FUNKCJE ANALITYCZNE. Zbigniew B locki

Wielkość: px
Rozpocząć pokaz od strony:

Download "FUNKCJE ANALITYCZNE. Zbigniew B locki"

Transkrypt

1 FUNKCJE ANALITYCZNE WYK LADY DLA SEKCJI TEORETYCZNEJ INSTYTUT MATEMATYKI UJ, 2007 Zbigniew B locki Typeset by AMS-TEX

2 2 ZBIGNIEW B LOCKI Spis treści 1. Podstawowe w lasności liczb zespolonych 1 2. Różniczkowanie funkcji zespolonych 4 3. Ca lkowanie funkcji zespolonych 8 4. Twierdzenie ca lkowe Cauchy ego Wzór ca lkowy Cauchy ego Podstawowe w lasności funkcji holomorficznych Szeregi potegowe Podstawowe w lasności funkcji holomorficznych, cd Funkcje analityczne Globalne twierdzenie ca lkowe Cauchy ego Szeregi Laurenta Osobliwości funkcji holomorficznych Twierdzenie o residuach 34 13a. Obliczanie pewnych ca lek rzeczywistych Lokalizowanie zer funkcji holomorficznych Iloczyny nieskończone Funkcja Γ Eulera Funkcja ζ Riemanna Twierdzenie o liczbach pierwszych Aproksymacja funkcji holomorficznych Odwzorowania konforemne Geometria hiperboliczna ko la Funkcje harmoniczne Funkcje subharmoniczne Nakrycia Powierzchnie Riemanna Problem Dirichleta, metoda Perrona Funkcja Greena Ca lkowanie przez cześci Powierzchnie nie-g-hiperboliczne Pewne zastosowania Elementy geometrii riemannowskiej Zespolone metryki zupe lne o sta lej krzywiźnie Iteracja funkcji wymiernych 111 Literatura 115

3 FUNKCJE ANALITYCZNE 1 Wyk lad 1, Podstawowe w lasności liczb zespolonych Liczba zespolona nazywamy pare liczb rzeczywistych, zbiór liczb zespolonych C to zatem dok ladnie zbiór R 2. Element z = (x, y) C zapisujemy w postaci x + iy. Na zbiorze C wprowadzamy mnożenie (zgodnie z regu l a i 2 = 1): (x 1 + iy 1 )(x 2 + iy 2 ) = x 1 x 2 y 1 y 2 + i(x 2 y 1 + x 1 y 2 ). Można latwo pokazać Ćwiczenie, że C z dodawaniem wektorowym w R 2 oraz tak wprowadzonym mnożeniem jest cia lem. Jeżeli z = x + iy, to x nazywamy cześci a rzeczywista, natomiast y cześci a urojona liczby z; ozn. x = Re z, y = Im z. Każda liczbe zespolona z możemy rówież zapisać przy pomocy wspó lrzednych biegunowych: z = r(cos ϕ + i sin ϕ), gdzie r = z = x 2 + y 2, zaś ϕ jest katem pomiedzy odcinkami [0, 1] i [0, z] (gdy z 0) - nazywamy go argumentem liczby z. Zachodzi oczywiście nierówność trójkata z + w z + w, z, w C, można również latwo pokazać Ćwiczenie, że zw = z w, z, w C. Chcemy teraz zdefiniować zespolona funkcje wyk ladnicza exp : C C. Dla z = x + iy C oczekujemy, że e z = e x e iy, czyli wystarczy określić e it dla t R. Chcemy by funkcja ta spe lnia la d dt eit = ie it, e 0 = 1, a wiec (oznaczajac e it = A + ib) A = B, B = A, A(0) = 1, B(0) = 0. Jedynym rozwiazaniem tego uk ladu sa funkcje A = cos t, B = sin t. Funkcje wyk ladnicza definiujemy zatem nastepuj aco: e z := e x (cos y + i sin y), z = x + iy C. Można latwo pokazać Ćwiczenie jej nastepuj ace w lasności e z+w = e z e w, z, w C, d dt etz = ze tz, t R, z C. Z faktu, że e z = e x oraz dzieki temu, że y jest argumentem liczby e z wynika, że funkcja wyk ladnicza proste pionowe x = x 0 odwzorowuje na okregi o promieniu e x 0, natomiast proste poziome y = y 0 na pó lproste otwarte o poczatku w 0 o argumencie y 0.

4 2 ZBIGNIEW B LOCKI Wracajac do wspó lrzednych biegunowych, możemy je teraz zapisać w postaci z = re iϕ. Dla z 0 przez arg z oznaczamy zbiór argumentów liczby z, tzn. arg z := {ϕ R : z = z e iϕ }. Ponieważ e i(ϕ+2π) = e iϕ, dla dowolnego ϕ 0 arg z mamy arg z = {ϕ 0 + 2kπ : k Z}. Dla każdego z C (:= C \ {0}) znajdziemy dok ladnie jeden element arg z należacy do przedzia lu [ π, π). Nazywamy go argumentem g lównym liczby z i oznaczamy Arg z. Funkcja Arg, określona na C, jest nieciag la na pó lprostej (, 0). Możemy teraz podać geometryczna interpretacje mnożenia w C: jeżeli z = re iϕ, w = ρe iψ, to zw = rρe i(ϕ+ψ) ; czyli mnożymy d lugości, a dodajemy argumenty. Możemy stad również wywnioskować wzór de Moivre a: z tego, że (e iϕ ) n = e inϕ otrzymamy (cos ϕ + i sin ϕ) n = cos(nϕ) + i sin(nϕ), ϕ R, n N. Dla danego z C oraz n N przez pierwiastek z stopnia n rozumiemy zbiór n z := {w C : w n = z}. Zapisujac z i w we wspó lrzednych biegunowych: otrzymamy warunki z = re iϕ, w = ρe iψ, ρ = r 1/n, ψ = ϕ + 2kπ, k Z. n Ponieważ e iψ = e i(ψ+2π), dla k = 0, 1,..., n 1 otrzymamy wszystkie rozwiazania. Zatem n z = { z 1/n e i(ϕ+2kπ)/n : k = 0, 1,..., n 1}. W szczególności, pierwiastek stopnia n z liczby niezerowej jest zawsze zbiorem n elementowym. Ćwiczenie Udowodnić, że rozwiazaniem równania kwadratowego w C: gdzie a C, b, c C, jest az 2 + bz + c = 0, z = b +, 2a gdzie = b 2 4ac, przy czym jest zbiorem dwuelementowym jeżeli 0 - w tym przypadku zawsze otrzymamy dwa rozwiazania (jedno jeżeli = 0). W przypadku wielomianów dowolnego stopnia mamy rezultat niekonstruktywny, tzw. zasadnicze twierdzenie algebry. Twierdzenie 1.1. Każdy niesta ly wielomian zespolony ma pierwiastek.

5 FUNKCJE ANALITYCZNE 3 Powyższy rezultat można udowodnić w sposób elementarny przy pomocy lematu d Alemberta (oryginalny dowód z 1746 r. zawiera l luk e). Lemat 1.2. Za lóżmy, że P jest niesta lym wielomianem zespolonym oraz, że dla pewnego z 0 C mamy P (z 0 ) 0. Wtedy dla każdego otoczenia U punktu z 0 znajdziemy z U takie, że P (z) < P (z 0 ). Dowód. (Argand, 1806) Niech Wtedy P (z) = a 0 + a 1 z + + a n z n. P (z 0 + h) = a 0 + a 1 (z 0 + h) + + a n (z 0 + h) n = P (z 0 ) + A 1 h + + A n h n, gdzie wspó lczynniki A j zależa tylko od P i z 0. Któryś z nich na pewno nie znika, gdyż w przeciwnym wypadku wielomian P by lby sta ly. Niech j bedzie najmniejszym indeksem, dla którego A j 0. Mamy zatem gdzie P (z 0 + h) = P (z 0 ) + A j h j + R(h), R(h) < A j h j, gdy h jest odp. ma le, h 0. Możemy znaleźć h o dowolnie ma lym h, dla którego A j h j ma argument przeciwny do argumentu P (z 0 ). Wtedy P (z 0 + h) P (z 0 ) + A j h j + R(h) = P (z 0 ) A j h j + R(h) < P (z 0 ). Dowód Twierdzenia 1.1. Oznaczajac P jak w dowodzie Lematu 1.2 i zak ladajac, że a n 0, mamy P (z) a n z n a 0 + a 1 z + + a n 1 z n 1 a n z n a 0 a 1 z a n 1 z n 1. Możemy w szczególności znaleźć R > 0 takie, że P (z) > P (0), gdy z = R. Funkcja P jest ciag la na C (bo oczywiste jest, że mnożenie jest odwzorowaniem ciag lym), znajdziemy zatem z 0 K(0, R) takie, że P (z 0 ) = min P. K(0,R) Jeżeli P (z 0 ) 0, to dzi eki Lematowi 1.2 znajdziemy z K(0, R) takie, że P (z) < P (z 0 ) - sprzeczność. Dla z C definiujemy log z := {w C : e w = z} (dla z = 0 ten zbiór jest oczywiście pusty). Jeżeli zapiszemy w = η + iξ, z = re iϕ, to otrzymamy równanie e η e iξ = re iϕ. Zatem η = log r = log z, natomiast ξ = ϕ + 2kπ, k Z. Ostatecznie log z = log z + iarg z.

