Podstawy elektromagnetyzmu. Wykład 1. Rachunek wektorowy

Wielkość: px
Rozpocząć pokaz od strony:

Download "Podstawy elektromagnetyzmu. Wykład 1. Rachunek wektorowy"

Transkrypt

1 Podstawy elektromagnetyzmu Wykład 1 Rachunek wektorowy

2 Co to jest,,pole? Matematyka: odwzorowanie Rn Rm które przypisuje każdemu punktowi wartość (skalarną lub wektorową). Fizyka: Własność przestrzeni oddziaływanie (obserwowane w postaci sił działających na obiekty) W tym kursie: Pole oznacza własność lub przestrzeń w której ta własność jest obserwowana lub funkcję która opisuje tę własność. PEM, Wykład 1, Slajd 2

3 Rachunek wektorowy Rachunek wektorowy (lub analiza wektorowa) to gałąź matematyki poświęcona operacjom (różniczkowym i całkowym) na polach wektorowych, przede wszystkim w trójwymiarowej przestrzeni euklidesowej R3 Wektor (euklidesowy) to obiekt geometryczny, który posiada długość (amplitudę) i kierunek. Wektory to podstawa w naukach technicznych! PEM, Wykład 1, Slajd 3

4 Dlaczego używamy wektorów! Przy zmianach układu współrzędnych wektory zachowują się tak samo, jak punkty. Dlatego opis pola za pomocą wektorów jest taki sam we wszystkich układach współrzędnych. Wektory są wygodne! [Fizyka] Zasada niezmienniczości: jej idea polega na tym, że współrzędne (układy współrzędnych) nie istnieją w naturze a priori, a są jedynie narzędziem opisu natury I jako takie nie powinny odgrywać roli w fundamentalnych prawach fizyki. PEM, Wykład 1, Slajd 4

5 Układ współrzędnych Układ współrzędnych to system, który używa wartości liczbowych do jednoznacznego określenia położenia punktów. Z wykorzystaniem UW jesteśmy w stanie przekształcić problemy sformułowane w kategoriach geometrii w problemy opisane za pomocą liczb (które można rozwiązać przez obliczenia). y 2.65 P(3.33,2.65) 3.33 x Wektory pozwalają wygodnie i ogólnie opisać generalne zachowanie się pól, ale inżynier potrzebuje liczb, aby ilościowo opisać zjawiska, obliczać, przewidywać i projektować... PEM, Wykład 1, Slajd 5

6 Kartezjański UW Wybieramy trzy prostopadłe płaszczyzny i mierzymy odległości od tych płaszczyzn. Odległości są dodatnie lub ujemne w zależności od strony, po której punkt się znajduje. x odległość od płaszczyzny yz y odległość od płaszczyzny xz z odległość od płaszczyzny xy PEM, Wykład 1, Slajd 6

7 Cylindyczny UW Wybieramy oś odniesienia (linię) płaszczyznę prostopadłą do oo i kierunek odniesienia prostopadły do oo. r promień odległość od oo φ kąt pomiędzy kierunkiem odniesienia i rzutem prostokątnym OP na płaszczyznę. z odległość od płaszczyzny (ujemna lub dodatnia) PEM, Wykład 1, Slajd 7

8 Sferyczny UW Wybieramy oś, płaszczyznę i kierunek, jak w cylindryczny UW. r promień jak w cylindrycznym. θ szerokość to kąt pomiędzy OP i osią. φ długość tak samo, jak w cylindrycznym UW. PEM, Wykład 1, Slajd 8

9 Przekształcenia Kartezjański (x,y,z) Kartezjański (x,y,z) Sferyczny (r,θ,φ) = x y =arctan y / x z=z 2 Cylindryczny (ρ,φ,z) Sferyczny (r,θ,φ) Cylindryczny (ρ,φ,z) 2 = 2 z2 =arctan / z =arctan y / x x = cos r= x 2 y 2 z2 =arccos z /r = y = sin z=z x=r sin cos =r sin y=r sin sin z=r cos = z=r cos teta To nie wszystko! Więcej na następnej stronie... PEM, Wykład 1, Slajd 9

10 Przekształcenia wersorów Kartezjański (x,y,z) x y 1 = 1 x 1 y y z 1 = 1 x 1 y 1 z =1 z Kartezjański 1x, 1 y, 1z Cylindryczny (ρ,φ,z) Cylindryczny 1 =cos 1 sin 1 x 1,1, 1 z 1 y =sin 1 cos 1 1 z =1 z Sferyczny Sferyczny (r,θ,φ) x 1 x y 1 y z 1 z r x z 1 x y z 1 y 2 1 z 1 = r y 1x x 1 y 1 = z 1r = 1 1 z r r z 1 = 1 1 z r r 1 =1 1r = 1 x=sin cos 1 r cos cos 1 sin 1 1r,1, 1 1 y =sin sin 1 r cos cos 1 cos 1 1 z =cos 1r sin 1 To jeszcze nie koniec... ale musimy poczekać na więcej. PEM, Wykład 1, Slajd 10 1 =sin 1 r cos 1 1 =1 1 z =cos 1r sin 1

