Temat 2. Nauka o materiałach. Sposoby wyznaczania właściwości materiałów

Wielkość: px
Rozpocząć pokaz od strony:

Download "Temat 2. Nauka o materiałach. Sposoby wyznaczania właściwości materiałów"

Transkrypt

1 Temat 2 Nauka o materiałach Sposoby wyznaczania właściwości materiałów

2 ZASADY DOBORU MATERIAŁÓW KRYTERIA DOBORU MATERIAŁÓW TECHNICZNE EKONOMICZNE Właściwości mechaniczne Właściwości technologiczne Wymagania konstrukcyjne Walory estetyczne Koszty materiału Koszty wytwarzania Koszty utylizacji i recyklingu

3 TECHNICZNE KRYTERIA DOBORU MATERIAŁU Właściwości mechaniczne Właściwości technologiczne Wymagania konstrukcyjne Walory estetyczne

4 Stan naprężenia wieloosiowy jednoosiowy

5 Prawo Hooke a σ = E ε ROBERT HOOKE, uznany przez współczesnych za największego wynalazcę wszech czasów, został obecnie okrzyknięty angielskim Leonardem da Vinci. Urodził się w roku W 1662 mianowano go opiekunem eksperymentów w londyńskim Towarzystwie Królewskim, a w 1677 został jego sekretarzem. Zmarł w roku 1703 ODKSZTAŁCENIE CIAŁA POD WPŁYWEM DZIAŁAJĄCEJ NA NIE SIŁY JEST PROPORCJONALNE DO TEJ SIŁY. Współczynnik między siłą a odkształceniem jest często nazywany współczynnikiem (modułem) sprężystości.

6 Prawo Hooke a wg M. Blicharski Zależność pozostaje prawdziwa tylko dla niezbyt dużych odkształceń, nie przekraczających tzw. granicy Hooke a (zwanej też granicą proporcjonalności), i tylko dla niektórych materiałów. Prawo Hooke a zakłada też, że odkształcenia ciała, w reakcji na działanie sił, następują w sposób natychmiastowy i całkowicie znikają, gdy przyłożone siły przestają działać. Takie uproszczenie jest wystarczające jedynie dla ciał o pomijalnie małej lepkości

7 STATYCZNA PRÓBA ROZCIĄGANIA Podstawową próbą do wyznaczenia własności mechanicznych metali jest: statyczna próba rozciągania metali, ujęta normą EN :2001 (poprzednio PN-91/H 04310). Próby te realizowane są w najprostszym stanie naprężeń, jaki powstaje przy jednoosiowym rozciąganiu. Wymagany jednoosiowy stan naprężenia osiągany jest przez zastosowanie specjalnie przygotowanych próbek zamocowanych w odpowiedni sposób, przy pomocy wykonanych w tym celu odpowiednich uchwytów.

8 WYMAGANIA 1. Niezawodne zamocowanie i centrowanie próbki w uchwytach, 2. Możliwość ustawienia i regulowania prędkości w granicach podanych przez normy. 3. Posiadać określoną podatność (sprężystość). 4. Możliwość automatycznej rejestracji zależności pomiędzy obciążeniem a wydłużeniem badanej próbki, bądź to za pośrednictwem wbudowanych urządzeń rejestrujących, bądź przy pomocy zewnętrznych systemów pomiarowych. Próbka okrągła z główkami gwintowanymi Próbka płaska z główkami Próbka okrągła z główkami cylindrycznymi

9 STANOWISKO DO STATYCZNEJ PRÓBY ROZCIĄGANIA

10

11 S So Wykres rozciągania stali miękkiej: umowny (nominalny) 1 i rzeczywisty 2 wg Kocańda

12 Umowna granica plastyczności R 0,2 Jest to naprężenie odpowiadające punktowi przecięcia krzywej wykresu naprężenie-odkształcenie z prostą równoległą do części wykresu w postaci linii prostej, przesuniętej o określone odkształcenie. Przesunięcia dla metali zwykle definiuje się jako 0,2%, Zależność liniowa Zakres opisany prawem Hooke a wg M. Blicharski Przybliżone wyznaczanie umownej granicy plastyczności

13 Definicje Wytrzymałość na rozciąganie Rm [Mpa] R m = F m /S o Pozostałe pojęcia niezbędne do porównywania materiałów F m siła maksymalna S o pole przekroju początkowego Umowna granica sprężystości R 0,05 Wydłużenie względne A [%] Przewężenie względne Z [%] tg α = E wg Kocańda

14 Współczynnik bezpieczeństwa W przypadku braku bliższych danych, w pierwszym przybliżeniu można określić współczynnik bezpieczeństwa jako iloczyn czterech współczynników cząstkowych: n = x 1 x 2 x 3 x 4 gdzie: x 1 współczynnik pewności założeń przy budowie modelu matematycznego, x 2 współczynnik ważności projektowanego wyrobu, x 3 współczynnik jednorodności materiału, x 4 współczynnik zachowania kształtu. Współczynnik bezpieczeństwa dla obciążeń stałych dobiera się: dla stali konstrukcyjnej x=2,0-2,3 dla stali sprężynowej x=1,6 dla żeliwa x=3,5

15 WPŁYW STĘŻENIA WĘGLA NA WYKRES ROZCIĄGANIA STALI WNIOSEK Podwyższenie zaw. węgla w stali zwiększa wytrzymałość a obniża plastyczność wg Kocańda

16 WPŁYW ULEPSZANIA CIEPLNEGO NA WYKRES ROZCIĄGANIA 1. Stal znormalizowana 2. Stal odpuszczona 3. Stal zahartowana WNIOSEK Ulepszanie cieplne stali zwiększa wytrzymałość a obniża plastyczność wg Kocańda

17 WPŁYW DODATKÓW STOPOWYCH I ZGNIOTU NA WYKRES ROZCIĄGANIA STALI WNIOSEK Dodatki stopowe podwyższają granicę plastyczności Re Wprowadzenie zgniotu w stali powoduje zanik wyraźnej podwyższają granicy plastyczności Re wg Kocańda

18 WYKRES ROZCIĄGANIA ŻELIWA WNIOSEK Żeliwa (szare) zaliczamy do materiałów kruchych wg Kocańda

19 WYKRESY ROZCIĄGANIA DLA METALI NIEŻELAZNYCH WNIOSEK Czyste metale nieżelazne charakteryzują się dużą plastycznością i zróżnicowaną wytrzymałością. wg Kocańda

20 WYKRES ROZCIĄGANIA DLA POLIMERÓW WNIOSEK Podczas rozciągania polimerów przed zniszczeniem dochodzi do przegrupowań makrocząsteczek wg M. Blicharski

21 WYKRES ROZCIĄGANIA DLA KOMPOZYTÓW WNIOSEK Wykres rozciągania kompozytów wykazuje dwa etapy; obciążanie włókien i osnowy wg M. Blicharski

22 WYKRES ROZCIĄGANIA DLA CERAMIKI WNIOSEK Ceramiki nie wykazują odkształceń plastycznych a ich wytrzymałość jest wyższa od metali wg M. Blicharski

23 STATYCZNA PRÓBA ŚCISKANIA R c = F c /S o [MPa] Próba statyczna ściskania jest podstawowym sposobem badania materiałów kruchych takich jak żeliwo czy beton, które mają znacznie lepsze własności mechaniczne przy ściskaniu w porównaniu z rozciąganiem. wg Kocańda

24 TEST EGZAMIN zag Któremu z wymienionych poniżej materiałów (zaznacz x w prawej kolumnie) odpowiada wykres rozciągania przedstawiony na rysunkach (B). Zwróć uwagę na kształt wykresu i wartości naprężeń i odkształceń. Dla porównania na rys. (A) zamieszczono wykres rozciągania stali znormalizowanej o niskiej zawartości węgla. Rodzaj materiału stal o zwiększonej zawartości węgla 1% stal z podwyższoną zaw. dodatków stopowych Mn, Si, Cr stal po obróbce plastycznej na zimno (zgniot) stal obróbce cieplnej po wyżarzaniu zmiękczającym żeliwo szare zwykłe czysta miedź czysty nikiel polimer termoplastyczny szkło kompozyt włókno węglowe-polimer stal obróbce cieplnej po odpuszczeniu czyste aluminium stal po obróbce cieplnej po zahartowaniu czysty cynk B A

