Równoliczno zbiorów. Definicja 3.1 Powiemy, e niepuste zbiory A i B s równoliczne jeeli istnieje. Piszemy wówczas A~B. Przyjmujemy dodatkowo, e ~.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Równoliczno zbiorów. Definicja 3.1 Powiemy, e niepuste zbiory A i B s równoliczne jeeli istnieje. Piszemy wówczas A~B. Przyjmujemy dodatkowo, e ~."

Transkrypt

1 16 Rówoliczo zbiorów Defiicja 3.1 Powiemy, e iepuste zbiory A i B s rówolicze jeeli istieje f : A B. Piszemy wówczas A~B. Przyjmujemy dodatkowo, e ~. Twierdzeie 3.1 (podstawowa właso rówoliczoci zbiorów) Dla dowolych zbiorów A,B,C mamy (1) A~A (2) A~B B~A (3) A~B B~C A~C. Ad (1). Jeeli A=, to wobec defiicji mamy A~A. Jeeli A, to oczywicie ida : A A, wic A~A. Ad (2). Zakładamy, e A~B. Ozacza to, e albo A= = B i wówczas oczywicie B~A, albo e istieje f : A B. Istieje wówczas 1 f : B A (patrz wiczeia z algebry). Mamy wic B~A. Ad (3). Jeeli który ze zbiorów A,B,C jest pusty, to (3) jest oczywiste. Przyjmijmy wic, e s to zbiory iepuste. Zakładamy, e A~B i B~C. Istiej wic fukcje f : A B ; g : B C. Z wicze z algebry wiadomo, e wówczas f g : A C, czyli A~C. Defiicja 3.2 Zbiór D azywamy skoczoym jeeli N P()~D. W tym przypadku mówimy, e zbiór D jest -elemetowy ( ma - elemetów). Niepusty zbiór D azywamy ieskoczoym jeeli ie jest o skoczoy, czyli N ~(P()~D). Defiicja 3.3 Fukcj a:n P azywamy cigiem. Dokładiej cigiem elemetów zbioru P (iekoieczie wszystkich). Cig jest to wic dowola fukcja, której dziedzi jest zbiór N. W przypadku fukcji a:n P dla N zamiast pisa a() bdziemy pisali a. Zamiast pisa a(n) bdziemy pisali {a } N i tym symbolem b. czsto ozaczali cig jako fukcj a:n P. Nie prowadzi to z reguły do dwuzaczoci. Cigi s wic specyficzymi fukcjami. Nie zapomiajmy jedak, e cig to fukcja i w szczególoci mówi moemy o cigach róowartociowych, mootoiczych itd. Jeeli dla pewego cigu {a } N ma miejsce rówo {a } N = A, to mówimy, e A jest zbiorem wyrazów cigu {a } N, lub e elemety zbioru A ustawilimy w cig. Sposoby defiiowaia (okrelaia) cigów: 1) poprzez podaie ogólego wzoru. (Np. N a dowolego wyrazu cigu. ( Np. a 77 = ). +1 ). Tu jestemy w staie poda atychmiast poda warto

2 17 2) rekurecyjie. (Np. a 1 3, a 2 4, N >2 a a -1 2a -2 ). Tu aby poda warto kolejego wyrazu cigu aley za wartoci wyrazów poprzedich. 3) poprzez podaie opisu słowego. (Np. roscy cig liczb pierwszych). Defiicja 3.4 Niech {a } N bdzie pewym cigiem ( a:n P ) i { k } k N roscym cigiem liczb aturalych (:N N i k,s N k<s k < s ). Superpozycj a azywamy podcigiem cigu {a } N. Dla k N zgodie z wczeiej przyjtymi umowami i defiicj superpozycji mamy (a)(k) = a((k)) = a( k ) = a k. Tak wic podcigi cigu {a } N ozacza bdziemy przez {a } k k N. Obrazowo mówic podcig daego cigu to cig z iego powstały przez opuszczeie pewej iloci wyrazów z zachowaiem kolejoci ieskoczoej iloci pozostałych. Np. Podcigiem cigu {} N s: {2} N, {+1} N, {2+7} N. Cig {-1} N ie jest podcigiem tego cigu, podobie jak cig (1,3,2,4,5,6,...). Defiicja 3.5 Zbiór A azywamy przeliczalym jeeli jest o: pusty, skoczoy lub rówoliczy ze zbiorem N. Uwagi 1) Kady zbiór rówoliczy ze zbiorem przeliczalym jest przeliczaly Niech A bdzie zbiorem przeliczalym i A~B. Jeeli A =, to B =, jeeli A jest skoczoy, czyli N P()~A. Wówczas P()~A A~B wic P()~B, jeeli N~A A~B, to N~B. W kadym wic przypadku B okazał si by zbiorem przeliczalym. 2) Rówoliczo zbioru N z A ozacza oczywicie, e A jest zbiorem wyrazów pewego cigu róowartociowego. Przykłady Oczywicie N jest zbiorem przeliczalym. Zbiory liczb parzystych i ieparzystych jako z im rówolicze ( f() 2, g() 2-1 ) te s przeliczale. Okae si w dalszej czci wykładu, e R jest zbiorem ieprzeliczalym. Defiicja 3.6 Zbiór, który ie jest przeliczaly azyway ieprzeliczalym. Kady zbiór rówoliczy ze zbiorem ieprzeliczalym jest ieprzeliczaly. Twierdzeie 3.2 Na to, by iepusty zbiór A był przeliczaly potrzeba i wystarcza, aby był o zbiorem wyrzzów pewego cigu. Czyli iepusty zbiór A jest przeliczaly gdy istieje cig {a } N (iekoieczie róowartociowy) taki, e A = {a } N. (waruek koieczy) Zakładamy, e A jest zbiorem przeliczalym. Rozwamy przypadki: (i) A jest rówoliczy z N (ii) A jest skoczoy. Ad (i)

