(0) Rachunek zaburzeń

Wielkość: px
Rozpocząć pokaz od strony:

Download "(0) Rachunek zaburzeń"

Transkrypt

1 Wyłd XII Rch zbzń Mchi wtow Rch zbzń st podstwową mtodą zdowi pzybliżoych ozwiązń óżgo odz ówń występących w fizyc Tt zsti pzdstwioy ch zbzń w zstosowi do ówi Schödig bz czs Ogiczymy się pzy tym do tzw iższgo zęd ch Zczimy od ch zbzń dl stów izdgowych Rch zbzń dl stów izdgowych Poszmy ozwiązi ówi ˆ tz szmy fci włsych i wtości włsych hmiltoi Ĥ Mtod zbzń złd ż zmy ścisł ozwiązi ówi o zbliżoym hmiltoii tz ˆ miltoi Ĥ posziw fc włs i wtości włs pzstwimy w postci ˆ ˆ i złdmy ż Ĥ st dżo misz iż Ĥ st dżo misz iż oz st dżo misz od tz ˆ ˆ << * << oz << Wilości Ĥ zywmy izbzoymi zś Ĥ więc zbzimi lb popwmi do wilości izbzoych Rówi tó chcmy ozwiązć pzym postć ˆ ˆ * Poiwż Ĥ i Ĥ są optomi więc ss lci ˆ ˆ << lży dopcyzowć W ozwżym pzypd moż zżądć by ˆ << dl dowolych fci

2 Wyłd XII cd Mchi wtow Poiwż zchodzi ˆ więc człoy ˆ wzmi się są zś człoy i są wdtowo mł i możmy pomiąć Mmy ztm ˆ Fc twoząc lwą i pwą stoę ówi możymy tz sli pzz fcę i dostmy ˆ Pmiętąc ż iloczy sly st liowy w dgim gmci mmy ˆ Pwą stoę ówi zpismy o Poiwż opto Ĥ st hmitowsi więc ˆ Uwzględiąc szcz ż fc flow są omow czyli otzymmy co osttczi d popwę do gii izbzo Wyzczymy tz popwę do izbzo fci flow W tym cl ozłożymy w otooml bzi twozo pzz fc włs izbzogo hmiltoi Ĥ tó ozczymy o { K} Fc o fc włs Ĥ tż lży do tgo zbio Pzymmy ż A ztm są współczyimi liczbowymi W smi po wylczyliśmy -ty wyz gdyż st im fc Wyzczi fci polg zlzii współczyiów

3 Wyłd XII cd Mchi wtow Ptm wyści st pzdio wypowdzo ówi ˆ tó tz zpiszmy w postci ˆ ˆ Fc twoząc lwą i pwą stoę ówi możymy sli pzz fcę pzy czym Dostmy wtdy ˆ Kozystąc z liiowości iloczy slgo w dgim gmci mmy Uwzględimy tz ft ż fc { K} są fcmi włsymi hmiltoi Ĥ tz ˆ zdmy Pmiętąc o otoomlości bzy { K} otzymmy co po względii ż czyli włsości i δ δ Popwio fc flow pzym więc postć δ i d osttczy wzó współczyii

4 Wyłd XII cd Mchi wtow Zbzi st podstwowgo tom wodo St podstwowy tom wodo st izdgowy więc możmy zstosowć pzdstwioy fomlizm do obliczi zbzń tgo st ft sończoych ozmiów ąd Poiwż poto i st obitm ptowym potcł oddziływi między ltom potom i st dołdi colombowsi odlgłościch zęd pomii poto R cm Jśli poto pottmy o doodi łdową lę o pomii R gi potcl oddziływi ów st < R V R R R Poiwż hmiltoi poblm tóy chcmy ozwiązć ówy st ˆ ˆ p V zś hmiltoi poblm tóy ozwiązy st ściśl wyosi m pˆ więc hmiltoi zbzący ówy st ˆ V m R R ˆ < R R Fc flow st podstwowgo ów st popw do gii tgo st wyosi R * d 4 π więc / d R R / Poiwż R << więc możmy pzybliżyć i dostmy R 5 R 4 d R R h Pmiętąc ż oz m m h 4 mmy 4R 5 4

5 Wyłd XII cd Mchi wtow ft Zm ft Zm polg pzswi się poziomów tom w obcości zwętzgo pol mgtyczgo Pzymimy ż pol to st dood w cł pzstzi Klsycz gi oddziływi łd o momci mgtyczym µ z polm mgtyczym ów st µ momt zś mgtyczy lto msi m i momci pęd L wyosi µ L mc Jśli o łd izbzoy ttmy tom wodo w iobcości pol hmiltoi zbzący ówy st ˆ L Pzymąc ż pol st mc siow wzdłż osi z tz mmy ˆ Lˆ z mc Poiwż momt pęd w sti podstwowym st zowy i co z tym idzi ˆ L z pol mgtycz i powod pzsięci poziom podstwowgo tom wodo ft St ft St polg pzswi się poziomów tom w obcości zwętzgo pol ltyczgo Pzymimy ż pol to st dood w cł pzstzi siow wzdłż osi z tz Wówczs lsycz gi oddziływi łd z polm wyosi z Jśli o łd izbzoy ttmy tom wodo w iobcości pol hmiltoi zbzący ówy st Obliczmy ˆ z ˆ * ˆ * d d Ωcosθ d gdzi względioo ż z cosθ Poiwż d Ωcosθ więc pol ltycz i powod pzsięci poziom podstwowgo tom wodo Pit Zm Johs St

Symbol Newtona liczba wyborów zbioru k-elementowego ze zbioru n elementów. Symbol Newtona

Symbol Newtona liczba wyborów zbioru k-elementowego ze zbioru n elementów. Symbol Newtona B Głut Symol Newto Symol Newto licz wyoów ziou -elemetowego ze ziou elemetów ) ( A B B B t t żd dog: odciów do góy Ile ozwiązń m ówie: 4 6 gdzie i są ieujemymi liczmi cłowitymi? 9 84 4 4 5 Licz ozwiązń

Bardziej szczegółowo

Elektrony w kryształach funkcja Blocha, pasma. Elektrony w kryształach funkcja Blocha, pasma Rodzaje wiązań. Rodzaje wiązań Kowalencyjne

Elektrony w kryształach funkcja Blocha, pasma. Elektrony w kryształach funkcja Blocha, pasma Rodzaje wiązań. Rodzaje wiązań Kowalencyjne 00-05-05 toy w ysztłc c Boc ps. Jc.Szczyto@w.d.p ttp://www.w.d.p/~szczyto/nt toy w ysztłc c Boc ps. Jc.Szczyto@w.d.p ttp://www.w.d.p/~szczyto/nt S. Hs S. Hs Uwsytt Wszws 00 Uwsytt Wszws 00 odz wązń odz

