Jednorazowa sk ladka netto w przypadku stochastycznej stopy procentowej. Ubezpieczenie na ca le życie z n-letnim okresem odroczenia.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Jednorazowa sk ladka netto w przypadku stochastycznej stopy procentowej. Ubezpieczenie na ca le życie z n-letnim okresem odroczenia."

Transkrypt

1 Jednorazowa sk ladka netto w przypadku stochastycznej stopy procentowej Ubezpieczenie na ca le życie z n-letnim okresem odroczenia Wartość obecna wyp laty Y = Zatem JSN = = Kx +1 0, K x = 0, 1,..., n 1, t=1 v t, K x n. k=n k=n (K x +1 E t=1 E (k+1 t=1 ) v t K x = k P (K x = k) v t )P (K x = k) 1

2 Renta p latna z góry na poczatku każdego roku w wysokości c k Wartość obecna wyp laty Zatem JSN = = k k=0 j=0 k k=0 j=0 Y = K x c k k k=0 t=1 ( K x c j E t=1 v t. ) v t K x = k P (K x = k) ( k c j E v t )P (K x = k) t=1 2

3 Modele sk ladek i umów Rozróżnia sie nastepuj ace warianty op lacania umowy P1 jednorazowa sk ladka wnoszona w momencie zawierania umowy. P2 sk ladki o sta lej wysokości, p lacone dyskretnie z góry na poczatku każdego podokresu trwania umowy. P3 sk ladki o sta lej intensywności, p lacone w sposób ciag ly przez ca ly czas trwania umowy. P4 sk ladki o zmiennej wysokości, p lacone dyskretnie. P5 sk ladki o zmiennej intensywności p lacone w sposób ciag ly. 3

4 Modele umowy: 1. ca lkowicie dyskretny 2. ca lkowicie ciag ly 3. mieszany. 4

5 Ca lkowita strata ubezpieczyciela L = OW wyp lat z tytu lu umowy OW sk ladki. Wartość obecna liczona jest na poczatek umowy. L jest zmienna losowa, zmienna losowa jest zarówno OW wyp lat, jak i OW sk ladki. Sk ladke nazywa sie sk ladka netto, jeżeli spe lnia warunek równoważności EL = 0. 5

6 Problem Za lóżmy, że sk ladki w ubezpieczeniu na ca le życie op lacane sa dyskretnie z góry na poczatku roku. Wyznaczyć wysokość sk ladki P (A x ) OW sk ladki = P (A x ) OW wyp laty = v K x+1 K x v k k=0 Zatem warunek EL = 0 oznacza po prostu A x = E [ v K x+1 ] [ K x ] = P (A x ) E v k = P (A x )ä x. k=0 Zatem P (A x ) = A x ä x = d A x 1 A x. 6

7 Prospektywna strata tl := bieżaca wartość w chwili t przysz lych wyp lat bieżaca wartość w chwili t przysz lej sk ladki Oczywiście jest ca lkowita strata. 0L Jeżeli T x < t, to tl = 0. 7

8 Przyk lad 1 Ubezpieczenie na ca le życie (x) z suma ubezpieczenia p latna na koniec roku śmierci ze sk ladka p latna w momencie podpisania umowy, t < K x tl = v K x+1 t, t > 0, v K x+1 A x, t = 0. 8

9 Przyk lad 2 Ubezpieczenie na ca le życie z suma ubezpieczenia p latna na koniec roku śmierci ze sk ladka P (A x ) p latna na poczatku każdego roku, t < K x w szczególności tl = v K x+1 t P (A x ) 0L = v K x+1 P (A x ) K x k=t K x k=0 v k t, v k. 9

10 Przyk lad 3 Odroczone na n > 1 lat ubezpieczenie na ca le życie ze sk ladka p latna przez ca ly czas trwania umowy, w jednakowej wysokości P ( n A x), poza pierwszym rokiem. tl = χ{k x n}v Kx+1 t P ( n A ) K x x v k t k=max{1,t} 10

11 Zmienna losowa, której wartościa jest zysk ubezpieczyciela w chwili t. Dok ladniej: wartość obecna na moment podpisania umowy zysku z ubezpieczenia w chwili t tl retro = OW sk ladki zap laconej od 0 do chwili t OW wyp lat ubezpieczyciela od chwili 0 do chwili t 11

12 Przyk lad 1 Przyk lad 2 tl retro = A x v K x tl retro = P (A x ) t k=0 v k v K x 12

13 E( t L retro ) ( = E OW sk ladki zap laconej od 0 do chwili t OW wyp lat ubezpieczyciela od chwili 0 do chwili t ( = E (OW ca lej sk ladki OW sk ladki po t) (OW wszystkich wyp lat OW wyp lat po t) ( = EL + E OW wyp lat po t latach OW sk ladki po t latach ) = 0 + E ( v t tl ) ) = v t tp x E( t L T x t). ) 13

14 Ostatnia równość wynika oczywiście z zależności gdzie G jest σ-algebra Zatem E ( tl ) = E [ E( t L G) ], {, {t < K x }, {t K x }, Ω}. E ( tl ) = P (K x > t) 0 + P (K x < t) E [ tl K x t ] = t p x E [ tl K x t ] 14

15 Wniosek E( t L retro ) = v t tp x E [ tl K x t ] Wyrażenie te x := v t tp x nazywa si e aktuarialnym czynnikiem dyskonta. Wyrażenie tv := E [ tl K x t ] nazywa sie prospektywna rezerwa sk ladki netto. Oczywiście także tv = 1 P (T x t) E[ tl χ{t x t} ] = E( tl) tp x. 15

16 Sk ladki i rezerwy dla wybranych polis Ubezpieczenie na ca le życie P x := P (A x ) = A x ä x, Dla momentu k wartość oczekiwana wartości bieżacej przysz lej wyp laty E(v K x+1 k ) = m=k v m+1 k P (K x = m), Dla momentu k wartość oczekiwana wartości bieżacej przysz lej sk ladki E(P x K x m=k v m+1 k ) = P x ( m m=k t=k v t k )P (K x = m) 16