3 18 Ad. (ii) Istieje wówczas fukcja a : N A, czyli cig {a } N. Poiewa a jest surjekcj, to A = {a } N. Dla pewego k N mamy P(k)~A. Istieje wic bijekcja a:p(k) A. Oczywicie a(p(k)) = A. Defiiujemy cig b:n A astpujco: a() dla k N b. Łatwo zauway, e {b } N = A. a(k) dla > k (waruek wystarczajcy) Zakładamy, e A jest zbiorem wyrazów pewego cigu. Istieje wic cig {b } N taki, e {b } N = A. Jeeli A jest skoczoy, to jest oczywicie przeliczaly. Przyjmijmy wic, e A ie jest skoczoy. Wówczas (*) N ~(P()~A) Poiej zdefiiujemy róowartociowy cig {a } N taki, e {a } N = A. Defiiujemy ( 1) a 1 b 1 Gdyby zbiór M 1 { N: b a 1 = b 1 } =, to A~P(1) wbrew (*). Zatem M 1. Istieje wic k 2 mim 1. Defiiujemy (2) a 2 b k2 ( a 2 jest wic ajwczeiejszym wyrazem cigu {b } N, który jest róy od b 1 = a 1. W szczególoci a 1 a 2 ) Gdyby zbiór M 2 { N: b {a 1, a 2 }} =, to A~P(2) wbrew (*). Zatem M 2. Istieje wic k 3 mim 2. Defiiujemy (3) a 3 b k3. ( a 3 jest wic ajwczeiejszym wyrazem cigu {b } N, który jest róy od wszystkich wczeiej od iego okreloych elemetów: a 1 i a 2 ) Przyjmijmy, e okrelilimy ju wyraz (4) () a b k bdcy ajwczeiejszym wyrazem cigu {b } N, który jest róy od wszystkich wczeiej od iego okreloych elemetów: a 1, a 2,..., a -1. Gdyby zbiór M { N: b {a 1,..., a }} =, to A~P() wbrew (*). Zatem M. Istieje wic k +1 mim. Defiiujemy (5) (+1) a +1 b k+1 ( a +1 jest wic ajwczeiejszym wyrazem cigu {b } N, który jest róy od wszystkich wczeiej od iego okreloych elemetów: a 1,..., a. W te sposób okrelilimy idukcyjie cig {a } N. Jest o oczywicie róowartociowy (co wyika z procesu jego tworzeia) i {a } N = A (bo cig {b } N wyczerpywał wszystkie wyrazy zbioru A. Cig {a } N jest podcigiem cigu {b } N powstałym przez opuszczeie tylko tych wyrazów które w cigu {b } N powtarzały si). W zwizku z powyszym A jest rówoliczy z N, a wic przeliczaly. Własoci zbiorów przeliczalych Twierdzeie 3.3 Kady podzbiór zbioru przeliczalego jest przeliczaly. Kady adzbiór zbioru ieprzeliczalego jest ieprzeliczaly. Niech A bdzie podzbiorem zbioru przeliczalego B. Jeeli B =, to twierdzeie jest oczywiste. W przeciwym wypadku a mocy poprzediego twierdzeia B = {b } N. Jeeli A = lub A jest skoczoy, to twierdzeie jest oczywiste. Przyjmijmy wic, e A jest ieskoczoym podzbiorem zbioru B (sił rzeczy ieskoczoego). Niech {a } N bdzie cigiem powstałym z {b } N poprzez opuszczeie tych i tylko tych jego wyrazów, które ie ale do A z zachowaiem kolejoci pozostałych. (pozostaie ieskoczeie wiele wyrazów). {a } N. jest wic podcigiem {b } N oraz {a } N = A, zatem A jest przeliczaly.

4 Niech teraz C bdzie zbiorem ieprzeliczalym i C D. Gdyby D był przeliczaly, to C jako jego podzbiór a mocy pierwszej czci twierdzeia był by przeliczaly. 19 Wiosek Kady podzbiór zbioru liczb aturalych jest przeliczaly a wic i kady zbiór rówoliczy z którym z tych podzbiorów jest rówoliczy. Okazuje si, e jedyymi zbiorami przeliczalymi s te które rówolicze s z pewym podzbiorem zbioru liczb aturalych. Twierdzeie 3.4 Suma dwóch zbiorów przeliczalych jest zbiorem przeliczalym. Niech A i B bd zbiorami przeliczalymi. Jeeli który z ich jest zbiorem pustym, to twierdzeie jest oczywiste. Przyjmijmy wic, e oba s iepuste. Przyjmijmy, e A = {a } N i B = {b } N. Defiiujemy cig {c } N astpujco: N c 2-1 a c 2 b, czyli {c } N = {a 1, b 1, a 2, b 2,... }. Oczywicie {c } N =A B, co wiadczy o przeliczaloci zbioru A B. Wioski 1) Suma kadej skoczoej iloci zbiorów przeliczalych jest zbiorem przeliczalym. (łatwy dowód idukcyjy) 2) Zbiór Z = N {0} N - jest przeliczaly. Twierdzeie 3.5 Iloczy kartezjaski zbiorów przeliczalych ( iepustych) jest zbiorem przeliczalym. Niech A {a } N i B {b } N bd zbiorami przeliczalymi. Tworzymy ieskoczo tablic : (a 1,b 1 ), (a 1,b 2 ), (a 1,b 3 ), (a 1,b 4 ), (a 1,b 5 ),... (a 2,b 1 ), (a 2,b 2 ), (a 2,b 3 ), (a 2,b 4 ), (a 2,b 5 ),... (a 3,b 1 ), (a 3,b 2 ), (a 3,b 3 ), (a 3,b 4 ), (a 3,b 5 ), Oczywicie kady elemet zbioru AxB w powyszej tablicy si zajduje. Elemet (a k,b r ) zajduje si w k-tym wierszu i r-tej kolumie powyszej tablicy. Tworzymy teraz cig: (a 1,b 1 ), (a 1,b 2 ), (a 2,b 1 ), (a 1,b 3 ), (a 2,b 2 ), (a 3,b 1 ),... Z łatwoci stwierdzamy, e AxB jest zbiorem wyrazów powyszego cigu, a wic jest o przeliczaly. Zaprezetowaa w powyszym dowodzie metoda tworzeia cigu azywa si przektiow metod wyboru. Defiicja 3.7 Niech N\{1} i A 1,..., A +1 dowolymi zbiorami iepustymi. Defiiujemy: A 1 x... x A +1 (A 1 x... x A )xa +1. Z samej defiicji iloczyu kartezjaskiego -zbiorów wyika, e twierdzeie 3.5 moa i a te przypadek uogóli. Twierdzeie 3.6

5 20 Suma przeliczalej iloci zbiorów przeliczalych jest zbiorem przeliczalym. Niech {A } N bdzie cigiem zbiorów przeliczalych. WPU sum A =1. Jeeli wszystkie zbiory A s puste, to i ich suma jest zbiorem pustym a wic przeliczalym. Jeeli wród zbiorów A wystpuje zbiór iepusty, to i ich suma jest iepusta. Na zbiór A =1 ie maj wpływu ewetuale zbiory puste wystpujce w cigu {A } N. Moemy wic przyj, e {A } N jest cigiem zbiorów przeliczalych i iepustych i w kosekwecji przyj ozaczeia (*) N A {a m } m N. Tworzymy ieskoczo tablic elemetów zbioru A : =1 a 11, a 12, a 13,... a 21, a 22, a 23,... a 31, a 32, a 33, i aalogiczie jak w poprzedim twierdzeiu tworzymy cig, który jak łatwo wida jest cigiem wszystkich elemetów zbioru A =1, co wiadczy o jego przeliczaloci. Twierdzeie 3.7 Niech A bdzie iepustym zbiorem przeliczalym i f: A B. Wówczas f(a) jest zbiorem przeliczalym.. Zbiór A jako iepusty przeliczaly ma posta A = {a } N. Wówczas f(a) = {f(a )} N, czyli jest przeliczaly. Przykłady zbiorów przeliczalych. Oczywicie zbiór N jest przeliczaly. Zbiór Z = N{0}N - jako suma zbiorów przeliczalych jest przeliczaly. Przypomijmy, e zbiór W {x R: r Z m N x = r m }. Defiiujemy fukcj f:zxn R astpujco: (r,m) ZxN f(r,m) r m. Łatwo zauway, e f(zxn) = W. Poiewa ZxN jako iloczy zbiorów przeliczalych jest przeliczaly, to a mocy poprzediego twierdzeia rówie zbiór W jest przeliczaly. Niebawem udowodimy, e zbiór R jest ieprzeliczaly. Przyjmujc w tym momecie, e tak jest, wioskujemy, e rówie zbiór IW jest ieprzeliczaly, gdy w przeciwym wypadku zbiór R = W IW jako suma zbiorów przeliczalych byłby przeliczaly. 3. Zbiór liczb rzeczywistych