Bardziej szczegółowo

Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 3 technikum str 1

Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 3 technikum str 1 Zks mtłu oowązuąy o zmu popwkowo z mtmtyk kls tkum st Dzł pomowy Dotyzy klsy Zks lz Wyksy włsoś uk wykłz symptot uk wykłz Fuk wykłz Pzsuę wyksu uk wykłz o wkto I loytmy Poę loytmu włsoś loytmów Olz loytmów,

Bardziej szczegółowo

Hipotezy ortogonalne

Hipotezy ortogonalne Sttytyk Wykłd d Ćl -4 cl@gh.du.pl Hpotzy otogol ozwży odl lowy: Xϕ gdz X jt wkto obwcj ϕ Ω jt wkto śdch (wtośc oczkwych) o któy wdoo lży w pwj włścwj podpztz lowj Ω pztz tz. Ω d(ω)< jt loowy wkto błędów

Bardziej szczegółowo

Przejścia międzypasmowe

Przejścia międzypasmowe Pzjścia iędzypasow Funcja diltyczna Pzjścia iędzypasow związan są z polayzacją cuy ltonowj wwnątz dzni atoowyc - są odpowidzialn za część funcji diltycznj ε Wóćy do foalizu funcji diltycznj: ε las N (

Bardziej szczegółowo

Chemia teoretyczna. 2012/13 prof. Marek Kręglewski

Chemia teoretyczna. 2012/13 prof. Marek Kręglewski Chi totycz / pof. M Kęglwsi g@u.du.pl Pl wyłdu Obliczi wtowo-chicz dl cząstcz Podził gii cłowitj ltoową, wibcyją i otcyją gi cząstczi w podstwowy i wzbudzoy sti ltoowy Dgi cząstczi Oscylto hoiczy Oscylto

Bardziej szczegółowo

2. Ciągi liczbowe. Definicja 2.1 Funkcję a : N R nazywamy ciągiem liczbowym. Wartość funkcji a(n) oznaczamy symbolem a

2. Ciągi liczbowe. Definicja 2.1 Funkcję a : N R nazywamy ciągiem liczbowym. Wartość funkcji a(n) oznaczamy symbolem a Ciągi liczbowe Defiicj Fukcję : N R zywmy iem liczbowym Wrtość fukcji () ozczmy symbolem i zywmy -tym lub ogólym wyrzem u Ciąg Przykłdy Defiicj róŝic zpisujemy rówieŝ w postci { } + Ciąg liczbowy { } zywmy

Bardziej szczegółowo

UWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ.

UWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ. L.Kowls - Uwg o rozłdz uc zm losow UWAI O ROZKŁADZIE UNKCJI ZMIENNEJ LOSOWEJ. - d zm losow cągł o gęstośc. Y g g - borlows tz. g - B BR dl B BR Wzczć gęstość g zm losow Y. Jśl g - ścśl mootocz różczowl

Bardziej szczegółowo

Automatyka i Robotyka Analiza Wykład 23 dr Adam Ćmiel

Automatyka i Robotyka Analiza Wykład 23 dr Adam Ćmiel Automty i ooty Aliz Wyłd dr Adm Ćmil mil@gh.du.pl SZEEGI POTĘGOWE iąg liz zspoloyh z z - szrg potęgowy, gdzi - iąg współzyiów szrgu, z C - środ, trum ustlo, z C - zmi. Dl dowolgo ustlogo z C szrg potęgowy

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃCZONYCH

METODA ELEMENTÓW SKOŃCZONYCH METOD ELEMETÓW SOŃCZOC Pzyłd. towni pł fomizm MES. Dn: - m, E. P P m m m B y... Dytyzj. W towniy podził jt ozywity pęt jt mntm, towy węzłm w ozmini MES. Pzy podzi n węzły i mnty w łdzi gonym, nmy mntów

Bardziej szczegółowo

Ł Ż Ó Ó Ż Ó Ę Ó Ó Ó Ó Ó Ę Ą Ż Ż Ż Ż Ż Ź Ó Ż Ó Ż Ż Ż Ą Ą Ż Ą ć Ż Ż Ó Ą Ó Ż Ó Ó Ą Ó Ż Ą Ż Ó Ó Ó Ę Ó Ż Ż Ż Ż Ż Ó Ą Ó Ą Ż Ź Ó Ż Ó Ó ÓŹ Ż Ć Ó Ó Ż Ź Ż Ó Ó Ą Ó Ź Ż Ż ź ź Ż ć ć Ó Ż Ó Ó Ż ź ć ź Ź ź Ż ź ć ć Ó ź

Bardziej szczegółowo

ć Ó Ó Ń ź Ą Ą Ć Ż Ń Ą Ó Ó Ó Ą Ż Ć Ż ć ć Ż Ó Ó Ć ć Ą Ą Ó Ą Ó Ź ć Ó Ó Ó Ż ć ń ń ń ć Ż Ź ć ń ó ó Ź Ó Ó Ó Ż Ó Ó ć Ó Ó Ż Ż Ż Ó Ż Ó Ą Ó Ó Ź Ż Ó Ą Ź ć Ą Ż Ż Ó Ń Ż Ó Ó Ź Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ż Ó Ż Ż Ą

Bardziej szczegółowo

Ś Ł Ś Ł Ś Ś Ę Ą Ó Ś Ó Ś Ę Ł Ś Ł Ś Ż ć ć Ż Ć Ó Ó ż Ó Ż Ó Ó ć Ś Ź Ó Ó ć Ó Ą Ó Ó Ó Ą Ó Ś Ę Ż ż Ń Ń ż ć Ę Ć Ń Ś Ź ż ż Ó ż Ó Ó Ó Ś Ż Ó Ś Ń Ś Ź Ą Ę Ł Ż Ż Ó Ż Ż Ó Ż Ó Ś Ę Ó Ą Ż ÓŻ Ó Ż Ś Ó Ó ż Ą ż Ś Ć Ł Ś Ó Ą

Bardziej szczegółowo

Ę ć Ć Ś Ó Ó Ś Ł Ą Ą Ż ż Ł Ł Ż Ż ż Óż Ż ż ż Ę ż Ó ż Ę ć ż Ę Ź ż Ż ż ż ż ń ń ć ć ż ż Ż Ż Ś ż ż ń ż ń ż ż ń ż Ą ż ż Ę ć ć ć ż ń Ż Ż Ż ż Ę Ż ć ń Ż Ż ć Ę Ą Ą ć ć Ł Ą Ę Ą ć ż ć ż ć ć ż ć ć ż Ż ć Ą ż ć Ą Ą Ż

