Wykład 2. Prawdopodobieństwo i elementy kombinatoryki

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wykład 2. Prawdopodobieństwo i elementy kombinatoryki"

Transkrypt

1 Wstęp do probabilistyki i statystyki Wykład 2. Prawdopodobieństwo i elementy kombinatoryki dr inż. Krystyna Schneider, Katedra Elektroniki, AGH kryschna@agh.edu.pl Wstęp do probabilistyki i statystyki. wykład 2 1

2 Plan: Definicja prawdopodobieństwa Zdarzenie losowe a zdarzenie elementarne Algebra zdarzeń Elementy kombinatoryki Prawdopodobieństwo warunkowe Wstęp do probabilistyki i statystyki. wykład 2 2

3 Definicja prawdopodobieństwa Klasyczna Geometryczna Częstościowa Aksjomatyczna Wstęp do probabilistyki i statystyki. wykład 2 3

4 Definicja klasyczna prawdopodobieństwa Pierwszą (klasyczną) definicję prawdopodobieństwa podał P.S. Laplace w 1812 r. Rozważmy doświadczenie losowe kończące się zawsze dokładnie jednym spośród N jednakowo możliwych wyników. Prawdopodobieństwem zdarzenia A nazywamy stosunek liczby n a zdarzeń sprzyjających zdarzeniu A do liczby wszystkich zdarzeń N P A = na N A jest podzbiorem tzw. zdarzenia pewnego Ω. A Ω Wstęp do probabilistyki i statystyki. wykład 2 4

5 Definicja geometryczna prawdopodobieństwa (Buffona) Wprowadzono, aby móc mówić o prawdopodobieństwie także w przypadku nieskończenie wielu wyników. Przypuśćmy, że w przestrzeni r-wymiarowej mamy pewien obszar G i zawarty w nim obszar g. Doświadczenie polega na losowym wyborze punktu w obszarze G, przy czym wszystkie punkty są równoprawne. Przez równoprawność rozumiemy, że wybory punktów z obszarów o identycznej mierze (przy dowolnym ich kształcie i położeniu) są jednakowo możliwe. Prawdopodobieństwem zdarzenia A polegającego na tym, że losowo wybrany punkt znajdzie się w obszarze g wynosi: P A = miara( g) miara( G) Wstęp do probabilistyki i statystyki. wykład 2 5

6 Paradoks Bertranda W danym kole prowadzimy na chybił trafił ( w sposób losowy) cięciwę. Jakie jest prawdopodobieństwo, że będzie ona dłuższa od boku trójkąta równobocznego wpisanego w to koło? Trzy sposoby rozwiązania, trzy różne odpowiedzi: ½, 1/3, ¼. Przyczyna paradoksu tkwi w tym, że w treści zadania nie sprecyzowano dokładnie, co należy rozumieć przez poprowadzenie średnicy w sposób losowy. Wstęp do probabilistyki i statystyki. wykład 2 6

7 Definicja częstościowa prawdopodobieństwa Zaproponowana przez R. von Misesa w 1931 r. Nie ma wad definicji klasycznej ani geometrycznej. Jest zgodna z intuicją i z obserwowalną prawidłowością dotyczącą częstości. Nie jest jednak akceptowalna jako definicja pojęcia matematycznego ( a posteriori). Prawdopodobieństwo zdarzenia A jest to granica częstości tego zdarzenia, gdy liczba doświadczeń n dąży do nieskończoności P( A) = n( A) lim n n Wstęp do probabilistyki i statystyki. wykład 2 7

8 (Kołmogorova) Aksjomatyczna definicja prawdopodobieństwa Każdemu zdarzeniu losowemu A przypisujemy liczbę P(A), zwaną prawdopodobieństwem tego zdarzenia, taką że 1. 0 P(A) Prawdopodobieństwo zdarzenia pewnego jest równe jedności PΩ= 1 3. (przeliczalna addytywność prawdopodobieństwa) Jeśli zdarzenia są rozłączne (wykluczające się parami), to prawdopodobieństwo alternatywy (sumy) zdarzeń jest równe sumie prawdopodobieństw tych zdarzeń. jeżeli A 1, A 2, Є M, przy czym dla każdej pary wskaźników i, j (i j) jest A i A j =Ø, to P A k = k1 k1 Wstęp do probabilistyki i statystyki. wykład 2 8 P A k

9 Konsekwencje aksjomatów Prawdopodobieństwo sumy wzajemnie wykluczających się zdarzeń losowych A i B jest równe sumie prawdopodobieństw tych zdarzeń P czyli:» (Kołmogorov, 1933) A B= PA +PB,gdzie A B= A B Wstęp do probabilistyki i statystyki. wykład 2 9