6 21 Przyjmujemy, e zae s słuchaczowi (czytelikowi) własoci podstawowych działa i ierówoci w zbiorze liczb rzeczywistych. Defiicja 3.1 Niech D R. Powiemy, e zbiór D jest ograiczoy z góry (z dołu) jeeli (1) M R x D x M ( (1 ) m D x D m x ). Jeeli zbiór D R ograiczoy jest z góry i z dołu, to azywamy go po prostu ograiczoym. Zauwamy, e waruek ograiczooci zbioru zapisa moemy astpujco: (2) M R x D x M. Defiicja 2.2 Liczb g azywamy kresem górym iepustego zbioru D R jeeli x D x g ( p R p < g x D p < x). Liczb d azywamy kresem dolym iepustego zbioru D R jeeli x D d x ( p R d < p x D x < p). Oczywicie jeeli iepusty podzbiór D R ma kres góry (doly), to jest ograiczoy z góry (z dołu). Kres góry, doly iepustego zbioru D R ozaczamy odpowiedio przez supd i ifd. Przykłady 1=sup( 0,1). Istotie mamy oczywicie x (0,1) x < 1. Niech p<1. Jeeli p 0, to p+1 p+1 2 ( 0,1) i p < 2 Jeeli p < 0, to 1 2 (0,1) i p < 1 2. Zauwamy, e sup( 0,1) ( 0,1). Zupełie aalogiczie wykaza moa, e 1=sup( 0,1>. Tym razem sup( 0,1> ( 0,1>. W przypadku, gdy kres góry (doly) zbioru jest elemetem tego zbioru, to azywamy go maksimum (miimum) i zamiast supd (ifd) piszemy wówczas maxd (mid). Naturalym jest pytaie: czy kady zbiór ograiczoy z góry (z dołu) posiada kres góry (doly)?. Odpowied a to pytaie jest pozytywa, ale dowód stosowego twierdzeia jest b. trudy. Twierdzeie 3.1 (zasada cigłoci) (doly). Kady ograiczoy z góry (z dołu) iepusty podzbiór zbioru R posiada kres góry Jeeli iepusty zbiór D R jest ieograiczoy z góry (z dołu) to piszemy supd =. (ifd = - ). Twierdzeie 3.2 Przedział < 0,1> jest zbiorem ieprzeliczalym. Przypumy, e < 0,1> jest zbiorem przeliczalym. Jest o wówczas zbiorem wyrazów pewego cigu {a } N. Mamy wic (*) < 0,1> = {a } N

7 22 Podzielmy przedział < 0,1> a trzy przedziały : < 0, 1 3 >, < 1 3, 2 3 >, < 2 3, 1> i wybierzmy z ich te do którego ie aley a. 1 (Przedział taki jest dokładie jede gdy a 1 { 1 3, 2 3 } i s dwa w przeciwym wypadku, ale jede z ich p. wczeiejszy wybra zawsze moa). Wybray przedział ozaczmy przez I 1 a jego krace odpowiedio przez d 1 oraz g 1. Mamy wic (1) a 1 I 1 = <d 1,g 1 > < 0,1> g 1 d 1 < 1 3. Przedział I 1 dzielimy teraz a trzy rówe przedziały i wybieramy z ich te do którego ie aley a 2. (Nie jest wykluczoe, e a 2 I 1 = <d 1,g 1 >, co przecie ie uiemoliwia wyboru). Wybray przedział ozaczmy przez I 2 a jego krace odpowiedio przez d 2 oraz g 2. Mamy wic (2) a 2 I 2 = <d 2,g 2 > <d 1,g 1 > < 0,1> g 2 d 2 < Z przedziałem I 3 postpujemy aalogiczie. Załómy, e okrelilimy ju przedział I o poiszej własoci () a I = <d,g > <d -1,g -1 >... <d 1,g 1 > < 0,1> g d < 1 3. Przedział I dzielimy teraz a trzy rówe przedziały i wybieramy z ich te do którego ie aley a +1. (Nie jest wykluczoe, e a +1 I = <d,g >, co przecie ie uiemoliwia wyboru). Wybray przedział ozaczmy przez I +1 a jego krace odpowiedio przez d +1 oraz g +1. Mamy wic (+1) a +1 I +1 = <d +1,g +1 > <d,g - >... <d 1,g 1 > < 0,1> g +1 d +1 < W te sposób zdefiiowalimy dwa cigi {d } N i {g } N elemetów przedziału < 0,1> o astpujcej własoci (**) N a I 0 d 1 d 2... d d g +1 g... g 2 g 1 1. Cig {d } N jest ograiczoy z góry p. przez 1. Wobec zasady cigłoci zbiór {d } N posiada kres góry. Istieje wic (c) sup{d } N. Zauwamy jedak, e ograiczeiem górym zbioru {d } N jest wobec (**) kady elemet zbioru {g } N. Zatem z (**) i defiicji supremum mamy (d) N d c g. czyli (e) N c I < 0,1>. Poiewa c < 0,1> = (1) = {a } N, to (f) k N c = a k. czyli wobec (**) c = a k I k a to przeczy (e). Uzyskaa sprzeczo jest kosekwecj przypuszczeia (1). Tak wic < 0,1> jest ieprzeliczaly. Wiosek Zbiór liczb rzeczywistych jako adzbiór zbioru ieprzeliczalego jest ieprzeliczaly. Twierdzeie 3.3 Kady iezdegeeroway przedział a prostej jest zbiorem ieprzeliczalym. Niech P bdzie przedziałem iezdegeerowaym w R. Istiej wówczas liczby a,b R takie, e a < b i oczywicie <a, b> P. Łatwo sprawdzi, ze fukcja f: <0, 1> <a, b> okreloa wzorem x <0, 1> f(x) (b-a)x + a jest odwzorowaiem wzajemie jedozaczym, wic <a, b> jest ieprzeliczaly i w efekcie P jako adzbiór zbioru ieprzeliczalego te jest ieprzeliczaly.

lim a n Cigi liczbowe i ich granice

lim a n Cigi liczbowe i ich granice Cigi liczbowe i ich graice Cigiem ieskoczoym azywamy dowol fukcj rzeczywist okrelo a zbiorze liczb aturalych. Dla wygody zapisu, zamiast a() bdziemy pisa a. Elemet a azywamy -tym wyrazem cigu. Cig (a )

Bardziej szczegółowo

Ciągi liczbowe wykład 3

Ciągi liczbowe wykład 3 Ciągi liczbowe wykład 3 dr Mariusz Grządziel semestr zimowy, r akad 204/205 Defiicja ciągu liczbowego) Ciagiem liczbowym azywamy fukcję odwzorowuja- ca zbiór liczb aturalych w zbiór liczb rzeczywistych

Bardziej szczegółowo

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic). Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic

Bardziej szczegółowo

O liczbach naturalnych, których suma równa się iloczynowi

O liczbach naturalnych, których suma równa się iloczynowi O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą

Bardziej szczegółowo

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem 9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3

Bardziej szczegółowo

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo

Wykªad 05 (granice c.d., przykªady) Rozpoczniemy od podania kilku przykªadów obliczania granic ci gów. n an = + dla a > 1. (5.1) lim.