6 4 ZBIGNIEW B LOCKI Liczb e Log z := log z + iarg z nazywamy logarytmem g lównym z. Przy pomocy logarytmu możemy zdefiniować pot egi zespolone: dla z C, w C k ladziemy z w = e w log z. Zauważmy, że z 1/n = e 1 n (log z +iarg z) = z 1/n e i arg z n, czyli otrzymamy to samo, co przy definicji pierwiastka. Ćwiczenie Obliczyć i i. Przypomnijmy, że e iϕ = cos ϕ + i sin ϕ, ϕ R. Zespolone funkcje trygonometryczne można latwo wyprowadzić ze wzorów Eulera: Stad e iz = cos z + i sin z, e iz = cos z i sin z. Mamy również cos z := eiz + e iz, 2 sin z := eiz e iz. 2i cosh z := cos(iz) = ez + e z, 2 sinh z := i sin(iz) = ez e z. 2 Ćwiczenie Pokazać, że arccos z = i log(z + z 2 1). Dla liczby zespolonej z = x + iy definiujemy jej sprz eżenie: z := x iy. Natychmiast otrzymujemy, że z 2 = zz. Ćwiczenie Pokazać, że (zw) = z w oraz e z = e z. 2. Różniczkowanie funkcji zespolonych Oczywiście każde odwzorowanie liniowe C C jest postaci (2.1) C z az C dla pewnego a C. Ponieważ C = R 2, możemy również rozpatrywać równania liniowe w sensie rzeczywistym - bed a one postaci C = R 2 z Az R 2 = C,

7 gdzie ( p q (2.2) A = s t FUNKCJE ANALITYCZNE 5 ), p, q, s, t R. Takie odwzorowania C C bedziemy nazywać R-liniowymi, natomiast odwzorowania postaci (2.1) C-liniowymi. Można latwo sprawdzić, że każde odwzorowanie C-liniowe jest R-liniowe, przy czym A jest postaci ( α β A = β α gdzie a = α + iβ. Z drugiej strony, dane odwzorowanie R-liniowe jest C-liniowe wtedy i tylko wtedy, gdy p = t i q = s w (2.2) ( Ćwiczenie ). Niech f bedzie funkcja o wartościach zespolonych określona w pewnym otoczeniu punktu z 0 C. Analogicznie jak w przypadku rzeczywistym powiemy, że f jest C-różniczkowalna w punkcie z 0, jeżeli istnieje granica ), f(z) f(z 0 ) lim C. z z 0 z z 0 Granice te nazywamy pochodna zespolona funkcji f w z 0 i oznaczamy przez f (z 0 ). Jest oczywiste, że każda funkcja C-różniczkowalna w z 0 jest w ciag la w z 0. W podobny sposób jak w przypadku rzeczywistym dowodzimy podstawowych w lasności funkcji C-różniczkowalnych. Propozycja 2.1. Jeżeli funkcje f, g sa C-różniczkowalne w z 0, to funkcje f ± g, fg oraz f/g (ta ostatnia pod warunkiem, że g(z 0 ) 0) sa C-różniczkowalne w z 0 oraz w z 0 mamy (f ± g) = f ± g, (fg) = f g + fg, ( ) f = f g fg g g 2. Propozycja 2.2. Jeżeli f jest C-różniczkowalna w z 0, zaś g jest C-różniczkowalna w f(z 0 ), to g f jest C-różniczkowalna w z 0 oraz (g f) (z 0 ) = g (f(z 0 )) f (z 0 ). Przypomnijmy, że funkcja zespolona f jest różniczkowalna w z 0 w klasycznym sensie (b edziemy wtedy mówić, że jest ona R-różniczkowalna), jeżeli istnieje odwzorowanie R-liniowe A takie, że f(z) f(z 0 ) A(z z 0 ) lim = 0. z z 0 z z 0 Jeżeli f = u + iv, gdzie u, v sa funkcjami rzeczywistymi, to ( ) ux (z A = 0 ) u y (z 0 ) v x (z 0 ) v y (z 0 )

8 6 ZBIGNIEW B LOCKI (ozn. u x = u/ x, u y = u/ y). Zauważmy, że każda funkcja C-różniczkowalna jest R-różniczkowalna, przy czym A = ( ) Re f (z 0 ) Im f (z 0 ) Im f (z 0 ) Re f. (z 0 ) Przyk lad. Funkcja f(z) = z, z C, jest R-różniczkowalna w każdym punkcie (jest nawet R-liniowa), ale nigdzie nie jest C-różniczkowalna: zauważmy, że dla t R mamy { z z 0 1, jeżeli z = z0 + t, = z z 0 1, jeżeli z = z 0 + it, czyli odpowiednia granica nie istnieje. Za lóżmy, że f = u + iv jest R-różniczkowalna w z 0. Oznaczajac f x = u x + iv x, f y = u y + iv y mamy Ponieważ f(z) = f(z 0 ) + f x (z 0 )(x x 0 ) + f y (z 0 )(y y 0 ) + o( z z 0 ). (2.3) x = z + z 2, y = z z, 2i otrzymamy f(z) = f(z 0 ) + f x(z 0 ) if y (z 0 ) 2 (z z 0 ) + f x(z 0 ) + if y (z 0 ) (z z 0 ) + o( z z 0 ). 2 Dla funkcji R-różniczkowalnej definiujemy pochodne formalne (2.4) f z (= f z) := 1 ( f 2 f z (= f z) := 1 2 ) x i f, y ( ) f x + i f. y Wyk lad 2, Pochodne czastkowe / z i / z prowadzić możemy również przy pomocy formy df: mamy a stad f x dx + f y dy = df = f z dz + f z dz = f z (dx + idy) + f z (dx idy), (2.5) { fx = f z + f z, f y = i(f z f z ), skad latwo dostaniemy (2.4).

9 FUNKCJE ANALITYCZNE 7 Ćwiczenie Pokazać, że dla dowolnej funkcji R-różniczkowalnej f mamy ( ) f = f z z, ( ) f = f z z. Ćwiczenie Obliczyć f z oraz f z, gdzie f(z) = z 2 Re (z 8 ). Dla funkcji R-różniczkowalnej w z 0 mamy wi ec oraz, dla z z 0, f(z) = f(z 0 ) + f z (z 0 )(z z 0 ) + f z (z 0 )(z z 0 ) + o( z z 0 ) f(z) f(z 0 ) z z 0 = f z (z 0 ) + f z (z 0 ) z z 0 z z 0 + o( z z 0 ) z z 0. Wspólnie z ostatnim przyk ladem daje to nastepuj ac a charakteryzacje funkcji C- różniczkowalnych. Propozycja 2.3. Funkcja zespolona f = u + iv jest C-różniczkowalna w punkcie z o wtedy i tylko wtedy, gdy f jest R-różniczkowalna w z 0 oraz f z (z 0 ) = 0, tzn. w z 0 spe lnione sa równania Cauchy ego-riemanna: W takiej sytuacji f (z 0 ) = f z (z 0 ). { ux = v y, u y = v x. Powiemy, że funkcja f : Ω C, gdzie Ω jest zbiorem otwartym w C, jest holomorficzna, jeżeli jest ona C-różniczkowalna w każdym punkcie. Zbiór wszystkich funkcji holomorficznych w Ω oznaczamy przez O(Ω), natomiast przez O (Ω) zbiór nigdzie nieznikajacych funkcji holomorficznych. Z Propozycji 2.1 i 2.2 wynika, że suma, iloczyn, iloraz i z lożenie funkcji holomorficznych sa funkcjami holomorficznymi. Jeżeli f = u + iv jest R-różniczkowalna, to f jest holomorficzna wtedy i tylko wtedy, gdy spe lnione sa równania Cauchy ego-riemanna. Ćwiczenie Pokazać, że e z jest jedyna funkcja z O(C) taka, że f = f oraz f(0) = 1. Ćwiczenie Pokazać, że cos, sin, cosh, sinh O(C) oraz obliczyć pochodne zespolone tych funkcji. Propozycja 2.4. Za lóżmy, że f jest holomorficzna i klasy C 1 w pewnym otoczeniu z 0 C oraz f (z 0 ) 0. Wtedy istnieje U - otwarte otoczenie z 0 oraz V - otwarte otoczenie f(z 0 ), t.że f : U V jest bijekcja, f 1 jest holomorficzna oraz (2.6) (f 1 ) (f(z)) = 1 f (z), z U. Dowód. Jeżeli zapiszemy f = u + iv, to rzeczywista różniczka f ma postać ( ) ( ) ux u A := y ux u = y v x v y u y u x