Bardziej szczegółowo

Ś Ó Ą Ą Ą Ą Ż Ć Ł Ś ć ż Ł ż Ł ź Ś Ą Ł Ś Ż ź Ó Ś Ą Ó Ś ź Ł Ł ź Ł ź ć Ć Ą Ą Ą Ą ć ź Ą Ą Ż ż ć ć Ć Ą Ą Ą Ł Ó Ż Ó Ź Ń ź Ń ź Ą Ś Ż Ą Ł ż Ś Ś Ó ź ź Ń Ł ź Ż ź ź Ą ż ż Ą Ś Ą Ą Ą Ą Ą ź Ą Ą Ó ź Ś Ł Ł Ł ź

Bardziej szczegółowo

Ą Ą Ś Ą Ł ż ż Ł Ł Ł Ł Ą ć ź Ą ż ż ć ć Ą ć ć Ł ź ż ż Ł Ł ź ź ż ż ć ć ż ż ż ż ć ż ż ż ż ć ż ż ż Ą ż ż ż ż ż ć ż ć ć Ł ż ż ż ż ż Ą ż ż ć ż ć ć ć Ó Ł ć ż Ł Ś Ś Ą Ł ź ć Ł ć Ś ź ż ć ź ź ź ż ż ź ż ż ć ż ć ż ć

Bardziej szczegółowo

ż Ó ż ć ż Ź Ż ć Ż Ż Ż ż Ó ć Ż ć ż ż ć ż Ó ż ć ż ż ć Ż Ż Ą ć ć ć Ż ć Ż Ż ć ć ż Ż ć ć ć Ż Ż ć Ł ć Ą ć ć ć ć ć ć ć ż ż ć ć ć ÓŻ ć ć Ż ć Ó ć ć ć ć ć ć ć Ł ć ć Ż Ż ż Ą ć ć ć Ż ć Ż Ą ć Ż ć Ż Ż ć Ż Ż ż Ż ż ć

Bardziej szczegółowo

Ś ÓŹ ż Ś ń Ś Ś Óż Ż Ś Ś Ś Ś Ś Ś ń Ó Ó Ż ż Ż ń Ż Ś Ó ń Ś Ą Ą Ą Ś Ś Ź ń Ż ż Ż Ż Ę ż Ś Ś ż ń ń ń ż Ó Ż Ż ż ń ż ż Ż ż Ó ż ń ż ń ń Ż Ż Ś ń ń ż ż ń ń Ź Ż ń ż Ż Ę ń Ż ż Ź Ź ń ż Ź ż Ź ż ż Ż Ż Ó Ż Ż Ź ż Ż Ż Ż Ę

Bardziej szczegółowo

ż Ś ń ń ć Ś ć ó ó ń ń ń ó Ś ń ó ń Ś ź ó ź ń Ś ń ń ó ó ń ó ó ó ż ó Ź ó ó ó ó ó ó ó ż ń ó ż ó ć ó ć ó ń ń ó ć ó ź ć Ó ć ć ż ó ó ź ó Ś ć Ó ó ń ć ż ć ó ó ć ń ć ó ó ć ż Ó ó ń ć ń ń ż ó Ś ć ó ó ż ń ó ż ń ż ó

Bardziej szczegółowo

Ó Ó Ó Ś Ó Ą Ż ć Ą Ś Ś Ś Ł ć Ż Ż Ó ć Ę Ś Ó Ł Ę Ę Ż Ś Ł Ś Ó Ó Ó ź Ż Ó Ą Ę Ź ź Ą Ę Ó Ę Ż Ż ź Ó Ść Ż Ś Ś Ź Ż Ó Ś ŚĆ ć Ó Ż Ć Ó Ś Ż Ó Ę ć Ę ć Ó ć Ą Ó Ś Ł Ś ć Ż ź Ż Ó Ó Ż Ś Ó ć ć Ń Ę Ść Ó Ó Ó ÓŹ ź Ś Ś Ś ć Ś Ś

Bardziej szczegółowo

Ń ź Ś Ó Ó ć Ś Ś ć ć Ę ć ć ć ć ć ć Ś ć ć Ś ć Ó ć ć Ść Ść Ś Ś ć Ć ć ć Ó Ą ć Ć ć Ź ć Ź ć Ź Ł Ł ć Ó Ó ć Ó Ó ć ć ć ć ć ć ć ć Ź Ś ć Ę ć ć ć ć Ł Ł ć Ź Ą Ę Ł Ó Ś Ą Ł Ł Ó Ć Ś Ś Ą Ź ć Ź Ś Ś Ś ć Ś Ś ć ć ć ć ć ć ź

Bardziej szczegółowo

Ó ż ż ż ż ż ż ż ż ć Ń Ą ż ż Ó Ź Ó Ą Ń ć ż ż ż ć ż ć ż ż ż ż ć ć ż ż ć Ą ż ż ć ć ż Ż Ą ż ć ź ć ć Ą ć ć ć Ą ć Ą ż Ł ż Ó ć ć Ź ż ć ż ź ż ż Ż ć Ó Ź Ó Ą ż Ó Ą ć Ą ż ć Ą Ó ż Ś Ś Ż Ś Ł Ń Ś ź Ó ć ż Ś ż ć ź Ś Ś

Bardziej szczegółowo

Ą Ń Ż ź Ń Ą Ń Ą Ą ź ź Ó Ż ź ź Ó Ó Ć Ó Ó Ó Ć Ć ź ź Ż ź Ą Ź ź Ć Ć Ć Ó Ó Ó Ó Ó Ó ź Ó Ę Ó Ó Ę Ó Óź ź ź Ó Ó Ó Ó Ó Ó Ń Ź Ę ź ź Ó ź Ń Ę Ę Ę Ń ź Ę Ź Ó Ó Ó ź Ó Ę Ą Ó ź ź Ó Ó Ó Ó Ó ź Ó Ń Ó Ę ź Ż Ó Ó Ó Ę Ę Ó Ę Ć

Bardziej szczegółowo

Ę ó ó ó Ó ź óź óź ó ć ó ó ó ó ń ó ń ć ó ć ń ó ć ó ć ó Ł ó ó ó Ą Ę ó ó ó ń ó ó ó ŚĆ ó ó ó ó ć ó ó ó ć ń ó ó ć ć ó ó ó ź ó ń ó ó ó ó ć ó ó ń ć ó ó ó ń ć ó ó ć ó ó ć ń ć ó ó ć ó ó ó ó ć ó ó ó ó ó ć ó ó ć