11 Reprezenatacja wektorów Wektory zachowują się jak punkty i dlatego też są tak samo reprezentowane w UW. y Z P(3.33,2.65) 2.65 v=[3.33,2.65] 3.33 v=[0,0,5.3] x A PEM, Wykład 1, Slajd 11

12 Podstawowe operacja na wektorach Mnożenie przez skalar Iloczyn skalara (pola skalarnego) i wektora (pola wektorowego), to wektor (pole wektorowe): w=av v Suma (różnica) Dodając lub odejmując wektory (pola wektorowe), otrzymujemy wektor (pole wektorowe): w=v+u v u w=v + u PEM, Wykład 1, Slajd 12

13 Iloczyn skalarny Iloczyn dwóch wektorów (pól wektorowych), dający w wyniku skalar (pole skalarne): v s = v u = v u cos θ Własności: Iloczyn skalarny jest przemienny: v u=u v jest też rozdzielny względem sumy (różnicy) wektorów: u θ θ s o c v Przy pomocy współrzędnych: w (v+u)=w u+w v v = [ vi, vj, vk ], w = [ wi, wj, wk ] v u = viwi+vjwj+vkwk PEM, Wykład 1, Slajd 13

14 Iloczyn wektorowy Iloczyn dwóch wektorów (pól wektorowych), dający w wyniku wektorr (pole wektorowe): v u w = v u = v u sin θ 1n Własności: Iloczyn wektorowy jest antyprzemienny: v u=-u v jest też rozdzielny względem dodawania: w (v+u)=w u+w v u v u θ v Używając współrzędnych: v = [ vi, vj, vk ], w = [ wi, wj, wk ] [ i j k v u = det v i v j v k wi w j wk PEM, Wykład 1, Slajd 14 ]

15 Nabla specjalny wektor Wygodna notacja dla trzech operacji różniczkowych stosowanych w rachunku wektorowym: [ =,, x y z ] Reprezentowany przez symbol odwróconego trójkąta Co to jest pochodna cząstkowa? f(x,y,z)=2xy+sin y + y e- z f =2 y x f =2 x +cos y+e z y f = y e z z PEM, Wykład 1, Slajd 15

16 Gradient Gradient skalarnego pola f to pole wektorowe wskazujące kierunek najszybszego wzrostu f. [ f x, y, z = f f f,, x y z f x, y = x 2 y 2 f x, y = [ 2 x, 2 y ] PEM, Wykład 1, Slajd 16 ]

17 Gradient przykład Pole dipola (+q,-q): powierzchnia 3D, linie ekwipotencjalne i kierunek gradiantu. (Example from PEM, Wykład 1, Slajd 17

18 Całka liniowa pola wektorowego b L u r d r= a u r t r ' t dt gdzie r :[a,b] L to parametryczny opis L dr u ur L u r d r i L i ur i PEM, Wykład 1, Slajd i...

19 Całka liniowa gradientu L f d r=f e f b e L b PEM, Wykład 1, Slajd 19 Stosujemy to twierdzenie całkując u wzdłuż linii. Jeśli u jest gradientem jakiejś funkcji skalarnej to całka nie zależy od wyboru L.

20 Strumień pola wektorowego = S u nds un n PEM, Wykład 1, Slajd 20 u

21 Dywergencja Dywergencja wektorowego pola u to pole skalarne, określające źródło (lub anty-źródło) u w danym punkcie. u=lim r 0 S r u n ds V r u= [ u x x, y, z, u y x, y, z,u z x, y, z ] u x x, y, z u y x, y, z u z x, y, z u= x y z 2 u=x y [ x 3 y2 u=, 3 2 PEM, Wykład 1, Slajd 21 ]

22 Twiedzenie Gaussa (Ostrogradzkiego, Gaussa-Ostrogradzkiego) V u dv = V u n ds Całka objętościowa z dywergencji wektorowego pola u jest równa strumieniowi u przez powierzchnię ograniczającą tę objętość. n S n V n PEM, Wykład 1, Slajd 22 n

23 Rotacja Rotacja wektorowego pola u to pole wektorowe, które określa wirowość u w wybranym punkcie. u=lim r 0 S r n u ds V r u= [ u x x, y, z, u y x, y, z,u z x, y, z ] 1x u= x ux 1y y uy [ ] y 3 x2 u=,, z z uz u= [ 0, 0, x y 2 ] PEM, Wykład 1, Slajd 23

24 Interpretacja rotacji [ y 3 x2 u=,,0 3 2 ] u= [ 0, 0, x y 2 ] PEM, Wykład 1, Slajd 24

25 Twierdzenie Stokesa Dokładnie: Kelvina-Stokesa (specjalny przypadek ogólniejszego tw. Stokesa). S u ds= S u d r Strumien rotacji wektorowego pola u przez określoną powierzchnię jest równa cyrkulacji u wzdłuż brzegu (zamkniętego) tej powierzchni. u ds S S PEM, Wykład 1, Slajd 25