Wykªad 05 (granice c.d., przykªady) Rozpoczniemy od podania kilku przykªadów obliczania granic ci gów. n an = + dla a > 1. (5.1) lim. Wykªad 05 graice cd, przykªady Rozpocziemy od podaia kilku przykªadów obliczaia graic ci gów Niech a > Ozaczmy a = c > 0 Mamy Poiewa» c = +, wi c tak»e a = + c + c c a = + dla a > 5 Poadto, zauwa»amy,»e

Bardziej szczegółowo

Analiza matematyczna 1 Notatki do wykªadu Mateusz Kwa±nicki. 7 Sumy i iloczyny uogólnione

Analiza matematyczna 1 Notatki do wykªadu Mateusz Kwa±nicki. 7 Sumy i iloczyny uogólnione Aaliza matematycza Notatki do wykªadu Mateusz Kwa±icki 7 Sumy i iloczyy uogólioe Dla dowolych liczb a k, a k+, a k+,..., a l okre±lamy sum uogólio i iloczy uogólioy: a k + a k+ + a k+ +... + a l, l a k

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Defiicja ciągu liczbowego. Defiicja 1.1. Ciągiem liczbowym azywamy fukcję a : N R odwzorowującą zbiór liczb aturalych N w zbiór liczb rzeczywistych R i ozaczamy przez { }. Używamy

Bardziej szczegółowo

Wyk lad 8 Zasadnicze twierdzenie algebry. Poj. ecie pierścienia

Wyk lad 8 Zasadnicze twierdzenie algebry. Poj. ecie pierścienia Wy lad 8 Zasadicze twierdzeie algebry. Poj ecie pierścieia 1 Zasadicze twierdzeie algebry i jego dowód Defiicja 8.1. f: C C postaci Wielomiaem o wspó lczyiach zespoloych azywamy fucj e f(x) = a x + a 1

Bardziej szczegółowo

Analiza matematyczna. Robert Rałowski

Analiza matematyczna. Robert Rałowski Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................

Bardziej szczegółowo

3. Funkcje elementarne

3. Funkcje elementarne 3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R Kresy zbiorów. Ćwiczeia 21.11.2011: zad. 197-229 Kolokwium r 7, 22.11.2011: materiał z zad. 1-249 Defiicja: Zbiór Z R azywamy ograiczoym z góry, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą

Bardziej szczegółowo

Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe

Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe Metody probabilistycze i statystyka Wykład 1 Zdarzeia losowe, defiicja prawdopodobieństwa, zmiee losowe Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki

Bardziej szczegółowo

Funkcje tworz ce skrypt do zada«

Funkcje tworz ce skrypt do zada« Fukcje tworz ce skrypt do zada«mateusz Rapicki, Piotr Suwara 20 maja 2012 1 Kombiatoryka Deicja 1 (dwumia Newtoa) dla liczb caªkowitych ieujemych, k to liczba k sposobów wybraia k elemetów z -elemetowego

Bardziej szczegółowo

3 Arytmetyka. 3.1 Zbiory liczbowe.

3 Arytmetyka. 3.1 Zbiory liczbowe. 3 Arytmetyka. 3.1 Zbiory liczbowe. Bóg stworzył liczby aturale, wszystko ie jest dziełem człowieka. Leopold Kroecker Ozaczeia: zbiór liczb aturalych: N = {1, 2,...} zbiór liczb całkowitych ieujemych: N

Bardziej szczegółowo

zadań z pierwszej klasówki, 10 listopada 2016 r. zestaw A 2a n 9 = 3(a n 2) 2a n 9 = 3 (a n ) jest i ograniczony. Jest wiec a n 12 2a n 9 = g 12

zadań z pierwszej klasówki, 10 listopada 2016 r. zestaw A 2a n 9 = 3(a n 2) 2a n 9 = 3 (a n ) jest i ograniczony. Jest wiec a n 12 2a n 9 = g 12 Rozwiazaia zadań z pierwszej klasówki, 0 listopada 06 r zestaw A Ciag a ) jest zaday rekuryjie: a a, a + a a 9, a R, a

Bardziej szczegółowo

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i = Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka

Bardziej szczegółowo

Analiza Matematyczna I.1

Analiza Matematyczna I.1 Aaliza Matematycza I Seria, P Nayar, 0/3 Zadaie Niech a k >, (k =,, b d liczbami rzeczywistymi o tym samym zaku Udowodij,»e prawdziwa jest ierówo± ( + a ( + a ( + a + a + a + + a Czy zaªo»eie,»e liczby

Bardziej szczegółowo

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy Wyład 7 Przestrzeie metrycze zwarte Defiicja 8 (przestrzei zwartej i zbioru zwartego Przestrzeń metryczą ( ρ X azywamy zwartą jeśli ażdy ciąg elemetów tej przestrzei posiada podciąg zbieży (do putu tej

Bardziej szczegółowo

Przykład Zbiór {0, 2} jest podgrup grupy Z 4, bo elementem odwrotnym do liczby 2 jest ta sama liczba ((2 + 2)mod4 = 0).

Przykład Zbiór {0, 2} jest podgrup grupy Z 4, bo elementem odwrotnym do liczby 2 jest ta sama liczba ((2 + 2)mod4 = 0). Uzuełieia do rozdz. I Zbiór izometrii rzekształcajcych day rostokt ABCD, który ie jest kwadratem a siebie z działaiem składaia rzekształce jest gru abelow. Zbiór rozatrywaych izometrii składa si z elemetów:

Bardziej szczegółowo

> 1), wi c na mocy kryterium porównawczego szereg sin(n n)

> 1), wi c na mocy kryterium porównawczego szereg sin(n n) .65. si() W szeregu tym wyst puj wyrazy dodatie i ujeme, ale ie a przemia. Zbadajmy wi c szereg: si() zªo»oy z warto±ci bezwzgl dych wyrazów szeregu daego w zadaiu. Poiewa» si(), wi c si() = Po prawej

Bardziej szczegółowo

2. Nieskończone ciągi liczbowe

2. Nieskończone ciągi liczbowe Ciągiem liczbowym azywamy fukcję 2. Nieskończoe ciągi liczbowe a: N R. Wartości tej fukcji ozaczamy przez a) = a i azywamy wyrazami ciągu. Często ciąg ozaczamy przez {a } = lub po prostu przez {a }. Prostymi

Bardziej szczegółowo

Nieklasyczne modele kolorowania grafów

Nieklasyczne modele kolorowania grafów 65 Nieklasycze modele kolorowaia grafów 66 Kolorowaie sprawiedliwe Def. Jeli wierzchołki grafu G moa podzieli a k takich zbiorów iezaleych C,...,C k, e C i C j dla wszystkich i,j,...,k, to mówimy, e G

Bardziej szczegółowo

c 2 + d2 c 2 + d i, 2

c 2 + d2 c 2 + d i, 2 3. Wykład 3: Ciało liczb zespoloych. Twierdzeie 3.1. Niech C R. W zbiorze C określamy dodawaie: oraz możeie: a, b) + c, d) a + c, b + d) a, b) c, d) ac bd, ad + bc). Wówczas C, +, ) jest ciałem, w którym

Bardziej szczegółowo

Wykªad 2. Szeregi liczbowe.