10 8 ZBIGNIEW B LOCKI dzi eki równaniom Cauchy ego-riemanna. Z drugiej strony, wprost z definicji C- różniczkowalności f = f x = u x iu y. Mamy wi ec det A = u 2 x + u 2 y = f 2. Dzieki temu, że f (z 0 ) 0, z rzeczywistego twierdzenia o lokalnym dyfeomorfizmie wynika, że istnieja odp. otoczenia U i V, t.że f : U V jest bijekcja klasy C 1 oraz f 1 jest również klasy C 1. Zapiszmy f 1 = α + iβ. Różniczka f 1 jest równa ( ) ( ) αx α y = A 1 1 ux u = y β x β y u 2 x + u 2. y u y u x W szczególności α x = β y, α y = β x, czyli f 1 jest holomorficzna. Formu l e (2.6) dostaniemy różniczkujac wzór f 1 (f(z)) = z, z U. Ćwiczenie Pokazać, że Log z O(C \ (, 0]) oraz (Log z) = 1/z. Podamy teraz formu l e na różniczkowanie z lożenia funkcji zespolonej z krzywa. Za lóżmy, że funkcje f : Ω C oraz γ = (γ 1, γ 2 ) : (a, b) Ω sa różniczkowalne (w klasycznym sensie). Wtedy, korzystajac z (rzeczywistej) formu ly na pochodna z lożenia oraz z (2.3), (2.5), otrzymamy (2.7) d dt f(γ(t)) = f x(γ(t)) γ 1(t) + f y (γ(t)) γ 2(t) = f z (γ(t)) γ (t) + f z (γ(t))γ (t). 3. Ca lkowanie funkcji zespolonych Niech a, b R, a < b. Funkcje γ : [a, b] C nazywamy droga, jeżeli γ jest ciag la oraz γ jest kawa lkami klasy C 1, tzn. istnieja a = t 0 < t 1 < < t n = b takie, że γ C 1 ([t j, t j+1 ]), j = 0, 1,..., n 1. Punkt γ(a) nazywamy poczatkiem zaś γ(b) końcem drogi γ. Obraz γ bedziemy oznaczać γ. Jeżeli γ(a) = γ(b), to γ nazywamy droga zamkniet a. Za lóżmy, że f : γ([a, b]) C jest funkcja ciag l a. Definiujemy b f(z)dz := f(γ(t))γ (t)dt. γ a (Powyższa definicje otrzymamy także rozpatrujac cześć rzeczywista i urojona formy różniczkowej f dz = (u + iv)(dx + idy).) Zauważmy, że funkcja pod ca lka jest ca lkowalna w sensie Riemanna niezależnie od tego jakie wartości przyjmuje w punktach t j. Ponadto, jeżeli ϕ : [c, d] [a, b] jest dyfeomorfizmem, to γ := γ ϕ jest droga taka, że γ = γ oraz { d f(z)dz = f(γ(ϕ(s)))γ (ϕ(s))ϕ γ (s)ds = f(z)dz, jeżeli ϕ > 0; γ f(z)dz, jeżeli ϕ < 0. γ c

11 FUNKCJE ANALITYCZNE 9 Zatem, jeżeli γ (a,b) jest iniekcja, to f(z)dz zależy tylko od obrazu γ oraz od γ kierunku, w którym ca lkujemy, tzn. od orientacji. W takiej sytuacji bedziemy czesto utożsamiać drogi z ich obrazem oraz odpowiednia orientacja. W szczególności, jeżeli D jest obszarem, którego brzeg można iniektywnie sparametryzować droga zamkniet a, to możemy mówić o dodatniej orientacji D - bedzie nia dowolna parametryzacja o kierunku odwrotnym do ruchu wskazówek zegara. Ca lka f(z)dz ma wówczas sens, gdyż nie zależy od wyboru takiej parametryzacji (i jest ona zgodna z ca lka D z formy po krzywej g ladkiej). Bedziemy używać tego oznaczenia przede wszystkim, gdy D jest ko lem lub wnetrzem trójkata. Jeżeli f jest określone w pewnym otoczeniu obrazu drogi γ i ma tam funkcje pierwotna, tzn. istnieje funkcja holomorficzna F taka, że F = f, to z (2.7) otrzymamy (3.1) γ f(z)dz = b a d F (γ(t)) dt = F (γ(b)) F (γ(a)). dt W szczególności, jeżeli γ jest droga zamkniet a, to f(z)dz = 0. γ Ćwiczenie Pokazać, że jeżeli funkcja f = u + iv ma pierwotna, to pole wektorowe (v, u) jest potencjalne, tzn. (v, u) = χ dla pewnej funkcji χ. Przyk lad. Dla n Z, z 0 C oraz r > 0 obliczymy K(z 0,r) (z z 0 ) n dz. Odpowiednia parametryzacja tego okregu bedzie Wtedy γ (t) = rie it oraz γ(t) = z 0 + re it, 0 t 2π. (3.2) (z z 0 ) n dz = 2π K(z 0,r) 0 { 0, jeżeli n 1; r n+1 ie (n+1)it dt = 2πi, jeżeli n = 1. Zauważmy, że dla n 1 wynika to również z (3.1), gdyż wtedy funkcja (z z 0 ) n ma pierwotna określona w otoczeniu K(z 0, r). Pokazuje to także, że funkcja 1/(z z 0 ) nie ma pierwotnej w żadnym pierścieniu o środku w z 0. Jeżeli z, w C, to przez [z, w] oznaczamy droge dana przez parametryzacje γ(t) = (1 t)z + tw, t [0, 1]. Ćwiczenie Obliczyć Log z dz. Ćwiczenie Pokazać, że trzema sposobami: [1,i] K(z 0,r) dζ ζ z = 2πi, z K(z 0, r),

12 10 ZBIGNIEW B LOCKI i) wprost z definicji, korzystajac z faktu, że sinus jest funkcja nieparzysta, a cosinus parzysta, wyprowadzić dζ π ζ z = 2i 1 + a cos t 1 + 2a cos t + a 2 dt, K(z 0,r) 0 gdzie a = z z 0 /r < 1 i obliczyć odp. ca lke nieoznaczona; ii) udowodnić, że dla każdej pó lprostej P o poczatku w z funkcja ζ 1/(ζ z) ma pierwotna w C \ P oraz użyć (3.1), (3.2); iii) pokazać, że 1 ζ z = (z z 0 ) n (ζ z 0 ) n+1, z K(z 0, r), ζ K(z 0, r), n=0 przy czym zbieżność jest jednostajna dla ζ K(z 0, r), i użyć (3.2). Zauważmy, że b (3.3) f(z)dz f(γ(t)) γ (t) dt l(γ) max f, γ gdzie jest d lugościa γ. γ a l(γ) := b a γ (t) dt Wyk lad 3, Twierdzenie ca lkowe Cauchy ego Podstawowa w lasnościa geometryczna funkcji holomorficznych jest twierdzenie ca lkowe Cauchy ego. Latwo wynika ono ze wzoru Greena w nastepuj acym przypadku (Cauchy, 1825): za lóżmy, że f jest funkcja holomorficzna klasy C 1 w obszarze Ω, natomiast γ jest droga zamkniet a w Ω, która parametryzuje brzeg klasy C 1 obszaru D Ω. Wtedy f(z)dz = d(fdz) = f z dz dz = 0. γ D G lównym problemem w uogólnieniu tego faktu jest pozbycie sie za lożenia, że f jest klasy C 1. Zosta lo to dokonane przez Goursata w 1900 r. Podstawowym krokiem w dowodzie ogólnej wersji twierdzenia ca lkowego Cauchy ego by lo wykazanie jego wzmocnionej wersji dla brzegu trójkata (sam Goursat rozpatrywa l czworokaty, jak jednak wkrótce zauważy l Pringsheim, naturalnym obiektami metody Goursata by ly trójkaty). Twierdzenie 4.1. Za lóżmy, że f O(Ω \ {z 0 }) C(Ω), gdzie Ω jest otwartym podzbiorem C, zaś z 0 Ω. Wtedy dla dowolnego trójkata T Ω (czyli otoczki wypuk lej trzech niewspó lliniowych punktów) mamy f(z)dz = 0. T D