25 Definicja METODY BADANIA TWARDOŚCI Twardość jest miarą odporności materiału na odkształcenie plastyczne spowodowane innym materiałem Twardość Mohsa (znaczenie historyczne) Jest jedna z najstarszych metod polega na przyrównywaniu twardości badanego materiału do twardości wybranych minerałów. Zaproponowana została przez Mohsa, który wybranym minerałom przyporządkował kolejne liczby od 1 do 10. Tworzą one skale twardości minerałów. Na przykład kwarc zarysowuje ortoklaz, natomiast jest zarysowywany przez topaz i stąd jego miejsce w skali Mohsa jest między tymi dwoma minerałami. wg S. Błażewski

26 Metody badania twardości Twardość: Metoda Brinella - HB Metoda Vickersa - HV Metoda Rockwella - HR Inne HB Odkształcenie trwałe powstaje na powierzchni badanego przedmiotu wskutek wciskania drugiego twardszego materiału zwanego wgłębnikiem. HV HR 136 wg: L. Dobrzański

27 Metoda Brinella - HB Nazwa tej metody pochodzi od nazwiska jej twórcy szwedzkiego inż. J. A. Brinella, który wprowadził ją w 1900 roku. Metoda jest znormalizowana i stosowana powszechnie. Johan August Brinell Schemat pomiaru twardości metali sposobem Brinella a) podczas obciążenia, b) po odciążeniu; Warunek poprawności pomiaru 1 kulka, 2 element obciążający, 3 badany materiał, 4 odcisk 0,25 D<d<0,6 D Kule ze stali bądź z węglików 1, 2, 2,5, 5, 10 mm wg M. Blicharski

28 Wartość siły obciążającej oblicza się według wzoru: wg Kocańda

29 Wyliczenie twardości HB Mikroskop warsztatowy do pomiaru średnicy odcisku wg ZEISS Nie ma potrzeby korzystania ze wzorów bo w użyciu są tablice twardości lub przeliczniki elektroniczne Zapis wyniku pomiaru 350 HB 5/750

30 Zaleta sposobu Brinella: Twardość Brinella w przypadku niektórych stopów jest proporcjonalna do wytrzymałości na rozciąganie, co można wykorzystać do przybliżonej oceny wytrzymałości, np. dla: stali Rm [Mpa]= (3,4 3,6)HB stopów miedzi Rm [Mpa]= (4,0 5,5)HB stopów aluminium Rm [Mpa]= (2,4 3,0)HB WNIOSEK Na podstawie pomiaru twardości można oszacować wytrzymałość Wysoka twardość jest charakterystyczna dla stopów obrobionych cieplnie, stopów odlewniczych o budowie eutektycznej i materiałów ceramicznych

31 Metoda Vickersa - HV Schemat zasady porównywalności wyników otrzymanych metodą Brinella i Vickersa 136 wg S. Błażewski Schemat pomiaru metodą Vickersa a) obciążenie próbki, b) odcisk; 1 wgłębnik (penetrator), 2 siła obciążająca, 3 próbka, 4 odcisk Średnia wartość średnicy odcisku równa jest d=0,375 D. Zatem obliczona ze wzoru średnia wartość kąta wgniatania φ = 44. Kąt dwuścienny wgłębnika wynosi: α = = 136 wg M. Blicharski

32 Zalety sposobu Vickersa: Zakres pomiaru twardości metodą Vickersa jest bardzo szeroki i umożliwia pomiar twardości zarówno metali miękkich jak i ba rdzo twardych. W metodzie tej stosuje się jedną skalę dla całego zakresu twardości. Pomiar metodą Vickersa w minimalny sposób uszkadza badany przedmiot, odcisk jest tak nieznaczny, że można tą metodą badać cienkie warstwy utwardzane o wysokiej twardości np. po azotowaniu lub węgloazotowaniu oraz ostrza narzędzi po szlifowaniu

33 Metoda Rockwella HR Schemat pomiaru twardości metodą Rockwella a) d) kolejne fazy pomiaru; F0, F1 obciążenie wstępne i główne, h0, hc głębokości odcisku przy obciążeniach wstępnym i głównym, h trwały przyrost głębokości odcisku pod obciążeniem wstępnym bez obciążenia głównego, wg M. Blicharski

34 Zalety sposobu Rockwella: Metoda Rockwella jest bardzo wygodną do kontroli części hartowanych przy masowej produkcji, ze względu na szybkość pomiaru oraz łatwość odczytu na czujniku. Wadą metody Rockwella jest znaczna liczba skal twardości i ograniczone możliwości ich porównywania. Metoda ta jest bardzo wrażliwa na błędy ustawienia próbki oraz właściwą obsługę twardościomierza.

35 wg MITUTOYO

36 Twardość Shore a Badanie twardości Shore`a polega na pomiarze wysokości odskoku bijaka, spadającego ze stałej wysokości 275 mm. Bijak o ciężarze 2,626 g, wykonany jest ze stali i na końcu posiada diamentowy wgłębnik. Wysokość odskoku bijaka jest odczytywana na podziałce, ilość działek odpowiadająca odskokowi określa liczbę twardości Shore`a.

37 Metody uproszczone pomiaru twardości Schemat pomiaru twardości za pomocą młotka Poldi ego gdzie: HB W - twardość próbki wzorcowej wg Kocańda

38 TEST EGZAMIN zag. 3 Brinella, Vickersa, Rockwella, skala C Rockwella, skala F Shore a. Poldi 3. Jakiego rodzaju jest penetrator oraz na podstawie jakiego pomiaru wyznacza się twardość w jednej z następujących metod pomiaru: Zaznacz po jednym polu w kolumnach 1 i 2 Rodzaj penetratora 1 Sposób pomiaru 2 Ostrosłup diamentowy o podstawie kwadratu i kącie wierzchołkowym 136 Porównanie średnicy odcisku (czaszy kulistej) w materiale badanym i o znanej twardości Kulka stalowa lub węglikowa 1, 2, 2,5, 5, 10 mm Pomiar średniej arytmetycznej długości przekątnych odcisku i odczyt z tablic Bijak z diamentową końcówką Pomiar średnica odcisku (czaszy kulistej) i odczyt z tablic Kulka stalowa dowolnej średnicy Pomiar głębokości wnikania bezpośrednio na twardościomierzu Kulka stalowa 1,5875, lub 3,175 mm Stożek diamentowy o kącie wierzchołkowym 120 Pomiar wysokości odbicia Porównanie głębokości wnikania kuli w materiał

39 TEST EGZAMIN zag Która z metod badania twardości jest odpowiednia dla następującej grupy materiałów stal węglowa miękka np. do wyrobu blachy. stal stopowa po obróbce cieplnej. stal narzędziowa po obróbce cieplnej. żeliwo. staliwo. stop aluminium. czysta miedź. mosiądz, brąz lub miedzionikiel stop cynku stop tytanu stop niklu i kobaltu. polimer. materiał spiekany (porowaty) szkło Metoda pomiaru 1 Brinella, Vickersa, Rockwella, skala C Rockwella, skala F Shore a. Poldi Żadna z powyższych metod

40 Techniczne kryteria doboru materiału Próba odporności na dynamiczne zginanie Udarność KC Próg kruchości Tk 1 głowica wahadłowa 2 oś obrotu wahadła 3 - dźwignia hamulca 4 ramię wahadła 5 zapadka 6 dźwignia 7 wskazówka 8 tarcza pomiarowa 9 kolumny młota 10 podpory do mocowania próbki 11 próbka 12 pas hamulca 13 podstawa młota wg Kocańda

41 Próba odporności na dynamiczne zginanie KC = udarność [J/cm 2 ] K : energia łamania wskazana na młocie wahadłowym S : przekrój początkowy próbki

42 PRÓG KRUCHOŚCI Tk Tk - temperatura progu kruchości WNIOSEK Badanie udarności pozwala wyznaczyć właściwości stali w warunkach dynamicznych oraz temperaturę przejścia w stan kruchy wg: L. Dobrzański

43 Techniczne kryteria doboru materiału Zmęczenie to zniszczenie materiału pod wpływem cyklicznych naprężeń poniżej granicy plastyczności krzywa Wöhlera Zg wg: L. Dobrzański

44 WNIOSEK Stale wykazują wytrzymałość zmęczeniową przy nieograniczonej liczbie cykli, metale nieżelazne tylko ograniczoną do określonej liczby cykli np. 10 5, 10 6, 10 7, 2*10 8, dla materiałów porowatych i ceramik nie bada się zmęczenia ze względu na brak powtarzalności wyników. Materiały jednorodne (np. roztwory stałe) charakteryzują się wyższą odpornością zmęczeniową