Wykªad 2. Szeregi liczbowe. Wykªad jest prowadzoy w oparciu o podr czik Aaliza matematycza 2. Deicje, twierdzeia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 2. Szeregi liczbowe. Deicje i podstawowe twierdzeia Deicja Szeregiem liczbowym

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2013/14

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2013/14 Wykład: zad. 35-43 Kowersatoriu 8..03: zad. 44-6 Ćwiczeia 9..03: zad. 6-340 Kolokwiu r 6 5..03 (poiedziałek, 3:5-4:00: ateriał z zad. -384 Kresy zbiorów. Defiicja: Zbiór Z R azyway ograiczoy z góry, jeżeli

Bardziej szczegółowo

Metody badania zbieżności/rozbieżności ciągów liczbowych

Metody badania zbieżności/rozbieżności ciągów liczbowych Metody badaia zbieżości/rozbieżości ciągów liczbowych Ryszard Rębowski 14 grudia 2017 1 Wstęp Kluczowe pytaie odoszące się do zagadieia badaia zachowaia się ciągu liczbowego sprowadza się do sposobu opisu

Bardziej szczegółowo

Twierdzenia o funkcjach ciągłych

Twierdzenia o funkcjach ciągłych Automatya i Robotya Aaliza Wyład 5 dr Adam Ćmiel cmiel@aghedupl Twierdzeia o ucjach ciągłych Tw (Weierstrassa Jeżeli ucja : R [ R jest ciągła a [, to ograiczoa i : ( sup ( i ( i ( [, Dowód Ograiczoość

Bardziej szczegółowo

Tw. 1. Je»eli ci g {a n } ma granic a i ci g {b n } ma granic b, to ci g {a n b n } ma granic a b. Tw. 2. b n. Tw. 3. Tw. 4.

Tw. 1. Je»eli ci g {a n } ma granic a i ci g {b n } ma granic b, to ci g {a n b n } ma granic a b. Tw. 2. b n. Tw. 3. Tw. 4. Tw.. Je»eli ci g {a } ma graic a i ci g {b } ma graic b, to ci g {a + b } ma graic a+b. Tw.. Je»eli ci g {a } ma graic a i ci g {b } ma graic b, to ci g {a b } ma graic a-b. Tw.. Je»eli ci g {a } ma graic

Bardziej szczegółowo

Metoda najszybszego spadku

Metoda najszybszego spadku Metody Gradietowe W tym rozdziale bdziemy rozwaa metody poszuiwaia dla fucji z przestrzei R o wartociach rzeczywistych Metody te wyorzystuj radiet fucji ja rówie wartoci fucji Przypomijmy, czym jest zbiór

Bardziej szczegółowo

Zbiory. Zadanie 5. Wykaza to»samo±ci (a) A (B \ C) = [(A B) \ C] (A C), (b) A \ [B \ (C \ D)] = (A \ B) [(A C) \ D],

Zbiory. Zadanie 5. Wykaza to»samo±ci (a) A (B \ C) = [(A B) \ C] (A C), (b) A \ [B \ (C \ D)] = (A \ B) [(A C) \ D], x FAQ ANALIZA R c ZADANIA Zbiory Zadaie 1. Opisa zbiory A B, A B, A \ B, B \ A je±li A = {x R : x 3x < 0, }; B = {x R : x 3x + 4 0} Zadaie. Niech A, B, C, D b d podzbiorami przestrzei X. Udowodi,»e A \

Bardziej szczegółowo

Funkcja wykładnicza i logarytm

Funkcja wykładnicza i logarytm Rozdział 3 Fukcja wykładicza i logarytm Potrafimy już defiiować potęgi liczb dodatich o wykładiku wymierym: jeśli a > 0 i x = p/q Q dla p, q N, to aturalie jest przyjąć a x = a 1/q) p = a 1/q } {{... a

Bardziej szczegółowo

Analiza Matematyczna I.1

Analiza Matematyczna I.1 Aaliza Matematycza I Seria, P Nayar, 0/ Zadaie Niech a k >, (k =,, ) b d liczbami rzeczywistymi o tym samym zaku Udowodij,»e prawdziwa jest ierówo± ( + a )( + a ) ( + a ) + a + a + + a Czy zaªo»eie,»e

Bardziej szczegółowo

Materiały do wykładu Matematyka Stosowana 1. Dariusz Chrobak

Materiały do wykładu Matematyka Stosowana 1. Dariusz Chrobak Materiały do wykładu Matematyka Stosowaa Dariusz Chrobak 7 styczia 207 Spis treści Zbiory liczbowe i fukcje 2. Zbiór liczb wymierych Q...................... 2.2 Liczby iewymiere.........................

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. Sprawdzian nr 4: (poniedziałek), godz. 10:15-10:35 (materiał zad.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. Sprawdzian nr 4: (poniedziałek), godz. 10:15-10:35 (materiał zad. Sprawdzia r 4: 4..04 (poiedziałek, godz. 0:5-0:35 (ateriał zad. -400 Kresy zbiorów. Defiicja: Zbiór Z R azyway ograiczoy z góry, jeżeli M R x M. Każdą liczbę rzeczywistą M R spełiającą waruek x M azyway

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11 RÓWNANIA RÓŻNICZKOWE WYKŁAD Szeregi potęgowe Defiicja Fukcja y = f () jest klasy C jeżeli jest -krotie różiczkowala i jej -ta pochoda jest fukcją ciągłą. Defiicja Fukcja y = f () jest klasy C, jeżeli jest

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

Wektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Wektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Wektory Fukcje rzeczywiste wielu zmieych rzeczywistych Matematyka Studium doktorackie KAE SGH Semestr leti 2008/2009 R. Łochowski Wektory pukty w przestrzei R Przestrzeń R to zbiór uporządkowaych -ek liczb

Bardziej szczegółowo

Operatory zwarte Lemat. Jeśli T jest odwzorowaniem całkowym na przestrzeni Hilberta X = L 2 (Ω) z jądrem k L 2 (M M)

Operatory zwarte Lemat. Jeśli T jest odwzorowaniem całkowym na przestrzeni Hilberta X = L 2 (Ω) z jądrem k L 2 (M M) Operatory zwarte Niech X będzie przestrzeią Baacha. Odwzorowaie liiowe T azywa się zwarte, jeśli obraz kuli jedostkowej T (B) jest zbiorem warukowo zwartym. Przestrzeń wszystkich operatorów zwartych a

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17 Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ)

MATEMATYKA I SEMESTR ALK (PwZ) MATEMATYKA I SEMESTR ALK (PwZ) 1. Ciągi liczbowe 1.1. OKREŚLENIE Ciąg liczbowy = Dowola fukcja przypisująca liczby rzeczywiste pierwszym (ciąg skończoy), albo wszystkim (ciąg ieskończoy) liczbom aturalym.