13 FUNKCJE ANALITYCZNE 11 Dowód. Za lóżmy najpierw, że z 0 / T. Przez z 1, z 2, z 3 oznaczmy wierzcho lki T. Rozpatrujac punkty (z j + z k )/2, j, k = 1, 2, 3, dzielimy trójkat T na cztery trójkaty T 1,..., T 4. Mamy wtedy f(z)dz = 4 T j=1 T j f(z)dz. Wybierajac jako T 1 odpowiedni z trójkatów T 1,..., T 4 otrzymamy f(z)dz T 4 f(z)dz. 1 T Zauważmy także, że l( T 1 ) = l( T )/2. W ten sam sposób wybieramy indukcyjnie trójkaty T n, n = 1, 2,..., tak, że f(z)dz T n 1 4 f(z)dz T n oraz l( T n ) = l( T n 1 )/2. Otrzymaliśmy zatem zstepuj acy ciag trójkatów T n taki, że (4.1) f(z)dz T 4n f(z)dz n oraz T (4.2) diam(t n ) l( T n) 2 Z twierdzenia Cantora wynika, że = l( T ) 2 n+1. T n = { z} n=1 dla pewnego z T. Z C-różniczkowalności f w z mamy gdzie f(z) = f( z) + ( f ( z) + ε(z) ) (z z), lim ε(z) = 0. z z Ponieważ funkcja f( z) + f ( z)(z z) ma pierwotna, z (3.1) i (3.3) wynika, że f(z)dz = ε(z)(z z)dz T n T l( T n)diam(t n ) max ε. T n n Korzystajac z (4.1) i (4.2) otrzymamy dla każdego n T f(z)dz (l( T ))2 2 max ε, T n

14 12 ZBIGNIEW B LOCKI czyli twierdzenie zachodzi przy za lożeniu, że z 0 / T. Jeżeli z 0 T, to dzielac T na trzy (lub dwa) mniejsze trójkaty, których wierzcho lkiem jest z 0 widzimy, że bez straty ogólności możemy za lożyć, że z 0 jest jednym z wierzcho lków T. Jeżeli teraz podzielimy T na trójkat T n o wierzcho lku w z 0 oraz czworokat Q n tak, że l(t n) daży do 0, to z poprzedniej cześci wnioskujemy, że f(z)dz = 0, Q n zatem T f(z)dz = T n f(z)dz l(t n) max f. T Przyk lady. i) Niech f(z) = e z2 i dla R > 0 niech T R bedzie trójkatem o wierzcho lkach 0, R, R + ir. Z Twierdzenia 4.1 mamy f(z)dz = 0. T R Ćwiczenie Wywnioskować stad, że 0 cos t 2 dt = 0 sin t 2 dt = π 8. ii) Ćwiczenie Ca lkujac funkcje e z2 po brzegu prostokata o wierzcho lkach 0, R, R + λi, λi (ponieważ każdy wielokat możemy podzielić na skończona liczbe trójkatów, jest jasne, że Twierdzenie 4.1 zachodzi w przypadku, gdy T jest dowolnym wielokatem) pokazać, że 0 e x2 cos(2λx)dx = π 2 2 e λ, λ R. Nastepnym krokiem jest pokazanie zwiazku twierdzenia ca lkowego Cauchy ego z istnieniem funkcji pierwotnej. Twierdzenie 4.2. Niech Ω bedzie obszarem w C, natomiast f funkcja ciag l a w Ω. Wtedy nastepuj ace warunki sa równoważne i) Istnieje F O(Ω) takie, że F = f; ii) f(z)dz = 0 dla każdej drogi zamknietej γ w Ω. γ Jeżeli Ω jest obszarem gwiaździstym, to powyższe warunki sa równoważne nastepu- jacej w lasności iii) f(z)dz = 0 dla każdego trójkata T Ω. T Dowód. Implikacja i) ii) wynika natychmiast z (3.1). W celu pokazania implikacji przeciwnej ustalmy z 0 Ω. Dla z Ω niech γ bedzie dowolna droga l acz ac a z 0 oraz z. K ladziemy F (z) := f(ζ)dζ. γ

15 FUNKCJE ANALITYCZNE 13 Dzieki i) widać, że definicja F nie zależy od wyboru γ. Dla odp. ma lych h mamy (4.3) F (z + h) F (z) = f(ζ)dζ, a stad, dzieki (3.3), F (z + h) F (z) f(z) h = 1 h [z,z+h] [z,z+h] (f(ζ) f(z))dζ sup f(ζ) f(z). ζ [z,z+h] Z ciag lości f w z wynika, że ostatnie wyrażenie daży do 0. Otrzymaliśmy zatem, że F O(Ω) oraz F = f. Jeżeli Ω jest gwiaździsty, to implikacja ii) iii) jest trywialna, natomiast, zak ladajac, że zachodzi iii) i że Ω jest gwiaździsty wzgledem z 0, k ladziemy F (z) := f(z)dz, z Ω. [z 0,z] Z iii) wynika, że zachodzi (4.3) i identycznie jak poprzednio dowodzimy, że F = f. Z Twierdzeń 4.1 i 4.2 wynika wersja twierdzenia Cauchy ego dla zbiorów gwiaździstych. Wniosek 4.3. Jeżeli obszar Ω jest gwiaździsty i f O(Ω\{z 0 }) C(Ω) dla pewnego z 0 Ω, to f(z)dz = 0 dla każdej drogi zamkni etej γ w Ω. γ 5. Wzór ca lkowy Cauchy ego Podstawowa w lasnościa funkcji holomorficznych jest wzór ca lkowy Cauchy ego (1831), który odtwarza dana funkcje wewnatrz ko la z jej wartości na brzegu. Twierdzenie 5.1. Jeżeli f jest funkcja holomorficzna w otoczeniu ko la K(z 0, r), to (5.1) f(z) = 1 f(ζ) 2πi ζ z dζ, z K(z 0, r). K(z 0,r) Co wiecej, f jest C-różniczkowalna dowolna ilość razy oraz f (n) (z) = n! f(ζ) 2πi (ζ z) n+1 dζ, z K(z 0, r), n = 1, 2,... K(z 0,r) Dowód. Niech Ω bedzie gwiaździstym otoczeniem K(z 0, r), w którym funkcja f jest określona. Dla ζ Ω zdefiniujmy f(ζ) f(z), ζ z, g(ζ) := ζ z f (z), ζ = z.

16 14 ZBIGNIEW B LOCKI Wtedy g O(Ω \ {z}) C(Ω), zatem Wniosek 3.3 implikuje, że 0 = K(z 0,r) g(ζ)dζ = K(z 0,r) f(ζ) dζ 2πif(z). ζ z Otrzymaliśmy zatem (5.1). Druga cześć tezy wynika z faktu, że możemy teraz różniczkować pod znakiem ca lki, zauważmy, że ( ) n ( ) 1 =0, z ζ z ( ) n ( ) 1 1 = z ζ z (ζ z) n+1. Druga cz eść Twierdzenia 5.1 jest specjalnym przypadkiem ogólnego rezulatu o holomorficzności funkcji danej wzorem ca lkowym dla dowolnej drogi (nazywanego lematem o produkcji funkcji holomorficznych). Lemat 5.2. Za lóżmy, że γ jest dowolna droga w C, natomiast g funkcja ciag l a na γ. Po lóżmy g(ζ) f(z) := ζ z dζ, z C \ γ. γ Wtedy f O(C \ γ ), f jest C-różniczkowalna dowolna ilość razy oraz dla n = 1, 2,... mamy Ćwiczenie f (n) (z) = n! γ Obliczyć K(0,2) g(ζ) (ζ z) n+1 dζ, z C \ γ. e z (z + 1) 2 dz. Jeżeli rozpatrzymy wzór Cauchy ego dla z = z 0 oraz parametryzacj e ζ = z 0 +re it, 0 t 2π, otrzymamy twierdzenie o wartości średniej. Wniosek 5.3. (Poisson, 1823) Jeżeli f jest funkcja holomorficzna w otoczeniu ko la K(z 0, r), to f(z 0 ) = 1 2π f(z 0 + re it )dt. 2π 0 Bezpośrednia konsekwecja wzoru Cauchy ego jest także nierówność Cauchy ego (1835). Twierdzenie 5.4. Niech f O(K(z 0, r)) bedzie taka, że f M dla pewnej sta lej M. Wtedy f (n) (z 0 ) n! M, n = 1, 2,... rn Dowód. Wystarczy zastosować wzór Cauchy ego w kole K(z 0, ρ) dla ρ < r oraz (3.3), a nast epnie skorzystać z dowolności ρ.