45 TEST EGZAMIN zag W jaki sposób wyznacza się wytrzymałość zmęczeniową Zg następujących materiałów. Zaznacz właściwą odpowiedź dla stali. dla metali nieżelaznych. dla kompozytów. dla szkła i ceramiki. dla materiałów spiekanych. Przy nieskończonej liczbie cykli obciążenia Przy liczbie cykli obciążenia 2x10 8 Przy najmniejszej liczbie cykli powodującej pęknięcie materiału Przy badaniu odporności na pełzanie Przy ograniczonej liczbie cykli obciążenia 10 5,10 6, 10 7 Na podstawie asymptoty na wykresie zmęczeniowym Wöhlera Przy największej liczbie cykli powodującej pęknięcie materiału Przy próbie statycznego rozciągania Nie wyznacza się żadną metodą

46 Techniczne kryteria doboru materiału Pełzaniem nazywamy proces trwałego odkształcenia plastycznego związany z bardzo małą szybkością odkształcenia w stałej, wysokiej temperaturze pod działaniem prawie stałego naprężenia wg: L. Dobrzański

47 Odporność na pełzanie określają: Czasowa granica pełzania Rx/τ/t Czasowa wytrzymałość na pełzanie Rz/τ/t Z wykresu odczytuje się: Czasową granicę pełzania: Rx/τ/t - naprężenie powodujące trwałe odkształcenie, które po upływie czasu τ przy stałej temperaturze t powoduje trwałe wydłużenie próbki = x. Np. x=0,2 % to odpowiada Re Dla stali granicę pełzania wyznacza się dla: 10 2, 10 3, 10 4, 10 5 i h. Czasową wytrzymałość na pełzanie: Rz/τ/t - naprężenie powodujące zerwanie próbki po upływie czasu τ przy stałej temperaturze t WNIOSEK Badanie odporności na pełzanie pozwala wyznaczyć właściwości stali; wytrzymałość i odkształcenie w wysokich temperaturach w warunkach statycznych wg: L. Dobrzański

48 Techniczne kryteria doboru materiału Odporność na ścieranie Do elementarnych procesów zużywania ściernego należą : a) bruzdowanie, b) ścinanie nierówności, c) ścieranie nierówności ścierniwem przez występ nierówności, d) odkształcenie plastyczne materiału. wg: L. Dobrzański

49 Rodzaje tarcia WNIOSEK Wysoką odporność na zużycie ścierne wykazują materiały zbudowane z faz o zróżnicowanej twardości; stale z dużą zawartością węglików stopy podeutektyczne Pomiar współczynnika tarcia wg: L. Dobrzański

50 Techniczne kryteria doboru materiału Odporność na korozję Potencjał elektrochemiczny Typowe uszkodzenia korozyjne zaciemniono strefę objętą tym rodzajem korozji: a) korozja równomierna, b) korozja wżerowa, c) korozja selektywna, d) korozja międzykrystaliczna, e) pękanie korozyjne WNIOSEK Spośród metali tworzących ogniwo korozyjne anodę stanowi metal o niższym standardowym potencjale elektrodowym, wykazując większą aktywność, a zatem większą podatność na korozję. Ocenę stopnia korozji przeprowadza się podczas badań metalograficznych. wg: L. Dobrzański

51 TEST EGZAMIN zag Jakiemu testowi należy podać materiał, aby ocenić jego przydatność do wykonania elementu urządzenia technicznego pracującego w następujących warunkach statycznego ściskania dużych nacisków powierzchniowych ścierania odkształcenia plastycznego długotrwałego narażenia na wysoką temperaturę bez naprężeń tarcia tocznego pracy w podwyższonej temperaturze naprężeń o dużej liczbie cykli > 10 5 dużej szybkości narastania obciążenia bardzo niskiej temperatury statycznego rozciągania odkształcenia sprężystego środowiska agresywnego chemicznie bardzo dużego naprężenia Twardości metodą Vickersa Statycznej próbie rozciągania Próbie udarności w niskich temperaturach Próbie odporności na pełzanie Statycznej próbie rozciągania w niskich temperaturach Próbie udarności w wysokich temperaturach Próbie dynamicznego rozciągania Badaniom odporności korozyjnej Próbie zmęczeniowej Próbie ściskania Twardości metodą Rockwella Badanie modułu Younga Badaniom metalograficznym Twardości metodą Brinella Próba tarcia Próbie udarności w temperaturze otoczenia

52 TEST EGZAMIN zag Która z przedstawionych w tabeli właściwości materiału ma kluczowe znaczenie dla określenia podatności do przeróbki plastycznej podatności do obróbki ubytkowej podatności do odlewania odporności na korozję odporności na pracę w wysokich temperaturach odporności na tarcie np. w hamulcach podatności do przenoszenia dużej liczby cykli zmiennych obciążeń stateczności konstrukcji w obliczeniach wytrzymałościowych zdatności do pracy w dużym zakresie temperatur podatność do spawania podatności do klejenia odporności na dynamiczne obciążenia przydatności w technice lotniczej i rakietowej odporności na kruche pękanie estetyki wykonania Wytrzymałość na rozciąganie R m Granica plastyczności R p (R e R 0,2 ) Moduł Younga E Wytrzymałość doraźna R m / Twardość Potencjał elektrochemiczny Wytrzymałość czasowa Z/T/t Ekwiwalent węglowy Skurcz Temperatura progu kruchości Tk Połysk i kolor Duża chropowatość Gładkość powierzchni Łamliwość wióra Udarność K Współczynnik odprowadzania ciepła Gęstość Wytrzymałość zmęczeniowa Zg

53 Badania struktury materiałów Małe pow. do 50x, zakres makro Mikroskop stereoskopowy

54 Badania struktury materiałów Duże pow. od 50x do 2000x zakres mikro Przygotowanie próbek

55 Szlifowanie i polerowanie ręczne

56 Szlifowanie i polerowanie automatyczne

57 Trawienie Niektóre odczynniki chemiczne Trawienie stosowane do wytrawiania szlifów metalograficznych stali

58 Badania struktury materiałów Duże pow. od 50x do 2000x zakres mikro Stale o różnym stężeniu węgla

59 Mikroskopy metalograficzne

60

61 Badania struktury materiałów Bardzo duże pow. od 1000x do x zakres mikroskopii elektronowej

62

63 Przygotowanie próbek do mikroskopii elektronowej Bardzo duże pow. od 1000x do x zakres mikroskopii elektronowej

64 TEST EGZAMIN zag Wskaż rodzaj mikroskopu lub przyrządu optycznego (w kol. 1) oraz sposób przygotowania próbek (w kol 2). właściwych do przeprowadzenia badań metalograficznych w następującym zakresie: obserwacji zużycia współpracujących części maszyn. obserwacji powierzchni metali w zakresie makro do 50x. obserwacji przełomów zniszczonych części maszyn w zakresie makro do 50x. obserwacji postępu korozji na powierzchni zniszczonych części maszyn w zakresie makro do 50x obserwacji wielkości kryształów metali w zakresie mikro do 500x. obserwacji faz w stopach metali nieżelaznych w zakresie mikro do 500x obserwacji mikropęknięć zmęczeniowych w zakresie mikro 500x obserwacji struktury spoin spawalniczych w zakresie mikro do 1000x obserwacji wpływu obróbki cieplnej na budowę fazową stopu w zakresie mikro do 1000x obserwacji postępu korozji w głąb zużytych części maszyn w zakresie mikro do 500x obserwacji powierzchni cząstek proszków metalicznych zakresie do 5000x do obserwacji linii dyslokacji w powiększeniach do x Rodzaj mikroskopu lub przyrządu optycznego Kol 1 Sposób przygotowania próbek lub części maszyn do badań Kol 2 Lupa Wycinanie próbek, szlifowanie polerowania i trawienie odczynnikami chemicznymi Aparat fotograficzny z obiektywem makro Mechaniczne czyszczenie części w celu odsłonięcia powierzchni Mikroskop stereoskopowy 50x Mikroskop metalograficzny (system odwrotny) Mikroskop biologiczny (system prosty) Mikroskop elektronowy skaningowy Mikroskop elektronowy transmisyjny Napylanie próżniowe powierzchni metalami szlachetnymi w celu zapewnienia odpływu ładunków elektrycznych Inkludowanie w żywicy epoksydowej szlifowanie, polerowanie i trawienie odczynnikami chemicznymi Mycie i delikatne czyszczenie chemiczne bez naruszenia powierzchni badanej. Wycinanie, szlifowanie i trawienie w celu uzyskania próbki w formie ultra cienkiej folii metalicznej. Bez przygotowania powierzchni