Bardziej szczegółowo

ź Ś ś ś Ś Ś ś ś ś ś ś ś ź ś ś Ś Ś Ś źś Ń Ś ś Ą Ź ś ś ś ś Ś ś ś Ą Ś Ą Ą ś ś Ś Ś ść ś Ś ś ś Ś ś ś ś ź ś Ś Ś Ś Ś ś Ś Ź ś ś ś ś ś Ś ś Ś ć ć Ś Ś Ą ć ć Ś Ś Ś ś Ś ś Ę Ś Ę ś Ś Ś Ś Ś ś ś ś Ś Ś Ś Ś ś ś ć Ć Ę Ś Ś

Bardziej szczegółowo

7. Szeregi funkcyjne

7. Szeregi funkcyjne 7 Szeregi ukcyje Podstwowe deiicje i twierdzei Niech u,,,, X o wrtościch w przestrzei Y będą ukcjmi określoymi zbiorze X Mówimy, że szereg ukcyjy u jest zbieży puktowo do sumy, jeżeli ciąg sum częściowych

Bardziej szczegółowo

Podstawy fizyki kwantowej

Podstawy fizyki kwantowej Wykł XI Postwy fiyki kwtowj Mot ęu Oto otu ęu fiiujy jko więc skłow x i y y ˆ i w wsółęych ktjńskich ów są y i x x i x y y x Łtwo wykć ż skłow otu ęu słiją stęujący wiąk koutcyjy ijk [ ] i i j k x y i

Bardziej szczegółowo

Ę Ź ś ś ść ś ść ś ś ś ś Ż ż Ś ś Ę Ś ś śś Ł

Ę Ź ś ś ść ś ść ś ś ś ś Ż ż Ś ś Ę Ś ś śś Ł ś Ą ś Ż Ż Ł ź Ś Ż ż Ż ż ż Ó Ż Ę ś Ę Ę Ę ś ś Ł Ą Ę Ź ś ś ść ś ść ś ś ś ś Ż ż Ś ś Ę Ś ś śś Ł ż Ą ś ś ś ś ś ś ć ść Ę ś ś Ą Ę Ą ż Ę ś śś Ę ś ś ś ś ż Ę ć ś ć ż ć Óź Ę Ę Ę Ą ś ś ś Ś ś Ż Ż Ż żć ś ś ź Ę Ę ś ś

Bardziej szczegółowo

Teoria Sygnałów. II rok Geofizyki III rok Informatyki Stosowanej. Wykład 2. Układy liniowe i niezmienne w czasie (układy LTI) y[n] x[n]

Teoria Sygnałów. II rok Geofizyki III rok Informatyki Stosowanej. Wykład 2. Układy liniowe i niezmienne w czasie (układy LTI) y[n] x[n] Toi Sgłów II ok Goizki III ok Ioki Sosowj Wkłd Ukłd liiow i izi w czsi ukłd LTI Kilk uwg: LTI jpopulijsz odl ilcji LTI odl pocsów izczch [] Ukłd liiow [] gdzi ozcz sgł wjściow do ukłdu zś sgł wjściow.

Bardziej szczegółowo

L.Kowalski Systemy obsługi SMO

L.Kowalski Systemy obsługi SMO SMO Systy asow obsługi zastosowai procsu urodzń i śirci - przyłady: - ctrala tlfoicza, - staca bzyowa, - asa biltowa, - syst iforatyczy. Założia: - liczba staowis obsługi, - liczba isc w poczali. - struiń

Bardziej szczegółowo

CIĄGI LICZBOWE. Naturalną rzeczą w otaczającym nas świecie jest porządkowanie różnorakich obiektów, czyli ustawianie ich w pewnej kolejności.

CIĄGI LICZBOWE. Naturalną rzeczą w otaczającym nas świecie jest porządkowanie różnorakich obiektów, czyli ustawianie ich w pewnej kolejności. CIĄGI LICZBOWE Nturlą rzeczą w otczjącym s świecie jest porządkowie różorkich obiektów, czyli ustwiie ich w pewej kolejości. Dl przykłdu tworzymy różego rodzju rkigi, p. rkig jlepszych kierowców rjdowych.

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wkłd 3: Kinemtk d inż. Zbigniew Szklski szkl@gh.edu.pl http://le.uci.gh.edu.pl/z.szklski/ Wstęp Opis uchu KINEMATYKA Dlczego tki uch? Pzczn uchu DYNAMIKA MECHANIKA 08.03.018 Wdził Infomtki, Elektoniki

Bardziej szczegółowo

TORY PLANET (Rozważania na temat kształtów torów ruchu planety wokół stacjonarnej gwiazdy)

TORY PLANET (Rozważania na temat kształtów torów ruchu planety wokół stacjonarnej gwiazdy) Rysz Chybicki TORY PLANET (Rozwżni n tet ksztłtów toów uchu lnety wokół stcjonnej gwizy) (Posługiwnie się zez osoby tzecie ty tykułe lub jego istotnyi fgenti bez wiezy uto jest wzbonione) MIELEC Plnecie

Bardziej szczegółowo

Ż Ń

Ż Ń Ó Ń ź ź Ś ź Ó ź Ż Ń Ś ź Ź ź Ż Ż Ś Ń Ć Ś ź ź ź Ż ź Ń ź ź ź Ń Ń Ń Ń ź Ć ź ź ź Ś Ś Ś Ó Ó Ż Ś ź ź ź ź ź ź ź ź Ś ź Ś Ś Ś Ć Ś Ś Ś Ż Ć Ż ź Ń Ż ź Ń ź Ń Ś Ó ź Ń ź Ń ź ź ź Ń Ń ź Ś ź Ń Ć Ń Ń ź ź Ń ź Ń ź Ś ź Ń Ń

Bardziej szczegółowo

cos(ωt) ω ( ) 1 cos ω sin(ωt)dt = sin(ωt) ω cos(ωt)dt i 1 = sin ω i ( 1 cos ω ω 1 e iωt dt = e iωt iω II sposób: ˆf(ω) = 1 = e iω 1 = i(e iω 1) i ω

cos(ωt) ω ( ) 1 cos ω sin(ωt)dt = sin(ωt) ω cos(ωt)dt i 1 = sin ω i ( 1 cos ω ω 1 e iωt dt = e iωt iω II sposób: ˆf(ω) = 1 = e iω 1 = i(e iω 1) i ω Rachunk prawdopodobiństwa MAP6 Wydział Elktroniki, rok akad. 8/9, sm. ltni Wykładowca: dr hab. A. Jurlwicz Przykłady do listy : Transformata Fourira Przykłady do zadania. : Korzystając z dfinicji wyznaczyć

Bardziej szczegółowo

Scenariusz lekcji matematyki w klasie II LO

Scenariusz lekcji matematyki w klasie II LO Autor: Jerzy Wilk Sceriusz lekcji mtemtyki w klsie II LO oprcowy w oprciu o podręczik i zbiór zdń z mtemtyki utorów M. Bryński, N. Dróbk, K. Szymński Ksztłceie w zkresie rozszerzoym Czs trwi: jed godzi