17 Zatem rezerwa w tym przypadku wynosi kv x = P x v m+1 k P (K x = m K x k) m=k ( m m=k t=k := A [x]+k P x ä [x]+k v t k )P (K x = m K x k) 17

18 Ubezpieczenie terminowe na n lat Sk ladka netto p lacona w jednakowej wysokości na poczatku każdego roku trwania umowy ubezpieczeniowej P 1x:. n Wartość obecna sk ladki min{k x,n 1} P 1x: n m=0 Wartość obecna wyp laty v m. χ{k x n 1}v K x+1. 18

19 Zatem min{k E χ{k x n 1}v Kx+1 x,n 1} P 1x: n czyli A 1x: n P 1x: n ä x: n = 0. m=0 v m Ostatecznie sk ladka netto w terminowym ubezpieczeniu n-letnim wynosi = 0, P 1x: n = A 1x: n ä x: n. 19

20 Wartość bieżaca w momencie k przysz lych wyp lat χ{k x n 1}v K x+1 k. Wartość bieżaca w momencie k przysz lych sk ladek min{k x,n 1} P 1x: n m=k Zatem rezerwa w momencie k kv 1x: n = 1 kp x n 1 m=k n 1 P 1x: n = n 1 m=k n 1 P 1x: n m=k t=k v m k v m+1 k P (K x = m) m v t k P (K x = m) v m+1 k P (K x = m k T x ) m m=k t=k v t k P (K x = m k T x ) 20

21 Ubezpieczenie na ca le życie, ze sk ladka p lacona przez pierwsze h lat Wartość obecna wyp laty v K x+1 Wartość obecna sk ladki Sk ladka netto min{k x,h} hp x m=0 v m (min{k E(v Kx+1 x,h} ) ) h P x E v m = 0. m=0 Zatem hp x = A x ä x: h. 21

22 Ogólny model dyskretny Ubezpieczenie gwarantuje wyp late sumy b k+1, jeśli K x = k. Sk ladki sa p lacone z góry w wysokości Π k za każdy rozpoczety rok umowy. Prospektywna strata kl = 0, K x < k, b Kx +1v Kx+1 k K x j=k Π jv j k, K x k. Obserwacja kv = b k+j+1 v j+1 j j=0 i=0 Π i+k v i j p [x]+k q [x]+k+j 22

23 Równoważne sformu lowanie obserwacji kv = j=0 b k+j+1 v j+1 p [x]+k q [x]+k+j j=0 Π k+j v j jp [x]+k. 23

24 Ważny wniosek Zachodza nastepuj ace zależności oraz kv = vb k+1 q [x]+k Π k + v k+1 Vp [x]+k kv v k+1 V + Π k = v(b k+1 k+1 V)q [x]+k. 24

25 Podejście deterministyczne Rozważmy kohorte x-latków liczac a poczatkowo l [x] osób, z których każdy zawiera umowe o ubezpieczenie, gwarantujac a wyp late kwoty b k+1 na koniec jego śmierci, jeśli umrze w roku k trwania umowy. Umowa jest op laca sk ladka w rocznych ratach o wysokości Π k, p laconych przez każdego z żyjacych na poczatku każdego roku umowy. 25

26 Na poczatku ubezpieczyciel zgromadzi l kwote l [x] Π 0. Po up lywie roku ubezpieczyciel wyp laci kwot e b 1 d [x] = b 1 ( l[x] l [x]+1 ). W k-ta rocznice ubezpieczyciel wyp laci l acznie sume b k d [x]+k 1 = b k (l [x]+k 1 l [x]+k ), otrzyma także sk ladk e l [x]+k Π k. 26

27 Bieżaca wartość przysz lych wydatków oraz wp lywów w roku k h=0 b k+h+1 v h+1 d [x]+k+h h=0 Π k+h v h l [x]+k+h. Średnia strata w roku k na jednego ubezpieczonego 1 l [x]+k h=0 h=0 b k+h+1 v h+1 d [x]+k+h Π k+h v h l [x]+k+h W roku k ubezpieczyciel zgromadzi l kwot e k 1 h=0 Π h (1 + i) k h l [x]+h k 1 h=0 b h+1 (1 + i) k (h+1) d [x]+h. 27

28 Wniosek h=0 b h+1 v h+1 d [x]+h = h=0 Π h v h l [x]+h. Zatem jeżeli sk ladka ma równoważyć przep lywy, to musi być sk ladka netto. 28

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 6 Kalkulacja sk ladki netto II. Funkcje komutacyjne.

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 6 Kalkulacja sk ladki netto II. Funkcje komutacyjne. Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 6 Kalkulacja sk ladki netto II. Funkcje komutacyjne. 1 Przypomnienie Umowa ubezpieczenia zawiera informacje o: Przedmiocie ubezpieczenia Czasie

Bardziej szczegółowo

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 5 Kalkulacja sk ladki netto I

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 5 Kalkulacja sk ladki netto I Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 5 Kalkulacja sk ladki netto I 1 Kodeks cywilny Tytu l XXVII, Umowa ubezpieczenia Dzia l I. Przepisy ogólne Dzia l II. Ubezpieczenia majatkowe

Bardziej szczegółowo

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 3 Tablice trwania życia 2

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 3 Tablice trwania życia 2 Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 3 Tablice trwania życia 2 1 Przypomnienie Jesteśmy już w stanie wyznaczyć tp x = l x+t l x, gdzie l x, l x+t, to liczebności kohorty odpowiednio

Bardziej szczegółowo

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 9 Analiza pewnego problemu i krótkie przypomnienie, czyli Powtarzanie jest matka nauki.