10 Zdarzenie losowe a zdarzenie elementarne W każdym doświadczeniu losowym można wyróżnić pewne najprostsze, nierozkładalne, elementarne wyniki (zdarzenia), charakteryzujące się tym, że każde powtórzenie tego doświadczenia kończy się jednym i tylko jednym z nich. Są to zdarzenia elementarne. Dla każdego doświadczenia losowego rozważamy zbiór wszystkich możliwych wyników tego doświadczenia. Poszczególne wyniki nazywamy zdarzeniami elementarnymi. Zbiór wszystkich wyników nazywamy przestrzenią wyników albo przestrzenią (zbiorem) zdarzeń elementarnych i oznaczamy symbolem Ω. Wstęp do probabilistyki i statystyki. wykład 2 10

11 Przykład zdarzenia losowego Rzucamy monetą dwa razy. Możliwe wyniki to: (o, o) wyrzucenie dwóch orłów (o, r) wyrzucenie orła, a potem reszki (r, o) wyrzucenie reszki, a potem orła (r, r) wyrzucenie dwóch reszek Zbiór: Ω={(o, o); (o, r) ; (r, o); (r, r)} jest zbiorem zdarzeń elementarnych. Jeżeli zbiór zdarzeń elementarnych ma n- elementów to zdarzeń losowych jest 2 n Wstęp do probabilistyki i statystyki. wykład 2 11

12 Przykład zdarzenia losowego W tej sytuacji możliwych jest 2 4 zdarzeń losowych. Wybrane zdarzenia losowe, np.: A = {(o,o); (o,r); (r,o)} wyrzucenie co najmniej 1 orła B = {(o,o); (o,r)} - orzeł w pierwszym rzucie G = {(o,o)} - wyrzucenie dwóch orłów H = {(o,r); (r,o)} wyrzucenie dokładnie jednej reszki Wstęp do probabilistyki i statystyki. wykład 2 12

13 Przykład do samodzielnego rozwiązania Dokonać przeglądu wszystkich (uwzględniając zdarzenie pewne i niemożliwe) zdarzeń (jedno-, dwu-, trzy-, cztero-, pięcio- i sześcioelementowych) w doświadczeniu polegającym na rzucie kostką. Określić przestrzeń zdarzeń elementarnych. Podać liczbę wszystkich możliwych zdarzeń Wstęp do probabilistyki i statystyki. wykład 2 13

14 Relacje zdarzeń Suma zdarzeń zachodzi co najmniej jedno ze zdarzeń A lub B (alternatywa) A B A B Iloczyn zdarzeń zachodzi zdarzenie A oraz zdarzenie B (koniunkcja) A B A A A B B B Wstęp do probabilistyki i statystyki. wykład 2 14

15 Relacje zdarzeń Zdarzenie przeciwne nie zachodzi zdarzenie A Zdarzenie A pociąga zdarzenie B (operator: zbiór A zawiera się w zbiorze B) Zdarzenia A i B wzajemnie wykluczające się A A' A B B= Wstęp do probabilistyki i statystyki. wykład 2 15

16 Liczba obiektów w prostych sytuacjach kombinatorycznych W wielu sytuacjach konieczne jest wyznaczenie liczby elementów rozważanego zbioru. Mogą tu być pomocne proste zasady arytmetyczne: reguła dodawania reguła mnożenia rzut monetą wyciąganie kart z talii rzut kostką Wstęp do probabilistyki i statystyki. wykład 2 16

17 Reguła dodawania Jeżeli dwa zdarzenia wzajemnie się wykluczają, tzn. nie mogą wystąpić jednocześnie, wtedy możemy stosować regułę dodawania. Twierdzenie dotyczące dodawania. Jeżeli zdarzenie e 1 można zrealizować na n 1 sposobów, a zdarzenie e 2 na n 2 sposobów oraz zdarzenia e 1 i e 2 wzajemnie się wykluczają, to liczba sposobów w jakich realizują się oba zdarzenia wynosi: n 1 + n 2 Wstęp do probabilistyki i statystyki. wykład 2 17

18 Uogólnienie reguły dodawania Jeżeli rozważany zbiór Z jest sumą, rozłącznych parami podzbiorów, Z= A 1 A 2 A m i znamy liczbę elementów każdego podzbioru, to liczba elementów zbioru Z jest sumą liczb elementów wszystkich podzbiorów A 1, A 2,., A m A 1 A 2 = A 1 + A 2 Jest to szczególny przypadek zasady włączeń-wyłączeń ang. Principle of Inclusion-Exclusion, PIE Wstęp do probabilistyki i statystyki. wykład 2 18

19 Zasada włączeń-wyłączeń, Principle of Inclusion-Exclusion (PIE) Rozważmy dwa zdarzenia, e 1 i e 2, dla których możliwe jest wystąpienie odpowiednio n 1 i n 2 rezultatów. Jednak, tylko jedno zdarzenie może zachodzić a nie oba. W tej sytuacji nie stosuje się reguły dodawania. W języku zdarzeń: od sumy wszystkich możliwych wyników należy odjąć liczbę tych, które są wspólne dla obu zdarzeń. W języku zbiorów: A 1 A 2 = A 1 + A 2 - A 1 A 2 Wstęp do probabilistyki i statystyki. wykład 2 19