Bardziej szczegółowo

ZESTAW ZADAN Z FIZYKI KWANTOWEJ (2)

ZESTAW ZADAN Z FIZYKI KWANTOWEJ (2) ditd by Foxit PDF dito Copyigt (c) by Foxit Softwa Copay, 4-7 Fo valuatio Oly. ZSTAW ZADAN Z FIZYKI KWANTOWJ () Zadai Pogowa długość fali dla wybicia fotolktoów z taliczgo odu wyoi 5.45 a. wyzacz akyalą

Bardziej szczegółowo

4. Rekurencja. Zależności rekurencyjne, algorytmy rekurencyjne, szczególne funkcje tworzące.

4. Rekurencja. Zależności rekurencyjne, algorytmy rekurencyjne, szczególne funkcje tworzące. 4. Reurecj. Zleżości reurecyje, lgorytmy reurecyje, szczególe fucje tworzące. Reurecj poleg rozwiązywiu problemu w oprciu o rozwiązi tego smego problemu dl dych o miejszych rozmirch. W iformtyce reurecj

Bardziej szczegółowo

Algebra liniowa z geometrią analityczną. WYKŁAD 11. PRZEKSZTAŁCENIE LINIOWE WARTOŚCI I WEKTORY WŁASNE Przekształcenie liniowe

Algebra liniowa z geometrią analityczną. WYKŁAD 11. PRZEKSZTAŁCENIE LINIOWE WARTOŚCI I WEKTORY WŁASNE Przekształcenie liniowe lgbr liio gomtrią litcą / WYKŁD. PRZEKSZTŁCENIE LINIOWE WRTOŚCI I WEKTORY WŁSNE Prkstłci liio Diicj Prporądkoi ktorom R ktoró k R, : jst prkstłcim liiom td i tlko td gd: k k k k c c c c c Postć prkstłci

Bardziej szczegółowo

PROJEKT DOCELOWEJ ORGANIZACJI RUCHU

PROJEKT DOCELOWEJ ORGANIZACJI RUCHU ży Oły Wł, ęy Oł Wł VETIGO MGET JCZEWSK UL JCKOWSKIEGO - WOCŁW TEL/FX l: -l: v@l OJEKT DOCELOWEJ OGIZCJI UCHU y: I Ząy: O: Ll: ///W/ G Wł l y T - - Wł ż Oły ęy Oł Wł Wó: lślą, : Wł, G: Wł, ż Oły T: ży

Bardziej szczegółowo

POMIAR OGNISKOWEJ SOCZEWEK METODĄ BESSELA

POMIAR OGNISKOWEJ SOCZEWEK METODĄ BESSELA Ćwiczenie 50 POMIAR OGNISKOWEJ SOCZEWEK METODĄ BESSELA 50.. Widomości ogólne Soczewką nzywmy ciło pzeźoczyste oczyste ogniczone dwiem powiezchnimi seycznymi. Post pzechodząc pzez śodki kzywizny ob powiezchni

Bardziej szczegółowo

ć ć ż ć ź ż ż ź ź ŚĆ Ź ź ć Ź ź ź ź ź Ś Ą Ć Ć ć Ź ź

ć ć ż ć ź ż ż ź ź ŚĆ Ź ź ć Ź ź ź ź ź Ś Ą Ć Ć ć Ź ź Ł Ł ć ć Ś Ź Ć Ś ć ć ż ć ź ż ż ź ź ŚĆ Ź ź ć Ź ź ź ź ź Ś Ą Ć Ć ć Ź ź Ś Ć Ć Ś ź Ć ż ż ź ż Ć ć ż Ć Ć ż ż ź Ć Ś Ś ż ż ć ż ż Ć ż Ć Ś Ś Ź Ć Ę ż Ś Ć ć ć ź ź Ś Ć Ś Ć Ł Ś Ź Ś ć ż Ś Ć ć Ś ż ÓŹ Ś Ś Ź Ś Ś Ć ż ż Ś ż

Bardziej szczegółowo

D r. r r r D. Wykład VII. Podstawowe własnow. Źródła a fal elektromagnetycznych. r r. Luminescencja. Natęż. Równania Maxwella. ężenie i indukcja pola

D r. r r r D. Wykład VII. Podstawowe własnow. Źródła a fal elektromagnetycznych. r r. Luminescencja. Natęż. Równania Maxwella. ężenie i indukcja pola Wyłd VII Fl lomgnyzn włśwoś źódł ównn pw Mxwll ównn flow wypowdzn ozwązn lomgnyzn fl płs wo flowy wo Poynng wdmo fl lomgnyznyh Podswow włsnow snoś fl popzzn popgj w póżn w ośodh mlnyh oślon pędość w póżn

Bardziej szczegółowo

Rozpraszania twardych kul

Rozpraszania twardych kul Wyłd XVIII Rozprszn twrdych u Rozwżmy oddzływne twrdych u opsywne potencjłem V r r Ponewż potencjł jest seryczne symetryczny uncję ową możn zpsć w postc ( r Cm R Ym( m gdze Ym( to hrmon seryczne Rozprszne

Bardziej szczegółowo

Eikonał Optyczny.doc Strona 1 z 6. Eikonał Optyczny

Eikonał Optyczny.doc Strona 1 z 6. Eikonał Optyczny Eikonał Optyczny.doc Stona z 6 Eikonał Optyczny µ µ Rozpatzmy ośodk bz ładunków i pądów z polm o pulsacji ω Uwaga: ni zakłada się jdnoodności ośodka: ε ε xyz,,, Równania Maxwlla: H iωε ε E ikc ε ε E E

Bardziej szczegółowo

METODY HODOWLANE - zagadnienia

METODY HODOWLANE - zagadnienia METODY HODOWLANE METODY HODOWLANE - zgdnieni. Mtemtyczne podstwy metod odowlnyc. Wtość cecy ilościowej i definicje pmetów genetycznyc. Metody szcowni pmetów genetycznyc 4. Wtość odowln cecy ilościowej

Bardziej szczegółowo

Grafy hamiltonowskie, problem komiwojażera algorytm optymalny

Grafy hamiltonowskie, problem komiwojażera algorytm optymalny 1 Grfy hmiltonowski, problm komiwojżr lgorytm optymlny Wykł oprcowny n postwi książki: M.M. Sysło, N.Do, J.S. Kowlik, Algorytmy optymlizcji yskrtnj z progrmmi w języku Pscl, Wywnictwo Nukow PWN, 1999 2

