorze) znacznie odstająca od reszty. prezentacji punktów odstających jest rysunek poniżej. Przykładem Box Plot wygodną metodą

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych 1 Laboratorium III: Testy statystyczne Spis treści Laboratorium III: Testy statystyczne... 1 Wiadomości ogólne... 2 1. Krótkie przypomnienie wiadomości na temat testów statystycznych... 2 1.1. Weryfikacja

Bardziej szczegółowo

Przykład 1 ceny mieszkań

Przykład 1 ceny mieszkań Przykład ceny mieszkań Przykład ceny mieszkań Model ekonometryczny zaleŝności ceny mieszkań od metraŝu - naleŝy do klasy modeli nieliniowych. - weryfikację empiryczną modelu przeprowadzono na przykładzie

Bardziej szczegółowo

SPRAWDZIAN NR 1 ROBERT KOPERCZAK, ID studenta : k4342

SPRAWDZIAN NR 1 ROBERT KOPERCZAK, ID studenta : k4342 TECHNIKI ANALITYCZNE W BIZNESIE SPRAWDZIAN NR 1 Autor pracy ROBERT KOPERCZAK, ID studenta : k4342 Kraków, 22 Grudnia 2009 2 Spis treści 1 Zadanie 1... 3 1.1 Szereg rozdzielczy wag kobiałek.... 4 1.2 Histogram

Bardziej szczegółowo

Wiarygodność wyniku a wymagania dotyczące nadzorowania wyposażenia pomiarowego. mgr inż. Piotr Lewandowski

Wiarygodność wyniku a wymagania dotyczące nadzorowania wyposażenia pomiarowego. mgr inż. Piotr Lewandowski Wiarygodność wyniku a wymagania dotyczące nadzorowania wyposażenia pomiarowego mgr inż. Piotr Lewandowski Terminy i definicje Przyrząd pomiarowy urządzenie służące do wykonywania pomiarów, użyte indywidualnie

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

KOMPUTEROWE WSPOMAGANIE BIEŻĄCEJ OCENY PRZYDATNOŚCI SYSTEMU POMIAROWEGO STOSOWANEGO W PROCESIE WYTWARZANIA

KOMPUTEROWE WSPOMAGANIE BIEŻĄCEJ OCENY PRZYDATNOŚCI SYSTEMU POMIAROWEGO STOSOWANEGO W PROCESIE WYTWARZANIA KOMPUTEROWE WSPOMAGANIE BIEŻĄCEJ OCENY PRZYDATNOŚCI SYSTEMU POMIAROWEGO STOSOWANEGO W PROCESIE WYTWARZANIA Magdalena DIERING, Edward PAJĄK Streszczenie: W artykule opisano autorską metodę bieżącej oceny

Bardziej szczegółowo

Statystyczne Zarządzanie Jakością

Statystyczne Zarządzanie Jakością Statystyczne Zarządzanie Jakością Opis Obecnym wyzwaniem dla większości procesów produkcyjnych jest utrzymanie powtarzalnej jakość zgodnie z oczekiwaniami klientów nie dla partii pięciu sztuk ale dla serii

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 2 Przedziały ufności i estymacja przedziałowa ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 2 Przedziały ufności i estymacja przedziałowa ZADANIE DOMOWE. www.etrapez.pl Strona 1 KUR TATYTYKA Lekcja Przedziały ufności i estymacja przedziałowa ZADANIE DOMOWE www.etrapez.pl trona 1 Część 1: TET Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 We wnioskowaniu statystycznym

Bardziej szczegółowo

Analiza ryzyka w farmacji dla procesów pomiaru masy

Analiza ryzyka w farmacji dla procesów pomiaru masy RADWAG WAGI ELEKTRONICZNE Analiza ryzyka w farmacji dla procesów pomiaru masy Wstęp W rzeczywistości nie ma pomiarów idealnych, każdy pomiar jest obarczony błędem. Niezależnie od przyjętej metody nie możemy

Bardziej szczegółowo

Zmienność w procesach

Zmienność w procesach MODUŁ IV Zmienność w procesach i jej odmiany. Podstawy statystycznego nadzorowanie procesów. Zdatność jakościowa procesu. Elementy koncepcji Six Sigma 1 Zmienność w procesach Zmienność jest naturalnym

Bardziej szczegółowo