65 TECHNICZNE KRYTERIA DOBORU MATERIAŁU Właściwości mechaniczne Właściwości technologiczne Wymagania konstrukcyjne Walory estetyczne

66 TECHNICZNE KRYTERIA DOBORU MATERIAŁU Właściwości technologiczne: Skrawalność Plastyczność Zdolność do wypełniania formy odlewniczej (lejność) Spajalność : spawalność i podatność do klejenia

67 Techniczne kryteria doboru materiału Dobra skrawalność to: Niskie opory skrawania Gładka powierzchnia Łamliwy wiór Dobra skrawalność występuje w: Stopach wielofazowych Żeliwach Trudna skrawalność: Stopy jednofazowe Stopy o silnym umocnieniu zgniotem Metale twarde lub w stanie zahartowanym Ceramika

68 Techniczne kryteria doboru materiału Dobrej plastyczność sprzyja: Duże wydłużenie ΔL Równoosiowość odkształceń Drobnoziarnistość Jednorodność Dobra plastyczność występuje w: Stopach jednofazowych Metalach o dużej czystości Trudna obróbka plastyczna: Stopy wielofazowe Stopy o silnym umocnieniu zgniotem Metale twarde lub w stanie zahartowanym Ceramika Spieki

69 Techniczne kryteria doboru materiału Dobra zdolność do wypełniania formy odlewniczej to: Niskia temperatura topnienia Rzadkopłynność (brak fazy półpłynnej) Dobra zdolność do wypełniania formy odlewniczej występuje w: Stopach eutektycznych Żeliwach Metalach czystych Ograniczenia technologii odlewniczych: Stopy jednofazowe Stopy o dużej rozpiętości temperatur przejścia z fazy ciekłej do stałej Metale wysokotopliwe Stopy metali o dużej różnicy gęstości Staliwa

70 Techniczne kryteria doboru materiału Dobra spajalność to: Właściwości spoiny zbliżone do materiału spawanego Odporność na przegrzanie Spawanie Dobra spawalność występuje w: Stalach węglowych o niskim Ce Stopy jednofazowe Tworzywa sztuczne Ograniczenia spawalności: Stale stopowe ulepszone cieplnie wysoki Ce Metale i stopy o dużej przewodności cieplnej Ceramika Klejenie (chropowatość powierzchni) CEV, Ce równoważnik węglowy gdzie: C, Mn, Cr, Mo, V, Ni, Cu odpowiadają stężeniu masowemu tych pierwiastków w stali. W przypadku gdy CEV 0,45%, stale są spawalne bez żadnych ograniczeń. Stale o większym równoważniku węgla wymagają podgrzewania przed spawaniem, regulowanego chłodzenia albo wyżarzania po spawaniu.

71 Zasady ekonomicznego stosowania materiałów Istniejąca sytuacja oraz prognozowanie na przyszłość wymagają od inżynierów skoordynowanych działań w celu oszczędzania dostępnych surowców polegających na: 1. Projektowaniu z oszczędnym wykorzystaniem materiałów, zwłaszcza trudno dostępnych i wyczerpujących się, przy minimalizacji ich energochłonności 2. Stosowaniu zamienników łatwiej dostępnych i o dużej rezerwie czasu do wyczerpania się zasobów surowcowych oraz o mniejszej energochłonności w miejsce trudno dostępnych i wyczerpujących się, 3. Pełnym wykorzystaniu energooszczędnego recyklingu w celu ponownego wykorzystywania i odzysku materiałów we wszystkich możliwych i ekonomicznie uzasadnionych przypadkach Recykling zużytych produktów prowadzi do skrócenia cyklu produkcyjnego.

72 Cykl obiegu materiałów Schemat technicznego cyklu trwania materiałów inżynierskich wg: L. Dobrzański

73 Schemat postępowania przy projektowaniu nowego wyrobu

74 Schemat ogólny komputerowego systemu wspomagania doboru materiałów Komputerowy system wspomagania doboru materiałów inżynierskich Kolejna grupa programów komputerowych umożliwia wspomaganie doboru materiałów inżynierskich w wyniku automatycznego przeszukiwania bardzo obszernych baz danych wg ściśle określonych kryteriów. Zadaniem użytkownika tego systemu jest określenie kryteriów, jakie powinien spełniać materiał. Kryteria te obejmują zarówno własności, skład, możliwe do zastosowania metody obróbki materiału, postać półproduktu, jak i poszczególne grupy materiałów inżynierskich. Po dokonaniu przez program selekcji materiałów na podstawie ustalonych kryteriów użytkownik może przyjąć ewentualne dodatkowe kryteria. Po ich uwzględnieniu lista wynikowa materiałów zostanie dodatkowo zawężona do tych materiałów, które spełniają wszystkie zadane kryteria. Tak więc selekcja materiałów może być procesem iteracyjnym. Na podstawie listy kryteriów program wyświetla, i na żądanie drukuje, dane materiałów spełniających te kryteria. Ogólny schemat systemu podano na rysunku W tym systemie wyróżnia się cztery główne moduły: - system relacyjnych baz danych, - wyszukiwania danych na podstawie zbioru zadanych kryteriów, - wyszukiwanie zamienników materiałów przy kryteriach podobieństwa o podanych przez użytkownika stopniu zgodności z wymaganymi wartościami, - prezentacji danych oraz przygotowanie raportów.

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Instrukcja przeznaczona jest dla studentów następujących kierunków: 1. Energetyka - sem.

Bardziej szczegółowo

BADANIA WŁAŚCIWOŚCI MECHANICZNYCH MATERIAŁÓW. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

BADANIA WŁAŚCIWOŚCI MECHANICZNYCH MATERIAŁÓW. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego BADANIA WŁAŚCIWOŚCI MECHANICZNYCH MATERIAŁÓW Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Właściwości Fizyczne (gęstość, ciepło właściwe, rozszerzalność

Bardziej szczegółowo

Do najbardziej rozpowszechnionych metod dynamicznych należą:

Do najbardziej rozpowszechnionych metod dynamicznych należą: Twardość metali 6.1. Wstęp Twardość jest jedną z cech mechanicznych materiału równie ważną z konstrukcyjnego i technologicznego punktu widzenia, jak wytrzymałość na rozciąganie, wydłużenie, przewężenie,

Bardziej szczegółowo

Badanie twardości metali

Badanie twardości metali Badanie twardości metali Metoda Rockwella (HR) Metoda Brinnella (HB) Metoda Vickersa (HV) Metoda Shore a Metoda Charpy'ego 2013-10-20 1 Twardość to odporność materiału na odkształcenia trwałe, występujące

Bardziej szczegółowo

STATYCZNA PRÓBA ROZCIĄGANIA

STATYCZNA PRÓBA ROZCIĄGANIA STATYCZNA PRÓBA ROZCIĄGANIA Próba statyczna rozciągania jest jedną z podstawowych prób stosowanych do określenia jakości materiałów konstrukcyjnych wg kryterium naprężeniowego w warunkach obciążeń statycznych.

Bardziej szczegółowo

Pomiar twardości. gdzie: HB - twardość wg Brinella, F - siła obciążająca, S cz - pole powierzchni czaszy.

Pomiar twardości. gdzie: HB - twardość wg Brinella, F - siła obciążająca, S cz - pole powierzchni czaszy. Pomiar twardości 1. Wprowadzenie Badanie twardości polega na wciskaniu wgłębnika w badany materiał poza granicę sprężystości, do spowodowania odkształceń trwałych. Wobec czego twardość można określić jako

Bardziej szczegółowo

SPRAWOZDANIE LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW B Badanie własności mechanicznych materiałów konstrukcyjnych

SPRAWOZDANIE LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW B Badanie własności mechanicznych materiałów konstrukcyjnych Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji SPRAWOZDANIE B Badanie własności mechanicznych materiałów konstrukcyjnych Wydział Specjalność.. Nazwisko

Bardziej szczegółowo

Pomiar twardości ciał stałych

Pomiar twardości ciał stałych Pomiar twardości ciał stałych Twardość jest istotną cechą materiału z konstrukcyjnego i technologicznego punktu widzenia. Twardość, to właściwość ciał stałych polegająca na stawianiu oporu odkształceniom

Bardziej szczegółowo

STATYCZNA PRÓBA ROZCIĄGANIA

STATYCZNA PRÓBA ROZCIĄGANIA Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: STATYCZNA PRÓBA ROZCIĄGANIA oprac. dr inż. Jarosław Filipiak Cel ćwiczenia 1. Zapoznanie się ze sposobem przeprowadzania statycznej