Bardziej szczegółowo

CAŁKA OZNACZONA JAKO SUMA SZEREGU

CAŁKA OZNACZONA JAKO SUMA SZEREGU CAŁKA OZNACZONA JAKO SUMA SZEREGU Rozwżmy funkcję ciągłą x f(x) o wrtościch nieujemnych określoną n przedzile [, b]. Ustlmy [będzie to problem sttystyczny polegjący n dokłdnym sprecyzowniu informcji o

Bardziej szczegółowo

ć Ę ó ż ć

ć Ę ó ż ć Ą Ł ż ż Ę ó ó ó ć ó ć ó ż ó ó ż ó ć Ę ó ż ć ó ź ó ó ó ć ó ć ó ć ó ó ó ó ó Ę ó ó ó ż ó Ę ó ó ż ó óż ó ó ć ć ż ó Ą ó ó ć ó ó ó ó ó ż ó ó ó ó Ą ó ó ć ó ó ź ć ó ó ó ó ć ó Ę ó ż ż ó ó ż ż ó ó ó ć ó ć ó ć ó

Bardziej szczegółowo

Długo łuku krzywej., klasy. t ; t oraz łuk nie ma czci wielokrotnych, to długo łuku. wyraa si wzorem

Długo łuku krzywej., klasy. t ; t oraz łuk nie ma czci wielokrotnych, to długo łuku. wyraa si wzorem Długo łuku kzwj Kzw ( L : [, ] f ( Jli dn js ównni wkoow kzwj pochodn (, ( s cigł w pzdzil W współzdnch igunowch:, kls C, m długo L ( f ( ( α;, pz czm funkcj (, ( oz ich ( ; oz łuk ni m czci wilokonch,

Bardziej szczegółowo

ń Ę ń Ś Ą Ń ż Ą ż ż ż ż ż ć ć ż ż ż ż ż ń ź ż ż ż ć ż ć ż ż ż ż ż ń Ą ż ń ń ż ń Ń Ę ż ź ń ż ć ć ń ż ż ż ń ż ż ż ć ć ń Ń ń ż ż Ń ć Ę ń ć ć ż ż ż ż ń Ę ń ż Ź Ś ż ć ć ż Ś ż ż ć ń ń ż ć ć ż Óż ń ń ż ż ć ć

Bardziej szczegółowo

Szeregi trygonometryczne Fouriera. sin(

Szeregi trygonometryczne Fouriera. sin( Szrg rygoomryz Fourr / Szrg rygoomryz Fourr D js ukj: s os Pożj pod są włsoś ukj kór wykorzysmy w późjszym zs Ozzmy przz zę zspooą pos: Wówzs s os orz os s Fukję zpsujmy w pos: s s os os os u os W szzgóoś

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃCZONYCH DLA UKŁADÓW PRĘTOWYCH

METODA ELEMENTÓW SKOŃCZONYCH DLA UKŁADÓW PRĘTOWYCH EODA ELEENÓW SKOŃCZONYCH DLA UKŁADÓW PRĘOWYCH Pzyłd. B o zminnym zoju z ociążnim tójątnym Wysy sił zojowych, oz ini ugięci o N/m P, m N m Nm, o L,m V Ix I x V. Dystyzcj Podził n dw mnty ow niwidomych E

Bardziej szczegółowo

Ciągi liczbowe podstawowe definicje i własności

Ciągi liczbowe podstawowe definicje i własności Ciągi liczbowe podstwowe defiicje i włsości DEF *. Ciągiem liczbowym (ieskończoym) zywmy odwzorowie zbioru liczb turlych w zbiór liczb rzeczywistych, tj. :. Przyjęto zpis:,,...,,... Przy czym zywmy -tym

Bardziej szczegółowo

Wykład 8: Całka oznanczona

Wykład 8: Całka oznanczona Wykłd 8: Cłk ozczo dr Mriusz Grządziel grudi 28 Pole trójkt prboliczego Problem. Chcemy obliczyć pole s figury S ogriczoej prostą y =, prostą = i wykresem fukcji f() = 2. Rozwizie przybliżoe. Dzielimy

Bardziej szczegółowo

CIĄGI LICZBOWE N 1,2,3,... zbiór liczb naturalnych. R zbiór liczb rzeczywistych (zbiór reprezentowany przez punkty osi liczbowej).

CIĄGI LICZBOWE N 1,2,3,... zbiór liczb naturalnych. R zbiór liczb rzeczywistych (zbiór reprezentowany przez punkty osi liczbowej). Ciągi i szeregi - Lucj owlski CIĄGI LICZBOWE N,,,... zbiór liczb turlych. R zbiór liczb rzeczywistych (zbiór reprezetowy przez pukty osi liczbowej). Nieskończoy ciąg liczbowy to przyporządkowie liczbom

Bardziej szczegółowo

WYKŁAD 7. UKŁADY RÓWNAŃ LINIOWYCH Macierzowa Metoda Rozwiązywania Układu Równań Cramera

WYKŁAD 7. UKŁADY RÓWNAŃ LINIOWYCH Macierzowa Metoda Rozwiązywania Układu Równań Cramera /9/ WYKŁ. UKŁY RÓWNŃ LINIOWYCH Mcierzow Metod Rozwiązywi Ukłdu Rówń Crmer Ogól postć ukłdu rówń z iewidomymi gdzie : i i... ozczją iewidome; i R k i R i ik... ;... efiicj Ukłdem Crmer zywmy tki ukłd rówń

Bardziej szczegółowo

Wrocław, dnia 27 marca 2015 r. Poz UCHWAŁA NR VIII/113/15 RADY MIEJSKIEJ WROCŁAWIA. z dnia 19 marca 2015 r.

Wrocław, dnia 27 marca 2015 r. Poz UCHWAŁA NR VIII/113/15 RADY MIEJSKIEJ WROCŁAWIA. z dnia 19 marca 2015 r. ZE URZĘY JEÓZTA LŚLĄE, 27 2015 P 1376 UCHAŁA R V/113/15 RAY EJEJ RCŁAA 19 2015 b ó ó ą 4,5% ( ą ), 18 2 15 8 1990 ą g ( U 2013 594, óź 1) ) ą 12 1 26 ź 1982 źś ( U 2012 1356, óź 2) ) R, ę: 1 1 U ś bę ó

Bardziej szczegółowo

a a = 2 S n = 2 = r - constans > 0 - ciąg jest malejący q = b1, dla q 1 S n 1 CIĄGI jest rosnący (niemalejący), jeżeli dla każdego n a n

a a = 2 S n = 2 = r - constans > 0 - ciąg jest malejący q = b1, dla q 1 S n 1 CIĄGI jest rosnący (niemalejący), jeżeli dla każdego n a n CIĄGI ciąg jest rosący (iemlejący), jeżeli dl kżdego < ( ) ciąg jest mlejący (ierosący), jeżeli dl kżdego > ( ) ciąg zywmy rytmetyczym, jeżeli dl kżdego r - costs - r > 0 - ciąg rosący - r 0 - ciąg stły