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 9 Analiza pewnego problemu i krótkie przypomnienie, czyli Powtarzanie jest matka nauki. Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 9 Analiza pewnego problemu i krótkie przypomnienie, czyli Powtarzanie jest matka nauki. 1 Zadanie (29) zawar l umowe kredytu w momencie ukończenia

Bardziej szczegółowo

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 1 Wprowadzajacy

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 1 Wprowadzajacy Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 1 Wprowadzajacy 1 Matematyka aktuarialna 1. matematyka w ubezpieczeniach, 2. dok ladniej, matematyka ubezpieczeń na życie, 3. czasami szerzej,

Bardziej szczegółowo

Matematyka finansowa i ubezpieczeniowa - 11 Ubezpieczenia Ŝyciowe 2

Matematyka finansowa i ubezpieczeniowa - 11 Ubezpieczenia Ŝyciowe 2 Matematyka finansowa i ubezpieczeniowa - Ubezpieczenia Ŝyciowe 2 Składki netto w ubezpieczeniach Ŝyciowych Zakład ubezpieczeniowy pobiera za ubezpieczenia składkę brutto, składającą się ze składki netto

Bardziej szczegółowo

1. Ubezpieczenia życiowe

1. Ubezpieczenia życiowe 1. Ubezpieczenia życiowe Przy ubezpieczeniach życiowych mamy do czynienia z jednorazową wypłatą sumy ubezpieczenia. Moment jej wypłaty i wielkość wypłaty może być funkcją zmiennej losowej T a więc czas

Bardziej szczegółowo

Elementy teorii przeżywalności

Elementy teorii przeżywalności Elementy teorii przeżywalności Zadanie 1.1 Zapisz 1. Prawdopodobieństwo, że noworodek umrze nie później niż w wieku 8 lat 2. P-two, że noworodek umrze nie później niż w wieku 3 lat 3. P-two, że noworodek

Bardziej szczegółowo

Wyk lad 14 Formy kwadratowe I

Wyk lad 14 Formy kwadratowe I Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można

Bardziej szczegółowo

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 2 Tablice trwania życia

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 2 Tablice trwania życia Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 2 Tablice trwania życia 1 Cele (na dzisiaj): Zrozumieć w jaki sposób można wyznaczyć przysz ly czas życia osoby w wieku x. Zrozumieć parametry

Bardziej szczegółowo

3 Ubezpieczenia na życie

3 Ubezpieczenia na życie 3 Ubezpieczenia na życie O ile nie jest powiedziane inaczej, w poniższych zadaniach zakładamy HJP. 3.1. Zadania 7.1-7.26 z Miśkiewicz-Nawrocka, Zeug-Żebro, Zbiór zadań z matematyki finansowej. 3.2. Mając

Bardziej szczegółowo

1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza

1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza 1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza x µ x = 06e. dożyje wieku największej śmiertelności (tzn. takiego wieku, w którym

Bardziej szczegółowo

= µ. Niech ponadto. M( s) oznacza funkcję tworzącą momenty. zmiennej T( x), dla pewnego wieku x, w populacji A. Wówczas e x wyraża się wzorem: 1

= µ. Niech ponadto. M( s) oznacza funkcję tworzącą momenty. zmiennej T( x), dla pewnego wieku x, w populacji A. Wówczas e x wyraża się wzorem: 1 1. W populacji B natężenie wymierania µ ( B ) x jest większe od natężenia wymierania ( A) µ x w populacji A, jednostajnie o µ > 0, dla każdego wieku x tzn. ( B) ( A) µ µ x = µ. Niech ponadto x M( s) oznacza

Bardziej szczegółowo

LXVIII Egzamin dla Aktuariuszy z 29 września 2014 r.

LXVIII Egzamin dla Aktuariuszy z 29 września 2014 r. Komisja Egzaminacyjna dla Aktuariuszy LXVIII Egzamin dla Aktuariuszy z 29 września 2014 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

LXX Egzamin dla Aktuariuszy z 23 marca 2015 r.

LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

4. Ubezpieczenie Życiowe

4. Ubezpieczenie Życiowe 4. Ubezpieczenie Życiowe Składka ubezpieczeniowa musi brać pod uwagę następujące czynniki: 1. Kwotę wypłaconą przy śmierci ubezpieczonego oraz jej wartość aktualną. 2. Rozkład czasu do śmierci ubezpieczonego

Bardziej szczegółowo

Obliczanie skãladek ubezpieczeniowych. oznaczaj ac, dãlugo s c _zycia noworodka. De nicja 1 Czas prze_zycia T(x) dla x-latka okre slony jest wzorem

Obliczanie skãladek ubezpieczeniowych. oznaczaj ac, dãlugo s c _zycia noworodka. De nicja 1 Czas prze_zycia T(x) dla x-latka okre slony jest wzorem Obliczanie skãladek ubezpizeniowych Nih x oznacza wiek osoby. Nih X b edzie, zmienn losow oznaczaj ac, dãlugo s c _zycia noworodka. De nicja Czas prze_zycia T(x) dla x-latka okre slony jest wzorem T(x)

Bardziej szczegółowo

LIX Egzamin dla Aktuariuszy z 12 marca 2012 r.

LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

Wyk lad 3 Wielomiany i u lamki proste

Wyk lad 3 Wielomiany i u lamki proste Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich

Bardziej szczegółowo

1. Pięciu osobników pochodzi z populacji, w której pojedyncze życie podlega ryzyku śmierci

1. Pięciu osobników pochodzi z populacji, w której pojedyncze życie podlega ryzyku śmierci 1. Pięciu osobników pochodzi z populacji, w której pojedyncze życie podlega ryzyku śmierci + t µ + t A + B 2. Wyznacz prawdopodobieństwo, że z grupy tej nikt nie umrze w ciągu najbliższych 5 lat, jeśli

Bardziej szczegółowo

1. Niech g(t) oznacza gęstość wymierania, od momentu narodzin, pewnej populacji mężczyzn. Demografowie zauważyli, że po drobnej modyfikacji: =

1. Niech g(t) oznacza gęstość wymierania, od momentu narodzin, pewnej populacji mężczyzn. Demografowie zauważyli, że po drobnej modyfikacji: = . Niech g(t) oznacza gęstość wymierania, od momentu narodzin, pewnej populacji mężczyzn. Demografowie zauważyli, że po drobnej modyfikacji: ~ 0,9g( t) 0 t < 50 g ( t) =,2 g( t) 50 t. opisuje ona śmiertelność

Bardziej szczegółowo

LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.

LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

LIII Egzamin dla Aktuariuszy z 31 maja 2010 r.

LIII Egzamin dla Aktuariuszy z 31 maja 2010 r. Komisja Egzaminacyjna dla Aktuariuszy LIII Egzamin dla Aktuariuszy z 31 maja 2010 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:. Czas egzaminu: 100 minut Warszawa, 31

Bardziej szczegółowo

LIV Egzamin dla Aktuariuszy z 4 października 2010 r.

LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Komisja Egzaminacyjna dla Aktuariuszy LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:...klucz odpowiedzi... Czas egzaminu:

Bardziej szczegółowo

LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r.

LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

Jeden przyk lad... czyli dlaczego warto wybrać MIESI.

Jeden przyk lad... czyli dlaczego warto wybrać MIESI. Jeden przyk lad... czyli dlaczego warto wybrać MIESI. Micha l Ramsza Szko la G lówna Handlowa Micha l Ramsza (Szko la G lówna Handlowa) Jeden przyk lad... czyli dlaczego warto wybrać MIESI. 1 / 13 Dlaczego

Bardziej szczegółowo

XLIII Egzamin dla Aktuariuszy z 8 października 2007 r.

XLIII Egzamin dla Aktuariuszy z 8 października 2007 r. Komisja Egzaminacyjna dla Aktuariuszy XLIII Egzamin dla Aktuariuszy z 8 października 2007 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

Aktuariat i matematyka finansowa. Rezerwy techniczno ubezpieczeniowe i metody ich tworzenia

Aktuariat i matematyka finansowa. Rezerwy techniczno ubezpieczeniowe i metody ich tworzenia Aktuariat i matematyka finansowa Rezerwy techniczno ubezpieczeniowe i metody ich tworzenia Tworzenie rezerw i ich wysokość wpływa na Obliczanie zysku dla potrzeb podatkowych, Sprawozdawczość dla udziałowców,

Bardziej szczegółowo

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu

Bardziej szczegółowo

LIII Egzamin dla Aktuariuszy z 31 maja 2010 r.

LIII Egzamin dla Aktuariuszy z 31 maja 2010 r. Komisja Egzaminacyjna dla Aktuariuszy LIII Egzamin dla Aktuariuszy z 31 maja 2010 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

LXV Egzamin dla Aktuariuszy z 30 września 2013 r.

LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Komisja Egzaminacyjna dla Aktuariuszy LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r.

LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r. Komisja Egzaminacyjna dla Aktuariuszy LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I

Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Komisja Egzaminacyjna dla Aktuariuszy XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 00 minut . Ile

Bardziej szczegółowo

Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych

Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych Elżbieta Krajewska Instytut Matematyki Politechnika Łódzka Elżbieta Krajewska Immunizacja ubezpieczycieli życiowych 1/22 Plan prezentacji

Bardziej szczegółowo

LX Egzamin dla Aktuariuszy z 28 maja 2012 r.

LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa, 28

Bardziej szczegółowo

XXXIII Egzamin dla Aktuariuszy z 17 stycznia 2005 r.

XXXIII Egzamin dla Aktuariuszy z 17 stycznia 2005 r. Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy z 17 stycznia 2005 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

1. Przyszła długość życia x-latka

1. Przyszła długość życia x-latka Przyszła długość życia x-latka Rozważmy osobę mającą x lat; oznaczenie: (x) Jej przyszłą długość życia oznaczymy T (x), lub krótko T Zatem x+t oznacza całkowitą długość życia T jest zmienną losową, której

Bardziej szczegółowo

LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r.

LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Komisja Egzaminacyjna dla Aktuariuszy LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

LXXII Egzamin dla Aktuariuszy z 28 września 2015 r.

LXXII Egzamin dla Aktuariuszy z 28 września 2015 r. Komisja Egzaminacyjna dla Aktuariuszy LXXII Egzamin dla Aktuariuszy z 28 września 2015 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

Opis subskrypcji Załącznik do Deklaracji Przystąpienia do Ubezpieczenia na życie i dożycie NORD GOLDEN edition

Opis subskrypcji Załącznik do Deklaracji Przystąpienia do Ubezpieczenia na życie i dożycie NORD GOLDEN edition Opis produktu Ubezpieczenie na życie i dożycie NORD GOLDEN edition to grupowe ubezpieczenie ze składką w PLN, płatną jednorazowo, w którym ochrony ubezpieczeniowej udziela MetLife Towarzystwo Ubezpieczeń

Bardziej szczegółowo

Matematyka ubezpieczeń na życie. Piotr Kowalski

Matematyka ubezpieczeń na życie. Piotr Kowalski Matematyka ubezpieczeń na życie Piotr Kowalski 27 stycznia 212 Spis treści 1 Elementy matematyki finansowej 1 1.1 Oznaczenia.............................. 1 1.2 Związki................................

Bardziej szczegółowo

LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r.

LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Komisja Egzaminacyjna dla Aktuariuszy LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r.

LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

Metody aktuarialne - opis przedmiotu

Metody aktuarialne - opis przedmiotu Metody aktuarialne - opis przedmiotu Informacje ogólne Nazwa przedmiotu Metody aktuarialne Kod przedmiotu 11.5-WK-MATP-MA-W-S14_pNadGenEJ6TV Wydział Kierunek Wydział Matematyki, Informatyki i Ekonometrii

Bardziej szczegółowo

XXXVI Egzamin dla Aktuariuszy z 10 października 2005 r.