Bardziej szczegółowo

Temat 2 (2 godziny) : Próba statyczna ściskania metali

Temat 2 (2 godziny) : Próba statyczna ściskania metali Temat 2 (2 godziny) : Próba statyczna ściskania metali 2.1. Wstęp Próba statyczna ściskania jest podstawowym sposobem badania materiałów kruchych takich jak żeliwo czy beton, które mają znacznie lepsze

Bardziej szczegółowo

Właściwości mechaniczne

Właściwości mechaniczne Właściwości mechaniczne materiałów budowlanych Właściwości mechaniczne 1. Wytrzymałość na ściskanie 2. Wytrzymałość na rozciąganie 3. Wytrzymałość na zginanie 4. Podatność na rozmiękanie 5. Sprężystość

Bardziej szczegółowo

SPRAWOZDANIE: LABORATORIUM Z WYTRZYMAŁOŚCI MATERIAŁÓW B Badanie własności mechanicznych materiałów konstrukcyjnych

SPRAWOZDANIE: LABORATORIUM Z WYTRZYMAŁOŚCI MATERIAŁÓW B Badanie własności mechanicznych materiałów konstrukcyjnych Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji SPRAWOZDANIE: LABORATORIUM Z WYTRZYMAŁOŚCI MATERIAŁÓW B Badanie własności mechanicznych materiałów konstrukcyjnych

Bardziej szczegółowo

BADANIA WŁASNOŚCI MECHANICZNYCH MATERIAŁÓW KONSTRUKCYJNYCH 1. Próba rozciągania metali w temperaturze otoczenia (zg. z PN-EN :2002)

BADANIA WŁASNOŚCI MECHANICZNYCH MATERIAŁÓW KONSTRUKCYJNYCH 1. Próba rozciągania metali w temperaturze otoczenia (zg. z PN-EN :2002) Nazwisko i imię... Akademia Górniczo-Hutnicza Nazwisko i imię... Laboratorium z Wytrzymałości Materiałów Wydział... Katedra Wytrzymałości Materiałów Rok... Grupa... i Konstrukcji Data ćwiczenia... Ocena...

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH POMIARY TWARDOŚCI Instrukcja przeznaczona jest dla studentów następujących kierunków: 1.

Bardziej szczegółowo

Wytrzymałość Materiałów

Wytrzymałość Materiałów Wytrzymałość Materiałów Rozciąganie/ ściskanie prętów prostych Naprężenia i odkształcenia, statyczna próba rozciągania i ściskania, właściwości mechaniczne, projektowanie elementów obciążonych osiowo.

Bardziej szczegółowo

Temat 1 (2 godziny): Próba statyczna rozciągania metali

Temat 1 (2 godziny): Próba statyczna rozciągania metali Temat 1 (2 godziny): Próba statyczna rozciągania metali 1.1. Wstęp Próba statyczna rozciągania jest podstawowym rodzajem badania metali, mających zastosowanie w technice i pozwala na określenie własności

Bardziej szczegółowo

INSTRUKCJA DO CWICZENIA NR 4

INSTRUKCJA DO CWICZENIA NR 4 INSTRUKCJA DO CWICZENIA NR 4 Temat ćwiczenia: Statyczna próba rozciągania metali Celem ćwiczenia jest wykonanie próby statycznego rozciągania metali, na podstawie której można określić następujące własności

Bardziej szczegółowo

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa ul. Szczotkarska 42 Wydanie nr 13, Data wydania: 22 kwietnia 2015 r. Nazwa i adres INSTYTUT

Bardziej szczegółowo

BADANIA WŁAŚCIWOŚCI MECHANICZNYCH

BADANIA WŁAŚCIWOŚCI MECHANICZNYCH BADANIA WŁAŚCIWOŚCI MECHANICZNYCH Wykaz urządzeń służących do wykonania ćwiczenia 1. Maszyna wytrzymałościowa do 10 ton (100 kn). Twardościomierz Rockwella (HRC, HRB) 3. Twardościomierz Brinella - szt.

Bardziej szczegółowo

ĆWICZENIE NR 9. Zakład Budownictwa Ogólnego. Stal - pomiar twardości metali metodą Brinella

ĆWICZENIE NR 9. Zakład Budownictwa Ogólnego. Stal - pomiar twardości metali metodą Brinella Zakład Budownictwa Ogólnego ĆWICZENIE NR 9 Stal - pomiar twardości metali metodą Brinella Instrukcja z laboratorium: Budownictwo ogólne i materiałoznawstwo Instrukcja do ćwiczenia nr 9 Strona 9.1. Pomiar

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE TWORZYW SZTUCZNYCH OZNACZENIE WŁASNOŚCI MECHANICZNYCH PRZY STATYCZNYM ROZCIĄGANIU

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH POLITECHNIKA WASZAWSKA WYDZIAŁ ELEKTYCZNY INSTYTUT ELEKTOTECHNIKI TEOETYCZNEJ I SYSTEMÓW INOMACYJNO-POMIAOWYCH ZAKŁAD WYSOKICH NAPIĘĆ I KOMPATYBILNOŚCI ELEKTOMAGNETYCZNEJ PACOWNIA MATEIAŁOZNAWSTWA ELEKTOTECHNICZNEGO

Bardziej szczegółowo

Nauka o materiałach III

Nauka o materiałach III Pomiar twardości metali metodami: Brinella, Rockwella i Vickersa Nr ćwiczenia: 1 Zapoznanie się z zasadami pomiaru, budową i obsługą twardościomierzy: Brinella, Rockwella i Vickersa. Twardościomierz Brinella

Bardziej szczegółowo

LABORATORIUM NAUKI O MATERIAŁACH

LABORATORIUM NAUKI O MATERIAŁACH Politechnika Łódzka Wydział Mechaniczny Instytut Inżynierii Materiałowej LABORATORIUM NAUKI O MATERIAŁACH Blok nr 1 Badania Własności Mechanicznych L.p. Nazwisko i imię Nr indeksu Wydział Semestr Grupa

Bardziej szczegółowo

WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ. Zmiany makroskopowe. Zmiany makroskopowe

WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ. Zmiany makroskopowe. Zmiany makroskopowe WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ Zmiany makroskopowe Zmiany makroskopowe R e = R 0.2 - umowna granica plastyczności (0.2% odkształcenia trwałego); R m - wytrzymałość na rozciąganie (plastyczne); 1

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Zwykła próba rozciągania stali Numer ćwiczenia: 1 Laboratorium z przedmiotu:

Bardziej szczegółowo

Materiały Reaktorowe. Właściwości mechaniczne

Materiały Reaktorowe. Właściwości mechaniczne Materiały Reaktorowe Właściwości mechaniczne Naprężenie i odkształcenie F A 0 l i l 0 l 0 l l 0 a. naprężenie rozciągające b. naprężenie ściskające c. naprężenie ścinające d. Naprężenie torsyjne Naprężenie

Bardziej szczegółowo

MATERIAŁY KONSTRUKCYJNE

MATERIAŁY KONSTRUKCYJNE Stal jest to stop żelaza z węglem o zawartości węgla do 2% obrobiona cieplnie i przerobiona plastycznie Stale ze względu na skład chemiczny dzielimy głównie na: Stale węglowe Stalami węglowymi nazywa się

Bardziej szczegółowo

Ćwiczenie 5 POMIARY TWARDOŚCI. 1. Cel ćwiczenia. 2. Wprowadzenie

Ćwiczenie 5 POMIARY TWARDOŚCI. 1. Cel ćwiczenia. 2. Wprowadzenie Ćwiczenie 5 POMIARY TWARDOŚCI 1. Cel ćwiczenia Celem ćwiczenia jest zaznajomienie studentów ze metodami pomiarów twardości metali, zakresem ich stosowania, zasadami i warunkami wykonywania pomiarów oraz

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Ścisła próba rozciągania stali Numer ćwiczenia: 2 Laboratorium z przedmiotu:

Bardziej szczegółowo

Mechanika i wytrzymałość materiałów instrukcja do ćwiczenia laboratoryjnego

Mechanika i wytrzymałość materiałów instrukcja do ćwiczenia laboratoryjnego Mechanika i wytrzymałość materiałów instrukcja do ćwiczenia laboratoryjnego Cel ćwiczenia STATYCZNA PRÓBA ŚCISKANIA autor: dr inż. Marta Kozuń, dr inż. Ludomir Jankowski 1. Zapoznanie się ze sposobem przeprowadzania

Bardziej szczegółowo

Pomiary twardości i mikrotwardości

Pomiary twardości i mikrotwardości Pomiary twardości i mikrotwardości 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie z metodami badania twardości metali oraz nabycie umiejętności w określaniu twardości metodami Brinella, Rockwella i Vickersa.