Bardziej szczegółowo

Zestawienie porownawcze najpopularniejszych i darmowych programow GPS. dostepnych na smartfony i tablety

Zestawienie porownawcze najpopularniejszych i darmowych programow GPS. dostepnych na smartfony i tablety Zesee pre pplres r prr prr r ere, prr pree prr s sep sr ble ; > s r J Ž ˆ š š š š Ÿ š š rr e pr r p Ws ble e p ere ps rps Trs r sr l Dse r r r r r r r r ere ers prr..2 6.2..7 2. 2. 7. 8....2.2 2. 7...2

Bardziej szczegółowo

Ó Ą Ó Ó Ó Ó Ż Ą Ę Ś Ż Ś Ó Ó Ó Ż Ś Ó Ó Ć Ż Ę Óż ż Ę Ó Ę Ś Ó Ó Ą Ż Ś Ż Ż Ź Ż ź Ż Ż ż Ó Ę Ę Ż Ó Ó Ó Ó Ó Ż Ó Ó Ż Ó Ę ÓĘ Ó Ó ż Ó Ó Ż ź ź ź ź Ó ż Ę Ó Ś Ó ź ż ź ó Ó Ó Ó Ż Ó Ż ź Ś Ś Ś Ż ż Ż Ś Ż Ż Ż Ż Ż Ó Ż Ż

Bardziej szczegółowo

ć Ń

ć Ń ć Ń ć ź Ł Ń Ń ź Ł Ń Ń Ń Ń ź ź ć Ń ź Ń Ń ź Ś Ś ź Ś Ś Ń Ń Ń Ę Ś Ę ć ź ź Ę Ś ź Ą ź ź Ś Ś Ę ć Ń Ń Ń Ń Ń ć Ń Ń ć Ł Ł Ń Ę Ę ć Ę Ę Ę ź Ą ć Ł Ę Ę Ś ć ć Ę Ł Ę Ż Ą ź Ł Ą ź Ę ź ć Ę Ł Ę ćł Ł Ł Ą ź Ł Ę ź ć Ę Ę

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 14

Obliczenia naukowe Wykład nr 14 Obliczeni nuowe Wyłd nr 14 Pweł Zielińsi Ktedr Informtyi, Wydził Podstwowych Problemów Technii, Politechni Wrocłws Litertur Litertur podstwow [1] D. Kincid, W. Cheney, Anliz numeryczn, WNT, 2005. [2] A.

Bardziej szczegółowo

ć Ł Ą Ź Ś Ó Ó ŚĆ Ó Ż ż Ó Ó Ć Ó Ś Ą Ą Ź Ś Ś Ź Ź Ó ż Ó Ź Ś ż Ę ć ż Ę Ź ÓŻ Ś ż Ą Ó Ą Ś ż ź Ó ż ć Ż Ź Ó Ó ć ż ć ć ż ć Ą Ż Ż Ó ć Ź Ż ć Ę ć Ó Ż ć Ś ć ć Ó Ó Ą ć ć Ść ć ć Ż ż ż Ó Ż ż ć Ż ć ć ć ć ć Ó Ż ć Ę ć Ó

Bardziej szczegółowo

Wykład 3: Transformata Fouriera

Wykład 3: Transformata Fouriera Rchunek prwdopodobieństw MAP64 Wydził Elektroniki, rok kd. 28/9, sem. letni Wykłdowc: dr hb. A. Jurlewicz Wykłd 3: Trnsformt Fourier Złóżmy, że f(t) jest określon n R, ogrniczon, okresow o okresie 2T i

Bardziej szczegółowo

Ł Ś Ś Ń Ń

Ł Ś Ś Ń Ń Ą Ą Ć ź Ł Ł Ł Ś Ł Ś Ś Ń Ń Ł Ó ź ź ź Ą ź Ś Ś ź Ź Ź Ź Ż Ź Ś Ż Ć Ź Ż Ż Ó Ś Ż Ń Ą Ó Ź Ś Ś ź Ł Ą ź Ź Ć Ź Ą Ż ź Ż Ó Ś Ą Ą Ż Ź Ó Ś Ś Ż Ą ź ź ÓŻ Ś Ż Ź Ł Ż Ś Ś Ś Ż Ż Ś Ł Ź Ś ź ź Ą ź Ź Ż Ó Ś Ż Ż Ź Ź Ź Ż ź Ź Ł Ń

Bardziej szczegółowo

Ź Ź ź Ś Ą Ź ć Ś

Ź Ź ź Ś Ą Ź ć Ś ć ź ć ć ć ć Ć ć Ę ć ć ć Ś ć Ć ć ć ć Ź Ź ź Ś Ą Ź ć Ś ć Ź Ę Ź ć ć Ą Ą Ą ć Ć Ą ć Ź Ś ź ć Ź ć Ź Ś Ź Ź Ą ć Ą Ź ć Ć Ź Ę Ą Ą Ś ć Ć ć ć Ś Ń Ą Ń Ś Ś Ę Ź Ą Ą Ą Ś ć Ź Ź Ś Ś ź ŚŚ Ć Ś Ś Ą Ą ć ć Ź ź Ź ć Ź Ź ź Ź ć Ć

Bardziej szczegółowo

Ł ź ź ź

Ł ź ź ź Ń ź Ó Ć Ą Ą Ń Ą Ą Ą Ą ź Ż Ł ź ź ź Ń Ń Ą Ą ź ź ź Ń Ł Ź Ł Ż Ń Ó Ł Ż Ś Ó Ą Ń Ł Ż Ś ź ź Ż ź ź ź Ą ź Ą Ą ź Ć ź ź Ń Ą Ą Ń Ł Ś Ą Ą Ł Ł Ą Ń Ń Ń Ł Ą Ą Ą Ż Ą Ą Ą ź Ą Ą Ą Ł Ł ź Ó Ń Ł Ś Ż Ą Ą ź Ł Ó Ż Ł Ń Ś Ż ź

Bardziej szczegółowo

PROJEKT STAŁEJ ORGANIZACJI RUCHU

PROJEKT STAŁEJ ORGANIZACJI RUCHU B R I BUDMEX - C, K () --, -:@v WYKONAWCA Z Dó M P W, - Pń -: @ ZLECENIODAWCA Z Dó M P W, - Pń -: @ PROJEKT STAŁEJ ORGANIZACJI RUCHU B Hń P - ż Hń-J P: ż Kf Sb KUPPOOD A P S: F: Tł, Ię N Sść: N ń: P: Pń,