17 FUNKCJE ANALITYCZNE Podstawowe w lasności funkcji holomorficznych Udowodnimy teraz szereg w lasności funkcji holomorficznych wynikajacych ze wzoru Cauchy ego. Pokazaliśmy, że każda funkcja holomorficzna jest C-różniczkowalna dowolna ilość razy. W szczególności, każda funkcja, która lokalnie ma pierwotna jest holomorficzna. Z Twierdzenia 4.2 wynika zatem rezultat odwrotny do twierdzenia ca lkowego Cauchy ego. Twierdzenie 6.1. (Morera, 1886) Za lóżmy, że funkcja f C(Ω) (Ω otwarty w C) spe lnia f(z) dz = 0 dla każdego trójkata T Ω. Wtedy f O(Ω). Ćwiczenie T Pokazać, że jeżeli f C(C) O(C \ R), to f O(C). Przypomnimy teraz regularyzacje funkcji przez splot, która jest przydatna w rozwiazaniu nastepnego ćwiczenia. Niech ρ C (C) bedzie takie, że supp ρ = (ozn. := K(0, 1)), ρ 0, ρ(z) zależy tylko od z oraz ρ dλ = 1. Dla ε > 0 C po lóżmy ρ ε (z) := ε 2 ρ(z/ε), wtedy supp ρ ε = K(0, ε) oraz C ρ ε dλ = 1. Dla f L 1 loc (Ω) i w Ω ε := {z Ω : K(z, ε) Ω} k ladziemy f ε (w) := (f ρ ε )(w) = K(w,ε) f(z)ρ ε (w z)dλ(z) = f(w εz)ρ(z)dλ(z). Wtedy f ε C (Ω ε ) (przy czym D α f ε = f D α ρ ε ), f ε f w L 1 loc (Ω), gdy ε 0, natomiast jeżeli f jest ciag le, to zbieżność jest lokalnie jednostajna. Ćwiczenie Udowodnić twierdzenie Morery dla kó l: jeżeli dla f C(Ω) zachodzi K(z 0,r) f(z) dz = 0 dla każdego ko la K(z 0, r) Ω, to f O(Ω). Funkcje holomorficzna określona na C nazywamy ca lkowita. Twierdzenie 6.2. (Liouville, 1847, Cauchy, 1844) Każda ograniczona funkcja ca lkowita jest sta la. Dowód. Jeżeli f M na C, to z nierówności Cauchy ego wynika, że f (z) M/r dla każdego z C i r > 0. Jeżeli wiec r, to dostaniemy, że f = 0 na C. Ale to oznacza, że również pochodna rzeczywista f wszedzie znika. Wyk lad 4, Ćwiczenie Pokazać, że jeżeli funkcja f O(C) jest taka, że Re f M dla pewnej sta lej M, to f jest sta la. Ćwiczenie Pokazać, że jeżeli funkcja ca lkowita f spe lnia f(z) C z n, gdy z R, dla pewnych C, R > 0, to f musi być wielomianem stopnia n.

18 16 ZBIGNIEW B LOCKI Z twierdzenia Liouville a w latwy sposób wynika zasadnicze twierdzenie algebry. Bo jeżeli niesta ly wielomian P nie mia lby pierwiastka, to f := 1/P by loby funkcja ca lkowita. Co wiecej lim f(z) = 0. z W szczególności, f by laby funkcja ograniczona, a wiec na mocy twierdzenia Liouville a otrzymalibyśmy, że P jest sta ly. Nastepnym rezulatem jest zasada maksimum dla funkcji holomorficznych. Twierdzenie 6.3. Jeżeli f jest funkcja holomorficzna w obszarze Ω taka, że f osiaga maksimum w Ω, to f jest sta la. Dowód. Dla K(z 0, r) Ω z twierdzenia o wartości średniej wynika, że f(z 0 ) 1 2π 2π 0 f(z 0 + re it ) dt. Jeśli zatem f f(z 0 ) na K(z 0, r), to z ciag lości f wynika, że f = f(z 0 ) na K(z 0, r), a wobec dowolności r, także w K(z 0, r). Twierdzimy, że jeżeli f = f(z 0 ) w K(z 0, r), to wtedy f = f(z 0 ) w K(z 0, r). Jeżeli f(z 0 ) = 0, to jest to oczywiste, możemy wiec za lożyć, że f 0 w K(z 0, r). Mamy 0 = ( f 2 ) z = f z f + (f z )f = f f, a zatem f = 0, wi ec f = f(z 0 ) w K(z 0, r). Pokazaliśmy wi ec, że jeżeli f(z 0 ), to f = f(z 0 ) w K(z 0, r). Jeżeli teraz f osiaga maksimum w z 0 Ω, to k ladziemy Ω := {z Ω : f(z) = f(z 0 )}. max f = K(z 0,r) Zbiór ten jest oczywiście domkniety, natomiast z pierwszej cześci dowodu wynika, że jest on również otwarty, co oznacza, że Ω = Ω. Twierdzenie 6.3 to s laba zasada maksimum (zak ladamy, że maksimum jest globalne), nied lugo pokażemy wzmocnienie Twierdzenia 6.3 (przy za lożeniu, że maksimum jest lokalne). Ćwiczenie Niech wielomian P (z) = a 0 +a 1 z+ +a n z n b edzie taki, że P (z) 1, gdy z = 1. Pokazać, że a j 1, j = 1,..., n. Ćwiczenie Niech f bedzie funkcja holomorficzna w otoczeniu pierścienia {1 z 3} taka, że f 1, gdy z = 1 oraz f 9, gdy z = 3. Pokazać, że f(z) 4, gdy z = 2. Przy pomocy wzoru Cauchy ego możemy też latwo udowodnić dwa twierdzenia dotyczace ciagów funkcji holomorficznych. Twierdzenie 6.4. (Weierstrass, 1841) Jeżeli f n jest ciagiem funkcji holomorficznych w Ω zbieżnym lokalnie jednostajnie do funkcji f, to f jest funkcja holomorficzna oraz dla każdego k = 1, 2,... mamy lokalnie jednostajna zbieżność f n (k) f (k). Dowód. Niech K(z 0, r) Ω. Funkcje f n spe lniaja wzór Cauchy ego (3.6), zatem spe lnia go również f. Z Lematu 4.2 wynika, że f jest holomorficzna w K(z 0, r). Co wiecej, z nierówności Cauchy ego dostaniemy max f n (k) f (k) k! K(z 0,r/2) (r/2) k max f n f. K(z 0,r/2)

19 FUNKCJE ANALITYCZNE 17 Twierdzenie 6.5. (Montel, 1911) Jeżeli f n jest lokalnie jednostajnie ograniczonym ciagiem funkcji holomorficznych na obszarze Ω w C, to istnieje podciag f nk zbieżny lokalnie jednostajnie w Ω. Dowód. Jeżeli K(z 0, r) Ω, to z wzoru Cauchy ego mamy z z 0 f n (ζ) f n (z) f n (z 0 ) = 2πi (ζ z)(ζ z 0 ) dζ K(z 0,r) Mδ r(r δ), gdzie z z 0 δ oraz f n M w K(z 0, r). Wynika stad, że rodzina {f n } jest jednakowo ciag la, tzn. z 0 Ω ε > 0 δ > 0 n : z z 0 δ f n (z) f n (z 0 ) ε. Teza twierdzenia wynika teraz z twierdzenia Arzeli-Ascoliego. Ćwiczenie Korzystajac z twierdzenia Baire a pokazać, że jeżeli f n O(Ω) jest ciagiem zbieżnym punktowo w Ω, to istnieje otwarty, gesty podzbiów Ω w Ω, gdzie ciag f n jest lokalnie jednostajnie ograniczony, skad wynika, że lim f n O(Ω ). 7. Szeregi pot egowe Wyrażenie (7.1) a n (z z 0 ) n, n=0 z C nazywamy szeregiem potegowym o środku w z 0 C i wspó lczynnikach a n C, n = 0, 1,.... Przyk lad. Szereg geometryczny z n jest zbieżny wtedy i tylko wtedy, gdy z < 1. Wynika to ze wzoru Możemy zatem zapisać n=0 1 + z + + z n = 1 zn+1, z 1. 1 z (7.2) n=0 z n = 1, z < 1. 1 z Twierdzenie 7.1. (Cauchy, 1821, Hadamard, 1892) Po lóżmy (7.3) R := 1 n lim sup an. n Wtedy szereg (7.1) jest bezwzgl ednie i lokalnie jednostajnie zbieżny w kole K(z 0, R) oraz rozbieżny dla każdego z C \ K(z 0, R).