XXXVI Egzamin dla Aktuariuszy z 10 października 2005 r. Komisja Egzaminacyjna dla Aktuariuszy XXXVI Egzamin dla Aktuariuszy z 10 października 2005 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut

Bardziej szczegółowo

SYSTEM DIAGNOSTYCZNY OPARTY NA LOGICE DOMNIEMAŃ. Ewa Madalińska. na podstawie prac:

SYSTEM DIAGNOSTYCZNY OPARTY NA LOGICE DOMNIEMAŃ. Ewa Madalińska. na podstawie prac: SYSTEM DIAGNOSTYCZNY OPARTY NA LOGICE DOMNIEMAŃ Ewa Madalińska na podstawie prac: [1] Lukaszewicz,W. (1988) Considerations on Default Logic: An Alternative Approach. Computational Intelligence, 44[1],

Bardziej szczegółowo

4. Decyzje dotycza ce przyznawania świadczeń pomocy materialnej. doktorantów

4. Decyzje dotycza ce przyznawania świadczeń pomocy materialnej. doktorantów ZASADY PRZYZNAWANIA ŚWIADCZEŃ POMOCY MATERIALNEJ DLA DOKTORANTÓW W INSTYTUCIE MATEMATYCZNYM POLSKIEJ AKADEMII NAUK OBOWIA ZUJA CE OD ROKU AKADEMICKIEGO 2013/14 1. PODSTAWA PRAWNA Świadczenia pomocy materialnej

Bardziej szczegółowo

Matematyka ubezpieczeń na życie Life Insurance Mathematics. Matematyka Poziom kwalifikacji: II stopnia. Liczba godzin/tydzień: 2W E, 2C

Matematyka ubezpieczeń na życie Life Insurance Mathematics. Matematyka Poziom kwalifikacji: II stopnia. Liczba godzin/tydzień: 2W E, 2C Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: przedmiot obowiązkowy dla specjalności matematyka finansowa i ubezpieczeniowa Rodzaj zajęć: wykład, ćwiczenia Matematyka ubezpieczeń na życie Life Insurance

Bardziej szczegółowo

w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak

w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak Równania różniczkowe czastkowe w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak Horyzonty 2014 Podstawowy obiekt wyk ladu: funkcje holomorficzne wielu zmiennych Temat: dwa problemy, których znane

Bardziej szczegółowo

Umowy Dodatkowe. Przewodnik Ubezpieczonego

Umowy Dodatkowe. Przewodnik Ubezpieczonego Umowy Dodatkowe Przewodnik Ubezpieczonego Umowy dodatkowe sà uzupe nieniem umowy ubezpieczenia na ycie. Za cz sto niewielkà sk adk mo esz otrzymaç dodatkowà ochron. Dzi ki temu Twoja umowa ubezpieczenia

Bardziej szczegółowo

LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r.

LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Komisja Egzaminacyjna dla Aktuariuszy LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

Dyskretne modele populacji

Dyskretne modele populacji Dyskretne modele populacji Micha l Machtel Adam Soboczyński 19 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Wstęp do matematyki finansowej Introduction to financial mathematics Kierunek: Kod przedmiotu: Matematyka Rodzaj przedmiotu: obowiązkowy dla specjalności matematyka finansowa i ubezpieczeniowa

Bardziej szczegółowo

Zadanie 1. są niezależne i mają rozkład z atomami: ( ),

Zadanie 1. są niezależne i mają rozkład z atomami: ( ), Zadanie. Zmienne losowe są niezależne i mają rozkład z atomami: ( ) ( ) i gęstością: ( ) na przedziale ( ). Wobec tego ( ) wynosi: (A) 0.2295 (B) 0.2403 (C) 0.2457 (D) 0.25 (E) 0.269 Zadanie 2. Niech:

Bardziej szczegółowo

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Przyjmijmy

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 1.10.2012 r.

Matematyka ubezpieczeń majątkowych 1.10.2012 r. Zadanie. W pewnej populacji każde ryzyko charakteryzuje się trzema parametrami q, b oraz v, o następującym znaczeniu: parametr q to prawdopodobieństwo, że do szkody dojdzie (może zajść co najwyżej jedna

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 19 kwietnia 2011 Testy dla dwóch grup 1 Analiza danych dla dwóch grup: test t-studenta dla dwóch grup sparowanych; test t-studenta dla dwóch grup niezależnych (jednakowe wariancje) test Z dla dwóch grup

Bardziej szczegółowo

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie 1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z

Bardziej szczegółowo

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA Z n a k s p r a w y GC S D Z P I 2 7 1 0 1 42 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e p r a c p i e l g n a c y j n o r e n o w a c y j n

Bardziej szczegółowo

Matematyka ubezpieczeń życiowych 17 marca 2008 r.

Matematyka ubezpieczeń życiowych 17 marca 2008 r. 1. Niech oznacza przeciętne dalsze trwanie życia w ciągu najbliższego roku obliczone przy założeniu hipotezy interpolacyjnej o stałym natężeniu wymierania między wiekami całkowitymi. Podobnie niech oznacza

Bardziej szczegółowo

Dyskretne modele populacji

Dyskretne modele populacji Dyskretne modele populacji Micha l Machtel Adam Soboczyński 17 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których

Bardziej szczegółowo

MATEMATYKA FINANSOWA

MATEMATYKA FINANSOWA Matematyka Finansowa, 05 06 2006 1 Andrzej Spakowski MATEMATYKA FINANSOWA matematyka finansów i ubezpieczeń. Trajektoria (realizacja) procesu stochastycznego Wspó lczesna, szeroko rozumiana MF opisuje

Bardziej szczegółowo

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Ćwiczenia ZPI 1 W banku A oprocentowanie lokat 4% przy kapitalizacji kwartalnej. W banku B oprocentowanie lokat 4,5% przy kapitalizacji miesięcznej. W banku A ulokowano kwotę 1000 zł. Jaki kapitał należy

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXIX Egzamin dla Aktuariuszy z 5 czerwca 006 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Inwestor dokonuje

Bardziej szczegółowo

I. WARTOŚĆ AKTYWÓW NETTO FUNDUSZU w zł Okres poprzedni okres bieżący 31.12.2013 31.12.2014 I Aktywa. 373 795,60 3 007 469,18 1.