Bardziej szczegółowo

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 193

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 193 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 193 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa ul. Szczotkarska 42 Wydanie nr 15, Data wydania: 8 października 2015 r. AB 193 Kod identyfikacji

Bardziej szczegółowo

Ich właściwości zmieniające się w szerokim zakresie w zależności od składu chemicznego (rys) i technologii wytwarzania wyrobu.

Ich właściwości zmieniające się w szerokim zakresie w zależności od składu chemicznego (rys) i technologii wytwarzania wyrobu. STOPY ŻELAZA Ich właściwości zmieniające się w szerokim zakresie w zależności od składu chemicznego (rys) i technologii wytwarzania wyrobu. Ze względu na bardzo dużą ilość stopów żelaza z węglem dla ułatwienia

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 2 Temat ćwiczenia:

Bardziej szczegółowo

INSTRUKCJA DO CWICZENIA NR 5

INSTRUKCJA DO CWICZENIA NR 5 INTRUKCJA DO CWICZENIA NR 5 Temat ćwiczenia: tatyczna próba ściskania materiałów kruchych Celem ćwiczenia jest wykonanie próby statycznego ściskania materiałów kruchych, na podstawie której można określić

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Badanie udarności metali Numer ćwiczenia: 7 Laboratorium z przedmiotu: wytrzymałość

Bardziej szczegółowo

MATERIAŁOZNAWSTWO vs WYTRZYMAŁOŚĆ MATERIAŁÓW

MATERIAŁOZNAWSTWO vs WYTRZYMAŁOŚĆ MATERIAŁÓW ĆWICZENIA LABORATORYJNE Z MATERIAŁOZNAWSTWA Statyczna próba rozciągania stali Wyznaczanie charakterystyki naprężeniowo odkształceniowej. Określanie: granicy sprężystości, plastyczności, wytrzymałości na

Bardziej szczegółowo

Nauka o Materiałach. Wykład IX. Odkształcenie materiałów właściwości plastyczne. Jerzy Lis

Nauka o Materiałach. Wykład IX. Odkształcenie materiałów właściwości plastyczne. Jerzy Lis Nauka o Materiałach Wykład IX Odkształcenie materiałów właściwości plastyczne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Odkształcenie plastyczne 2. Parametry makroskopowe 3. Granica plastyczności

Bardziej szczegółowo

Zespół Szkół Samochodowych

Zespół Szkół Samochodowych Zespół Szkół Samochodowych Podstawy Konstrukcji Maszyn Materiały Konstrukcyjne i Eksploatacyjne Temat: CHARAKTERYSTYKA I OZNACZENIE STALIW. 2016-01-24 1 1. Staliwo powtórzenie. 2. Właściwości staliw. 3.

Bardziej szczegółowo

Wykład IX: Odkształcenie materiałów - właściwości plastyczne

Wykład IX: Odkształcenie materiałów - właściwości plastyczne Wykład IX: Odkształcenie materiałów - właściwości plastyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Treść wykładu: 1. Odkształcenie

Bardziej szczegółowo

Stal - definicja Stal

Stal - definicja Stal \ Stal - definicja Stal stop żelaza z węglem,plastycznie obrobiony i obrabialny cieplnie o zawartości węgla nieprzekraczającej 2,11% co odpowiada granicznej rozpuszczalności węgla w żelazie (dla stali

Bardziej szczegółowo

Badania wytrzymałościowe

Badania wytrzymałościowe WyŜsza Szkoła InŜynierii Dentystycznej im. prof. A.Meissnera w Ustroniu Badania wytrzymałościowe elementów drucianych w aparatach czynnościowych. Pod kierunkiem naukowym prof. V. Bednara Monika Piotrowska

Bardziej szczegółowo

Ćwiczenie 18 BADANIA TWARDOŚCI MATERIAŁÓW *

Ćwiczenie 18 BADANIA TWARDOŚCI MATERIAŁÓW * Ćwiczenie 18 1. CEL ĆWICZENIA BADANIA TWARDOŚCI MATERIAŁÓW * Celem ćwiczenia jest zapoznanie się z metodami pomiaru twardości i mikrotwardości oraz zasadami ich przeprowadzania. 2. WIADOMOŚCI PODSTAWOWE

Bardziej szczegółowo

CHARAKTERYSTYKA MECHANIZMÓW NISZCZĄCYCH POWIERZCHNIĘ WYROBÓW (ŚCIERANIE, KOROZJA, ZMĘCZENIE).

CHARAKTERYSTYKA MECHANIZMÓW NISZCZĄCYCH POWIERZCHNIĘ WYROBÓW (ŚCIERANIE, KOROZJA, ZMĘCZENIE). Temat 2: CHARAKTERYSTYKA MECHANIZMÓW NISZCZĄCYCH POWIERZCHNIĘ WYROBÓW (ŚCIERANIE, KOROZJA, ZMĘCZENIE). Wykład 3h 1) Przyczyny zużycia powierzchni wyrobów (tarcie, zmęczenie, korozja). 2) Ścieranie (charakterystyka

Bardziej szczegółowo

PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH

PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Reologia jest nauką,

Bardziej szczegółowo

LABORATORIUM NAUKI O MATERIAŁACH

LABORATORIUM NAUKI O MATERIAŁACH Politechnika Łódzka Wydział Mechaniczny Instytut Inżynierii Materiałowej LABORATORIUM NAUKI O MATERIAŁACH Ćwiczenie nr 5 Temat: Stale stopowe, konstrukcyjne, narzędziowe i specjalne. Łódź 2010 1 S t r

Bardziej szczegółowo

Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R 0,05, umownej granicy plastyczności R 0,2 oraz modułu sprężystości podłużnej E

Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R 0,05, umownej granicy plastyczności R 0,2 oraz modułu sprężystości podłużnej E Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R,5, umownej granicy plastyczności R,2 oraz modułu sprężystości podłużnej E 3.1. Wstęp Nie wszystkie materiały posiadają wyraźną granicę plastyczności

Bardziej szczegółowo

MATERIAŁY SUPERTWARDE

MATERIAŁY SUPERTWARDE MATERIAŁY SUPERTWARDE Twarde i supertwarde materiały Twarde i bardzo twarde materiały są potrzebne w takich przemysłowych zastosowaniach jak szlifowanie i polerowanie, cięcie, prasowanie, synteza i badania

Bardziej szczegółowo

STALE STOPOWE KONSTRUKCYJNE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

STALE STOPOWE KONSTRUKCYJNE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego STALE STOPOWE KONSTRUKCYJNE Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego STALE STOPOWE KONSTRUKCYJNE Ważniejsze grupy stali: stale spawalne o podwyższonej

Bardziej szczegółowo

Metody badań materiałów konstrukcyjnych

Metody badań materiałów konstrukcyjnych Wyznaczanie stałych materiałowych Nr ćwiczenia: 1 Wyznaczyć stałe materiałowe dla zadanych materiałów. Maszyna wytrzymałościowa INSTRON 3367. Stanowisko do badania wytrzymałości na skręcanie. Skalibrować

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE ZACHOWANIA SIĘ MATERIAŁÓW PODCZAS ŚCISKANIA Instrukcja przeznaczona jest dla studentów

Bardziej szczegółowo

Nauka o Materiałach. Wykład VI. Odkształcenie materiałów właściwości sprężyste i plastyczne. Jerzy Lis

Nauka o Materiałach. Wykład VI. Odkształcenie materiałów właściwości sprężyste i plastyczne. Jerzy Lis Nauka o Materiałach Wykład VI Odkształcenie materiałów właściwości sprężyste i plastyczne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Statyczna próba rozciągania.