26 Twierdzenie Greena Zastanówmy się nad rotacją 2D wektora, opisanego w 3D jako u=[ L, M, 0 ]: u= 0 M L 0 M L i j k y z z x x y Obliczmy strumień rotacji tego pola przez pow. 2D ds=[dx dy]: s u d S= s u k ds= S Zgodnie z tw. Stokesa: S M L ds x y S u ds= S u d r M L ds= S u d r= S [ L, M,0] [dx,dy, dz ]= S L dx M dy x y Twierdzenie Greena: PEM, Wykład 1, Slajd 26 S L dx M dy = S M L ds x y

27 Pochodne drugiego stopnia Ogólnie matematyka daje nam szereg możliwości: Dla skalara: f oraz f 0 oraz u Dla wektora: u oraz u 0 Najważniejszy z naszego p. widzenia jest laplasjan: f = f = 2 f Który dla pola wektorowego możemy zdefiniować jako: 2 u= u u PEM, Wykład 1, Slajd 27

28 Własności Rotacja gradientu jest zawsze polem zerowym: f 0 Pozwala to wyrazić każde pole bezwirowe przez pole skalarne. Dywergencja każdej rotacji jest polem zerowym: u 0 Pozwala to wyrazić bezźródłowe pole wektorowe za pomocą innego wektora. PEM, Wykład 1, Slajd 28

29 Pole zachowawcze (potencjalne) Pole wektorowe u jest potencjalne, jeśli jest gradientem pola skalarnego: u= f Jak pokazaliśmy wcześniej, rotacja takiego pola musi być zere: u 0 e L Z tw. Stokesa wynika, że: S u d r= S u ds=0 C u d r= C f d r=0 b L' L f d r =f e f b L' f d r=f e f b PEM, Wykład 1, Slajd 29

30 Pole solenoidalne Pole wektorowe u nazywamy solenoidalnym (bezźródłowym) jeśli jego dywergencja jest zerem: u=0 Jak pokazano wcześniej pole solenoidalne możemy wyrazić za pomocą rotacji innego pola wektorowego: w 0 u= w Z twierdzenia Gaussa wynika, że strumień pola solenoidalnego przez dowolną powierzchnię zamkniętą jest zerem: V u d S= V u dv =0 PEM, Wykład 1, Slajd 30

31 Pseudowektor Wcześniej powiedzieliśmy, że przy przekształceniach układów współrzędnych wektory zachowują się jak punktu. Jednak przy Odbiciu lustrzanym pola mogą zachowywać się różnie: Pole elektryczne E od dodatniego ład. q. E jest wektorem. PEM, Wykład 1, Slajd 31 Pole magnetyczne B od pojedynczego przew. B jest pseudowektorem.

32 Tensor Tensory można zrozumieć jako następny element w szeregu: skalar, wektor, W ogólności należy je rozumieć jako wielowymiarowe tablice funkcji. [ t xx t xy T= t yx t yy ] W teorii pola mają wiele zastosowań, ale my będziemy ich używać przede wszystkim do opisu nietrywialnych materiałów. PEM, Wykład 1, Slajd 32

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza

Bardziej szczegółowo

Analiza wektorowa. Teoria pola.

Analiza wektorowa. Teoria pola. Analiza wektorowa. Teoria pola. Pole skalarne Pole wektorowe ϕ = ϕ(x, y, z) A = A x (x, y, z) i x + A y (x, y, z) i y + A z (x, y, z) i z Gradient grad ϕ = ϕ x i x + ϕ y i y + ϕ z i z Jeśli przemieścimy

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Teoria pola elektromagnetycznego

Teoria pola elektromagnetycznego Teoria pola elektromagnetycznego Odpowiedzialny za przedmiot (wykłady): prof. dr hab. inż. Stanisław Gratkowski Ćwiczenia i laboratoria: dr inż. Krzysztof Stawicki ks@zut.edu.pl e-mail: w temacie wiadomości

Bardziej szczegółowo

Układy współrzędnych

Układy współrzędnych Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych

Bardziej szczegółowo

Bardziej formalnie, wektor to wielkość, której współrzędne zmieniają się w określony sposób przy obrót prostokątnego układu współrzędnych.

Bardziej formalnie, wektor to wielkość, której współrzędne zmieniają się w określony sposób przy obrót prostokątnego układu współrzędnych. Rachunek wektorowy (fragmenty z Wikipedii) Zastosowanie wektorów w matematycznym opisie pola elektromagnetycznego umożliwia przedstawienie równań w postaci bardzo zwięzłej i niezależnej od przyjętego układu

Bardziej szczegółowo

Elektrostatyka, cz. 1

Elektrostatyka, cz. 1 Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin

Bardziej szczegółowo

PODSTAWY RACHUNKU WEKTOROWEGO

PODSTAWY RACHUNKU WEKTOROWEGO Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)

Bardziej szczegółowo

Różniczkowe prawo Gaussa i co z niego wynika...

