FUNKCJE ANALITYCZNE. Zbigniew B locki

Wielkość: px
Rozpocząć pokaz od strony:

Download "FUNKCJE ANALITYCZNE. Zbigniew B locki"

Transkrypt

1 FUNKCJE ANALITYCZNE WYK LADY DLA SEKCJI TEORETYCZNEJ INSTYTUT MATEMATYKI UJ, 2007 Zbigniew B locki Typeset by AMS-TEX

2 2 ZBIGNIEW B LOCKI Spis treści 1. Podstawowe w lasności liczb zespolonych 1 2. Różniczkowanie funkcji zespolonych 4 3. Ca lkowanie funkcji zespolonych 8 4. Twierdzenie ca lkowe Cauchy ego Wzór ca lkowy Cauchy ego Podstawowe w lasności funkcji holomorficznych Szeregi potegowe Podstawowe w lasności funkcji holomorficznych, cd Funkcje analityczne Globalne twierdzenie ca lkowe Cauchy ego Szeregi Laurenta Osobliwości funkcji holomorficznych Twierdzenie o residuach 34 13a. Obliczanie pewnych ca lek rzeczywistych Lokalizowanie zer funkcji holomorficznych Iloczyny nieskończone Funkcja Γ Eulera Funkcja ζ Riemanna Twierdzenie o liczbach pierwszych Aproksymacja funkcji holomorficznych Odwzorowania konforemne Geometria hiperboliczna ko la Funkcje harmoniczne Funkcje subharmoniczne Nakrycia Powierzchnie Riemanna Problem Dirichleta, metoda Perrona Funkcja Greena Ca lkowanie przez cześci Powierzchnie nie-g-hiperboliczne Pewne zastosowania Elementy geometrii riemannowskiej Zespolone metryki zupe lne o sta lej krzywiźnie Iteracja funkcji wymiernych 111 Literatura 115

3 FUNKCJE ANALITYCZNE 1 Wyk lad 1, Podstawowe w lasności liczb zespolonych Liczba zespolona nazywamy pare liczb rzeczywistych, zbiór liczb zespolonych C to zatem dok ladnie zbiór R 2. Element z = (x, y) C zapisujemy w postaci x + iy. Na zbiorze C wprowadzamy mnożenie (zgodnie z regu l a i 2 = 1): (x 1 + iy 1 )(x 2 + iy 2 ) = x 1 x 2 y 1 y 2 + i(x 2 y 1 + x 1 y 2 ). Można latwo pokazać Ćwiczenie, że C z dodawaniem wektorowym w R 2 oraz tak wprowadzonym mnożeniem jest cia lem. Jeżeli z = x + iy, to x nazywamy cześci a rzeczywista, natomiast y cześci a urojona liczby z; ozn. x = Re z, y = Im z. Każda liczbe zespolona z możemy rówież zapisać przy pomocy wspó lrzednych biegunowych: z = r(cos ϕ + i sin ϕ), gdzie r = z = x 2 + y 2, zaś ϕ jest katem pomiedzy odcinkami [0, 1] i [0, z] (gdy z 0) - nazywamy go argumentem liczby z. Zachodzi oczywiście nierówność trójkata z + w z + w, z, w C, można również latwo pokazać Ćwiczenie, że zw = z w, z, w C. Chcemy teraz zdefiniować zespolona funkcje wyk ladnicza exp : C C. Dla z = x + iy C oczekujemy, że e z = e x e iy, czyli wystarczy określić e it dla t R. Chcemy by funkcja ta spe lnia la d dt eit = ie it, e 0 = 1, a wiec (oznaczajac e it = A + ib) A = B, B = A, A(0) = 1, B(0) = 0. Jedynym rozwiazaniem tego uk ladu sa funkcje A = cos t, B = sin t. Funkcje wyk ladnicza definiujemy zatem nastepuj aco: e z := e x (cos y + i sin y), z = x + iy C. Można latwo pokazać Ćwiczenie jej nastepuj ace w lasności e z+w = e z e w, z, w C, d dt etz = ze tz, t R, z C. Z faktu, że e z = e x oraz dzieki temu, że y jest argumentem liczby e z wynika, że funkcja wyk ladnicza proste pionowe x = x 0 odwzorowuje na okregi o promieniu e x 0, natomiast proste poziome y = y 0 na pó lproste otwarte o poczatku w 0 o argumencie y 0.

4 2 ZBIGNIEW B LOCKI Wracajac do wspó lrzednych biegunowych, możemy je teraz zapisać w postaci z = re iϕ. Dla z 0 przez arg z oznaczamy zbiór argumentów liczby z, tzn. arg z := {ϕ R : z = z e iϕ }. Ponieważ e i(ϕ+2π) = e iϕ, dla dowolnego ϕ 0 arg z mamy arg z = {ϕ 0 + 2kπ : k Z}. Dla każdego z C (:= C \ {0}) znajdziemy dok ladnie jeden element arg z należacy do przedzia lu [ π, π). Nazywamy go argumentem g lównym liczby z i oznaczamy Arg z. Funkcja Arg, określona na C, jest nieciag la na pó lprostej (, 0). Możemy teraz podać geometryczna interpretacje mnożenia w C: jeżeli z = re iϕ, w = ρe iψ, to zw = rρe i(ϕ+ψ) ; czyli mnożymy d lugości, a dodajemy argumenty. Możemy stad również wywnioskować wzór de Moivre a: z tego, że (e iϕ ) n = e inϕ otrzymamy (cos ϕ + i sin ϕ) n = cos(nϕ) + i sin(nϕ), ϕ R, n N. Dla danego z C oraz n N przez pierwiastek z stopnia n rozumiemy zbiór n z := {w C : w n = z}. Zapisujac z i w we wspó lrzednych biegunowych: otrzymamy warunki z = re iϕ, w = ρe iψ, ρ = r 1/n, ψ = ϕ + 2kπ, k Z. n Ponieważ e iψ = e i(ψ+2π), dla k = 0, 1,..., n 1 otrzymamy wszystkie rozwiazania. Zatem n z = { z 1/n e i(ϕ+2kπ)/n : k = 0, 1,..., n 1}. W szczególności, pierwiastek stopnia n z liczby niezerowej jest zawsze zbiorem n elementowym. Ćwiczenie Udowodnić, że rozwiazaniem równania kwadratowego w C: gdzie a C, b, c C, jest az 2 + bz + c = 0, z = b +, 2a gdzie = b 2 4ac, przy czym jest zbiorem dwuelementowym jeżeli 0 - w tym przypadku zawsze otrzymamy dwa rozwiazania (jedno jeżeli = 0). W przypadku wielomianów dowolnego stopnia mamy rezultat niekonstruktywny, tzw. zasadnicze twierdzenie algebry. Twierdzenie 1.1. Każdy niesta ly wielomian zespolony ma pierwiastek.

5 FUNKCJE ANALITYCZNE 3 Powyższy rezultat można udowodnić w sposób elementarny przy pomocy lematu d Alemberta (oryginalny dowód z 1746 r. zawiera l luk e). Lemat 1.2. Za lóżmy, że P jest niesta lym wielomianem zespolonym oraz, że dla pewnego z 0 C mamy P (z 0 ) 0. Wtedy dla każdego otoczenia U punktu z 0 znajdziemy z U takie, że P (z) < P (z 0 ). Dowód. (Argand, 1806) Niech Wtedy P (z) = a 0 + a 1 z + + a n z n. P (z 0 + h) = a 0 + a 1 (z 0 + h) + + a n (z 0 + h) n = P (z 0 ) + A 1 h + + A n h n, gdzie wspó lczynniki A j zależa tylko od P i z 0. Któryś z nich na pewno nie znika, gdyż w przeciwnym wypadku wielomian P by lby sta ly. Niech j bedzie najmniejszym indeksem, dla którego A j 0. Mamy zatem gdzie P (z 0 + h) = P (z 0 ) + A j h j + R(h), R(h) < A j h j, gdy h jest odp. ma le, h 0. Możemy znaleźć h o dowolnie ma lym h, dla którego A j h j ma argument przeciwny do argumentu P (z 0 ). Wtedy P (z 0 + h) P (z 0 ) + A j h j + R(h) = P (z 0 ) A j h j + R(h) < P (z 0 ). Dowód Twierdzenia 1.1. Oznaczajac P jak w dowodzie Lematu 1.2 i zak ladajac, że a n 0, mamy P (z) a n z n a 0 + a 1 z + + a n 1 z n 1 a n z n a 0 a 1 z a n 1 z n 1. Możemy w szczególności znaleźć R > 0 takie, że P (z) > P (0), gdy z = R. Funkcja P jest ciag la na C (bo oczywiste jest, że mnożenie jest odwzorowaniem ciag lym), znajdziemy zatem z 0 K(0, R) takie, że P (z 0 ) = min P. K(0,R) Jeżeli P (z 0 ) 0, to dzi eki Lematowi 1.2 znajdziemy z K(0, R) takie, że P (z) < P (z 0 ) - sprzeczność. Dla z C definiujemy log z := {w C : e w = z} (dla z = 0 ten zbiór jest oczywiście pusty). Jeżeli zapiszemy w = η + iξ, z = re iϕ, to otrzymamy równanie e η e iξ = re iϕ. Zatem η = log r = log z, natomiast ξ = ϕ + 2kπ, k Z. Ostatecznie log z = log z + iarg z.