Bardziej szczegółowo

Stale niestopowe jakościowe Stale niestopowe specjalne

Stale niestopowe jakościowe Stale niestopowe specjalne Ćwiczenie 5 1. Wstęp. Do stali specjalnych zaliczane są m.in. stale o szczególnych własnościach fizycznych i chemicznych. Są to stale odporne na różne typy korozji: chemiczną, elektrochemiczną, gazową

Bardziej szczegółowo

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa ul. Szczotkarska 42 Wydanie nr 8, Data wydania: 17 września 2009 r. Nazwa i adres organizacji

Bardziej szczegółowo

Technologia obróbki cieplnej. Grzanie i ośrodki grzejne

Technologia obróbki cieplnej. Grzanie i ośrodki grzejne Technologia obróbki cieplnej Grzanie i ośrodki grzejne Grzanie: nagrzewanie i wygrzewanie Dobór czasu grzania Rodzaje ośrodków grzejnych Powietrze Ośrodki gazowe Złoża fluidalne Kąpiele solne: sole chlorkowe

Bardziej szczegółowo

PRELIMINARY BROCHURE CORRAX. A stainless precipitation hardening steel

PRELIMINARY BROCHURE CORRAX. A stainless precipitation hardening steel PRELIMINARY BROCHURE CORRAX A stainless precipitation hardening steel Ogólne dane Właściwości W porównaniu do konwencjonalnych narzędziowych odpornych na korozję, CORRAX posiada następujące zalety: Szeroki

Bardziej szczegółowo

Nauka o Materiałach. Wykład I. Zniszczenie materiałów w warunkach dynamicznych. Jerzy Lis

Nauka o Materiałach. Wykład I. Zniszczenie materiałów w warunkach dynamicznych. Jerzy Lis Wykład I Zniszczenie materiałów w warunkach dynamicznych Jerzy Lis Treść wykładu: 1. Zmęczenie materiałów 2. Tarcie i jego skutki 3. Udar i próby udarności. 4. Zniszczenie balistyczne 5. Erozja cząstkami

Bardziej szczegółowo

STAL NARZĘDZIOWA DO PRACY NA ZIMNO

STAL NARZĘDZIOWA DO PRACY NA ZIMNO STAL NARZĘDZIOWA DO PRACY NA ZIMNO Jakościowe porównanie głównych własności stali Tabela daje jedynie wskazówki, by ułatwić dobór stali. Nie uwzględniono tu charakteru obciążenia narzędzia wynikającego

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE ZACHOWANIA SIĘ MATERIAŁÓW PODCZAS ŚCISKANIA Instrukcja przeznaczona jest dla studentów

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Zwykła statyczna próba ściskania metali Numer ćwiczenia: 3 Laboratorium z przedmiotu:

Bardziej szczegółowo

PŁASKI STAN NAPRĘŻENIA, PŁASKI STAN ODKSZTAŁCENIA

PŁASKI STAN NAPRĘŻENIA, PŁASKI STAN ODKSZTAŁCENIA PŁASKI STAN NAPRĘŻENIA, PŁASKI STAN ODKSZTAŁCENIA 1) Prawo Hook a jest prawdziwe: a) w zakresie odkształceń trwałych b) dla naprężeń stycznych w zakresie odkształceń nietrwałych c) dla naprężeń normalnych

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW PRÓBA UDARNOŚCI METALI Opracował: Dr inż. Grzegorz Nowak Gliwice

Bardziej szczegółowo

PROCESY PRODUKCYJNE WYTWARZANIA METALI I WYROBÓW METALOWYCH

PROCESY PRODUKCYJNE WYTWARZANIA METALI I WYROBÓW METALOWYCH Wyższa Szkoła Ekonomii i Administracji w Bytomiu Wilhelm Gorecki PROCESY PRODUKCYJNE WYTWARZANIA METALI I WYROBÓW METALOWYCH Podręcznik akademicki Bytom 2011 1. Wstęp...9 2. Cel podręcznika...11 3. Wstęp

Bardziej szczegółowo

Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis

Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis Nauka o Materiałach Wykład VIII Odkształcenie materiałów właściwości sprężyste Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Klasyfikacja reologiczna odkształcenia

Bardziej szczegółowo

POLITECHNIKA CZĘSTOCHOWSKA

POLITECHNIKA CZĘSTOCHOWSKA POLITECHNIKA CZĘSTOCHOWSKA Instytut Inżynierii Materiałowej Stale narzędziowe do pracy na zimno CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się ze składem chemicznym, mikrostrukturą, właściwościami mechanicznymi

Bardziej szczegółowo

PODSTAWY SKRAWANIA MATERIAŁÓW KONSTRUKCYJNYCH

PODSTAWY SKRAWANIA MATERIAŁÓW KONSTRUKCYJNYCH WIT GRZESIK PODSTAWY SKRAWANIA MATERIAŁÓW KONSTRUKCYJNYCH Wydanie 3, zmienione i uaktualnione Wydawnictwo Naukowe PWN SA Warszawa 2018 Od Autora Wykaz ważniejszych oznaczeń i skrótów SPIS TREŚCI 1. OGÓLNA

Bardziej szczegółowo

DOLFA-POWDER FREZY TRZPIENIOWE ZE STALI PROSZKOWEJ DOLFAMEX

DOLFA-POWDER FREZY TRZPIENIOWE ZE STALI PROSZKOWEJ DOLFAMEX -POWDER FREZY TRZPIENIOWE ZE STALI PROSZKOWEJ Dzięki użyciu nowoczesnego materiału mają one zastosowanie przy obróbce stali i żeliwa o podwyższonej twardości: q charakteryzują się wysoką żywotnością narzędzia,

Bardziej szczegółowo

Rys. 1. Próbka do pomiaru odporności na pękanie

Rys. 1. Próbka do pomiaru odporności na pękanie PL0500343 METODY BADAWCZE ZASTOSOWANE DO OKREŚLENIA WŁASNOŚCI MECHANICZNYCH, NA PRZYKŁADZIE NOWEJ WYSOKOWYTRZYMAŁEJ STALI, ZE SZCZEGÓLNYM UWZGLĘDNIENIEM ODPORNOŚCI NA PĘKANIE JAN WASIAK,* WALDEMAR BIŁOUS,*

Bardziej szczegółowo

Dobór materiałów konstrukcyjnych cz. 10

Dobór materiałów konstrukcyjnych cz. 10 Dobór materiałów konstrukcyjnych cz. 10 dr inż. Hanna Smoleńska Katedra Inżynierii Materiałowej i Spajania Wydział Mechaniczny, Politechnika Gdańska DO UŻYTKU WEWNĘTRZNEGO Zniszczenie materiału w wyniku

Bardziej szczegółowo

Logistyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Logistyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-LOG-1082 Podstawy nauki o materiałach Fundamentals of Material Science

Bardziej szczegółowo

Próby udarowe. Opracował: XXXXXXX studia inŝynierskie zaoczne wydział mechaniczny semestr V. Gdańsk 2002 r.

Próby udarowe. Opracował: XXXXXXX studia inŝynierskie zaoczne wydział mechaniczny semestr V. Gdańsk 2002 r. Próby udarowe Opracował: XXXXXXX studia inŝynierskie zaoczne wydział mechaniczny semestr V Gdańsk 00 r. 1. Cel ćwiczenia. Przeprowadzenie ćwiczenia ma na celu: 1. zapoznanie się z próbą udarności;. zapoznanie

Bardziej szczegółowo

STATYCZNA PRÓBA ŚCISKANIA

STATYCZNA PRÓBA ŚCISKANIA STATYCZNA PRÓBA ŚCISKANIA 1. WSTĘP Statyczna próba ściskania, obok statycznej próby rozciągania jest jedną z podstawowych prób stosowanych dla określenia właściwości mechanicznych materiałów. Celem próby

Bardziej szczegółowo

Wydajność w obszarze HSS

Wydajność w obszarze HSS New czerwiec 2017 Nowe produkty dla techników obróbki skrawaniem Wydajność w obszarze HSS Nowe wiertło HSS-E-PM UNI wypełnia lukę pomiędzy HSS a VHM TOTAL TOOLING = JAKOŚĆ x SERWIS 2 WNT Polska Sp. z o.o.