Różniczkowe prawo Gaussa i co z niego wynika... Różniczkowe prawo Gaussa i co z niego wynika... Niech ładunek będzie rozłożony w objętości V z ciągłą gęstością ρ(x,y,z). Wytworzone przez ten ładunek pole elektryczne będzie również zmieniać się w przestrzeni

Bardziej szczegółowo

Równania dla potencjałów zależnych od czasu

Równania dla potencjałów zależnych od czasu Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności

Bardziej szczegółowo

Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego

Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego Elektrostatyka Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego 1 Prawo Coulomba odpychanie naelektryzowane szkło nie-naelektryzowana miedź F 1 4 0 q 1 q 2 r 2 0 8.85

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

opracował Maciej Grzesiak Analiza wektorowa

opracował Maciej Grzesiak Analiza wektorowa opracował Maciej Grzesiak Analiza wektorowa 1. Funkcje wektorowe 1.1. Funkcje wektorowe na płaszczyźnie Wektor r = x i + y j nazywamy wektorem wodzącym punktu (x, y). Jeśli x oraz y są funkcjami czasu,

Bardziej szczegółowo

Fale elektromagnetyczne

Fale elektromagnetyczne Fale elektromagnetyczne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Analiza pola 2 1.1. Rozkład pola...............................................

Bardziej szczegółowo

Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X

Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X ILOCZYN SKALARNY Iloczyn skalarny operator na przestrzeni liniowej przypisujący

Bardziej szczegółowo

MECHANIKA II. Praca i energia punktu materialnego

MECHANIKA II. Praca i energia punktu materialnego MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl

Bardziej szczegółowo

1. Podstawy matematyki

1. Podstawy matematyki 1. Podstawy matematyki 1.1. Pola Pole wiąże wielkość fizyczną z położeniem punktu w przestrzeni W przypadku, gdy pole jest zależne od czasu, możemy je zapisać jako. Najprostszym przykładem pola jest pole

Bardziej szczegółowo

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra

Bardziej szczegółowo

WYKŁAD 3 OGÓLNE UJĘCIE ZASAD ZACHOWANIA W MECHANICE PŁYNÓW. ZASADA ZACHOWANIA MASY. 1/15

WYKŁAD 3 OGÓLNE UJĘCIE ZASAD ZACHOWANIA W MECHANICE PŁYNÓW. ZASADA ZACHOWANIA MASY. 1/15 WYKŁAD 3 OGÓLNE UJĘCIE ZASAD ZACHOWANIA W MECHANICE PŁYNÓW. ZASADA ZACHOWANIA MASY. 1/15 Fundamentalne Zasady Zachowania/Zmienności w Mechanice mówią nam co dzieję się z: masą pędem krętem (momentem pędu)

Bardziej szczegółowo

i = [ 0] j = [ 1] k = [ 0]

i = [ 0] j = [ 1] k = [ 0] Ćwiczenia nr TEMATYKA: Układy współrzędnych: kartezjański, walcowy (cylindryczny), sferyczny (geograficzny), Przekształcenia: izometryczne, nieizometryczne. DEFINICJE: Wektor wodzący: wektorem r, ρ wodzącym

Bardziej szczegółowo

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3

Bardziej szczegółowo

Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.Długość l łuku zwykłego gładkiego Γ

Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.Długość l łuku zwykłego gładkiego Γ Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.ługość l łuku zwykłego gładkiego l = 1dl = b a (x (t)) 2 + (y (t) 2 ) + (z (t)) 2 dt 2.Pole powierzchni walcowej = {(x, y, z) : (x, y), 0 z

Bardziej szczegółowo

cz. 2. dr inż. Zbigniew Szklarski

cz. 2. dr inż. Zbigniew Szklarski Wykład 14: Pole magnetyczne cz.. dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Prąd elektryczny jako źródło pola magnetycznego - doświadczenie Oersteda Kiedy przez

Bardziej szczegółowo

Rozdział 5. Twierdzenia całkowe. 5.1 Twierdzenie o potencjale. Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej C w przestrzeni

Rozdział 5. Twierdzenia całkowe. 5.1 Twierdzenie o potencjale. Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej C w przestrzeni Rozdział 5 Twierdzenia całkowe 5.1 Twierdzenie o potencjale Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej w przestrzeni trójwymiarowej, I) = A d r, 5.1) gdzie A = A r) jest funkcją polem)

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA W PRZESTRZENI

GEOMETRIA ANALITYCZNA W PRZESTRZENI Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 13. Egzaminy I termin wtorek 31.01 14:00 Aula A Wydział Budownictwa II termin poprawkowy czwartek 9.02 14:00 Aula A Wydział Budownictwa

Bardziej szczegółowo

Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych

Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych 6 czerwca 2013 Ładunek elektryczny Ciała fizyczne mogą być obdarzone (i w znacznej większości faktycznie są) ładunkiem elektrycznym. Ładunek ten może być dodatni lub ujemny. Kiedy na jednym ciele zgromadzonych

Bardziej szczegółowo

W. Np. pole prędkości cieczy lub gazu, pole grawitacyjne, pole elektrostatyczne, magnetyczne.

W. Np. pole prędkości cieczy lub gazu, pole grawitacyjne, pole elektrostatyczne, magnetyczne. Elementy teorii pola - Wydział Chemiczny - 1 Wielkości fizyczne można klasyfikować na podstawie różnych kryteriów. Istnieją wielkości, które przy wyznaczonej jednostce miary są w zupełności określone przez