6 4 ZBIGNIEW B LOCKI Liczb e Log z := log z + iarg z nazywamy logarytmem g lównym z. Przy pomocy logarytmu możemy zdefiniować pot egi zespolone: dla z C, w C k ladziemy z w = e w log z. Zauważmy, że z 1/n = e 1 n (log z +iarg z) = z 1/n e i arg z n, czyli otrzymamy to samo, co przy definicji pierwiastka. Ćwiczenie Obliczyć i i. Przypomnijmy, że e iϕ = cos ϕ + i sin ϕ, ϕ R. Zespolone funkcje trygonometryczne można latwo wyprowadzić ze wzorów Eulera: Stad e iz = cos z + i sin z, e iz = cos z i sin z. Mamy również cos z := eiz + e iz, 2 sin z := eiz e iz. 2i cosh z := cos(iz) = ez + e z, 2 sinh z := i sin(iz) = ez e z. 2 Ćwiczenie Pokazać, że arccos z = i log(z + z 2 1). Dla liczby zespolonej z = x + iy definiujemy jej sprz eżenie: z := x iy. Natychmiast otrzymujemy, że z 2 = zz. Ćwiczenie Pokazać, że (zw) = z w oraz e z = e z. 2. Różniczkowanie funkcji zespolonych Oczywiście każde odwzorowanie liniowe C C jest postaci (2.1) C z az C dla pewnego a C. Ponieważ C = R 2, możemy również rozpatrywać równania liniowe w sensie rzeczywistym - bed a one postaci C = R 2 z Az R 2 = C,

7 gdzie ( p q (2.2) A = s t FUNKCJE ANALITYCZNE 5 ), p, q, s, t R. Takie odwzorowania C C bedziemy nazywać R-liniowymi, natomiast odwzorowania postaci (2.1) C-liniowymi. Można latwo sprawdzić, że każde odwzorowanie C-liniowe jest R-liniowe, przy czym A jest postaci ( α β A = β α gdzie a = α + iβ. Z drugiej strony, dane odwzorowanie R-liniowe jest C-liniowe wtedy i tylko wtedy, gdy p = t i q = s w (2.2) ( Ćwiczenie ). Niech f bedzie funkcja o wartościach zespolonych określona w pewnym otoczeniu punktu z 0 C. Analogicznie jak w przypadku rzeczywistym powiemy, że f jest C-różniczkowalna w punkcie z 0, jeżeli istnieje granica ), f(z) f(z 0 ) lim C. z z 0 z z 0 Granice te nazywamy pochodna zespolona funkcji f w z 0 i oznaczamy przez f (z 0 ). Jest oczywiste, że każda funkcja C-różniczkowalna w z 0 jest w ciag la w z 0. W podobny sposób jak w przypadku rzeczywistym dowodzimy podstawowych w lasności funkcji C-różniczkowalnych. Propozycja 2.1. Jeżeli funkcje f, g sa C-różniczkowalne w z 0, to funkcje f ± g, fg oraz f/g (ta ostatnia pod warunkiem, że g(z 0 ) 0) sa C-różniczkowalne w z 0 oraz w z 0 mamy (f ± g) = f ± g, (fg) = f g + fg, ( ) f = f g fg g g 2. Propozycja 2.2. Jeżeli f jest C-różniczkowalna w z 0, zaś g jest C-różniczkowalna w f(z 0 ), to g f jest C-różniczkowalna w z 0 oraz (g f) (z 0 ) = g (f(z 0 )) f (z 0 ). Przypomnijmy, że funkcja zespolona f jest różniczkowalna w z 0 w klasycznym sensie (b edziemy wtedy mówić, że jest ona R-różniczkowalna), jeżeli istnieje odwzorowanie R-liniowe A takie, że f(z) f(z 0 ) A(z z 0 ) lim = 0. z z 0 z z 0 Jeżeli f = u + iv, gdzie u, v sa funkcjami rzeczywistymi, to ( ) ux (z A = 0 ) u y (z 0 ) v x (z 0 ) v y (z 0 )

8 6 ZBIGNIEW B LOCKI (ozn. u x = u/ x, u y = u/ y). Zauważmy, że każda funkcja C-różniczkowalna jest R-różniczkowalna, przy czym A = ( ) Re f (z 0 ) Im f (z 0 ) Im f (z 0 ) Re f. (z 0 ) Przyk lad. Funkcja f(z) = z, z C, jest R-różniczkowalna w każdym punkcie (jest nawet R-liniowa), ale nigdzie nie jest C-różniczkowalna: zauważmy, że dla t R mamy { z z 0 1, jeżeli z = z0 + t, = z z 0 1, jeżeli z = z 0 + it, czyli odpowiednia granica nie istnieje. Za lóżmy, że f = u + iv jest R-różniczkowalna w z 0. Oznaczajac f x = u x + iv x, f y = u y + iv y mamy Ponieważ f(z) = f(z 0 ) + f x (z 0 )(x x 0 ) + f y (z 0 )(y y 0 ) + o( z z 0 ). (2.3) x = z + z 2, y = z z, 2i otrzymamy f(z) = f(z 0 ) + f x(z 0 ) if y (z 0 ) 2 (z z 0 ) + f x(z 0 ) + if y (z 0 ) (z z 0 ) + o( z z 0 ). 2 Dla funkcji R-różniczkowalnej definiujemy pochodne formalne (2.4) f z (= f z) := 1 ( f 2 f z (= f z) := 1 2 ) x i f, y ( ) f x + i f. y Wyk lad 2, Pochodne czastkowe / z i / z prowadzić możemy również przy pomocy formy df: mamy a stad f x dx + f y dy = df = f z dz + f z dz = f z (dx + idy) + f z (dx idy), (2.5) { fx = f z + f z, f y = i(f z f z ), skad latwo dostaniemy (2.4).

9 FUNKCJE ANALITYCZNE 7 Ćwiczenie Pokazać, że dla dowolnej funkcji R-różniczkowalnej f mamy ( ) f = f z z, ( ) f = f z z. Ćwiczenie Obliczyć f z oraz f z, gdzie f(z) = z 2 Re (z 8 ). Dla funkcji R-różniczkowalnej w z 0 mamy wi ec oraz, dla z z 0, f(z) = f(z 0 ) + f z (z 0 )(z z 0 ) + f z (z 0 )(z z 0 ) + o( z z 0 ) f(z) f(z 0 ) z z 0 = f z (z 0 ) + f z (z 0 ) z z 0 z z 0 + o( z z 0 ) z z 0. Wspólnie z ostatnim przyk ladem daje to nastepuj ac a charakteryzacje funkcji C- różniczkowalnych. Propozycja 2.3. Funkcja zespolona f = u + iv jest C-różniczkowalna w punkcie z o wtedy i tylko wtedy, gdy f jest R-różniczkowalna w z 0 oraz f z (z 0 ) = 0, tzn. w z 0 spe lnione sa równania Cauchy ego-riemanna: W takiej sytuacji f (z 0 ) = f z (z 0 ). { ux = v y, u y = v x. Powiemy, że funkcja f : Ω C, gdzie Ω jest zbiorem otwartym w C, jest holomorficzna, jeżeli jest ona C-różniczkowalna w każdym punkcie. Zbiór wszystkich funkcji holomorficznych w Ω oznaczamy przez O(Ω), natomiast przez O (Ω) zbiór nigdzie nieznikajacych funkcji holomorficznych. Z Propozycji 2.1 i 2.2 wynika, że suma, iloczyn, iloraz i z lożenie funkcji holomorficznych sa funkcjami holomorficznymi. Jeżeli f = u + iv jest R-różniczkowalna, to f jest holomorficzna wtedy i tylko wtedy, gdy spe lnione sa równania Cauchy ego-riemanna. Ćwiczenie Pokazać, że e z jest jedyna funkcja z O(C) taka, że f = f oraz f(0) = 1. Ćwiczenie Pokazać, że cos, sin, cosh, sinh O(C) oraz obliczyć pochodne zespolone tych funkcji. Propozycja 2.4. Za lóżmy, że f jest holomorficzna i klasy C 1 w pewnym otoczeniu z 0 C oraz f (z 0 ) 0. Wtedy istnieje U - otwarte otoczenie z 0 oraz V - otwarte otoczenie f(z 0 ), t.że f : U V jest bijekcja, f 1 jest holomorficzna oraz (2.6) (f 1 ) (f(z)) = 1 f (z), z U. Dowód. Jeżeli zapiszemy f = u + iv, to rzeczywista różniczka f ma postać ( ) ( ) ux u A := y ux u = y v x v y u y u x

10 8 ZBIGNIEW B LOCKI dzi eki równaniom Cauchy ego-riemanna. Z drugiej strony, wprost z definicji C- różniczkowalności f = f x = u x iu y. Mamy wi ec det A = u 2 x + u 2 y = f 2. Dzieki temu, że f (z 0 ) 0, z rzeczywistego twierdzenia o lokalnym dyfeomorfizmie wynika, że istnieja odp. otoczenia U i V, t.że f : U V jest bijekcja klasy C 1 oraz f 1 jest również klasy C 1. Zapiszmy f 1 = α + iβ. Różniczka f 1 jest równa ( ) ( ) αx α y = A 1 1 ux u = y β x β y u 2 x + u 2. y u y u x W szczególności α x = β y, α y = β x, czyli f 1 jest holomorficzna. Formu l e (2.6) dostaniemy różniczkujac wzór f 1 (f(z)) = z, z U. Ćwiczenie Pokazać, że Log z O(C \ (, 0]) oraz (Log z) = 1/z. Podamy teraz formu l e na różniczkowanie z lożenia funkcji zespolonej z krzywa. Za lóżmy, że funkcje f : Ω C oraz γ = (γ 1, γ 2 ) : (a, b) Ω sa różniczkowalne (w klasycznym sensie). Wtedy, korzystajac z (rzeczywistej) formu ly na pochodna z lożenia oraz z (2.3), (2.5), otrzymamy (2.7) d dt f(γ(t)) = f x(γ(t)) γ 1(t) + f y (γ(t)) γ 2(t) = f z (γ(t)) γ (t) + f z (γ(t))γ (t). 3. Ca lkowanie funkcji zespolonych Niech a, b R, a < b. Funkcje γ : [a, b] C nazywamy droga, jeżeli γ jest ciag la oraz γ jest kawa lkami klasy C 1, tzn. istnieja a = t 0 < t 1 < < t n = b takie, że γ C 1 ([t j, t j+1 ]), j = 0, 1,..., n 1. Punkt γ(a) nazywamy poczatkiem zaś γ(b) końcem drogi γ. Obraz γ bedziemy oznaczać γ. Jeżeli γ(a) = γ(b), to γ nazywamy droga zamkniet a. Za lóżmy, że f : γ([a, b]) C jest funkcja ciag l a. Definiujemy b f(z)dz := f(γ(t))γ (t)dt. γ a (Powyższa definicje otrzymamy także rozpatrujac cześć rzeczywista i urojona formy różniczkowej f dz = (u + iv)(dx + idy).) Zauważmy, że funkcja pod ca lka jest ca lkowalna w sensie Riemanna niezależnie od tego jakie wartości przyjmuje w punktach t j. Ponadto, jeżeli ϕ : [c, d] [a, b] jest dyfeomorfizmem, to γ := γ ϕ jest droga taka, że γ = γ oraz { d f(z)dz = f(γ(ϕ(s)))γ (ϕ(s))ϕ γ (s)ds = f(z)dz, jeżeli ϕ > 0; γ f(z)dz, jeżeli ϕ < 0. γ c