20 18 ZBIGNIEW B LOCKI Dowód. Dla z K(z 0, R) niech r i λ bed a takie, że z z 0 r < R oraz r/r < λ < 1. Wtedy dla n odp. dużego mamy n a n λ/r, zatem N 2 N2 a n (z z 0 ) n a n (z z 0 ) n n=n 1 n=n 1 n=n 1 λ n = λn1 1 λ 0, gdy N 1. Z warunku Cauchy ego zbieżności otrzymaliśmy zatem bezwzgledn a i jednostajna zbieżność szeregu na K(z 0, r). Z drugiej strony, jeżeli z z 0 > R, to istnieje podciag a nk taki, że k n ank 1/ z z 0, co oznacza, że a nk (z z 0 ) n k 1, nie jest zatem spe lniony warunek konieczny zbieżności szeregu. Ko lo K(z 0, R) z Twierdzenia 7.1 nazywamy ko lem zbieżności, zaś R promieniem zbieżności szeregu (7.1). Formu la (7.3) na promień zbieżności szeregu potegowego nosi nazwe wzoru Cauchy ego-hadamarda. Zauważmy, że promień zbieżności szeregu (7.1) jest dodatni wtedy i tylko wtedy, gdy istnieje M > 0 takie, że dla n odp. dużego mamy a n M n - wtedy R 1/M. Twierdzenie 7.1 nie rozstrzyga zbieżności szeregu potegowego na brzegu ko la zbieżności. Przyk lady. Ko lem zbieżności każdego z szeregów z n, n=0 z n n, n=1 n=1 z n jest K(0, 1). n2 i) Szereg z n jest rozbieżny we wszystkich punktach z brzegu ko la zbieżności. ii) Szereg z n /n 2 jest zbieżny bezwzgl ednie na brzegu. iii) Szereg z n /n jest rozbieżny w 1 i zbieżny warunkowo na K(0, 1) \ {1} ( Ćwiczenie ). iv) Ćwiczenie Pokazać, że istnieje rosnacy ciag liczb naturalnych p n oraz geste podzbiory A +, A K(0, 1) takie, że z p n = ±1 dla z A ±. Stad szereg z np n /n jest rozbieżny w A + i zbieżny warunkowo w A. Istotna w lasnościa szeregów potegowych jest jednoznaczność ich wspó lczynników. Propozycja 7.2. Za lóżmy, że szeregi potegowe a n (z z 0 ) n oraz b n (z z 0 ) n sa zbieżne do tych samych wartości na zbiorze A takim, że z 0 jest punktem skupienia A. Wtedy a n = b n dla wszystkich n. Dowód. Bez straty ogólności możemy za lożyć, że b n = 0 dla wszystkich n. Przypuśćmy, że a m 0 dla pewnego m i wybierzmy najmniejsze takie m. Wtedy a n (z z 0 ) n = (z z 0 ) m n=0 n=0 a n+m (z z 0 ) n, z z 0. Szereg n=0 a n+m(z z 0 ) n, zbieżny do pewnej funkcji ciag lej w otoczeniu z 0 (dzieki Twierdzeniu 7.1), znika dla z A, zatem znika również w z 0, czyli a m = 0 - sprzeczność. Przyk lad. Rozpatrzmy ciag Fibonacciego (1202): a 0 = 0, a 1 = 1, a n = a n 2 + a n 1, n = 2, 3,...

FUNKCJE ANALITYCZNE. Zbigniew B locki. Spis treści

FUNKCJE ANALITYCZNE. Zbigniew B locki. Spis treści FUNKCJE ANALITYCZNE JEDNOSEMESTRALNY WYK LAD DLA SEKCJI NIETEORETYCZNYCH INSTYTUT MATEMATYKI UJ, 2008 Zbigniew B locki Spis treści 1. Podstawowe w lasności liczb zespolonych 2 2. Różniczkowanie funkcji

Bardziej szczegółowo

Wyk lad 7 Baza i wymiar przestrzeni liniowej

Wyk lad 7 Baza i wymiar przestrzeni liniowej Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem

Bardziej szczegółowo

Grupy i cia la, liczby zespolone

Grupy i cia la, liczby zespolone Rozdzia l 1 Grupy i cia la, liczby zespolone Dla ustalenia uwagi, b edziemy używać nast epuj acych oznaczeń: N = { 1, 2, 3,... } - liczby naturalne, Z = { 0, ±1, ±2,... } - liczby ca lkowite, W = { m n

Bardziej szczegółowo

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie 1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z

Bardziej szczegółowo

Wyk lad 3 Wielomiany i u lamki proste

Wyk lad 3 Wielomiany i u lamki proste Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich

Bardziej szczegółowo

w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak

w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak Równania różniczkowe czastkowe w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak Horyzonty 2014 Podstawowy obiekt wyk ladu: funkcje holomorficzne wielu zmiennych Temat: dwa problemy, których znane

Bardziej szczegółowo

Wyk lad 14 Cia la i ich w lasności

Wyk lad 14 Cia la i ich w lasności Wyk lad 4 Cia la i ich w lasności Charakterystyka cia la Określenie cia la i w lasności dzia lań w ciele y ly omówione na algerze liniowej. Stosujac terminologie z teorii pierścieni możemy powiedzieć,

Bardziej szczegółowo

WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE

WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE Definicja 1 Algebra abstrakcyjna nazywamy teorie, której przedmiotem sa dzia lania na

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn.

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn. WRAiT 2 #1 1. Dla jakich a C ciągi o wyrazach na n, a n 1 + a n, an /n, są zbieżne? 2. Wykaż zbieżność i znajdź granice ciągów n a k, a n 1 + a 2n ( a < 1), a n 1 + a 2n ( a > 1), 1 n 3. Dla danego ϕ R

Bardziej szczegółowo

Funkcje Analityczne, ćwiczenia i prace domowe

Funkcje Analityczne, ćwiczenia i prace domowe Funkcje Analityczne, ćwiczenia i prace domowe P. Wojtaszczyk 29 maja 22 Ten plik będzie progresywnie modyfikowany. Będzie on zawierał. Zadanie omówione na ćwiczeniach 2. Zadania ćwiczebne do samodzielnego

Bardziej szczegółowo

, sin z = eiz e iz. = f (z 0 ) (równoważnie f(z 0 + h) = f(z 0 ) + f (z 0 )h + α(h), gdzie lim h 0

, sin z = eiz e iz. = f (z 0 ) (równoważnie f(z 0 + h) = f(z 0 ) + f (z 0 )h + α(h), gdzie lim h 0 A. Definicje. z = z z, z = z (cos θ + i sin θ) (argument z - każdy kąt θ spełniający tę równość; każde dwa argumenty z różnią się o całkowitą wielokrotność 2π). Ponadto dla z n z 0 Rez n Rez 0, Imz n Imz

Bardziej szczegółowo

Liczby zespolone. P. F. Góra (w zastępstwie prof. K. Rościszewskiego) 27 lutego 2007

Liczby zespolone. P. F. Góra (w zastępstwie prof. K. Rościszewskiego)  27 lutego 2007 Liczby zespolone P. F. Góra (w zastępstwie prof. K. Rościszewskiego) http://th-www.if.uj.edu.pl/zfs/gora/ 27 lutego 2007 Definicja C zbiór par liczb rzeczywistych w którym określono następujace działania:

Bardziej szczegółowo

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy

Bardziej szczegółowo

Wyk lad 14 Formy kwadratowe I

Wyk lad 14 Formy kwadratowe I Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział

Bardziej szczegółowo

4. Równania Cauchy ego Riemanna. lim. = c.. dz z=a Zauważmy, że warunkiem równoważnym istnieniu pochodnej jest istnienie liczby c C, takiej że

4. Równania Cauchy ego Riemanna. lim. = c.. dz z=a Zauważmy, że warunkiem równoważnym istnieniu pochodnej jest istnienie liczby c C, takiej że 4. Równania Caucy ego Riemanna Niec Ω C będzie zbiorem otwartym i niec f : Ω C. Mówimy, że f ma w punkcie a Ω pocodną w sensie zespolonym (jest olomorficzna w a równą c C, jeśli f(z f(a lim = c. z a Piszemy

Bardziej szczegółowo

Rozdział 5. Szeregi liczbowe. 5.1 Szeregi liczbowe. Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy (a n ) n=1.

Rozdział 5. Szeregi liczbowe. 5.1 Szeregi liczbowe. Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy (a n ) n=1. Rozdział 5 Szeregi liczbowe 5. Szeregi liczbowe Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy ( ). Ciąg (s n ) określony wzorem s n = n a j, n N, nazywamy ciągiem sum częściowych ciągu

Bardziej szczegółowo

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm 1 Grupa ilorazowa Niech H b edzie dzielnikiem normalnym grupy G. Oznaczmy przez G/H zbiór wszystkich warstw lewostronnych grupy G wzgl edem podgrupy

Bardziej szczegółowo

LICZBY ZESPOLONE. 1. Wiadomości ogólne. 2. Płaszczyzna zespolona. z nazywamy liczbę. z = a + bi (1) i = 1 lub i 2 = 1

LICZBY ZESPOLONE. 1. Wiadomości ogólne. 2. Płaszczyzna zespolona. z nazywamy liczbę. z = a + bi (1) i = 1 lub i 2 = 1 LICZBY ZESPOLONE 1. Wiadomości ogólne DEFINICJA 1. Liczba zespolona z nazywamy liczbę taką, że a, b R oraz i jest jednostka urojona, definiowaną następująco: z = a + bi (1 i = 1 lub i = 1 Powyższą postać

Bardziej szczegółowo

Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu

Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu Wyk lad 5 1. Iloczyn ortogonalny funkcji Wróćmy na chwilȩ do dowodu wzorów Eulera-Fouriera. Kluczow a rolȩ odgrywa l wzór:

Bardziej szczegółowo

P. Urzyczyn: Materia ly do wyk ladu z semantyki. Uproszczony 1 j. ezyk PCF

P. Urzyczyn: Materia ly do wyk ladu z semantyki. Uproszczony 1 j. ezyk PCF 29 kwietnia 2013, godzina 23: 56 strona 1 P. Urzyczyn: Materia ly do wyk ladu z semantyki Uproszczony 1 j ezyk PCF Sk ladnia: Poniżej Γ oznacza otoczenie typowe, czyli zbiór deklaracji postaci (x : τ).