I. WARTOŚĆ AKTYWÓW NETTO FUNDUSZU w zł Okres poprzedni okres bieżący 31.12.2013 31.12.2014 I Aktywa. 373 795,60 3 007 469,18 1. I. WARTOŚĆ AKTYWÓW NETTO FUNDUSZU w zł Okres poprzedni okres bieżący 312013 I Aktywa Lokaty Środki pieniężne Aktywa za zezwoleniem organu nadzoru, zgodnie z art. 154 ust.9 ustawy z dnia 22 maja 2003r.

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych 13 Zbiory w przestrzeni Definicja Przestrzeni a trójwymiarow a (przestrzeni a) nazywamy zbiór wszystkich trójek uporz adkowanych (x y z) gdzie x y z R. Przestrzeń tȩ oznaczamy symbolem

Bardziej szczegółowo

2.2 Model odsetek prostych 9

2.2 Model odsetek prostych 9 2.2 Model odsetek prostych 9 Uwaga 2.2.2 Komentarza wymaga znaczenie stopy bazowej. Z definicji wynika, że i T = FV PV, co wcale nie oznacza, że wartość indeksu i PV T zależy od wartości pocz atkowej PV.Wskaźnik

Bardziej szczegółowo

XLVII Egzamin dla Aktuariuszy z 6 października 2008 r.

XLVII Egzamin dla Aktuariuszy z 6 października 2008 r. Komisja Egzaminacyjna dla Aktuariuszy XLVII Egzamin dla Aktuariuszy z 6 października 2008 r. Część II Matematyka ubezpieczeń Ŝyciowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

Mikro II: Popyt, Preferencje Ujawnione i Równanie S luckiego

Mikro II: Popyt, Preferencje Ujawnione i Równanie S luckiego Mikro II: Popyt, Preferencje Ujawnione i Równanie S luckiego Krzysztof Makarski 6 Popyt Wstep Przypomnijmy: Podstawy teoria konsumenta. Zastosowanie wszedzie. W szczególności poszukiwanie informacji zawartych

Bardziej szczegółowo

mgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 3

mgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 3 Ćwiczenia 3 Rachunek rentowy Jako rachunek rentowy traktuje się regularne płatności płacone w stałych przedziałach czasu przy czym towarzyszy temu stała stopa procentowa. Wykorzystanie: renty; płatności

Bardziej szczegółowo

LXI Egzamin dla Aktuariuszy z 1 października 2012 r.

LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

3.3 Budżet nieruchomości. aktualnej ceny przeciȩtnego, nie odbiegaj acego standardem lokalu;

3.3 Budżet nieruchomości. aktualnej ceny przeciȩtnego, nie odbiegaj acego standardem lokalu; 3.3 Budżet nieruchomości 47 aktualnej ceny przeciȩtnego, nie odbiegaj acego standardem lokalu; danych o charakterze demograficznym celem ustalenia liczby potencjalnych nabywców, najemców; tendencji na

Bardziej szczegółowo

Marek Połeć, 08.12.2010

Marek Połeć, 08.12.2010 Marek Połeć, 08.12.2010 2.1 od następstw nieszczęśliwych wypadków 2.2 na życie W obecnej rozwiniętej formie ubezpieczenia na życie są dopasowywane do indywidualnych potrzeb klienta. Głównymi celami tych

Bardziej szczegółowo

Rachunek zysków i strat

Rachunek zysków i strat Rachunek zysków i strat Pojęcia Wydatek rozchód środków pieniężnych w formie gotówkowej (z kasy) lub bezgotówkowej (z rachunku bankowego), który likwiduje zobowiązania. Nakład celowe zużycie zasobów w

Bardziej szczegółowo

Zadania. kwiecień 2009. Ćwiczenia IV. w laściwe dla rotatora sztywnego hetoronuklearnej moleku ly. Rozwiazanie E JM = 2 J(J + 1).

Zadania. kwiecień 2009. Ćwiczenia IV. w laściwe dla rotatora sztywnego hetoronuklearnej moleku ly. Rozwiazanie E JM = 2 J(J + 1). kwiecień 9 Ćwiczenia IV Zadania Zadanie Obliczyć kanoniczna sum e statystyczna funkcj e podzia lu, energi e swobodna i ciep lo w laściwe dla rotatora sztywnego hetoronuklearnej moleku ly Rozwiazanie :

Bardziej szczegółowo

Wyk ad II. Stacjonarne szeregi czasowe.

Wyk ad II. Stacjonarne szeregi czasowe. Wyk ad II. Stacjonarne szeregi czasowe. W wi ekszości przypadków poszukiwanie modelu, który dok adnie by opisywa zachowanie sk adnika losowego " t, polega na analizie pewnej klasy losowych ciagów czasowych

Bardziej szczegółowo

ROCZNE SPRAWOZDANIE UBEZPIECZENIOWEGO FUNDUSZU KAPITAŁOWEGO sporządzone na dzień r.