11 FUNKCJE ANALITYCZNE 9 Zatem, jeżeli γ (a,b) jest iniekcja, to f(z)dz zależy tylko od obrazu γ oraz od γ kierunku, w którym ca lkujemy, tzn. od orientacji. W takiej sytuacji bedziemy czesto utożsamiać drogi z ich obrazem oraz odpowiednia orientacja. W szczególności, jeżeli D jest obszarem, którego brzeg można iniektywnie sparametryzować droga zamkniet a, to możemy mówić o dodatniej orientacji D - bedzie nia dowolna parametryzacja o kierunku odwrotnym do ruchu wskazówek zegara. Ca lka f(z)dz ma wówczas sens, gdyż nie zależy od wyboru takiej parametryzacji (i jest ona zgodna z ca lka D z formy po krzywej g ladkiej). Bedziemy używać tego oznaczenia przede wszystkim, gdy D jest ko lem lub wnetrzem trójkata. Jeżeli f jest określone w pewnym otoczeniu obrazu drogi γ i ma tam funkcje pierwotna, tzn. istnieje funkcja holomorficzna F taka, że F = f, to z (2.7) otrzymamy (3.1) γ f(z)dz = b a d F (γ(t)) dt = F (γ(b)) F (γ(a)). dt W szczególności, jeżeli γ jest droga zamkniet a, to f(z)dz = 0. γ Ćwiczenie Pokazać, że jeżeli funkcja f = u + iv ma pierwotna, to pole wektorowe (v, u) jest potencjalne, tzn. (v, u) = χ dla pewnej funkcji χ. Przyk lad. Dla n Z, z 0 C oraz r > 0 obliczymy K(z 0,r) (z z 0 ) n dz. Odpowiednia parametryzacja tego okregu bedzie Wtedy γ (t) = rie it oraz γ(t) = z 0 + re it, 0 t 2π. (3.2) (z z 0 ) n dz = 2π K(z 0,r) 0 { 0, jeżeli n 1; r n+1 ie (n+1)it dt = 2πi, jeżeli n = 1. Zauważmy, że dla n 1 wynika to również z (3.1), gdyż wtedy funkcja (z z 0 ) n ma pierwotna określona w otoczeniu K(z 0, r). Pokazuje to także, że funkcja 1/(z z 0 ) nie ma pierwotnej w żadnym pierścieniu o środku w z 0. Jeżeli z, w C, to przez [z, w] oznaczamy droge dana przez parametryzacje γ(t) = (1 t)z + tw, t [0, 1]. Ćwiczenie Obliczyć Log z dz. Ćwiczenie Pokazać, że trzema sposobami: [1,i] K(z 0,r) dζ ζ z = 2πi, z K(z 0, r),

12 10 ZBIGNIEW B LOCKI i) wprost z definicji, korzystajac z faktu, że sinus jest funkcja nieparzysta, a cosinus parzysta, wyprowadzić dζ π ζ z = 2i 1 + a cos t 1 + 2a cos t + a 2 dt, K(z 0,r) 0 gdzie a = z z 0 /r < 1 i obliczyć odp. ca lke nieoznaczona; ii) udowodnić, że dla każdej pó lprostej P o poczatku w z funkcja ζ 1/(ζ z) ma pierwotna w C \ P oraz użyć (3.1), (3.2); iii) pokazać, że 1 ζ z = (z z 0 ) n (ζ z 0 ) n+1, z K(z 0, r), ζ K(z 0, r), n=0 przy czym zbieżność jest jednostajna dla ζ K(z 0, r), i użyć (3.2). Zauważmy, że b (3.3) f(z)dz f(γ(t)) γ (t) dt l(γ) max f, γ gdzie jest d lugościa γ. γ a l(γ) := b a γ (t) dt Wyk lad 3, Twierdzenie ca lkowe Cauchy ego Podstawowa w lasnościa geometryczna funkcji holomorficznych jest twierdzenie ca lkowe Cauchy ego. Latwo wynika ono ze wzoru Greena w nastepuj acym przypadku (Cauchy, 1825): za lóżmy, że f jest funkcja holomorficzna klasy C 1 w obszarze Ω, natomiast γ jest droga zamkniet a w Ω, która parametryzuje brzeg klasy C 1 obszaru D Ω. Wtedy f(z)dz = d(fdz) = f z dz dz = 0. γ D G lównym problemem w uogólnieniu tego faktu jest pozbycie sie za lożenia, że f jest klasy C 1. Zosta lo to dokonane przez Goursata w 1900 r. Podstawowym krokiem w dowodzie ogólnej wersji twierdzenia ca lkowego Cauchy ego by lo wykazanie jego wzmocnionej wersji dla brzegu trójkata (sam Goursat rozpatrywa l czworokaty, jak jednak wkrótce zauważy l Pringsheim, naturalnym obiektami metody Goursata by ly trójkaty). Twierdzenie 4.1. Za lóżmy, że f O(Ω \ {z 0 }) C(Ω), gdzie Ω jest otwartym podzbiorem C, zaś z 0 Ω. Wtedy dla dowolnego trójkata T Ω (czyli otoczki wypuk lej trzech niewspó lliniowych punktów) mamy f(z)dz = 0. T D

13 FUNKCJE ANALITYCZNE 11 Dowód. Za lóżmy najpierw, że z 0 / T. Przez z 1, z 2, z 3 oznaczmy wierzcho lki T. Rozpatrujac punkty (z j + z k )/2, j, k = 1, 2, 3, dzielimy trójkat T na cztery trójkaty T 1,..., T 4. Mamy wtedy f(z)dz = 4 T j=1 T j f(z)dz. Wybierajac jako T 1 odpowiedni z trójkatów T 1,..., T 4 otrzymamy f(z)dz T 4 f(z)dz. 1 T Zauważmy także, że l( T 1 ) = l( T )/2. W ten sam sposób wybieramy indukcyjnie trójkaty T n, n = 1, 2,..., tak, że f(z)dz T n 1 4 f(z)dz T n oraz l( T n ) = l( T n 1 )/2. Otrzymaliśmy zatem zstepuj acy ciag trójkatów T n taki, że (4.1) f(z)dz T 4n f(z)dz n oraz T (4.2) diam(t n ) l( T n) 2 Z twierdzenia Cantora wynika, że = l( T ) 2 n+1. T n = { z} n=1 dla pewnego z T. Z C-różniczkowalności f w z mamy gdzie f(z) = f( z) + ( f ( z) + ε(z) ) (z z), lim ε(z) = 0. z z Ponieważ funkcja f( z) + f ( z)(z z) ma pierwotna, z (3.1) i (3.3) wynika, że f(z)dz = ε(z)(z z)dz T n T l( T n)diam(t n ) max ε. T n n Korzystajac z (4.1) i (4.2) otrzymamy dla każdego n T f(z)dz (l( T ))2 2 max ε, T n

14 12 ZBIGNIEW B LOCKI czyli twierdzenie zachodzi przy za lożeniu, że z 0 / T. Jeżeli z 0 T, to dzielac T na trzy (lub dwa) mniejsze trójkaty, których wierzcho lkiem jest z 0 widzimy, że bez straty ogólności możemy za lożyć, że z 0 jest jednym z wierzcho lków T. Jeżeli teraz podzielimy T na trójkat T n o wierzcho lku w z 0 oraz czworokat Q n tak, że l(t n) daży do 0, to z poprzedniej cześci wnioskujemy, że f(z)dz = 0, Q n zatem T f(z)dz = T n f(z)dz l(t n) max f. T Przyk lady. i) Niech f(z) = e z2 i dla R > 0 niech T R bedzie trójkatem o wierzcho lkach 0, R, R + ir. Z Twierdzenia 4.1 mamy f(z)dz = 0. T R Ćwiczenie Wywnioskować stad, że 0 cos t 2 dt = 0 sin t 2 dt = π 8. ii) Ćwiczenie Ca lkujac funkcje e z2 po brzegu prostokata o wierzcho lkach 0, R, R + λi, λi (ponieważ każdy wielokat możemy podzielić na skończona liczbe trójkatów, jest jasne, że Twierdzenie 4.1 zachodzi w przypadku, gdy T jest dowolnym wielokatem) pokazać, że 0 e x2 cos(2λx)dx = π 2 2 e λ, λ R. Nastepnym krokiem jest pokazanie zwiazku twierdzenia ca lkowego Cauchy ego z istnieniem funkcji pierwotnej. Twierdzenie 4.2. Niech Ω bedzie obszarem w C, natomiast f funkcja ciag l a w Ω. Wtedy nastepuj ace warunki sa równoważne i) Istnieje F O(Ω) takie, że F = f; ii) f(z)dz = 0 dla każdej drogi zamknietej γ w Ω. γ Jeżeli Ω jest obszarem gwiaździstym, to powyższe warunki sa równoważne nastepu- jacej w lasności iii) f(z)dz = 0 dla każdego trójkata T Ω. T Dowód. Implikacja i) ii) wynika natychmiast z (3.1). W celu pokazania implikacji przeciwnej ustalmy z 0 Ω. Dla z Ω niech γ bedzie dowolna droga l acz ac a z 0 oraz z. K ladziemy F (z) := f(ζ)dζ. γ