Bardziej szczegółowo

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Fizyka dr ohdan ieg p. 36A wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Literatura Raymond A. Serway, John W. Jewett, Jr. Physics for Scientists and Engineers, Cengage Learning D. Halliday, D. Resnick,

Bardziej szczegółowo

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 3. CAŁKA POTRÓJNA

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 3. CAŁKA POTRÓJNA Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem 1 Całka potrójna po prostopadłościanie CAŁKA POTRÓJNA 2 Całka potrójna po obszarach normalnych Współrzędne walcowe 4 Współrzędne sferyczne

Bardziej szczegółowo

Mechanika. Wykład 2. Paweł Staszel

Mechanika. Wykład 2. Paweł Staszel Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................

Bardziej szczegółowo

Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11

Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11 Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści Przedmowa 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce? 13 1. Analiza wektorowa 19

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................

Bardziej szczegółowo

PDE. czyli równania różniczkowe cząstkowe [Partial Differential Equation(s)] wstęp do wstępu. Zbigniew Koza. Wydział Fizyki i Astronomii Wrocław, 2016

PDE. czyli równania różniczkowe cząstkowe [Partial Differential Equation(s)] wstęp do wstępu. Zbigniew Koza. Wydział Fizyki i Astronomii Wrocław, 2016 PDE czyli równania różniczkowe cząstkowe [Partial Differential Equation(s)] wstęp do wstępu Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2016 WSTĘP Motywacja Dotychczas zajmowaliśmy się równaniami

Bardziej szczegółowo

Podstawy fizyki sezon 1 III. Praca i energia

Podstawy fizyki sezon 1 III. Praca i energia Podstawy fizyki sezon 1 III. Praca i energia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha F.Żarnecki Praca Rozważamy

Bardziej szczegółowo

Potencjał pola elektrycznego

Potencjał pola elektrycznego Potencjał pola elektrycznego Pole elektryczne jest polem zachowawczym, czyli praca wykonana przy przesunięciu ładunku pomiędzy dwoma punktami nie zależy od tego po jakiej drodze przesuwamy ładunek. Spróbujemy

Bardziej szczegółowo

1 Rozwiązywanie układów równań. Wyznaczniki. 2 Wektory kilka faktów użytkowych

1 Rozwiązywanie układów równań. Wyznaczniki. 2 Wektory kilka faktów użytkowych Rozwiązywanie układów równań. Wyznaczniki. 2 Wektory kilka faktów użytkowych 2. Wektory. 2.. Wektor jako n ka liczb W fizyce mamy do czynienia z pojęciami lub obiektami o różnym charakterze. Są np. wielkości,

Bardziej szczegółowo

Fale elektromagnetyczne. Gradient pola. Gradient pola... Gradient pola... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek 2013/14

Fale elektromagnetyczne. Gradient pola. Gradient pola... Gradient pola... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek 2013/14 dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2013/14 1 dr inż. Ireneusz Owczarek Gradient pola Gradient funkcji pola skalarnego ϕ przypisuje każdemu punktowi

Bardziej szczegółowo

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 2. CAŁKA PODWÓJNA Całka podwójna po prostokącie

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 2. CAŁKA PODWÓJNA Całka podwójna po prostokącie Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem..1. Całka podwójna po prostokącie.. CAŁKA POWÓJNA.. Całka podwójna po obszarach normalnych..3. Całka podwójna po obszarach regularnych..4.

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

Tensory mały niezbędnik

Tensory mały niezbędnik 28 października 2013 Rozkład wektora V na współrzędne: α = (0x, V ), β = (0y, V ), γ = (0z, V ). Rozkład wektora r, r = (x, y) na współrzędne w dwóch różnych układach współrzędnych. x = x cos θ + y sin

Bardziej szczegółowo

Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/

Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro

Bardziej szczegółowo

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory

Bardziej szczegółowo

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe. Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie

Bardziej szczegółowo

Elementy geometrii analitycznej w R 3

Elementy geometrii analitycznej w R 3 Rozdział 12 Elementy geometrii analitycznej w R 3 Elementy trójwymiarowej przestrzeni rzeczywistej R 3 = {(x,y,z) : x,y,z R} możemy interpretować co najmniej na trzy sposoby, tzn. jako: zbiór punktów (x,

Bardziej szczegółowo

Lista zadań nr 2 z Matematyki II

Lista zadań nr 2 z Matematyki II Lista zadań nr 2 z Matematyki II dla studentów wydziału Architektury, kierunku Gospodarka Przestrzenna. Wyznaczyć dziedzinę funkcji f(x, y) = ln(4 x 2 y 2 ), f(x, y) = x 2 + y 2, f(x, y) = ln(4 x 2 y 2

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku Fizyka w poprzednim odcinku Obliczanie natężenia pola Fizyka Wyróżniamy ładunek punktowy d Wektor natężenia pola d w punkcie P pochodzący od ładunku d Suma składowych x-owych wektorów d x IĄGŁY ROZKŁAD