ROCZNE SPRAWOZDANIE UBEZPIECZENIOWEGO FUNDUSZU KAPITAŁOWEGO sporządzone na dzień r. I. WARTOŚĆ AKTYWÓW NETTO FUNDUSZU (w zł) Okres poprzedni Okres bieżący I. Aktywa 23 098,43 50 997,59 1. Lokaty 23 098,43 50 997,59 2. środki pieniężne 0,00 0,00 3. aktywa za zezwoleniem organu nadzoru,

Bardziej szczegółowo

ROCZNE SPRAWOZDANIE UBEZPIECZENIOWEGO FUNDUSZU KAPITAŁOWEGO sporządzone na dzień r.

ROCZNE SPRAWOZDANIE UBEZPIECZENIOWEGO FUNDUSZU KAPITAŁOWEGO sporządzone na dzień r. I. WARTOŚĆ AKTYWÓW NETTO FUNDUSZU (w zł) Okres poprzedni Okres bieżący I. Aktywa 13 521 783,47 10 776 958,11 1. Lokaty 11 014 601,89 9 862 238,31 środki pieniężne 124 567,07 128 853,30 aktywa za zezwoleniem

Bardziej szczegółowo

ROCZNE SPRAWOZDANIE UBEZPIECZENIOWEGO FUNDUSZU KAPITAŁOWEGO sporządzone na dzień r.

ROCZNE SPRAWOZDANIE UBEZPIECZENIOWEGO FUNDUSZU KAPITAŁOWEGO sporządzone na dzień r. I. WARTOŚĆ AKTYWÓW NETTO FUNDUSZU (w zł) Okres poprzedni Okres bieżący I. Aktywa 0,00 1 204 321,72 1. Lokaty 0,00 1 204 321,72 2. środki pieniężne 3. aktywa za zezwoleniem organu nadzoru, zgodnie z art.

Bardziej szczegółowo

ROCZNE SPRAWOZDANIE UBEZPIECZENIOWEGO FUNDUSZU KAPITAŁOWEGO sporządzone na dzień r.

ROCZNE SPRAWOZDANIE UBEZPIECZENIOWEGO FUNDUSZU KAPITAŁOWEGO sporządzone na dzień r. I. WARTOŚĆ AKTYWÓW NETTO FUNDUSZU (w zł) Okres poprzedni Okres bieżący I. Aktywa 75 486 027,02 85 169 769,29 1. Lokaty 75 486 027,02 85 169 769,29 2. środki pieniężne 0,00 0,00 3. aktywa za zezwoleniem

Bardziej szczegółowo

ROCZNE SPRAWOZDANIE UBEZPIECZENIOWEGO FUNDUSZU KAPITAŁOWEGO sporządzone na dzień r.

ROCZNE SPRAWOZDANIE UBEZPIECZENIOWEGO FUNDUSZU KAPITAŁOWEGO sporządzone na dzień r. I. WARTOŚĆ AKTYWÓW NETTO FUNDUSZU (w zł) Okres poprzedni Okres bieżący I. Aktywa 342 996,58 523 509,78 1. Lokaty 342 996,58 523 509,78 2. środki pieniężne 0,00 0,00 3. aktywa za zezwoleniem organu nadzoru,

Bardziej szczegółowo

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady Wydział Matematyki Uniwersytetu Łódzkiego w Łodzi Dariusz Wardowski Katedra Analizy Nieliniowej Bankowość i metody statystyczne w biznesie - zadania i przykłady Łódź 2006 Rozdział 1 Oprocentowanie lokaty

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 21 marca 2011 Zmienna losowa wst ep Przeprowadzane w praktyce badania i eksperymenty maja bardzo różnorodny charakter, niemniej jednak wiaż a sie z rejestracja jakiś sygna lów (danych). Moga to być na

Bardziej szczegółowo

Wprowadzenie z dynamicznej optymalizacji

Wprowadzenie z dynamicznej optymalizacji Wprowadzenie z dynamicznej optymalizacji Lukasz Woźny 29 kwietnia 2007 Spis treści 1 Optymalizacja statyczna a optymalizacja dynamiczna 2 1.1 Ekstrema lokalne funkcji wielu zmiennych - statyka...... 2

Bardziej szczegółowo

Koniec okresu bieżącego I. Aktywa Lokaty Środki pieniężne Należności

Koniec okresu bieżącego I. Aktywa Lokaty Środki pieniężne Należności WARTOŚĆ AKTYWÓW NETTO FUNDUSZU Koniec okresu poprzedniego Koniec okresu bieżącego I. Aktywa 0 2 282 720 Lokaty 0 2 282 720 2. Środki pieniężne Aktywa za zezwoleniem organu nadzoru, zgodnie z art. 154 ust.

Bardziej szczegółowo

Jak wybrać kredyt? Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej. 22 listopada 2014

Jak wybrać kredyt? Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej. 22 listopada 2014 Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej 22 listopada 2014 Plan prezentacji 1 Powtórzenie 2 3 Plany spłaty długu - stałe raty Plany spłaty długu - stałe raty kapitałowe Plany spłaty długu

Bardziej szczegółowo

ROCZNE SPRAWOZDANIE UBEZPIECZENIOWEGO FUNDUSZU KAPITAŁOWEGO sporządzone na dzień r.

ROCZNE SPRAWOZDANIE UBEZPIECZENIOWEGO FUNDUSZU KAPITAŁOWEGO sporządzone na dzień r. I. WARTOŚĆ AKTYWÓW NETTO FUNDUSZU ( w zł ) Koniec analogicznego okresu sprawozdawczego Koniec bieżącego okresu sprawozdawczego I. Aktywa 59 662,22 44 204,48 1. lokaty 59 662,22 44 204,48 środki pieniężne

Bardziej szczegółowo

Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych

Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych Pawe l Józiak 007-- Poje cia wste pne Wielomianem zmiennej rzeczywistej t nazywamy funkcje postaci:

Bardziej szczegółowo

Roczne sprawozdanie ubezpieczeniowego funduszu kapitałowego sporządzone na dzień 31.12.2012