15 FUNKCJE ANALITYCZNE 13 Dzieki i) widać, że definicja F nie zależy od wyboru γ. Dla odp. ma lych h mamy (4.3) F (z + h) F (z) = f(ζ)dζ, a stad, dzieki (3.3), F (z + h) F (z) f(z) h = 1 h [z,z+h] [z,z+h] (f(ζ) f(z))dζ sup f(ζ) f(z). ζ [z,z+h] Z ciag lości f w z wynika, że ostatnie wyrażenie daży do 0. Otrzymaliśmy zatem, że F O(Ω) oraz F = f. Jeżeli Ω jest gwiaździsty, to implikacja ii) iii) jest trywialna, natomiast, zak ladajac, że zachodzi iii) i że Ω jest gwiaździsty wzgledem z 0, k ladziemy F (z) := f(z)dz, z Ω. [z 0,z] Z iii) wynika, że zachodzi (4.3) i identycznie jak poprzednio dowodzimy, że F = f. Z Twierdzeń 4.1 i 4.2 wynika wersja twierdzenia Cauchy ego dla zbiorów gwiaździstych. Wniosek 4.3. Jeżeli obszar Ω jest gwiaździsty i f O(Ω\{z 0 }) C(Ω) dla pewnego z 0 Ω, to f(z)dz = 0 dla każdej drogi zamkni etej γ w Ω. γ 5. Wzór ca lkowy Cauchy ego Podstawowa w lasnościa funkcji holomorficznych jest wzór ca lkowy Cauchy ego (1831), który odtwarza dana funkcje wewnatrz ko la z jej wartości na brzegu. Twierdzenie 5.1. Jeżeli f jest funkcja holomorficzna w otoczeniu ko la K(z 0, r), to (5.1) f(z) = 1 f(ζ) 2πi ζ z dζ, z K(z 0, r). K(z 0,r) Co wiecej, f jest C-różniczkowalna dowolna ilość razy oraz f (n) (z) = n! f(ζ) 2πi (ζ z) n+1 dζ, z K(z 0, r), n = 1, 2,... K(z 0,r) Dowód. Niech Ω bedzie gwiaździstym otoczeniem K(z 0, r), w którym funkcja f jest określona. Dla ζ Ω zdefiniujmy f(ζ) f(z), ζ z, g(ζ) := ζ z f (z), ζ = z.

16 14 ZBIGNIEW B LOCKI Wtedy g O(Ω \ {z}) C(Ω), zatem Wniosek 3.3 implikuje, że 0 = K(z 0,r) g(ζ)dζ = K(z 0,r) f(ζ) dζ 2πif(z). ζ z Otrzymaliśmy zatem (5.1). Druga cześć tezy wynika z faktu, że możemy teraz różniczkować pod znakiem ca lki, zauważmy, że ( ) n ( ) 1 =0, z ζ z ( ) n ( ) 1 1 = z ζ z (ζ z) n+1. Druga cz eść Twierdzenia 5.1 jest specjalnym przypadkiem ogólnego rezulatu o holomorficzności funkcji danej wzorem ca lkowym dla dowolnej drogi (nazywanego lematem o produkcji funkcji holomorficznych). Lemat 5.2. Za lóżmy, że γ jest dowolna droga w C, natomiast g funkcja ciag l a na γ. Po lóżmy g(ζ) f(z) := ζ z dζ, z C \ γ. γ Wtedy f O(C \ γ ), f jest C-różniczkowalna dowolna ilość razy oraz dla n = 1, 2,... mamy Ćwiczenie f (n) (z) = n! γ Obliczyć K(0,2) g(ζ) (ζ z) n+1 dζ, z C \ γ. e z (z + 1) 2 dz. Jeżeli rozpatrzymy wzór Cauchy ego dla z = z 0 oraz parametryzacj e ζ = z 0 +re it, 0 t 2π, otrzymamy twierdzenie o wartości średniej. Wniosek 5.3. (Poisson, 1823) Jeżeli f jest funkcja holomorficzna w otoczeniu ko la K(z 0, r), to f(z 0 ) = 1 2π f(z 0 + re it )dt. 2π 0 Bezpośrednia konsekwecja wzoru Cauchy ego jest także nierówność Cauchy ego (1835). Twierdzenie 5.4. Niech f O(K(z 0, r)) bedzie taka, że f M dla pewnej sta lej M. Wtedy f (n) (z 0 ) n! M, n = 1, 2,... rn Dowód. Wystarczy zastosować wzór Cauchy ego w kole K(z 0, ρ) dla ρ < r oraz (3.3), a nast epnie skorzystać z dowolności ρ.

17 FUNKCJE ANALITYCZNE Podstawowe w lasności funkcji holomorficznych Udowodnimy teraz szereg w lasności funkcji holomorficznych wynikajacych ze wzoru Cauchy ego. Pokazaliśmy, że każda funkcja holomorficzna jest C-różniczkowalna dowolna ilość razy. W szczególności, każda funkcja, która lokalnie ma pierwotna jest holomorficzna. Z Twierdzenia 4.2 wynika zatem rezultat odwrotny do twierdzenia ca lkowego Cauchy ego. Twierdzenie 6.1. (Morera, 1886) Za lóżmy, że funkcja f C(Ω) (Ω otwarty w C) spe lnia f(z) dz = 0 dla każdego trójkata T Ω. Wtedy f O(Ω). Ćwiczenie T Pokazać, że jeżeli f C(C) O(C \ R), to f O(C). Przypomnimy teraz regularyzacje funkcji przez splot, która jest przydatna w rozwiazaniu nastepnego ćwiczenia. Niech ρ C (C) bedzie takie, że supp ρ = (ozn. := K(0, 1)), ρ 0, ρ(z) zależy tylko od z oraz ρ dλ = 1. Dla ε > 0 C po lóżmy ρ ε (z) := ε 2 ρ(z/ε), wtedy supp ρ ε = K(0, ε) oraz C ρ ε dλ = 1. Dla f L 1 loc (Ω) i w Ω ε := {z Ω : K(z, ε) Ω} k ladziemy f ε (w) := (f ρ ε )(w) = K(w,ε) f(z)ρ ε (w z)dλ(z) = f(w εz)ρ(z)dλ(z). Wtedy f ε C (Ω ε ) (przy czym D α f ε = f D α ρ ε ), f ε f w L 1 loc (Ω), gdy ε 0, natomiast jeżeli f jest ciag le, to zbieżność jest lokalnie jednostajna. Ćwiczenie Udowodnić twierdzenie Morery dla kó l: jeżeli dla f C(Ω) zachodzi K(z 0,r) f(z) dz = 0 dla każdego ko la K(z 0, r) Ω, to f O(Ω). Funkcje holomorficzna określona na C nazywamy ca lkowita. Twierdzenie 6.2. (Liouville, 1847, Cauchy, 1844) Każda ograniczona funkcja ca lkowita jest sta la. Dowód. Jeżeli f M na C, to z nierówności Cauchy ego wynika, że f (z) M/r dla każdego z C i r > 0. Jeżeli wiec r, to dostaniemy, że f = 0 na C. Ale to oznacza, że również pochodna rzeczywista f wszedzie znika. Wyk lad 4, Ćwiczenie Pokazać, że jeżeli funkcja f O(C) jest taka, że Re f M dla pewnej sta lej M, to f jest sta la. Ćwiczenie Pokazać, że jeżeli funkcja ca lkowita f spe lnia f(z) C z n, gdy z R, dla pewnych C, R > 0, to f musi być wielomianem stopnia n.

18 16 ZBIGNIEW B LOCKI Z twierdzenia Liouville a w latwy sposób wynika zasadnicze twierdzenie algebry. Bo jeżeli niesta ly wielomian P nie mia lby pierwiastka, to f := 1/P by loby funkcja ca lkowita. Co wiecej lim f(z) = 0. z W szczególności, f by laby funkcja ograniczona, a wiec na mocy twierdzenia Liouville a otrzymalibyśmy, że P jest sta ly. Nastepnym rezulatem jest zasada maksimum dla funkcji holomorficznych. Twierdzenie 6.3. Jeżeli f jest funkcja holomorficzna w obszarze Ω taka, że f osiaga maksimum w Ω, to f jest sta la. Dowód. Dla K(z 0, r) Ω z twierdzenia o wartości średniej wynika, że f(z 0 ) 1 2π 2π 0 f(z 0 + re it ) dt. Jeśli zatem f f(z 0 ) na K(z 0, r), to z ciag lości f wynika, że f = f(z 0 ) na K(z 0, r), a wobec dowolności r, także w K(z 0, r). Twierdzimy, że jeżeli f = f(z 0 ) w K(z 0, r), to wtedy f = f(z 0 ) w K(z 0, r). Jeżeli f(z 0 ) = 0, to jest to oczywiste, możemy wiec za lożyć, że f 0 w K(z 0, r). Mamy 0 = ( f 2 ) z = f z f + (f z )f = f f, a zatem f = 0, wi ec f = f(z 0 ) w K(z 0, r). Pokazaliśmy wi ec, że jeżeli f(z 0 ), to f = f(z 0 ) w K(z 0, r). Jeżeli teraz f osiaga maksimum w z 0 Ω, to k ladziemy Ω := {z Ω : f(z) = f(z 0 )}. max f = K(z 0,r) Zbiór ten jest oczywiście domkniety, natomiast z pierwszej cześci dowodu wynika, że jest on również otwarty, co oznacza, że Ω = Ω. Twierdzenie 6.3 to s laba zasada maksimum (zak ladamy, że maksimum jest globalne), nied lugo pokażemy wzmocnienie Twierdzenia 6.3 (przy za lożeniu, że maksimum jest lokalne). Ćwiczenie Niech wielomian P (z) = a 0 +a 1 z+ +a n z n b edzie taki, że P (z) 1, gdy z = 1. Pokazać, że a j 1, j = 1,..., n. Ćwiczenie Niech f bedzie funkcja holomorficzna w otoczeniu pierścienia {1 z 3} taka, że f 1, gdy z = 1 oraz f 9, gdy z = 3. Pokazać, że f(z) 4, gdy z = 2. Przy pomocy wzoru Cauchy ego możemy też latwo udowodnić dwa twierdzenia dotyczace ciagów funkcji holomorficznych. Twierdzenie 6.4. (Weierstrass, 1841) Jeżeli f n jest ciagiem funkcji holomorficznych w Ω zbieżnym lokalnie jednostajnie do funkcji f, to f jest funkcja holomorficzna oraz dla każdego k = 1, 2,... mamy lokalnie jednostajna zbieżność f n (k) f (k). Dowód. Niech K(z 0, r) Ω. Funkcje f n spe lniaja wzór Cauchy ego (3.6), zatem spe lnia go również f. Z Lematu 4.2 wynika, że f jest holomorficzna w K(z 0, r). Co wiecej, z nierówności Cauchy ego dostaniemy max f n (k) f (k) k! K(z 0,r/2) (r/2) k max f n f. K(z 0,r/2)