Bardziej szczegółowo

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Siły zachowawcze i energia potencjalna Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Polecana literatura John R Taylor, Mechanika klasyczna, tom1 Wydawnictwo Naukowe

Bardziej szczegółowo

cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5

cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5 Matematyka ZLic - 07 Wektory i macierze Wektorem rzeczywistym n-wymiarowym x x 1, x 2,,x n nazwiemy ciąg n liczb rzeczywistych (tzn odwzorowanie 1, 2,,n R) Zbiór wszystkich rzeczywistych n-wymiarowych

Bardziej szczegółowo

Analiza stanu naprężenia - pojęcia podstawowe

Analiza stanu naprężenia - pojęcia podstawowe 10. ANALIZA STANU NAPRĘŻENIA - POJĘCIA PODSTAWOWE 1 10. 10. Analiza stanu naprężenia - pojęcia podstawowe 10.1 Podstawowy zapisu wskaźnikowego Elementy konstrukcji znajdują się w przestrzeni fizycznej.

Bardziej szczegółowo

ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE ZIMOWYM Elektronika i Telekomunikacja oraz Elektronika 2017/18

ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE ZIMOWYM Elektronika i Telekomunikacja oraz Elektronika 2017/18 ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE ZIMOWYM Elektronika i Telekomunikacja oraz Elektronika 2017/18 1. Czym zajmuje się fizyka? Podstawowe składniki materii. Charakterystyka czterech fundamentalnych

Bardziej szczegółowo

1 Funkcje dwóch zmiennych podstawowe pojęcia

1 Funkcje dwóch zmiennych podstawowe pojęcia 1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej

Bardziej szczegółowo

Wyprowadzenie prawa Gaussa z prawa Coulomba

Wyprowadzenie prawa Gaussa z prawa Coulomba Wyprowadzenie prawa Gaussa z prawa Coulomba Natężenie pola elektrycznego ładunku punktowego q, umieszczonego w początku układu współrzędnych (czyli prawo Coulomba): E = Otoczmy ten ładunek dowolną powierzchnią

Bardziej szczegółowo

Potencjalne pole elektrostatyczne. Przypomnienie

Potencjalne pole elektrostatyczne. Przypomnienie Potencjalne pole elektrostatyczne Wszystkie rysunki i animacje zaczerpnięto ze strony http://webmitedu/802t/www/802teal3d/visualizations/electrostatics/indexhtm Tekst jest wolnym tłumaczeniem pliku guide03pdf

Bardziej szczegółowo

E-N-1112-s1 MATEMATYKA Mathematics. Energetyka. I stopień ogólnoakademicki. studia stacjonarne. Katedra Matematyki dr Andrzej Lenarcik

E-N-1112-s1 MATEMATYKA Mathematics. Energetyka. I stopień ogólnoakademicki. studia stacjonarne. Katedra Matematyki dr Andrzej Lenarcik KARTA MODUŁU / KARTA PRZEDMIOTU E-N-1112-s1 MATEMATYKA Mathematics Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja) Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),

Bardziej szczegółowo

Elementy równań różniczkowych cząstkowych

Elementy równań różniczkowych cząstkowych Elementy równań różniczkowych cząstkowych Magdalena Jakubek kwiecień 2016 1 Równania różniczkowe cząstkowe Problem brzegowy i problem początkowy Klasyfikacja równań Rodzaje warunków brzegowych Najważniejsze

Bardziej szczegółowo

z pokryciem (O i ) i I rozkładu jedności (α i ) i I. Zauważmy najpierw, że ( i I α i )ω dω = d(1 ω) = d d(α i ω). Z drugiej jednak strony

z pokryciem (O i ) i I rozkładu jedności (α i ) i I. Zauważmy najpierw, że ( i I α i )ω dω = d(1 ω) = d d(α i ω). Z drugiej jednak strony Dowód: Niech M będzie jak w założeniach twierdzenia. Weźmy skończony atlas O i, ϕ i ) na M zgodny z orientacją. Zbiór indeksów I może być skończony, gdyż rozmaitość M jest zwarta. Õi, ϕ i ) oznaczać będzie

Bardziej szczegółowo

Całki krzywoliniowe skierowane

Całki krzywoliniowe skierowane Całki krzywoliniowe skierowane Zamiana całki krzywoliniowej skierowanej na całkę pojedyńcza. Twierdzenie Greena. Zastosowania całki krzywoliniowej skierowanej. Małgorzata Wyrwas Katedra Matematyki Wydział

Bardziej szczegółowo

Geometria w R 3. Iloczyn skalarny wektorów

Geometria w R 3. Iloczyn skalarny wektorów Geometria w R 3 Andrzej Musielak Str 1 Geometria w R 3 Działania na wektorach Wektory w R 3 możemy w naturalny sposób dodawać i odejmować, np.: [2, 3, 1] + [ 1, 2, 1] = [1, 5, 2] [2, 3, 1] [ 1, 2, 1] =

Bardziej szczegółowo

Podstawy elektromagnetyzmu. Wykład 2. Równania Maxwella

Podstawy elektromagnetyzmu. Wykład 2. Równania Maxwella Podstawy elektromagnetyzmu Wykład 2 Równania Maxwella Prawa Maxwella opisują pola Pole elektryczne... to zjawisko występujące w otoczeniu naładowanych elektrycznie obiektów lub jest skutkiem zmiennego