Bardziej szczegółowo

5. Zasada indukcji matematycznej. Dowody indukcyjne.

5. Zasada indukcji matematycznej. Dowody indukcyjne. Notatki do lekcji, klasa matematycza Mariusz Kawecki, II LO w Chełmie 5. Zasada idukcji matematyczej. Dowody idukcyje. W rozdziale sformułowaliśmy dla liczb aturalych zasadę miimum. Bezpośredią kosekwecją

Bardziej szczegółowo

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,

Bardziej szczegółowo

Ekstremalna teoria grafów Filip Lurka V Liceum ogólnoksztaªc ce w Krakowie

Ekstremalna teoria grafów Filip Lurka V Liceum ogólnoksztaªc ce w Krakowie Ekstremala teoria grafów Filip Lurka V Liceum ogóloksztaªc ce w Krakowie 1 Ekstremala Teoria Grafów 1 Ekstremala Teoria Grafów Filip Lurka 1.1 Teoria Deicja 1.1 Klik azywamy graf peªy; ka»de dwa wierzchoªki

Bardziej szczegółowo

1 Twierdzenia o granicznym przejściu pod znakiem całki

1 Twierdzenia o granicznym przejściu pod znakiem całki 1 Twierdzeia o graiczym przejściu pod zakiem całki Ozaczeia: R + = [0, ) R + = [0, ] (X, M, µ), gdzie M jest σ-ciałem podzbiorów X oraz µ: M R + - zbiór mierzaly, to zaczy M Twierdzeie 1.1. Jeżeli dae

Bardziej szczegółowo

Twierdzenie Cayleya-Hamiltona

Twierdzenie Cayleya-Hamiltona Twierdzeie Cayleya-Hamiltoa Twierdzeie (Cayleya-Hamiltoa): Każda macierz kwadratowa spełia swoje włase rówaie charakterystycze. D: Chcemy pokazać, że jeśli wielomiaem charakterystyczym macierzy A jest

Bardziej szczegółowo

Zestaw zadań do skryptu z Teorii miary i całki. Katarzyna Lubnauer Hanna Podsędkowska

Zestaw zadań do skryptu z Teorii miary i całki. Katarzyna Lubnauer Hanna Podsędkowska Zestaw zadań do skryptu z Teorii miary i całki Katarzya Lubauer Haa Podsędkowska Ciała σ - ciała. Zbadaj czy rodzia A jest ciałem w przestrzei X=[0] a) A = X 0 b) A = X 0 3 3 c) A = { X { }{}{ 0}{ 0 }

Bardziej szczegółowo

Wykład 2. Kombinacje. Twierdzenie. (Liczba k elementowych podzbiorów zbioru n-elementowego) C(n,k) =, gdzie symbol oznacza liczbę i n k.

Wykład 2. Kombinacje. Twierdzenie. (Liczba k elementowych podzbiorów zbioru n-elementowego) C(n,k) =, gdzie symbol oznacza liczbę i n k. Wykład 2. Krzyś wiedział a pewo, Ŝe to miejsce jest zaczarowae, bo igdy ikt ie mógł się doliczyć, ile rosło tam drzew, sześćdziesiąt trzy czy sześćdziesiąt cztery, awet kiedy po przeliczeiu przywiązywało

Bardziej szczegółowo

Funkcje tworz ce - du»y skrypt

Funkcje tworz ce - du»y skrypt Fukcje tworz ce - du»y skrypt Mateusz Rapicki, Piotr Suwara 9 sierpia 202 Kombiatoryka ( ) Deicja (dwumia Newtoa). k dla liczb caªkowitych ieujemych, k to liczba sposobów wybraia k elemetów z -elemetowego

Bardziej szczegółowo

I kolokwium z Analizy Matematycznej

I kolokwium z Analizy Matematycznej I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4

Bardziej szczegółowo

Zbiory i odwzorowania

Zbiory i odwzorowania Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):

Bardziej szczegółowo

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 11

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 11 Matematyka I Bezpieczeństwo jądrowe i ochroa radiologicza Semestr zimowy 2018/2019 Wykład 11 Całka ozaczoa podstawowe pojęcia Defiicja podziału odcika Podziałem P odcika < a, b > a części azywamy zbiór

Bardziej szczegółowo

3.1. Ciągi liczbowe - ograniczoność, monotoniczność, zbieżność ciągu. Liczba e. Twierdzenie o trzech ciągach.

3.1. Ciągi liczbowe - ograniczoność, monotoniczność, zbieżność ciągu. Liczba e. Twierdzenie o trzech ciągach. WYKŁAD 6 3 RACHUNEK RÓŻNICZKOWY I CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ 31 Ciągi liczbowe - ogriczoość, mootoiczość, zbieżość ciągu Liczb e Twierdzeie o trzech ciągch 3A+B1 (Defiicj: ieskończoość) Symbole,,

Bardziej szczegółowo

7 Liczby zespolone. 7.1 Działania na liczbach zespolonych. Liczby zespolone to liczby postaci. z = a + bi,

7 Liczby zespolone. 7.1 Działania na liczbach zespolonych. Liczby zespolone to liczby postaci. z = a + bi, 7 Liczby zespoloe Liczby zespoloe to liczby postaci z a + bi, gdzie a, b R. Liczbę i azywamy jedostką urojoą, spełia oa waruek i 2 1. Zbiór liczb zespoloych ozaczamy przez C: C {a + bi; a, b R}. Liczba

Bardziej szczegółowo

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem:

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem: Relacje rekurecyje Defiicja: Niech =,,,... będzie astępująco zdefiiowaym ciągiem: () = r, = r,..., k = rk, gdzie r, r,..., r k są skalarami, () dla k, = a + a +... + ak k, gdzie a, a,..., ak są skalarami.

Bardziej szczegółowo

SZEREGI LICZBOWE. s n = a 1 + a a n = a k. k=1. aq n = 1 qn+1 1 q. a k = s n + a k, k=n+1. s n = 0. a k lim n

SZEREGI LICZBOWE. s n = a 1 + a a n = a k. k=1. aq n = 1 qn+1 1 q. a k = s n + a k, k=n+1. s n = 0. a k lim n SZEREGI LICZBOWE Z ciągu liczb a, a 2,... utwórzmy owy ciąg Przyjmijmy ozaczeia s = a + a 2 +... a = a k. k= k= a k = a + a 2 +... = s. Gdy graica k= a k jest liczbą, to mówimy, że szereg k= a k jest sumowaly

Bardziej szczegółowo

Ekonomia matematyczna - 1.1

Ekonomia matematyczna - 1.1 Ekoomia matematycza - 1.1 Elemety teorii kosumeta 1. Pole preferecji Ozaczmy R x x 1,...,x : x j 0 x x, x j1 j. R rozpatrujemy z ormą x j 2. Dla x x 1,...,x,p p 1,...,p Ip x, p x j p j x 1 p 1 x 2 p 2...x

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINOWYCH

UKŁADY RÓWNAŃ LINOWYCH Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a

Bardziej szczegółowo

MACIERZE STOCHASTYCZNE

MACIERZE STOCHASTYCZNE MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:

Bardziej szczegółowo

Spis tre±ci 1. Wprowadzenie O matematyce O kursie Ci gªo± Pochodna Caªka Liczby rzeczywiste 6 2.