Roczne sprawozdanie ubezpieczeniowego funduszu kapitałowego sporządzone na dzień 31.12.2012 312.2012 I. WARTOŚĆ AKTYWÓW NETTO FUNDUSZU Koniec analogicznego okresu sprawozdawczego poprzedniego roku Koniec bieżącego okresu sprawozdawczego I. Aktywa 794,80 869,44 lokaty 794,80 869,44 2. środki pieniężne

Bardziej szczegółowo

Roczne sprawozdanie ubezpieczeniowego funduszu kapitałowego sporządzone na dzień 31.12.2012

Roczne sprawozdanie ubezpieczeniowego funduszu kapitałowego sporządzone na dzień 31.12.2012 312.2012 I. WARTOŚĆ AKTYWÓW NETTO FUNDUSZU Koniec analogicznego okresu sprawozdawczego poprzedniego roku Koniec bieżącego okresu sprawozdawczego I. Aktywa 1 851 120,00 2 124 864,00 lokaty 0,00 0,00 2.

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 5 marca 2011 Zasady 10 wyk ladów; egzamin pisemny; Literatura 1 A. Lomnicki Wprowadzenie do statystyki dla przyrodników PWN 1999. 2 W. Krysicki, J. Bartos, W. Dyczka, K. Królikowska, M. Wasilewski Rachunek

Bardziej szczegółowo

LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r.

LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Koisja Egzainacyjna dla Aktuariuszy LV Egzain dla Aktuariuszy z 13 grudnia 2010 r. Część II Mateatyka ubezpieczeń życiowych Iię i nazwisko osoby egzainowanej:... Czas egzainu: 100 inut Warszawa, 13 grudnia

Bardziej szczegółowo

Ubezpieczenie na życie PZU Ochrona i Zysk

Ubezpieczenie na życie PZU Ochrona i Zysk Ubezpieczenie na życie PZU Ochrona i Zysk Kody ubezpieczenia podstawowego Indywidualne ubezpieczenie na życie i dożycie PZU Ochrona i Zysk: J2IP35 dla umów ze składką płatną okresowo J2IJ35 dla umów ze

Bardziej szczegółowo

Ubez piecz enie ersalne saln D am a en e t n ow o a a S t S rat ra eg e i g a

Ubez piecz enie ersalne saln D am a en e t n ow o a a S t S rat ra eg e i g a Ubezpieczenie Uniwersalne Diamentowa Strategia 17 październik 2012 Diamentowa Strategia pozwoli Ci zabezpieczyć finansowo rodzinę przed utratą głównych dochodów w przypadku: inwalidztwa, poważnego zachorowania,

Bardziej szczegółowo

System finansowy gospodarki. Zajęcia nr 5 Matematyka finansowa

System finansowy gospodarki. Zajęcia nr 5 Matematyka finansowa System finansowy gospodarki Zajęcia nr 5 Matematyka finansowa Wartość pieniądza w czasie 1 złoty posiadany dzisiaj jest wart więcej niż 1 złoty posiadany w przyszłości, np. za rok. Powody: Suma posiadana

Bardziej szczegółowo

Roczne sprawozdanie ubezpieczeniowego funduszu kapitałowego sporządzone na dzień 31.12.2011 r.

Roczne sprawozdanie ubezpieczeniowego funduszu kapitałowego sporządzone na dzień 31.12.2011 r. I. WARTOŚĆ AKTYWÓW NETTO FUNDUSZU Koniec analogicznego okresu sprawozdawczego poprzedniego roku Koniec bieŝącego okresu sprawozdawczego I. Aktywa 770,64 794,80 lokaty 770,64 794,80 2. środki pienięŝne

Bardziej szczegółowo

Roczne sprawozdanie ubezpieczeniowego funduszu kapitałowego sporządzone na dzień 31.12.2011 r.

Roczne sprawozdanie ubezpieczeniowego funduszu kapitałowego sporządzone na dzień 31.12.2011 r. I. WARTOŚĆ AKTYWÓW NETTO FUNDUSZU Koniec analogicznego okresu sprawozdawczego poprzedniego roku Koniec bieŝącego okresu sprawozdawczego I. Aktywa 1 943 005,50 2 229 057,00 lokaty 0,00 2. środki pienięŝne

Bardziej szczegółowo

Roczne sprawozdanie ubezpieczeniowego funduszu kapitałowego sporządzone na dzień 31.12.2011 r.

Roczne sprawozdanie ubezpieczeniowego funduszu kapitałowego sporządzone na dzień 31.12.2011 r. I. WARTOŚĆ AKTYWÓW NETTO FUNDUSZU Koniec analogicznego okresu sprawozdawczego poprzedniego roku Koniec bieŝącego okresu sprawozdawczego I. Aktywa 797 234,27 1 201 636,88 lokaty 0,00 0,00 2. środki pienięŝne

Bardziej szczegółowo

Pieniądz ma zmienną wartość w czasie również w przypadku zerowej inflacji. Jest kilka przyczyn tego zjawiska:

Pieniądz ma zmienną wartość w czasie również w przypadku zerowej inflacji. Jest kilka przyczyn tego zjawiska: Prawie wszyscy wiedzą, że pewna suma pieniędzy ma dziś większą wartość niż ta sama suma w przyszłości. Mówi się, że pieniądz traci na wartości. Używając bardziej precyzyjnej terminologii trzeba powiedzieć

Bardziej szczegółowo

Gwarantowana Renta Kapitałowa (GRK) Kontakt: Maciej Lichoński 509 601 741

Gwarantowana Renta Kapitałowa (GRK) Kontakt: Maciej Lichoński 509 601 741 Gwarantowana Renta Kapitałowa (GRK) Kontakt: Maciej Lichoński 509 601 741 Gwarantowana Renta Kapitałowa Co to jest? Gwarantowana Renta Kapitałowa (GRK) to możliwość zasilania swojego domowego budżetu dodatkowymi

Bardziej szczegółowo