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw 1 1. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y 1+x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

Wykład 7: Pola skalarne i wektorowe Katarzyna Weron

Wykład 7: Pola skalarne i wektorowe Katarzyna Weron Wykład 7: Pola skalarne i wektorowe Katarzyna Weron WPPT, Matematyka Stosowana Zwykła pochodna Pytanie: Mam funkcję jednej zmiennej f(x). O czym mówi pochodna df? dx Odpowiedź: Jak szybko zmienia się f(x),

Bardziej szczegółowo

Kinematyka płynów - zadania

Kinematyka płynów - zadania Zadanie 1 Zadane jest prawo ruchu w zmiennych Lagrange a x = Xe y = Ye t 0 gdzie, X, Y oznaczają współrzędne materialne dla t = 0. Wyznaczyć opis ruchu w zmiennych Eulera. Znaleźć linię prądu. Pokazać,

Bardziej szczegółowo

Matematyka liczby zespolone. Wykład 1

Matematyka liczby zespolone. Wykład 1 Matematyka liczby zespolone Wykład 1 Siedlce 5.10.015 Liczby rzeczywiste Zbiór N ={0,1,,3,4,5, } nazywamy zbiorem Liczb naturalnych, a zbiór N + ={1,,3,4, } nazywamy zbiorem liczb naturalnych dodatnich.

Bardziej szczegółowo

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Siły zachowawcze i energia potencjalna Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Polecana literatura John R Taylor, Mechanika klasyczna, tom1 Wydawnictwo Naukowe

Bardziej szczegółowo

Analiza na rozmaitościach Calculus on Manifolds. Matematyka Poziom kwalifikacji: II stopnia

Analiza na rozmaitościach Calculus on Manifolds. Matematyka Poziom kwalifikacji: II stopnia Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: Przedmiot obowiązkowy dla wszystkich specjalności Rodzaj zajęć: Liczba godzin/tydzień: Liczba punktów: wykład, ćwiczenia W, C 5 ECTS PRZEWODNIK PO PRZEDMIOCIE

Bardziej szczegółowo

[ A i ' ]=[ D ][ A i ] (2.3)

[ A i ' ]=[ D ][ A i ] (2.3) . WSTĘP DO TEORII SPRĘŻYSTOŚCI 1.. WSTĘP DO TEORII SPRĘŻYSTOŚCI.1. Tensory macierzy Niech macierz [D] będzie macierzą cosinusów kierunkowych [ D ]=[ i ' j ] (.1) Macierz transformowana jest równa macierzy

Bardziej szczegółowo

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie

Bardziej szczegółowo

SIMR 2012/2013, Analiza 2, wykład 14,

SIMR 2012/2013, Analiza 2, wykład 14, IMR 2012/2013, Analiza 2, wykład 14, 2012-06-03 Całka powierzchniowa efinicja gładkiego płata powierzchni Gładkim płatem powierzchni nazywamy zbiór : = {(x, y, z) : z = g(x, y), (x, y) }, gdzie R 2 jest

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

Rozdział 3. Tensory. 3.1 Krzywoliniowe układy współrzędnych

Rozdział 3. Tensory. 3.1 Krzywoliniowe układy współrzędnych Rozdział 3 Tensory 3.1 Krzywoliniowe układy współrzędnych W kartezjańskim układzie współrzędnych punkty P są scharakteryzowane przez współrzędne kartezjańskie wektora wodzącego r = x 1 i 1 + x 2 i 2 +

Bardziej szczegółowo

Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1

Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Zadania rozwiązywane na wykładzie Zadania rozwiązywane na ćwiczeniach Przy rozwiązywaniu zadań najistotniejsze jest wykazanie się rozumieniem

Bardziej szczegółowo

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )

Bardziej szczegółowo

1 Podstawowe oznaczenia

1 Podstawowe oznaczenia Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.

Bardziej szczegółowo

Metody matematyczne fizyki

Metody matematyczne fizyki Metody matematyczne fizyki Tadeusz Lesiak Wykład I Wektory Wektory w geometrii i algebrze Historycznie pierwszy był opis geometryczny: B Wektor = uporządkowana para punktów = ukierunkowany odcinek linii

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

Rachunek wektorowy - wprowadzenie. dr inż. Romuald Kędzierski

Rachunek wektorowy - wprowadzenie. dr inż. Romuald Kędzierski Rachunek wektorowy - wprowadzenie dr inż. Romuald Kędzierski Graficzne przedstawianie wielkości wektorowych Długość wektora jest miarą jego wartości Linia prosta wyznaczająca kierunek działania wektora

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

WYKŁAD 6 KINEMATYKA PRZEPŁYWÓW CZĘŚĆ 2 1/11

WYKŁAD 6 KINEMATYKA PRZEPŁYWÓW CZĘŚĆ 2 1/11 WYKŁAD 6 KINEMATYKA PRZEPŁYWÓW CZĘŚĆ 1/11 DEFORMACJA OŚRODKA CIĄGŁEGO Rozważmy dwa elementy płynu położone w pewnej chwili w bliskich sobie punktach A i B. Jak zmienia się ich względne położenie w krótkim