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Podstawy techniki i technologii Kod przedmiotu: IS01123; IN01123 Ćwiczenie 5 BADANIE WŁASNOŚCI MECHANICZNYCH

Bardziej szczegółowo

Zakres tematyczny. Podział stali specjalnych, ze względu na warunki pracy:

Zakres tematyczny. Podział stali specjalnych, ze względu na warunki pracy: STAL O SPECJALNYCH WŁAŚCIWOŚCIACH FIZYCZNYCH I CHEMICZNYCH Zakres tematyczny 1 Podział stali specjalnych, ze względu na warunki pracy: - odporne na korozję, - do pracy w obniżonej temperaturze, - do pracy

Bardziej szczegółowo

Rodzaje obciążeń, odkształceń i naprężeń

Rodzaje obciążeń, odkształceń i naprężeń Rodzaje obciążeń, odkształceń i naprężeń 1. Podział obciążeń i odkształceń Oddziaływania na konstrukcję, w zależności od sposobu działania sił, mogą być statyczne lun dynamiczne. Obciążenia statyczne występują

Bardziej szczegółowo

2.2 Wyznaczanie modułu Younga na podstawie ścisłej próby rozciągania

2.2 Wyznaczanie modułu Younga na podstawie ścisłej próby rozciągania UT-H Radom Instytut Mechaniki Stosowanej i Energetyki Laboratorium Wytrzymałości Materiałów instrukcja do ćwiczenia 2.2 Wyznaczanie modułu Younga na podstawie ścisłej próby rozciągania I ) C E L Ć W I

Bardziej szczegółowo

BADANIA WŁAŚCIWOŚCI MECHANICZNYCH I BADANIA NIENISZCZĄCE

BADANIA WŁAŚCIWOŚCI MECHANICZNYCH I BADANIA NIENISZCZĄCE BADANIA WŁAŚCIWOŚCI MECHANICZNYCH I BADANIA NIENISZCZĄCE Temat ćwiczenia: Wpływ kształtu karbu i temperatury na udarność Miejsce ćwiczeń: sala 15 Czas: 4*45 min Prowadzący: dr inż. Julita Dworecka-Wójcik,

Bardziej szczegółowo

Egzamin; TEST (pełna wersja)

Egzamin; TEST (pełna wersja) Egzamin; TEST (pełna wersja) 1. Jakiemu testowi należy podać materiał, aby ocenić jego przydatność do wykonania elementu urządzenia technicznego pracującego w następujących warunkach: statycznego ściskania

Bardziej szczegółowo

Ćwiczenie 11. Moduł Younga

Ćwiczenie 11. Moduł Younga Ćwiczenie 11. Moduł Younga Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Wyznaczenie modułu Younga metodą statyczną za pomocą pomiaru wydłużenia drutu z badanego materiału obciążonego stałą siłą.

Bardziej szczegółowo

ĆWICZENIE 15 WYZNACZANIE (K IC )

ĆWICZENIE 15 WYZNACZANIE (K IC ) POLITECHNIKA WROCŁAWSKA Imię i Nazwisko... WYDZIAŁ MECHANICZNY Wydzia ł... Wydziałowy Zakład Wytrzymałości Materiałów Rok... Grupa... Laboratorium Wytrzymałości Materiałów Data ćwiczenia... ĆWICZENIE 15

Bardziej szczegółowo

Laboratorium Metod Badania Materiałów Statyczna próba rozciągania

Laboratorium Metod Badania Materiałów Statyczna próba rozciągania Robert Gabor Laboratorim Metod Badania Materiałów Statyczna próba rozciągania Więcej na: www.tremolo.prv.pl, www.tremolo.pl dział laboratoria 1 CZĘŚĆ TEORETYCZNA Statyczna próba rozciągania ocenia właściwości

Bardziej szczegółowo

STALE STOPOWE KONSTRUKCYJNE

STALE STOPOWE KONSTRUKCYJNE STALE STOPOWE KONSTRUKCYJNE Podział stali stopowych ze względu na zastosowanie: stale konstrukcyjne stale narzędziowe stale o szczególnych właściwościach STALE STOPOWE KONSTRUKCYJNE Ważniejsze grupy stali:

Bardziej szczegółowo

Dobór materiałów konstrukcyjnych cz. 9

Dobór materiałów konstrukcyjnych cz. 9 Dobór materiałów konstrukcyjnych cz. 9 dr inż. Hanna Smoleńska Katedra Inżynierii Materiałowej i Spajania Wydział Mechaniczny, Politechnika Gdańska Materiały edukacyjne Materiały na uszczelki Ashby M.F.:

Bardziej szczegółowo

POLITECHNIKA RZESZOWSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA

POLITECHNIKA RZESZOWSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA POLITECHNIK RZEZOWK im. IGNCEGO ŁUKIEWICZ WYDZIŁ BUDOWNICTW I INŻYNIERII ŚRODOWIK LBORTORIUM WYTRZYMŁOŚCI MTERIŁÓW Ćwiczenie nr 1 PRÓB TTYCZN ROZCIĄGNI METLI Rzeszów 4-1 - PRz, Katedra Mechaniki Konstrkcji

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE TWORZYW SZTUCZNYCH OZNACZENIE WŁASNOŚCI MECHANICZNYCH PRZY STATYCZNYM ROZCIĄGANIU

Bardziej szczegółowo

Nazwa przedmiotu INSTRUMENTARIUM BADAWCZE W INŻYNIERII MATERIAŁOWEJ Instrumentation of research in material engineering

Nazwa przedmiotu INSTRUMENTARIUM BADAWCZE W INŻYNIERII MATERIAŁOWEJ Instrumentation of research in material engineering Nazwa przedmiotu INSTRUMENTARIUM BADAWCZE W INŻYNIERII MATERIAŁOWEJ Instrumentation of research in material engineering Kierunek: Inżynieria materiałowa Rodzaj przedmiotu: kierunkowy obowiązkowy Rodzaj

Bardziej szczegółowo

Dobór materiałów konstrukcyjnych cz. 7

Dobór materiałów konstrukcyjnych cz. 7 Dobór materiałów konstrukcyjnych cz. 7 dr inż. Hanna Smoleńska Katedra Inżynierii Materiałowej i Spajania Wydział Mechaniczny, Politechnika Gdańska Materiały edukacyjne Sprężystość i wytrzymałość Naprężenie

Bardziej szczegółowo

MATERIAŁOZNAWSTWO. Prof. dr hab. inż. Andrzej Zieliński Katedra Inżynierii Materiałowej Pok. 204

MATERIAŁOZNAWSTWO. Prof. dr hab. inż. Andrzej Zieliński Katedra Inżynierii Materiałowej Pok. 204 MATERIAŁOZNAWSTWO Prof. dr hab. inż. Andrzej Zieliński Katedra Inżynierii Materiałowej Pok. 204 PODRĘCZNIKI Leszek A. Dobrzański: Podstawy nauki o materiałach i metaloznawstwo K. Prowans: Materiałoznawstwo

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 3 Temat ćwiczenia:

Bardziej szczegółowo

STALE NARZĘDZIOWE DO PRACY NA GORĄCO

STALE NARZĘDZIOWE DO PRACY NA GORĄCO Ćwiczenie 9 Stale narzędziowe STALE NARZĘDZIOWE DO PRACY NA ZIMNO DO PRACY NA GORĄCO SZYBKOTNĄCE NIESTOPOWE STOPOWE Rysunek 1. Klasyfikacja stali narzędziowej. Ze stali narzędziowej wykonuje się narzędzia

Bardziej szczegółowo

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany

Bardziej szczegółowo

Austenityczne stale nierdzewne

Austenityczne stale nierdzewne Stowarzyszenie Stal Nierdzewna ul. Ligocka 103 40-568 Katowice e-mail: ssn@stalenierdzewne.pl www.stalenierdzewne.pl Austenityczne stale nierdzewne Strona 1 z 7 Skład chemiczny austenitycznych stali odpornych

Bardziej szczegółowo

MATERIAŁOZNAWSTWO. dr hab. inż. Joanna Hucińska Katedra Inżynierii Materiałowej Pok. 128 (budynek Żelbetu )

MATERIAŁOZNAWSTWO. dr hab. inż. Joanna Hucińska Katedra Inżynierii Materiałowej Pok. 128 (budynek Żelbetu ) MATERIAŁOZNAWSTWO dr hab. inż. Joanna Hucińska Katedra Inżynierii Materiałowej Pok. 128 (budynek Żelbetu ) jhucinsk@pg.gda.pl MATERIAŁOZNAWSTWO dziedzina nauki stosowanej obejmująca badania zależności

Bardziej szczegółowo

Wykład XV: Odporność materiałów na zniszczenie. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych

Wykład XV: Odporność materiałów na zniszczenie. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Wykład XV: Odporność materiałów na zniszczenie JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu: 1. Zmęczenie materiałów 2. Tarcie i jego skutki

Bardziej szczegółowo

Metaloznawstwo II Metal Science II

Metaloznawstwo II Metal Science II Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014

Bardziej szczegółowo

Podstawy Konstrukcji Maszyn

Podstawy Konstrukcji Maszyn Podstawy Konstrukcji Maszyn Wykład 1 Ogólne informacje o konstruowaniu maszyn Dr inŝ. Jacek Czarnigowski Pojęcia podstawowe Maszyna mechanizm lub grupa mechanizmów wykorzystywana podczas procesu pracy

Bardziej szczegółowo

Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA

Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA PRZEDMIOT: INŻYNIERIA WARSTWY WIERZCHNIEJ Temat ćwiczenia: Badanie prędkości zużycia materiałów

Bardziej szczegółowo