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Zadania o liczbach zespolonych

Zadania o liczbach zespolonych Zadania o liczbach zespolonych Zadanie 1. Znaleźć takie liczby rzeczywiste a i b, aby zachodzi ly równości: a) a( + i) + b(4 i) 6 i, b) a( + i) + b( + i) 8i, c) a(4 i) + b(1 + i) 7 1i, ( ) a d) i + b +i

Bardziej szczegółowo

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne Szeregi potęgowe i trygonometryczne Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne str. 1/36 Szereg potęgowy Szeregiem potęgowym o

Bardziej szczegółowo

Optymalizacja Rozpoczniemy od przedstawienia kilku charakterystycznych przyk ladów zadań optymalizacji liniowej.

Optymalizacja Rozpoczniemy od przedstawienia kilku charakterystycznych przyk ladów zadań optymalizacji liniowej. Optymalizacja Rozpoczniemy od przedstawienia kilku charakterystycznych przyk ladów zadań optymalizacji liniowej. Zagadnienie diety. Jak wymieszać wymieszać pszenice, soje i maczk e rybna by uzyskać najtańsza

Bardziej szczegółowo

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy

Bardziej szczegółowo

Kurs Start plus poziom zaawansowany, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1.

Kurs Start plus poziom zaawansowany, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1. Projekt Fizyka Plus nr POKL.04.0.0-00-034/ współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki Kurs Start plus poziom zaawansowany,

Bardziej szczegółowo

POCHODNA KIERUNKOWA. DEFINICJA Jeśli istnieje granica lim. to granica ta nazywa siȩ pochodn a kierunkow a funkcji f(m) w kierunku osi l i oznaczamy

POCHODNA KIERUNKOWA. DEFINICJA Jeśli istnieje granica lim. to granica ta nazywa siȩ pochodn a kierunkow a funkcji f(m) w kierunku osi l i oznaczamy POCHODNA KIERUNKOWA Pochodne cz astkowe funkcji f(m) = f(x, y, z) wzglȩdem x, wzglȩdem y i wzglȩdem z wyrażaj a prȩdkość zmiany funkcji w kierunku osi wspó lrzȩdnych; np. f x jest prȩdkości a zmiany funkcji

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

Liczby Rzeczywiste. Ciągi. Szeregi. Rachunek Różniczkowy i Całkowy Funkcji Jednej Zmiennej.

Liczby Rzeczywiste. Ciągi. Szeregi. Rachunek Różniczkowy i Całkowy Funkcji Jednej Zmiennej. Pytania na egzaminie magisterskim dotyczą głównie zagadnień związanych z tematem pracy magisterskiej. Należy być przygotowanym również na pytania sprawdzające podstawową wiedzę ze wszystkich zaliczonych

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

Wykłady z matematyki Liczby zespolone

Wykłady z matematyki Liczby zespolone Wykłady z matematyki Liczby zespolone Rok akademicki 015/16 UTP Bydgoszcz Liczby zespolone Wstęp Formalnie rzecz biorąc liczby zespolone to punkty na płaszczyźnie z działaniami zdefiniowanymi następująco:

Bardziej szczegółowo

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Równania różniczkowe liniowe wyższych rzędów o stałych współcz Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

Analiza matematyczna I

Analiza matematyczna I Analiza matematyczna I 1 Spis treści 1 Wstep. Ograniczenia i kresy zbiorów. 4 1.1 Oznaczenia..................................... 4 1.2 Zbiory liczbowe................................... 4 1.3 Kwantyfikatory...................................

Bardziej szczegółowo

1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009.

1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009. Szeregi potęgowe Definicja.. Szeregiem potęgowym o środku w punkcie R nazywamy szereg postaci: gdzie x R oraz c n R dla n = 0,, 2,... c n (x ) n, Przyjmujemy, że 0 0 def =. Liczby c n nazywamy współczynnikami

Bardziej szczegółowo

Wykład 4. Określimy teraz pewną ważną klasę pierścieni.

Wykład 4. Określimy teraz pewną ważną klasę pierścieni. Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia

Bardziej szczegółowo

Definicja odwzorowania ciągłego i niektóre przykłady

Definicja odwzorowania ciągłego i niektóre przykłady Odwzorowania Pojęcie odwzorowania pomiędzy dwoma zbiorami było już definiowane, ale dawno, więc nie od rzeczy będzie przypomnieć, że odwzorowaniem nazywamy sposób przyporządkowania (niekoniecznie każdemu)

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 5 marca 2011 Zasady 10 wyk ladów; egzamin pisemny; Literatura 1 A. Lomnicki Wprowadzenie do statystyki dla przyrodników PWN 1999. 2 W. Krysicki, J. Bartos, W. Dyczka, K. Królikowska, M. Wasilewski Rachunek

Bardziej szczegółowo

Procesy Stochastyczne - Zestaw 1

Procesy Stochastyczne - Zestaw 1 Procesy Stochastyczne - Zestaw 1 Zadanie 1 Niech ξ i η bed a niezależnymi zmiennymi losowymi o rozk ladach N (0, 1). Niech X = ξ +η i Y = ξ η. Znaleźć rozk lad (X, Y ) i rozk lad warunkowy L X ( Y ). Zadanie

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1,y 1 +x,y := x 1 +x,y 1 +y, 1 x 1,y 1 x,y := x 1 x y 1 y,x 1 y +x y 1 jest ciałem zob przykład 16, str 7; jest to tzw

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n

Bardziej szczegółowo

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. 1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.

Bardziej szczegółowo

ANALIZA ZESPOLONA. IV semestr 2013/14. oprac. Janina Kotus

ANALIZA ZESPOLONA. IV semestr 2013/14. oprac. Janina Kotus ANALIZA ZESPOLONA IV semestr 203/4 oprac. Janina Kotus Spis treści. Poj ecia podstawowe str. 5. Rzut stereograficzny str. 5.2 Metryki w C i C str. 6 2. Funkcje zespolone str. 8 2. Granica i ciag lość str.

Bardziej szczegółowo

Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych

Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych Pawe l Józiak 007-- Poje cia wste pne Wielomianem zmiennej rzeczywistej t nazywamy funkcje postaci:

Bardziej szczegółowo

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Funkcje zespolone Complex functions Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia Liczba

Bardziej szczegółowo

ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO

ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO Na egzaminie magisterskim student powinien: 1) omówić wyniki zawarte w pracy magisterskiej posługując się swobodnie pojęciami i twierdzeniami zamieszczonymi w pracy

Bardziej szczegółowo

Wprowadzenie z dynamicznej optymalizacji

Wprowadzenie z dynamicznej optymalizacji Wprowadzenie z dynamicznej optymalizacji Lukasz Woźny 29 kwietnia 2007 Spis treści 1 Optymalizacja statyczna a optymalizacja dynamiczna 2 1.1 Ekstrema lokalne funkcji wielu zmiennych - statyka...... 2

Bardziej szczegółowo

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 Zadanie IV. Dany jest prostokątny arkusz kartony o długości 80 cm i szerokości 50 cm. W czterech rogach tego arkusza wycięto kwadratowe

Bardziej szczegółowo

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

n=0 W tym rozdziale, wyposażeni w wiedzę o zbieżności jednostajnej, omówimy ogólne własności funkcji, które można definiować wzorami typu (8.1).

n=0 W tym rozdziale, wyposażeni w wiedzę o zbieżności jednostajnej, omówimy ogólne własności funkcji, które można definiować wzorami typu (8.1). Rozdział 8 Szeregi potęgowe Szeregiem potęgowym o środku w punkcie z 0 C i współczynnikach a n C nazywamy szereg a n z z 0 ) n, 8.1) gdzie z C. Z szeregami tego typu mieliśmy już do czynienia, omawiając

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw 1 1. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y 1+x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

Dyskretne modele populacji

Dyskretne modele populacji Dyskretne modele populacji Micha l Machtel Adam Soboczyński 17 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których

Bardziej szczegółowo

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 2 Tablice trwania życia

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 2 Tablice trwania życia Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 2 Tablice trwania życia 1 Cele (na dzisiaj): Zrozumieć w jaki sposób można wyznaczyć przysz ly czas życia osoby w wieku x. Zrozumieć parametry

Bardziej szczegółowo

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie Rozdział 7 Różniczkowalność Jedną z konsekwencji pojęcia granicy funkcji w punkcie jest pojęcie pochodnej funkcji. W rozdziale tym podamy podstawowe charakteryzacje funkcji związane z pojęciem pochodnej.