Spis tre±ci 1. Wprowadzenie O matematyce O kursie Ci gªo± Pochodna Caªka Liczby rzeczywiste 6 2. Spis tre±ci. Wprowadzeie 3.. O matematyce 3.. O kursie 3.3. Ci gªo± 3.4. Pochoda 5.5. Caªka 6.6. Liczby rzeczywiste 6. Liczby rzeczywiste 8.. Formala deicja 8.. Liczby aturale i zasada idukcji 9.3. Rozkªad

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Liczby zespolone

Zadania z algebry liniowej - sem. I Liczby zespolone Zadaia z algebry liiowej - sem. I Liczby zespoloe Defiicja 1. Parę uporządkowaą liczb rzeczywistych x, y azywamy liczbą zespoloą i ozaczamy z = x, y. Zbiór wszystkich liczb zespoloych ozaczamy przez C

Bardziej szczegółowo

dna szeregu. ; m., k N ; ó. ; u. x 2n 1 ; e. n n! jest, że

dna szeregu. ; m., k N ; ó. ; u. x 2n 1 ; e. n n! jest, że KILKA ZADAŃ O SZEREGACH Zbadać zbieżość i zbieżość bezwzgle da = a, jeśli a = a!! ; a + + ; c + ; ć! ; d +/ + 3 ; e! e 3 3+ ; f ; + g 000+ ; h ; + i! ; j k ; l 5 + l + 7 0 +3 6 0 + ; +3 ; ; m 3 + 3 ; +a

Bardziej szczegółowo

Spis tre±ci 1. Wprowadzenie Sprawy formalne O matematyce O kursie Ci gªo± Pochodna Caªka

Spis tre±ci 1. Wprowadzenie Sprawy formalne O matematyce O kursie Ci gªo± Pochodna Caªka Spis tre±ci 1. Wprowadzeie 3 1.1. Sprawy formale 3 1.. O matematyce 3 1.3. O kursie 3 1.4. Ci gªo± 3 1.5. Pochoda 5 1.6. Caªka 6 1.7. Liczby rzeczywiste 6 1.8. Ie iformacje 6. Liczby rzeczywiste 7.1. Formala

Bardziej szczegółowo

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy. Logika i teoria mnogo±ci, konspekt wykªad 12 Teoria mocy, cz ± II Def. 12.1 Ka»demu zbiorowi X przyporz dkowujemy oznaczany symbolem X obiekt zwany liczb kardynaln (lub moc zbioru X) w taki sposób,»e ta

Bardziej szczegółowo

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1 Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.

Bardziej szczegółowo

Arytmetyka pierścienia liczb całkowitych (w tym podzielność)

Arytmetyka pierścienia liczb całkowitych (w tym podzielność) Arytmetyka pierścieia liczb całkowitych (w tym podzielość). Pojęcie pierścieia. Defiicja. Zbiór A z dwoma operacjami wewętrzymi o symbolach + i azywa się pierścieiem, jeżeli spełioe są waruki: ) A z operacją

Bardziej szczegółowo

Analiza Funkcjonalna WPPT IIIr. semestr letni 2011 WYK LAD 9,5: ZBIEŻNOŚĆ S LABA I *-S LABA TWIERDZENIE BANACHA ALAOGLU 28/05/2013

Analiza Funkcjonalna WPPT IIIr. semestr letni 2011 WYK LAD 9,5: ZBIEŻNOŚĆ S LABA I *-S LABA TWIERDZENIE BANACHA ALAOGLU 28/05/2013 Aaliza Fukcjoala WPPT IIIr. semestr leti 2011 WYK LAD 9,5: ZBIEŻNOŚĆ S LABA I *-S LABA TWIERDZENIE BANACHA ALAOGLU 28/05/2013 NiechX ozaczaprzestrzeńbaacha,ax jejdual a(czyliprzestrzeńfukcjoa lów ograiczoych

Bardziej szczegółowo

Materiały do ćwiczeń z Analizy Matematycznej I

Materiały do ćwiczeń z Analizy Matematycznej I Materiały do ćwiczeń z Aalizy Matematyczej I 08/09 Maria Frotczak Ludwika Kaczmarek Katarzya Klimczak Maria Michalska Beata Osińska-Ulrych Tomasz Rodak Adam Różycki Grzegorz Skalski Staisław Spodzieja

Bardziej szczegółowo

Analiza algorytmów to dział informatyki zajmujcy si szukaniem najefektywniejszych, poprawnych algorytmów dla danych problemów komputerowych.

Analiza algorytmów to dział informatyki zajmujcy si szukaniem najefektywniejszych, poprawnych algorytmów dla danych problemów komputerowych. Temat: Poprawo całkowita i czciowa algorytmu. Złooo obliczeiowa algorytmu. Złooo czasowa redia i pesymistycza. Rzd fukcji. I. Literatura 1. A. V. Aho, J.E. Hopcroft, J. D. Ullma - Projektowaie i aaliza

Bardziej szczegółowo

Analiza matematyczna 1 Notatki do wykªadu Mateusz Kwa±nicki

Analiza matematyczna 1 Notatki do wykªadu Mateusz Kwa±nicki Aaliza matematycza 1 Notatki do wykªadu Mateusz Kwa±icki 1 Idukcja matematycza Przykªad 1. Pewego popoªudia Kubu± Puchatek kupiª pust beczk, która mie±ci 20 sªoików miodu, i wlaª do iej wszystkie swoje

Bardziej szczegółowo

SKRYPT Z ANALIZY MATEMATYCZNEJ DLA UCZNIÓW XIV LO Lista zadań Lista zadań 21

SKRYPT Z ANALIZY MATEMATYCZNEJ DLA UCZNIÓW XIV LO Lista zadań Lista zadań 21 SKRYPT Z ANALIZY MATEMATYCZNEJ DLA UCZNIÓW XIV LO MARCIN PREISNER [ PREISNER@MATH.UNI.WROC.PL ] Wrocław, 3 paździerika 03 SPIS TREŚCI Wstęp Ozaczeia. INDUKCJA MATEMATYCZNA.. Wprowadzeie.. Lista zadań 4.

Bardziej szczegółowo

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji http://www.ii.ui.wroc.pl/ sle/teachig/a-apr.pdf Aaliza umerycza Staisław Lewaowicz Grudzień 007 r. Aproksymacja fukcji Pojęcia wstępe Defiicja. Przestrzeń liiową X (ad ciałem liczb rzeczywistych R) azywamy

Bardziej szczegółowo

KLUCZ ODPOWIEDZI I ZASADY PUNKTOWANIA PRÓBNEGO EGZAMINU MATURALNEGO Z MATEMATYKI POZIOM PODSTAWOWY

KLUCZ ODPOWIEDZI I ZASADY PUNKTOWANIA PRÓBNEGO EGZAMINU MATURALNEGO Z MATEMATYKI POZIOM PODSTAWOWY KLUCZ ODPOWIEDZI I ZASADY PUNKTOWANIA PRÓBNEGO EGZAMINU MATURALNEGO Z MATEMATYKI POZIOM PODSTAWOWY Nr zadaia Odpowiedzi Pukty Badae umiejtoci Obszar stadardu 1. B 0 1 plauje i wykouje obliczeia a liczbach

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n 4n n 1

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n 4n n 1 30. Obliczyć wartość graicy ( 0 ( ( ( 4 +1 + 1 4 +3 + 4 +9 + 3 4 +7 +...+ 1 4 +3 + 1 ( ( 4 +3. Rozwiązaie: Ozaczmy sumę występującą pod zakiem graicy przez b. Zamierzamy skorzystać z twierdzeia o trzech

Bardziej szczegółowo

Podróże po Imperium Liczb

Podróże po Imperium Liczb Podróże po Imperium Liczb Część 15. Liczby, Fukcje, Ciągi, Zbiory, Geometria Rozdział 12 12. Gęste podzbiory zbioru liczb rzeczywistych Adrzej Nowicki 16 kwietia 2013, http://www.mat.ui.toru.pl/~aow Spis

Bardziej szczegółowo

Analiza algorytmów to dział informatyki zajmujcy si szukaniem najefektywniejszych, poprawnych algorytmów dla danych problemów komputerowych

Analiza algorytmów to dział informatyki zajmujcy si szukaniem najefektywniejszych, poprawnych algorytmów dla danych problemów komputerowych Temat: Poprawo całkowita i czciowa algorytmu. Złooo obliczeiowa algorytmu. Złooo czasowa redia i pesymistycza. Rzd fukcji. I. Literatura 1. L. Baachowski, K. Diks, W. Rytter Algorytmy i struktury daych.