Bardziej szczegółowo

Ó Ł ć ć

Ó Ł ć ć ź Ź ź Ź Ź ź Ó Ó Ł ć ć Ó Ć Ó Ó ć ć ć Ź ć ć Ó ź Ę Ź Ę ć ć ć Ł Ź Ę ź Ę Ę ć ć Ź Ó ć ć ć Ó ć Ó Ź Ó Ó Ó Ź ć Ó Ź Ó Ź Ź Ź Ó Ź Ź Ó Ó Ó ć ÓŹ Ź Ó Ć Ć Ó Ć Ó Ć Ź Ó Ó ć ÓÓ ć Ź ć ć Ź Ł Ę ć Ę Ę Ł Ł Ł Ź Ę Ę Ó Ń Ń ź Ł Ł

Bardziej szczegółowo

Chemia kwantowa obliczeniowa

Chemia kwantowa obliczeniowa Chi kwtow obliciow / Pof. k Kęglwski Zgdii I. Podstw kstl chiki kwtow. Rokłd widow cił doskol cgo. Zwisko fotolktc. fkt Coto. Wido tou wodou II. Podstwow oęci chiki kwtow. iot d Bogli. Duli flowo-kouskul.

Bardziej szczegółowo

CAŁKA KRZYWOLINIOWA NIESKIEROWANA

CAŁKA KRZYWOLINIOWA NIESKIEROWANA Auomy i Rooy Aliz Wyłd 4 d Adm Ćmiel cmiel@gh.edu.pl AŁA RZYWOLINIOWA NIESIEROWANA Niech ędzie płsim lu pzeszeym łuiem głdim o pmeyzcji: x : y weoowo ; ) z z [ ] Uwg: Złożeie głdości x,, z, ) gwuje posowlość

Bardziej szczegółowo

I. CIĄGI I SZEREGI FUNKCYJNE. odwzorowań zbioru X w zbiór R [lub C] nazywamy ciągiem funkcyjnym.

I. CIĄGI I SZEREGI FUNKCYJNE. odwzorowań zbioru X w zbiór R [lub C] nazywamy ciągiem funkcyjnym. I. CIĄGI I SZEREGI FUNKCYJNE 1. Zbieżość puktow i jedostj ciągów fukcyjych Niech X będzie iepustym podzbiorem zbioru liczb rzeczywistych R (lub zbioru liczb zespoloych C). Defiicj 1.1. Ciąg (f ) N odwzorowń

Bardziej szczegółowo

ó óź óź óź ó ó ć ó ó ó ó Ą ó ó ó Ż ó ó ń Ą Ą Ą ó ó Ż ź Ś Ż Ż Ś Ż Ż Ż Ś Ż Ą ź ź Ą ź ź Ż Ż Ż Ś Ż ź Ż Ż Ż ć Ś Ż Ś ć Ł Ś Ś Ś Ł ć Ł Ś ó ó ó ó ó ó ó ó ó ó ń ń ń ó Żń ź ó ó ó ó ó Ż ó Ś ó ó ó ć ó ó ó ó ć ń Ż

Bardziej szczegółowo

Ł ś Ń Ż Ó Ń Ż Ń Ł Ł

Ł ś Ń Ż Ó Ń Ż Ń Ł Ł Ł Ł Ł Ń Ń Ó Ł ś Ń Ż Ó Ń Ż Ń Ł Ł Ł Ó Ś Ś ś ść ś ć ć ć ś ś ś ś ś Ń ś ś ś ś ś ć ć źć ś ć ś ć ś ść ś ś ś Ł ś ś Ł ć Ł ś ć ć ć ś ś ćł ź ść ść ć ść ś ś ć Ż ś ś ś ć ś ć ć źć ź Ń ś ś Ł Ń ć ś ść Ł źć ś ś ć ćń ć

Bardziej szczegółowo

Ą Ą Ł ś ś Ł ś Ę Ę Ś Ś Ó Ę ź ś ś ś ś ś ń Ł Ą Ę ś ś ś Ś ń Ś ś Ę Ó Ź ś ś ś ś Ś ń ń ś ś Ś ń ź Ą ś ś Ł ź Ź Ś ś Ś ś ś ń ś Ś Ś ś Ł ś Ć ź ź ś Ś ś ś Ś ń Ć Ł Ą Ę ś ś ś Ś ść Ź ś Ś ś ś ś ń Ę ś Ś ś Ą Ó ś ś Ę Ł Ź ś

Bardziej szczegółowo

Ó ć ć Ł ć ć Ó ć ć ć ć ć Ć ć ź ć ć ć ź ć ć Ó Ó ć Ó Ó Ą Ó Ź Ó Ł Ó Ó Ó Ź Ó Ó ć Ć ć Ó Ł ć ć ć Ć ć ć Ó Ó ć ć Ó Ć ć ć Ą ć Ó Ć Ó ć ć Ć Ć Ó Ź ć Ó Ą ć ć ć ź ć Ś ć ź Ć ć ć Ć Ź ĄĄ Ą Ó Ć ć Ć Ć Ć ć Ć Ć Ć Ą ĄĄ ź Ą Ś

Bardziej szczegółowo

Ń Ć Ń Ś Ł Ź Ć Ć Ś Ś Ł Ń Ł Ł Ś Ł Ł Ń Ż Ń Ł Ń Ć Ś Ń Ł Ń Ń Ń Ź ÓŹ Ź Ó Ó Ź Ń Ł Ł Ń Ś Ń Ć Ł Ł Ć Ś Ć Ć Ś Ć Ł Ć Ć Ż Ż Ó Ż Ś Ń Ł ŁŃ Ń Ź Ń Ł Ł Ś Ł Ń Ż Ó Ł Ś Ż Ń Ń Ł Ł Ń Ń Ń Ź Ń Ń Ń Ł Ń Ć Ń Ń Ś Ń Ó Ś Ż Ł Ź Ć Ż

Bardziej szczegółowo

Uogólnione wektory własne

Uogólnione wektory własne Uogólnion wktory własn m Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do

Bardziej szczegółowo

ź Ł Ą ź ż ź ż ż ć ż ć ź ć Ą ć Ź ć Ą ż Ś Ą ż ź ń ź Ź ż Ą ż ć ć ż ń ż Ś ż ż ż ć ń ż ż Ź ń Ś ć ć ź Ą ż ć ń ż ż ż Ź ń ć Ę ż ż ń Ź ż ż ć ż ć ć ż ń Ś ć Ć ć ń ć ć ż ć ń ż Ś ż Ó ń Ś Ś Óż Ą Ą Ą ń ż Ń Ń Ł ż Ś Ą

Bardziej szczegółowo