19 FUNKCJE ANALITYCZNE 17 Twierdzenie 6.5. (Montel, 1911) Jeżeli f n jest lokalnie jednostajnie ograniczonym ciagiem funkcji holomorficznych na obszarze Ω w C, to istnieje podciag f nk zbieżny lokalnie jednostajnie w Ω. Dowód. Jeżeli K(z 0, r) Ω, to z wzoru Cauchy ego mamy z z 0 f n (ζ) f n (z) f n (z 0 ) = 2πi (ζ z)(ζ z 0 ) dζ K(z 0,r) Mδ r(r δ), gdzie z z 0 δ oraz f n M w K(z 0, r). Wynika stad, że rodzina {f n } jest jednakowo ciag la, tzn. z 0 Ω ε > 0 δ > 0 n : z z 0 δ f n (z) f n (z 0 ) ε. Teza twierdzenia wynika teraz z twierdzenia Arzeli-Ascoliego. Ćwiczenie Korzystajac z twierdzenia Baire a pokazać, że jeżeli f n O(Ω) jest ciagiem zbieżnym punktowo w Ω, to istnieje otwarty, gesty podzbiów Ω w Ω, gdzie ciag f n jest lokalnie jednostajnie ograniczony, skad wynika, że lim f n O(Ω ). 7. Szeregi pot egowe Wyrażenie (7.1) a n (z z 0 ) n, n=0 z C nazywamy szeregiem potegowym o środku w z 0 C i wspó lczynnikach a n C, n = 0, 1,.... Przyk lad. Szereg geometryczny z n jest zbieżny wtedy i tylko wtedy, gdy z < 1. Wynika to ze wzoru Możemy zatem zapisać n=0 1 + z + + z n = 1 zn+1, z 1. 1 z (7.2) n=0 z n = 1, z < 1. 1 z Twierdzenie 7.1. (Cauchy, 1821, Hadamard, 1892) Po lóżmy (7.3) R := 1 n lim sup an. n Wtedy szereg (7.1) jest bezwzgl ednie i lokalnie jednostajnie zbieżny w kole K(z 0, R) oraz rozbieżny dla każdego z C \ K(z 0, R).

20 18 ZBIGNIEW B LOCKI Dowód. Dla z K(z 0, R) niech r i λ bed a takie, że z z 0 r < R oraz r/r < λ < 1. Wtedy dla n odp. dużego mamy n a n λ/r, zatem N 2 N2 a n (z z 0 ) n a n (z z 0 ) n n=n 1 n=n 1 n=n 1 λ n = λn1 1 λ 0, gdy N 1. Z warunku Cauchy ego zbieżności otrzymaliśmy zatem bezwzgledn a i jednostajna zbieżność szeregu na K(z 0, r). Z drugiej strony, jeżeli z z 0 > R, to istnieje podciag a nk taki, że k n ank 1/ z z 0, co oznacza, że a nk (z z 0 ) n k 1, nie jest zatem spe lniony warunek konieczny zbieżności szeregu. Ko lo K(z 0, R) z Twierdzenia 7.1 nazywamy ko lem zbieżności, zaś R promieniem zbieżności szeregu (7.1). Formu la (7.3) na promień zbieżności szeregu potegowego nosi nazwe wzoru Cauchy ego-hadamarda. Zauważmy, że promień zbieżności szeregu (7.1) jest dodatni wtedy i tylko wtedy, gdy istnieje M > 0 takie, że dla n odp. dużego mamy a n M n - wtedy R 1/M. Twierdzenie 7.1 nie rozstrzyga zbieżności szeregu potegowego na brzegu ko la zbieżności. Przyk lady. Ko lem zbieżności każdego z szeregów z n, n=0 z n n, n=1 n=1 z n jest K(0, 1). n2 i) Szereg z n jest rozbieżny we wszystkich punktach z brzegu ko la zbieżności. ii) Szereg z n /n 2 jest zbieżny bezwzgl ednie na brzegu. iii) Szereg z n /n jest rozbieżny w 1 i zbieżny warunkowo na K(0, 1) \ {1} ( Ćwiczenie ). iv) Ćwiczenie Pokazać, że istnieje rosnacy ciag liczb naturalnych p n oraz geste podzbiory A +, A K(0, 1) takie, że z p n = ±1 dla z A ±. Stad szereg z np n /n jest rozbieżny w A + i zbieżny warunkowo w A. Istotna w lasnościa szeregów potegowych jest jednoznaczność ich wspó lczynników. Propozycja 7.2. Za lóżmy, że szeregi potegowe a n (z z 0 ) n oraz b n (z z 0 ) n sa zbieżne do tych samych wartości na zbiorze A takim, że z 0 jest punktem skupienia A. Wtedy a n = b n dla wszystkich n. Dowód. Bez straty ogólności możemy za lożyć, że b n = 0 dla wszystkich n. Przypuśćmy, że a m 0 dla pewnego m i wybierzmy najmniejsze takie m. Wtedy a n (z z 0 ) n = (z z 0 ) m n=0 n=0 a n+m (z z 0 ) n, z z 0. Szereg n=0 a n+m(z z 0 ) n, zbieżny do pewnej funkcji ciag lej w otoczeniu z 0 (dzieki Twierdzeniu 7.1), znika dla z A, zatem znika również w z 0, czyli a m = 0 - sprzeczność. Przyk lad. Rozpatrzmy ciag Fibonacciego (1202): a 0 = 0, a 1 = 1, a n = a n 2 + a n 1, n = 2, 3,...

FUNKCJE ANALITYCZNE. Zbigniew B locki. Spis treści

FUNKCJE ANALITYCZNE. Zbigniew B locki. Spis treści FUNKCJE ANALITYCZNE JEDNOSEMESTRALNY WYK LAD DLA SEKCJI NIETEORETYCZNYCH INSTYTUT MATEMATYKI UJ, 2008 Zbigniew B locki Spis treści 1. Podstawowe w lasności liczb zespolonych 2 2. Różniczkowanie funkcji

Bardziej szczegółowo

Indeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej

Indeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej Indeks odwzorowania zmiennej zespolonej wzgl edem krzywej zamkni etej 1. Liczby zespolone - konstrukcja Hamiltona 2. Homotopia odwzorowań na okr egu 3. Indeks odwzorowania ciag lego wzgledem krzywej zamknietej

Bardziej szczegółowo

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5)

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5) . Liczby zespolone Zadanie.. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone () i +i, () 3i, (3) ( + i 3) 6, (4) (5) ( +i ( i) 5, +i 3 i ) 4. Zadanie.. Znaleźć moduł i argument główny

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

c n (z z 0 ) n (2) Powiemy, że szereg Laurenta (2) jest zbieżny, jeśli każdy z szeregów zdefiniowanych w (1) jest f(z). Sume

c n (z z 0 ) n (2) Powiemy, że szereg Laurenta (2) jest zbieżny, jeśli każdy z szeregów zdefiniowanych w (1) jest f(z). Sume Szeregi Laurenta, punkty osobliwe izolowane, klasyfikacja funkcji ze wzgl edu na osobliwości Dane s dwa szeregi postaci c n (z z 0 ) n i c n (z z 0 ) n. (1) n=1 1 Pierwszy z tych szeregów jest zbieżny

Bardziej szczegółowo

Funkcje analityczne. Wykład 12

Funkcje analityczne. Wykład 12 Funkcje analityczne. Wykład 2 Szeregi Laurenta. Osobliwości funkcji zespolonych. Twierdzenie o residuach Paweł Mleczko Funkcje analityczne (rok akademicki 206/207) Plan wykładu W czasie wykładu omawiać

Bardziej szczegółowo

Wyk lad 7 Baza i wymiar przestrzeni liniowej

Wyk lad 7 Baza i wymiar przestrzeni liniowej Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem

Bardziej szczegółowo

Grupy i cia la, liczby zespolone

Grupy i cia la, liczby zespolone Rozdzia l 1 Grupy i cia la, liczby zespolone Dla ustalenia uwagi, b edziemy używać nast epuj acych oznaczeń: N = { 1, 2, 3,... } - liczby naturalne, Z = { 0, ±1, ±2,... } - liczby ca lkowite, W = { m n

Bardziej szczegółowo

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu

Bardziej szczegółowo

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie 1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z

Bardziej szczegółowo

dkowanych par liczb rzeczywistych postaci z = (a, b). W zbiorze tym wprowadzamy dzia lania +, w naste dziemy z liczba

dkowanych par liczb rzeczywistych postaci z = (a, b). W zbiorze tym wprowadzamy dzia lania +, w naste dziemy z liczba 1. Liczby zespolone Cia lo liczb rzeczywistych be dziemy oznaczać symbolem R, pierścień liczb ca lkowitych symbolem Z, a zbiór liczb naturalnych symbolem N. Przyjmujemy, że 0 / N. Rozważmy zbiór C = R

Bardziej szczegółowo

Wyk lad 3 Wielomiany i u lamki proste

Wyk lad 3 Wielomiany i u lamki proste Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich

Bardziej szczegółowo

Wyk lad 1 Podstawowe struktury algebraiczne

Wyk lad 1 Podstawowe struktury algebraiczne Wyk lad 1 Podstawowe struktury algebraiczne 1 Dzia lanie w zbiorze Majac dane dowolne dwa przedmioty a b możemy z nich utworzyć pare uporzadkowan a (a b) o poprzedniku a i nastepniku b. Warunek na równość

Bardziej szczegółowo

6. Punkty osobliwe, residua i obliczanie całek

6. Punkty osobliwe, residua i obliczanie całek 6. Punkty osobliwe, residua i obliczanie całek Mówimy, że funkcja holomorficzna f ma w punkcie a zero krotności k, jeśli f(a) = f (a) = = f (k ) (a) = 0, f (k) (a) 0. Rozwijając f w szereg Taylora w otoczeniu

Bardziej szczegółowo

w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak

w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak Równania różniczkowe czastkowe w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak Horyzonty 2014 Podstawowy obiekt wyk ladu: funkcje holomorficzne wielu zmiennych Temat: dwa problemy, których znane

Bardziej szczegółowo

z n n=1 S n nazywamy sum a szeregu. Szereg, który nie jest zbieżny, nazywamy rozbieżnym. n=1

z n n=1 S n nazywamy sum a szeregu. Szereg, który nie jest zbieżny, nazywamy rozbieżnym. n=1 3 Szeregi zespolone 3. Szeregi liczbowe Mówimy, że szereg o wyrazach zespolonych jest zbieżny, jeżeli ci ag jego sum czȩściowych {S n }, gdzie S n = z + z +... + jest zbieżny do granicy w laściwej. Granicȩ

Bardziej szczegółowo

Wyk lad 14 Cia la i ich w lasności

Wyk lad 14 Cia la i ich w lasności Wyk lad 4 Cia la i ich w lasności Charakterystyka cia la Określenie cia la i w lasności dzia lań w ciele y ly omówione na algerze liniowej. Stosujac terminologie z teorii pierścieni możemy powiedzieć,

Bardziej szczegółowo

FUNKCJE ZESPOLONE Lista zadań 2005/2006

FUNKCJE ZESPOLONE Lista zadań 2005/2006 FUNKJE ZESPOLONE Lista zadań 25/26 Opracowanie: dr Jolanta Długosz Liczby zespolone. Obliczyć wartości podanych wyrażeń: (2 + ) ( ) 2 4 i (5 + i); b) (3 i)( 4 + 2i); c) 4 + i ; d) ( + i) 4 ; e) ( 2 + 3i)

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE

WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE Definicja 1 Algebra abstrakcyjna nazywamy teorie, której przedmiotem sa dzia lania na

Bardziej szczegółowo

Wyk lad 9 Baza i wymiar przestrzeni liniowej

Wyk lad 9 Baza i wymiar przestrzeni liniowej Wyk lad 9 Baza i wymiar przestrzeni liniowej 1 Operacje elementarne na uk ladach wektorów Niech α 1,..., α n bed dowolnymi wektorami przestrzeni liniowej V nad cia lem K. Wyróżniamy nastepuj ace operacje

Bardziej szczegółowo

Wyk lad 11 1 Wektory i wartości w lasne

Wyk lad 11 1 Wektory i wartości w lasne Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V

Bardziej szczegółowo

Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)

Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018) Funkcje analityczne Wykład 2. Płaszczyzna zespolona Paweł Mleczko Funkcje analityczne (rok akademicki 2017/2018) Plan wykładu W czasie wykładu omawiać będziemy różne reprezentacje płaszczyzny zespolonej

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

Wyk lad 2 Podgrupa grupy

Wyk lad 2 Podgrupa grupy Wyk lad 2 Podgrupa grupy Definicja 2.1. Pod grupy (G,, e) nazywamy taki podzbiór H G, że e H, h 1 H dla każdego h H oraz h 1 h 2 H dla dowolnych h 1, h 2 H. Jeśli H jest grupy G, to bedziemy pisali H G.

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn.

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn. WRAiT 2 #1 1. Dla jakich a C ciągi o wyrazach na n, a n 1 + a n, an /n, są zbieżne? 2. Wykaż zbieżność i znajdź granice ciągów n a k, a n 1 + a 2n ( a < 1), a n 1 + a 2n ( a > 1), 1 n 3. Dla danego ϕ R

Bardziej szczegółowo

Wyk lad 8 macierzy i twierdzenie Kroneckera-Capellego

Wyk lad 8 macierzy i twierdzenie Kroneckera-Capellego Wyk lad 8 Rzad macierzy i twierdzenie Kroneckera-Capellego 1 Określenie rz edu macierzy Niech A bedzie m n - macierza Wówczas wiersze macierzy A możemy w naturalny sposób traktować jako wektory przestrzeni

Bardziej szczegółowo

Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A

Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A Funkcje analityczne Wykład 3. Funkcje holomorficzne Paweł Mleczko Funkcje analityczne (rok akademicki 206/207) Funkcje zespolone zmiennej zespolonej Funkcje zespolone zmiennej zespolonej Niech A C. Funkcja

Bardziej szczegółowo

Matematyka A, klasówka, 24 maja zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le. rozwia

Matematyka A, klasówka, 24 maja zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le. rozwia Matematyka A, klasówka, 4 maja 5 Na prośbe jednej ze studentek podaje zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le dów Podać definicje wektora w lasnego i wartości w lasnej

Bardziej szczegółowo

Wyk lad 6 Podprzestrzenie przestrzeni liniowych

Wyk lad 6 Podprzestrzenie przestrzeni liniowych Wyk lad 6 Podprzestrzenie przestrzeni liniowych 1 Określenie podprzestrzeni Definicja 6.1. Niepusty podzbiór V 1 V nazywamy podprzestrzeni przestrzeni liniowej V, jeśli ma on nastepuj ace w lasności: (I)

Bardziej szczegółowo

RACHUNEK OPERATOROWY MIKUSIŃSKIEGO I JEGO ZASTOSOWANIE DO RÓWNAŃ

RACHUNEK OPERATOROWY MIKUSIŃSKIEGO I JEGO ZASTOSOWANIE DO RÓWNAŃ RACHUNEK OPERATOROWY MIKUSIŃSKIEGO I JEGO ZASTOSOWANIE DO RÓWNAŃ RÓŻNICZKOWYCH Tomasz Kochanek 1 Twierdzenie Titchmarsha Symbolem C[, ) oznaczać bedziemy przestrzeń wszystkich zespolonych funkcji ciag

Bardziej szczegółowo

Wykład 15. Matematyka 3, semestr zimowy 2011/ listopada 2011

Wykład 15. Matematyka 3, semestr zimowy 2011/ listopada 2011 Wykład 5 Matematyka 3, semestr zimowy / 9 listopada W trakcie tego i następnych kilku wykładów zajmować się będziemy analizą zespoloną, czyli różniczkowaniem i całkowaniem funkcji argumentu zespolonego

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

1 Przestrzenie unitarne i przestrzenie Hilberta.

1 Przestrzenie unitarne i przestrzenie Hilberta. Przestrzenie unitarne i przestrzenie Hilberta.. Wykazać, że iloczyn skalarny w przestrzeni wektorowej X nad cia lem K ma nastepuj ace w lasności: (i) x, y + z = x, y + x, z, (ii) x, λy = λ x, y, (iii)

Bardziej szczegółowo

Ekonomia matematyczna i dynamiczna optymalizacja

Ekonomia matematyczna i dynamiczna optymalizacja Ekonomia matematyczna i dynamiczna optymalizacja Ramy wyk ladu i podstawowe narz edzia matematyczne SGH Semestr letni 2012-13 Uk lady dynamiczne Rozwiazanie modelu dynamicznego bardzo czesto można zapisać

Bardziej szczegółowo

Funkcje analityczne. Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017)

Funkcje analityczne. Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017) Funkcje analityczne Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017) Paweł Mleczko Uniwersytet im. Adama Mickiewicza w Poznaniu 1. Sprawy organizacyjne

Bardziej szczegółowo

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5 Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................

Bardziej szczegółowo

Liczby zespolone. P. F. Góra (w zastępstwie prof. K. Rościszewskiego) 27 lutego 2007

Liczby zespolone. P. F. Góra (w zastępstwie prof. K. Rościszewskiego)  27 lutego 2007 Liczby zespolone P. F. Góra (w zastępstwie prof. K. Rościszewskiego) http://th-www.if.uj.edu.pl/zfs/gora/ 27 lutego 2007 Definicja C zbiór par liczb rzeczywistych w którym określono następujace działania:

Bardziej szczegółowo

Niezb. ednik matematyczny. Niezb. ednik matematyczny

Niezb. ednik matematyczny. Niezb. ednik matematyczny Niezb ednik matematyczny Niezb ednik matematyczny Liczby zespolone I Rozważmy zbiór R R (zbiór par liczb rzeczywistych) i wprowadźmy w nim nastepuj ace dzia lania: z 1 + z 2 = (x 1, y 1 ) + (x 2, y 2 )

Bardziej szczegółowo

Rozdział 6. Ciągłość. 6.1 Granica funkcji

Rozdział 6. Ciągłość. 6.1 Granica funkcji Rozdział 6 Ciągłość 6.1 Granica funkcji Podamy najpierw dwie definicje granicy funkcji w punkcie i pokażemy ich równoważność. Definicja Cauchy ego granicy funkcji w punkcie. Niech f : X R, gdzie X R oraz

Bardziej szczegółowo

Funkcje Analityczne, ćwiczenia i prace domowe

Funkcje Analityczne, ćwiczenia i prace domowe Funkcje Analityczne, ćwiczenia i prace domowe P. Wojtaszczyk 29 maja 22 Ten plik będzie progresywnie modyfikowany. Będzie on zawierał. Zadanie omówione na ćwiczeniach 2. Zadania ćwiczebne do samodzielnego