Bardziej szczegółowo

wi c warunek konieczny zbie»no±ci szeregu jest speªniony. 12 = 9 12 = 3 4 k(k+1) k=1 ( k+1 k(k+1) n+1 = 1 1 n+1 = 1 0 = 1 36 = =

wi c warunek konieczny zbie»no±ci szeregu jest speªniony. 12 = 9 12 = 3 4 k(k+1) k=1 ( k+1 k(k+1) n+1 = 1 1 n+1 = 1 0 = 1 36 = = 32 (+) Jest to szereg o wyrazach dodatich Poadto wyraz ogóly tego szeregu jest zbie»y do 0, wi c waruek koieczy zbie»o±ci szeregu jest speªioy s (+) 2 s 2 s + 2 (2+) 2 + 2 3 2 + 6 3 6 + 6 4 6 2 3 s 3 s

Bardziej szczegółowo

Marek Be±ka, Statystyka matematyczna, wykªad Wykªadnicze rodziny rozkªadów prawdopodobie«stwa

Marek Be±ka, Statystyka matematyczna, wykªad Wykªadnicze rodziny rozkªadów prawdopodobie«stwa Mare Be±a, Statystya matematycza, wyªad 3 38 3 Statystyi zupeªe 3. Wyªadicze rodziy rozªadów prawdopodobie«stwa Zacziemy od deicji Deicja 3. Rodzi rozªadów {µ θ } θ Θ azywamy wyªadicz rodzi rozªadów -

Bardziej szczegółowo

SKRYPT Z ANALIZY MATEMATYCZNEJ DLA UCZNIÓW XIV LO

SKRYPT Z ANALIZY MATEMATYCZNEJ DLA UCZNIÓW XIV LO Wrocław, 2 grudia 203 SKRYPT Z ANALIZY MATEMATYCZNEJ DLA UCZNIÓW XIV LO MARCIN PREISNER [ PREISNER@MATH.UNI.WROC.PL ] SPIS TREŚCI Wstęp Ozaczeia 2. INDUKCJA MATEMATYCZNA 2.. Wprowadzeie 2.2. Lista zadań

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

szereg jest szeregiem o wyrazach nieujemnych. Ponadto dla α (0; π ) zachodzi nierówno± sinα < α,

szereg jest szeregiem o wyrazach nieujemnych. Ponadto dla α (0; π ) zachodzi nierówno± sinα < α, .. si Poiewa» si < 1; 1 >, wi c zbadajmy szereg zªo»oy z warto±ci bezwzgl dych wyrazów szeregu daego w zadaiu: () si = si, ale si < 0; 1 > Zatem si 1 () Po prawej stroie powy»szej ierówo±ci mamy szereg

Bardziej szczegółowo

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce! Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,

Bardziej szczegółowo

Analiza I.1, zima wzorcowe rozwiązania

Analiza I.1, zima wzorcowe rozwiązania Aaliza I., zima 07 - wzorcowe rozwiązaia Marci Kotowsi 5 listopada 07 Zadaie. Udowodij, że dla ażdego aturalego liczba 7 + dzieli się przez 6. Dowód. Tezę udowodimy za pomocą iducji matematyczej. Najpierw

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Szeregi liczbowe

Zadania z analizy matematycznej - sem. I Szeregi liczbowe Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych

Bardziej szczegółowo

MATEMATYKA cz. 5 Elementy probabilistyki i statystyki matematycznej

MATEMATYKA cz. 5 Elementy probabilistyki i statystyki matematycznej Ja Nawrocki, Adrzej Wiicki MATEMATYKA cz. 5 Elemety probabilistyki i statystyki matematyczej Politechika Warszawska 00 Politechika Warszawska Wydział Samochodów i Maszy Roboczych Kieruek "Edukacja techiczo

Bardziej szczegółowo

Szeregi liczbowe. 15 stycznia 2012

Szeregi liczbowe. 15 stycznia 2012 Szeregi liczbowe 5 styczia 0 Szeregi o wyrazach dodatich. Waruek koieczy zbieżości szeregu Defiicja.Abyszereg a < byłzbieżyciąga musizbiegaćdo0. Jest to waruek koieczy ale ie dostateczy. Jak wiecie z wykładu(i

Bardziej szczegółowo

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej

Bardziej szczegółowo

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim. Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Podstawowe struktury algebraicze Defiicja 1. Działaiem dwuargumetowym(biarym) określoym a iepustym zbiorze X azywamy fukcję f, która każdej parze uporządkowaej(a, b) elemetów zbioru X przyporządkowuje

Bardziej szczegółowo

Parametryzacja rozwiązań układu równań

Parametryzacja rozwiązań układu równań Parametryzacja rozwiązań układu rówań Przykład: ozwiąż układy rówań: / 2 2 6 2 5 2 6 2 5 //( / / 2 2 9 2 2 4 4 2 ) / 4 2 2 5 2 4 2 2 Korzystając z postaci schodkowej (środkowa macierz) i stosując podstawiaie

Bardziej szczegółowo

1. Granica funkcji w punkcie

1. Granica funkcji w punkcie Graica ukcji w pukcie Deiicja Sąsiedztwem o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r ( a a Deiicja Sąsiedztwem lewostroym o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r Deiicja Sąsiedztwem

Bardziej szczegółowo

Internetowe Kółko Matematyczne 2004/2005

Internetowe Kółko Matematyczne 2004/2005 Iteretowe Kółko Matematycze 2004/2005 http://www.mat.ui.toru.pl/~kolka/ Zadaia dla szkoły średiej Zestaw I (20 IX) Zadaie 1. Daa jest liczba całkowita dodatia. Co jest większe:! czy 2 2? Zadaie 2. Udowodij,

Bardziej szczegółowo

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1 LUX, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1 LUX, zima 2016/17 585. Wskaż liczbę rzeczywistą k, dla której podaa graica istieje i jest dodatią liczbą rzeczywistą. Podaj wartość graicy dla tej wartości parametru k. Jeżeli odpowiedź jest liczbą wymierą, podaj ją w postaci

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

Matematyka ETId I.Gorgol Twierdzenia o granicach ciagów. Twierdzenia o granicach ciagów

Matematyka ETId I.Gorgol Twierdzenia o granicach ciagów. Twierdzenia o granicach ciagów Twierdzeia o graicach ciagów Matematyka ETId I.Gorgol Zbieżość ciagu a jego ograiczoość TWIERDZENIE Jeżeli ci ag liczbowy a ) jest zbieży do graicy skończoej, to jest ograiczoy. Zbieżość ciagu a jego ograiczoość

Bardziej szczegółowo

RAP pa¹dziernika S n = S 0 + i=1. p r q l = p r q l r. N n(a,b)

RAP pa¹dziernika S n = S 0 + i=1. p r q l = p r q l r. N n(a,b) RAP 4 5 pa¹dzierika 008 Wykªad : PSL metoda zliczaia ±cie»ek Wykªadowca: Adrzej Ruci«ski Pisarz:Bartosz Naskr cki i Marek Kaluba Wst p B dziemy dalej studiowa zachowaia osobika, którego gr zajmowali±my

Bardziej szczegółowo