Bardziej szczegółowo

Rachunek całkowy funkcji wielu zmiennych

Rachunek całkowy funkcji wielu zmiennych Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

Zadania egzaminacyjne

Zadania egzaminacyjne Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie

Bardziej szczegółowo

WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU

WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Calculus Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień

Bardziej szczegółowo

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE DWÓCH ZMIENNYCH RZECZYWISTYCH Definicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą

Bardziej szczegółowo

1 Formy różniczkowe w R 3

1 Formy różniczkowe w R 3 1 Formy różniczkowe w R 3 literatura: W.I. Arnold, Metody matematyczne mechaniki klasycznej, rozdział 7 L. Górniewicz, R. Ingarden, Analiza matematyczna dla fizyków, tom 1, rozdział 9 H. Flanders, Teoria

Bardziej szczegółowo

Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz

Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz Kartezjański układ współrzędnych: Wersory osi: e x x i e y y j e z z k r - wektor o współrzędnych [ x 0, y 0, z 0 ] Wektor położenia: r t =[ x t, y t,z t ] każda współrzędna zmienia się w czasie. r t =

Bardziej szczegółowo

Uniwersytet Warmińsko-Mazurski w Olsztynie

Uniwersytet Warmińsko-Mazurski w Olsztynie Uniwersytet Warmińsko-Mazurski w Olsztynie ZETAW II Całka podwójna.. Obliczyć całki iterowane (a 4 4 2 ( (x + y ( 2 4 ( y x y dy dx y 3 x 2 + y 2 dx dy. 2. Zmienić kolejność całkowania (a (d 2 e ( 2x x

Bardziej szczegółowo

ANALIZA MATEMATYCZNA

ANALIZA MATEMATYCZNA ANALIZA MATEMATYCZNA TABLICE Spis treści: 1.) Pochodne wzory 2 2.) Całki wzory 3 3.) Kryteria zbieżności szeregów 4 4.) Przybliżona wartość wyrażenia 5 5.) Równanie płaszczyzny stycznej i prostej normalnej

Bardziej szczegółowo

Geometria Lista 0 Zadanie 1

Geometria Lista 0 Zadanie 1 Geometria Lista 0 Zadanie 1. Wyznaczyć wzór na pole równoległoboku rozpiętego na wektorach u, v: (a) nie odwołując się do współrzędnych tych wektorów; (b) odwołując się do współrzędnych względem odpowiednio

Bardziej szczegółowo

Wykład 9. Matematyka 3, semestr zimowy 2011/ listopada 2011

Wykład 9. Matematyka 3, semestr zimowy 2011/ listopada 2011 Wykład 9. Matematyka 3, semestr zimowy 2011/2012 4 listopada 2011 W trakcie poprzedniego wykładu zdefiniowaliśmy pojęcie k-kowektora na przestrzeni wektorowej. Wprowadziliśmy także iloczyn zewnętrzny wielokowektorów

Bardziej szczegółowo

MATEMATYKA. audytoryjne),

MATEMATYKA. audytoryjne), Nazwa przedmiotu: MATEMATYKA 1. Wydział: InŜynierii Środowiska i Geodezji 2. Kierunek studiów: InŜynieria Środowiska 3. Rodzaj i stopień studiów: studia I stopnia, inŝynierskie, stacjonarne 4. Nazwa przedmiotu:

Bardziej szczegółowo

ABC matematyki dla początkujących fizyków. Elementy analizy wektorowej

ABC matematyki dla początkujących fizyków. Elementy analizy wektorowej AB matematyki dla początkujących fizyków Elementy analizy wektorowej polewektoroweipoleskalarne różniczkowaniefunkcjiwektorowej operatornabla gradient, dywergencja,rotacja gradient,laplasjanwukładziesferycznym

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Matematyka 2 Rok akademicki: 2012/2013 Kod: JFM-1-201-s Punkty ECTS: 5 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Fizyka Medyczna Specjalność: Poziom studiów: Studia I stopnia Forma

Bardziej szczegółowo

II. FUNKCJE WIELU ZMIENNYCH

II. FUNKCJE WIELU ZMIENNYCH II. FUNKCJE WIELU ZMIENNYCH 1. Zbiory w przestrzeni R n Ustalmy dowolne n N. Definicja 1.1. Zbiór wszystkich uporzadkowanych układów (x 1,..., x n ) n liczb rzeczywistych, nazywamy przestrzenią n-wymiarową

Bardziej szczegółowo

22. CAŁKA KRZYWOLINIOWA SKIEROWANA

22. CAŁKA KRZYWOLINIOWA SKIEROWANA CAŁA RZYWOLINIOWA SIEROWANA Niech łuk o równaniach parametrycznych: x x(t), y y(t), a < t < b, będzie łukiem regularnym skierowanym, tzn łukiem w którym przyjęto punkt A(x(a), y(a)) za początek łuku, zaś

Bardziej szczegółowo