Bardziej szczegółowo

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy

Bardziej szczegółowo

Wyk lad 14 Formy kwadratowe I

Wyk lad 14 Formy kwadratowe I Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można

Bardziej szczegółowo

Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej

Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej 27-28/10/09 ZBIORY MIERZALNE WZGLȨDEM MIARY ZEWNȨTRZNEJ Niech µ bȩdzie miar

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

FUNKCJE LICZBOWE. x 1

FUNKCJE LICZBOWE. x 1 FUNKCJE LICZBOWE Zbiory postaci {x R: x a}, {x R: x a}, {x R: x < a}, {x R: x > a} oznaczane sa symbolami (,a], [a, ), (,a) i (a, ). Nazywamy pó lprostymi domknie tymi lub otwartymi o końcu a. Symbol odczytujemy

Bardziej szczegółowo

Wyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera

Wyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera Wyk lad 7 Metoda eliminacji Gaussa Wzory Cramera Metoda eliminacji Gaussa Metoda eliminacji Gaussa polega na znalezieniu dla danego uk ladu a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n =

Bardziej szczegółowo

Wyk lad 4 Dzia lania na macierzach. Określenie wyznacznika

Wyk lad 4 Dzia lania na macierzach. Określenie wyznacznika Wyk lad 4 Dzia lania na macierzach Określenie wyznacznika 1 Określenie macierzy Niech K bedzie dowolnym cia lem oraz niech n i m bed a dowolnymi liczbami naturalnymi Prostokatn a tablice a 11 a 12 a 1n

Bardziej szczegółowo

Kurs wyrównawczy - teoria funkcji holomorficznych

Kurs wyrównawczy - teoria funkcji holomorficznych Kurs wyrównawczy - teoria funkcji holomorficznych wykład 1 Gniewomir Sarbicki 15 lutego 2011 Struktura ciała Zbiór par liczb rzeczywistych wyposażamy w działania: { + : (a, b) + (c, d) = (a + c, b + d)

Bardziej szczegółowo

, sin z = eiz e iz. = f (z 0 ) (równoważnie f(z 0 + h) = f(z 0 ) + f (z 0 )h + α(h), gdzie lim h 0

, sin z = eiz e iz. = f (z 0 ) (równoważnie f(z 0 + h) = f(z 0 ) + f (z 0 )h + α(h), gdzie lim h 0 A. Definicje. z = z z, z = z (cos θ + i sin θ) (argument z - każdy kąt θ spełniający tę równość; każde dwa argumenty z różnią się o całkowitą wielokrotność 2π). Ponadto dla z n z 0 Rez n Rez 0, Imz n Imz

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

Wersja testu D 14 września 2011 r. 1. Czy prawda jest, że a) x Z y Z y 2 = 2 ; b) x Z y Z x 2 = 1 ; c) x Z y Z x 2 = 2 ; d) x Z y Z y 2 = 1?

Wersja testu D 14 września 2011 r. 1. Czy prawda jest, że a) x Z y Z y 2 = 2 ; b) x Z y Z x 2 = 1 ; c) x Z y Z x 2 = 2 ; d) x Z y Z y 2 = 1? 1. Czy prawda jest, że a) x Z y Z y 2 = 2 ; b) x Z y Z x 2 = 1 ; c) x Z y Z x 2 = 2 ; d) x Z y Z y 2 = 1? 2. Czy prawda jest, że a) 5 8 1 jest podzielne przez 4 ; b) 5 7 1 jest podzielne przez 4 ; c) 3

Bardziej szczegółowo

4. Równania Cauchy ego Riemanna. lim. = c.. dz z=a Zauważmy, że warunkiem równoważnym istnieniu pochodnej jest istnienie liczby c C, takiej że

4. Równania Cauchy ego Riemanna. lim. = c.. dz z=a Zauważmy, że warunkiem równoważnym istnieniu pochodnej jest istnienie liczby c C, takiej że 4. Równania Caucy ego Riemanna Niec Ω C będzie zbiorem otwartym i niec f : Ω C. Mówimy, że f ma w punkcie a Ω pocodną w sensie zespolonym (jest olomorficzna w a równą c C, jeśli f(z f(a lim = c. z a Piszemy

Bardziej szczegółowo

FUNKCJE ZMIENNEJ ZESPOLONEJ

FUNKCJE ZMIENNEJ ZESPOLONEJ FUNKCJE ZMIENNEJ ZESPOLONEJ MiNI - zbiór zadań (wybór i opracowanie zadań Agnieszka Badeńska) Spis treści I. Liczby zespolone dzia lania i w lasności 3 II. Pochodna funkcji zespolonej, holomorficzność

Bardziej szczegółowo

P (x, y) + Q(x, y)y = 0. g lym w obszrze G R n+1. Funkcje. zania uk ladu (1) o wykresie przebiegaja

P (x, y) + Q(x, y)y = 0. g lym w obszrze G R n+1. Funkcje. zania uk ladu (1) o wykresie przebiegaja 19. O ca lkach pierwszych W paragrafie 6 przy badaniu rozwia zań równania P (x, y) + Q(x, y)y = 0 wprowadzono poje cie ca lki równania, podano pewne kryteria na wyznaczanie ca lek równania. Znajomość ca

Bardziej szczegółowo

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi M. Beśka, Wstęp do teorii miary, Dodatek 158 10 Dodatek 10.1 Przestrzenie metryczne Niech X będzie niepustym zbiorem. Funkcję d : X X [0, ) spełniającą dla x, y, z X warunki (i) d(x, y) = 0 x = y, (ii)

Bardziej szczegółowo

OSOBNO ANALITYCZNYCH

OSOBNO ANALITYCZNYCH Uniwersytet Jagielloński Instytut Matematyki Zbigniew B locki ZBIORY OSOBLIWOŚCI FUNKCJI OSOBNO ANALITYCZNYCH Praca magisterska Promotor: Prof. dr hab. Józef Siciak Kraków 99 .Wstȩp. Jeśli Ω jest zbiorem

Bardziej szczegółowo

jest ciągiem elementów z przestrzeni B(R, R)

jest ciągiem elementów z przestrzeni B(R, R) Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)

Bardziej szczegółowo

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE DWÓCH ZMIENNYCH RZECZYWISTYCH Definicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą

Bardziej szczegółowo

Normy wektorów i macierzy

Normy wektorów i macierzy Rozdzia l 3 Normy wektorów i macierzy W tym rozdziale zak ladamy, że K C. 3.1 Ogólna definicja normy Niech ψ : K m,n [0, + ) b edzie przekszta lceniem spe lniaj acym warunki: (i) A K m,n ψ(a) = 0 A = 0,

Bardziej szczegółowo

Wyk lad 4 Warstwy, dzielniki normalne

Wyk lad 4 Warstwy, dzielniki normalne Wyk lad 4 Warstwy, dzielniki normalne 1 Warstwy grupy wzgl edem podgrupy Niech H bedzie podgrupa grupy (G,, e). W zbiorze G wprowadzamy relacje l oraz r przyjmujac, że dla dowolnych a, b G: a l b a 1 b

Bardziej szczegółowo

Funkcje Analityczne Grupa 3, jesień 2008

Funkcje Analityczne Grupa 3, jesień 2008 Funkcje Analityczne Grupa 3, jesień 2008 Czternasta porcja zadań. Uwaga: i) W każdym zadaniu można korzystać z poprzednich jego części i innych zadań, nawet, jeśli się ich nie rozwiązało. ii) Wcześniejsze

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j),

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j), ELEKTROTECHNIKA Semestr Rok akad. / 5 ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na płaszczyźnie: +j

Bardziej szczegółowo

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44 Księgarnia PWN: Ryszard Rudnicki, Wykłady z analizy matematycznej Spis treści Rozdział I. Wstęp do matematyki... 13 1.1. Elementy logiki i teorii zbiorów... 13 1.1.1. Rachunek zdań... 13 1.1.2. Reguły

Bardziej szczegółowo

LICZBY ZESPOLONE. 1. Wiadomości ogólne. 2. Płaszczyzna zespolona. z nazywamy liczbę. z = a + bi (1) i = 1 lub i 2 = 1

LICZBY ZESPOLONE. 1. Wiadomości ogólne. 2. Płaszczyzna zespolona. z nazywamy liczbę. z = a + bi (1) i = 1 lub i 2 = 1 LICZBY ZESPOLONE 1. Wiadomości ogólne DEFINICJA 1. Liczba zespolona z nazywamy liczbę taką, że a, b R oraz i jest jednostka urojona, definiowaną następująco: z = a + bi (1 i = 1 lub i = 1 Powyższą postać

Bardziej szczegółowo

Rozdział 5. Szeregi liczbowe. 5.1 Szeregi liczbowe. Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy (a n ) n=1.

Rozdział 5. Szeregi liczbowe. 5.1 Szeregi liczbowe. Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy (a n ) n=1. Rozdział 5 Szeregi liczbowe 5. Szeregi liczbowe Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy ( ). Ciąg (s n ) określony wzorem s n = n a j, n N, nazywamy ciągiem sum częściowych ciągu

Bardziej szczegółowo

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach

Bardziej szczegółowo

Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym.

Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym. Rozdzia l 11 Przestrzenie Euklidesowe 11.1 Definicja, iloczyn skalarny i norma Definicja 11.1 Przestrzenia Euklidesowa nazywamy par e { X K,ϕ }, gdzie X K jest przestrzenia liniowa nad K, a ϕ forma dwuliniowa

Bardziej szczegółowo

Wyk lad 5. Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu. 1. Granice niew laściwe

Wyk lad 5. Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu. 1. Granice niew laściwe Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu Wyk lad 5 1. Granice niew laściwe Definicja 1 Ci ag (x n ) d aży do (jest rozbieżny do) + jeśli c R N n > N x n > c a do

Bardziej szczegółowo

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm 1 Grupa ilorazowa Niech H b edzie dzielnikiem normalnym grupy G. Oznaczmy przez G/H zbiór wszystkich warstw lewostronnych grupy G wzgl edem podgrupy

Bardziej szczegółowo

PODSTAWOWE W LASNOŚCI W ZBIORZE LICZB RZECZYWISTYCH

PODSTAWOWE W LASNOŚCI W ZBIORZE LICZB RZECZYWISTYCH PODSTAWOWE W LASNOŚCI DZIA LAŃ I NIERÓWNOŚCI W ZBIORZE LICZB RZECZYWISTYCH W dalszym cia gu be dziemy zajmować sie g lównie w lasnościami liczb rzeczywistych, funkcjami określonymi na zbiorach z lożonych

Bardziej szczegółowo

Pisemny egzamin dyplomowy. na Uniwersytecie Wroc lawskim. na kierunku matematyka. zadania testowe. 22czerwca2009r. 60 HS-8-8

Pisemny egzamin dyplomowy. na Uniwersytecie Wroc lawskim. na kierunku matematyka. zadania testowe. 22czerwca2009r. 60 HS-8-8 EGZAMIN DYPLOMOWY, cze ść I (testowa) 22.06.2009 INSTRUKCJE DOTYCZA CE WYPE LNIANIA TESTU 1. Nie wolno korzystać z kalkulatorów. 2. Sprawdzić, czy wersja testu podana na treści zadań jest zgodna z wersja

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

P. Urzyczyn: Materia ly do wyk ladu z semantyki. Uproszczony 1 j. ezyk PCF

P. Urzyczyn: Materia ly do wyk ladu z semantyki. Uproszczony 1 j. ezyk PCF 29 kwietnia 2013, godzina 23: 56 strona 1 P. Urzyczyn: Materia ly do wyk ladu z semantyki Uproszczony 1 j ezyk PCF Sk ladnia: Poniżej Γ oznacza otoczenie typowe, czyli zbiór deklaracji postaci (x : τ).

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

MiNI Akademia Matematyki na Politechnice Warszawskiej

MiNI Akademia Matematyki na Politechnice Warszawskiej MiNI Akademia Matematyki na Politechnice Warszawskiej Krzysztof Che lmiński Okr egi i styczne MiNI PW, 14.10.2017 Podstawowe twierdzenia wykorzystywane w zadaniach z ćwiczeń Twierdzenie 1 (najmocniesze

Bardziej szczegółowo

Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu

Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu Wyk lad 5 1. Iloczyn ortogonalny funkcji Wróćmy na chwilȩ do dowodu wzorów Eulera-Fouriera. Kluczow a rolȩ odgrywa l wzór:

Bardziej szczegółowo

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3

Bardziej szczegółowo

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne Szeregi potęgowe i trygonometryczne Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne str. 1/36 Szereg potęgowy Szeregiem potęgowym o

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Funkcje dwóch zmiennych Je zeli ka zdemu punktowi P o wspó rzednych x; y) z pewnego obszaru D na p aszczyźnie R 2 przyporzadkujemy w sposób jednoznaczny liczb e rzeczywista z, to przyporzadkowanie to nazywamy

Bardziej szczegółowo

Test numer xxx EGZAMIN PISEMNY Z MATEMATYKI DLA KANDYDATÓW NA KIERUNEK MATEMATYKA 5 LIPCA 2001 ROKU. Czas trwania egzaminu: 180 min.

Test numer xxx EGZAMIN PISEMNY Z MATEMATYKI DLA KANDYDATÓW NA KIERUNEK MATEMATYKA 5 LIPCA 2001 ROKU. Czas trwania egzaminu: 180 min. Test numer xxx EGZAMIN PISEMNY Z MATEMATYKI DLA KANDYDATÓW NA KIERUNEK MATEMATYKA 5 LIPCA 001 ROKU Czas trwania egzaminu: 180 min Liczba zadań: 30 Każde zadanie sk lada sie z trzech cześci Odpowiedź do

Bardziej szczegółowo

Funkcje analityczne. Wykład 4. Odwzorowania wiernokątne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)

Funkcje analityczne. Wykład 4. Odwzorowania wiernokątne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018) Funkcje analityczne Wykład 4. Odwzorowania wiernokątne Paweł Mleczko Funkcje analityczne (rok akademicki 2017/2018) 1. Przekształcenia płaszczyzny Płaszczyzna jako przestrzeń liniowa, odwzorowania liniowe

Bardziej szczegółowo

WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3

WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 Definicja 1 Przestrzenia R 3 nazywamy zbiór uporzadkowanych trójek (x, y, z), czyli R 3 = {(x, y, z) : x, y, z R} Przestrzeń

Bardziej szczegółowo

Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój.

Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój. Wykład 10 Twierdzenie 1 (Borel-Lebesgue) Niech X będzie przestrzenią zwartą Z każdego pokrycia X zbiorami otwartymi można wybrać podpokrycie skończone Dowód Lemat 1 Dla każdego pokrycia U przestrzeni ośrodkowej

Bardziej szczegółowo

Funkcje analityczne. Wykład 4. Odwzorowania wiernokątne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) dla każdego s = (s.

Funkcje analityczne. Wykład 4. Odwzorowania wiernokątne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) dla każdego s = (s. Funkcje analityczne Wykład 4. Odwzorowania wiernokątne Paweł Mleczko Funkcje analityczne (rok akademicki 2016/2017) 1 Przekształcenia płaszczyzny Płaszczyzna jako przestrzeń liniowa, odwzorowania liniowe

Bardziej szczegółowo

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = :

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = : 4. Zbiory borelowskie. Zbiór wszystkich podzbiorów liczb naturalnych będziemy oznaczali przez ω. Najmniejszą topologię na zbiorze ω, w której zbiory {A ω : x A ω \ y}, gdzie x oraz y są zbiorami skończonymi,

Bardziej szczegółowo

Zadania o liczbach zespolonych

Zadania o liczbach zespolonych Zadania o liczbach zespolonych Zadanie 1. Znaleźć takie liczby rzeczywiste a i b, aby zachodzi ly równości: a) a( + i) + b(4 i) 6 i, b) a( + i) + b( + i) 8i, c) a(4 i) + b(1 + i) 7 1i, ( ) a d) i + b +i

Bardziej szczegółowo

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera Wyk lad 4 Macierz odwrotna i twierdzenie Cramera 1 Odwracanie macierzy I n jest elementem neutralnym mnożenia macierzy w zbiorze M n (R) tzn A I n I n A A dla dowolnej macierzy A M n (R) Ponadto z twierdzenia

Bardziej szczegółowo

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Funkcje dwóch zmiennych Andrzej Musielak Str Funkcje dwóch zmiennych Wstęp Funkcja rzeczywista dwóch zmiennych to funkcja, której argumentem jest para liczb rzeczywistych, a wartością liczba rzeczywista.

Bardziej szczegółowo

czastkowych Państwo przyk ladowe zadania z rozwiazaniami: karpinw adres strony www, na której znajda

czastkowych Państwo przyk ladowe zadania z rozwiazaniami:   karpinw adres strony www, na której znajda Zadania z równań różniczkowych czastkowych Za l aczam adres strony www, na której znajda Państwo przyk ladowe zadania z rozwiazaniami: http://math.uni.lodz.pl/ karpinw Zadanie 1. Znaleźć wszystkie rozwiazania

Bardziej szczegółowo

Wersja testu A 15 lutego 2011 r. jest, że a) x R y R y 2 > Czy prawda. b) y R x R y 2 > 1 c) x R y R y 2 > 1 d) x R y R y 2 > 1.

Wersja testu A 15 lutego 2011 r. jest, że a) x R y R y 2 > Czy prawda. b) y R x R y 2 > 1 c) x R y R y 2 > 1 d) x R y R y 2 > 1. 1. Czy prawda jest, że a) x R y R y 2 > 1 1+x 2 ; b) y R x R y 2 > 1 1+x 2 ; c) x R y R y 2 > 1 1+x 2 ; d) x R y R y 2 > 1 1+x 2? 2. Czy naste puja ca relacja na zbiorze liczb rzeczywistych jest relacja

Bardziej szczegółowo

Optymalizacja Rozpoczniemy od przedstawienia kilku charakterystycznych przyk ladów zadań optymalizacji liniowej.

Optymalizacja Rozpoczniemy od przedstawienia kilku charakterystycznych przyk ladów zadań optymalizacji liniowej. Optymalizacja Rozpoczniemy od przedstawienia kilku charakterystycznych przyk ladów zadań optymalizacji liniowej. Zagadnienie diety. Jak wymieszać wymieszać pszenice, soje i maczk e rybna by uzyskać najtańsza

Bardziej szczegółowo

AM1.2 zadania 14. Zadania z numerami opatrzonymi gwiazdka

AM1.2 zadania 14. Zadania z numerami opatrzonymi gwiazdka AM.2 zadania 4 Tekst poprawiony 24 kwietnia 206 r. Zadania 26, 28, 29, 3, 33, 34, 35, 36, 40, 42, 62 i inne z wykrzyknikiem obok numeru sa obowiazkowe! Zadania z numerami opatrzonymi gwiazdka można napisać

Bardziej szczegółowo

g liczb rzeczywistych (a n ) spe lnia warunek

g liczb rzeczywistych (a n ) spe lnia warunek . Czy jest prawda, że a) R y R z R y + yz + = 0 ; b) R y R z R y + yz + 0 ; c) R y R z R y + yz + = 0 ; d) R y R z R y + yz + 0? 2. Czy jest prawdziwa nierówność a) ctg > ; b) tg < cos ; c) cos < sin ;

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

(α + β) a = α a + β a α (a + b) = α a + α b (α β) a = α (β a). Definicja 4.1 Zbiór X z dzia laniami o wyżej wymienionych w lasnościach

(α + β) a = α a + β a α (a + b) = α a + α b (α β) a = α (β a). Definicja 4.1 Zbiór X z dzia laniami o wyżej wymienionych w lasnościach Rozdzia l 4 Przestrzenie liniowe 4.1 Przestrzenie i podprzestrzenie 4.1.1 Definicja i podstawowe w lasności Niech X z dzia laniem dodawania + b edzie grupa przemienna (abelowa). Oznaczmy przez 0 element

Bardziej szczegółowo