Bardziej szczegółowo

1 Funkcje elementarne

1 Funkcje elementarne 1 Funkcje elementarne Funkcje elementarne, które będziemy rozważać to: x a, a x, log a (x), sin(x), cos(x), tan(x), cot(x), arcsin(x), arccos(x), arctan(x), arc ctg(x). 1.1 Funkcje x a. a > 0, oraz a N

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

Rachunek różniczkowy i całkowy 2016/17

Rachunek różniczkowy i całkowy 2016/17 Rachunek różniczkowy i całkowy 26/7 Zadania domowe w pakietach tygodniowych Tydzień 3-7..26 Zadanie O. Czy dla wszelkich zbiorów A, B i C zachodzą następujące równości: (A B)\C = (A\C) (B\C), A\(B\C) =

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

dr inż. Ryszard Rębowski 1 WPROWADZENIE

dr inż. Ryszard Rębowski 1 WPROWADZENIE dr inż. Ryszard Rębowski 1 WPROWADZENIE Zarządzanie i Inżynieria Produkcji studia stacjonarne Konspekt do wykładu z Matematyki 1 1 Postać trygonometryczna liczby zespolonej zastosowania i przykłady 1 Wprowadzenie

Bardziej szczegółowo

1 Podstawowe oznaczenia

1 Podstawowe oznaczenia Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

LVIII Olimpiada Matematyczna

LVIII Olimpiada Matematyczna LVIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2007 r. (pierwszy dzień zawodów) Zadanie 1. W trójkącie ostrokątnym A punkt O jest środkiem okręgu opisanego,

Bardziej szczegółowo

na egzaminach z matematyki

na egzaminach z matematyki Błędy studentów na egzaminach z matematyki W opracowaniu omówiłem typowe błędy popełniane przez studentów na kolokwiach i egzaminach z algebry oraz analizy. Ponadto podaję błędy rzadziej spotykane, które

Bardziej szczegółowo

Spis treści Wstęp Liczby zespolone Funkcje elementarne zmiennej zespolonej Wielomiany Macierze i wyznaczniki

Spis treści Wstęp Liczby zespolone Funkcje elementarne zmiennej zespolonej Wielomiany Macierze i wyznaczniki Spis treści Wstęp ii 1 Liczby zespolone 1 1.1 Definicja i działania, liczby sprzężone......................... 1 1.2 Moduł, argument, postać trygonometryczna..................... 2 1.3 Działania na liczbach

Bardziej szczegółowo

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE . Oblicyć: ZADANIA Z FUNKCJI ANALITYCZNYCH a) ( 7i) ( 9i); b) (5 i)( + i); c) 4+3i ; LICZBY ZESPOLONE d) 3i 3i ; e) pierwiastki kwadratowe 8 + i.. Narysować biór tych licb espolonych, które spełniają warunek:

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Definicja ciągu liczbowego. Definicja 1.1. Ciągiem liczbowym nazywamy funkcję a : N R odwzorowującą zbiór liczb naturalnych N w zbiór liczb rzeczywistych R i oznaczamy przez {a

Bardziej szczegółowo

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna Rozdział 9 Funkcja pierwotna 9. Funkcja pierwotna Definicja funkcji pierwotnej. Niech f będzie funkcją określoną na przedziale P. Mówimy, że funkcja F : P R jest funkcją pierwotną funkcji f w przedziale

Bardziej szczegółowo

1 Elementy logiki i teorii mnogości

1 Elementy logiki i teorii mnogości 1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz

Bardziej szczegółowo

AB = x a + yb y a + zb z a 1

AB = x a + yb y a + zb z a 1 1. Wektory w przestrzeni trójwymiarowej EFINICJA. Uporzadkowana pare punktów (A, B) nazywamy wektorem i oznaczamy AB. Punkt A to poczatek wektora, punkt B to koniec wektora. EFINICJA. Je±li B = A, to wektor

Bardziej szczegółowo

Dyskretne modele populacji

Dyskretne modele populacji Dyskretne modele populacji Micha l Machtel Adam Soboczyński 19 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których

Bardziej szczegółowo

Krzywa uniwersalna Sierpińskiego

Krzywa uniwersalna Sierpińskiego Krzywa uniwersalna Sierpińskiego Małgorzata Blaszke Karol Grzyb Streszczenie W niniejszej pracy omówimy krzywą uniwersalną Sierpińskiego, zwaną również dywanem Sierpińskiego. Pokażemy klasyczną metodę

Bardziej szczegółowo

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0.

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0. Matematyka ZLic - 3 Pochodne i różniczki funkcji jednej zmiennej Definicja Pochodną funkcji f w punkcie x, nazwiemy liczbę oznaczaną symbolem f x lub df x dx, równą granicy właściwej f x lim h - o ile

Bardziej szczegółowo

Następnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień.

Następnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień. Zadanie Należy zacząć od sprawdzenia, co studenci pamiętają ze szkoły średniej na temat funkcji jednej zmiennej. Na początek można narysować kilka krzywych na tle układu współrzędnych (funkcja gładka,

Bardziej szczegółowo

Krzysztof Rykaczewski. Szeregi

Krzysztof Rykaczewski. Szeregi Krzysztof Rykaczewski Spis treści 1 Definicja szeregu 2 Zbieżność szeregu 3 Kryteria zbieżności szeregów 4 Iloczyn Cauchy ego szeregów 5 Bibliografia 1 / 13 Definicja szeregu Niech dany będzie ciąg (a

Bardziej szczegółowo

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Analiza zespolona (03-MO2S-12-AZes) 1. Informacje ogólne koordynator modułu rok akademicki

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol

ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA oprac. I. Gorgol Spis treści. Elementy logiki. Elementy rachunku zbiorów 4. Funkcje zdaniowe i kwantyfikatory. 4 4. Funkcja złożona i odwrotna 6 5. Granica ciągu liczbowego

Bardziej szczegółowo

Twierdzenie spektralne

Twierdzenie spektralne Twierdzenie spektralne Algebrę ograniczonych funkcji borelowskich na K R będziemy oznaczać przez B (K). Spektralnym rozkładem jedności w przestrzeni Hilberta H nazywamy odwzorowanie, które każdemu zbiorowi

Bardziej szczegółowo

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

Pojȩcie przestrzeni metrycznej

Pojȩcie przestrzeni metrycznej ROZDZIA l 1 Pojȩcie przestrzeni metrycznej Definicja 1.1. Dowolny niepusty zbiór X z funkcja ρ : X X [0, ), spe lniaja ca naste puja ce trzy warunki M1: ρ(x, y) = 0 x = y, M2: ρ(x, y) = ρ(y, x), M3: ρ(x,

Bardziej szczegółowo

Wykład 1. Przestrzeń Hilberta

Wykład 1. Przestrzeń Hilberta Wykład 1. Przestrzeń Hilberta Sygnały. Funkcje (w języku inżynierów - sygnały) które będziemy rozważali na tym wykładzie będą kilku typów Sygnały ciągłe (analogowe). ) L 2 (R) to funkcje na prostej spełniające

Bardziej szczegółowo

EGZAMIN, ANALIZA 1A, , ROZWIĄZANIA

EGZAMIN, ANALIZA 1A, , ROZWIĄZANIA Zadanie 1. Podać kresy następujących zbiorów. Przy każdym z kresów napisać, czy kres należy do zbioru (TAK = należy, NIE = nie należy). infa = 0 NIE A = infb = 1 TAK { 1 i + 2 j +1 + 3 } k +2 : i,j,k N

Bardziej szczegółowo

( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x

( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x Arkusz I Zadanie. Wartość bezwzględna Rozwiąż równanie x + 3 x 4 x 7. Naszkicujmy wykresy funkcji f ( x) x + 3 oraz g ( x) x 4 uwzględniając tylko ich miejsca zerowe i monotoniczność w ten sposób znajdziemy

Bardziej szczegółowo

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )

Bardziej szczegółowo

Elementy logiki (4 godz.)

Elementy logiki (4 godz.) Elementy logiki (4 godz.) Spójniki zdaniotwórcze, prawa de Morgana. Wyrażenie implikacji za pomocą alternatywy i negacji, zaprzeczenie implikacji. Prawo kontrapozycji. Podstawowe prawa rachunku zdań. Uczestnik

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a); Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.

Bardziej szczegółowo

1 Funkcje i ich granice

1 Funkcje i ich granice Funkcje i ich granice Było: Zbiór argumentów; zbiór wartości; monotoniczność; funkcja odwrotna; funkcja liniowa; kwadratowa; wielomiany; funkcje wymierne; funkcje trygonometryczne i ich odwrotności; funkcja

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści 0 Wyrażenia algebraiczne, indukcja matematyczna 2 2 2 1 Geometria analityczna w R 2 3 3 3 2 Liczby zespolone 4 4 4 3

Bardziej szczegółowo