20 Reguła mnożenia Jeżeli dwa zdarzenia nie wykluczają się, tzn. mogą zachodzić osobno, wtedy możemy stosować regułę mnożenia. Twierdzenie dotyczące mnożenia. Jeżeli pewne doświadczenie można wykonać w m kolejnych etapach, przy czym w k-tym etapie można uzyskać w k wyników, to liczba wszystkich wyników doświadczenia jest równa iloczynowi w 1 w 2 w m Wstęp do probabilistyki i statystyki. wykład 2 20

21 Zastosowanie reguł dodawania i mnożenia Zamek jest strzeżony przez dwie wieże, jedna z nich jest zamknięta kodem dwucyfrowym nieparzystym, druga kodem dwucyfrowym parzystym. Wystarczy złamać kod na jednej wieży, aby wejść. Na ile sposobów możemy wejść do zamku? Mamy tutaj jednocześnie regułę mnożenia i dodawania. Najpierw mnożenia, wieża z kodem parzystym składa się z 2 cyfr. Możliwe dziesiątki: 2,4,6,8 Możliwe jedności: 0,2,4,6,8 Zatem z reguły mnożenia kombinacji jest 5 4=20 Tak samo w wieży nieparzystej. Możliwe dziesiątki: 1,3,5,7,9 Możliwe jedności: 1,3,5,7,9 Z reguły mnożenia kombinacji jest 5 5=25 Z racji, że mamy albo (ta wieża albo tamta) sumujemy nasze wyliczone kombinacje: 25+20=45 21

22 Wariacje Wariacją k elementową ze zbioru n elementowego nazywamy każdy ciąg (uporządkowanie) k elementowy utworzony z elementów tego zbioru. Ilość (ciągów) wariacji zależy od tego czy elementy ciągu mogą się powtarzać czy nie. Istotny jest zatem sposób losowania: bez zwracania = bez powtórzeń; ze zwracaniem = z powtórzeniami Wstęp do probabilistyki i statystyki. wykład 2 22

23 Wariacje bez powtórzeń Przykład: Rozważmy 3-elementowy zbiór Z={a,b,c} i wypiszmy wszystkie wariacje 2-wyrazowe bez powtórzeń: (a,b) (b,a) (a,c) (c,a) (b,c) (c,b) Obliczyć liczbę tych ciągów 3x2=6 Ogólnie: V ( k ) n = k 1 i0 ( n i) n( n 1)( n 2)...( n k 1) Wstęp do probabilistyki i statystyki. wykład 2 23

24 Liczba wariacji bez powtórzeń Liczbę wariacji k elementowych bez powtórzeń ze zbioru n elementowego można obliczyć ze wzoru: ( ) V k n = n! ( n k)! Wstęp do probabilistyki i statystyki. wykład 2 24

25 Liczba wariacji bez powtórzeń Liczbę wariacji k elementowych bez powtórzeń ze zbioru n elementowego można obliczyć ze wzoru: ( ) V k n = ( n n! k)! Gdy k=n, tzn. ciąg n elementowy ze zbioru n elementowego (permutacja bez powtórzeń) Przykład: (abc) (acb) (bac) (bca) (cab) (cba) Liczba permutacji wynosi n! Wstęp do probabilistyki i statystyki. wykład 2 25

26 Wariacje z powtórzeniami Przykład: Rozważmy 3-elementowy zbiór Z={a,b,c} i wypiszmy wszystkie wariacje 2-wyrazowe z powtórzeniami: (a,a) (b,a) (c,a) (a,b) (b,b) (c,b) (a,c) (b,c) (c,c) Obliczyć liczbę tych ciągów 3x3=3 2 = 9 Wstęp do probabilistyki i statystyki. wykład 2 26

27 Liczba wariacji z powtórzeniami Liczbę wariacji k elementowych z powtórzeniami ze zbioru n elementowego można obliczyć ze wzoru: k W ( ) n = n k Zadanie: Wiele urządzeń elektronicznych wymaga od użytkownika wprowadzenia osobistego kodu złożonego z czterech cyfr. Oblicz, ile jest możliwych kodów. Rozwiązanie: Każdy kod to czteroelementowa wariacja z powtórzeniami ze zbioru dziesięciu cyfr {0,1,2,3,4,5,6,7,8,9} W (4) = Wstęp do probabilistyki i statystyki. wykład 2 27

28 Permutacje Permutacją bez powtórzeń zbioru złożonego z n różnych elementów nazywamy każdy ciąg złożony ze wszystkich wyrazów tego zbioru. Wszystkich możliwych permutacji zbioru n-elementowego jest n! Przykład: Zbiór {a, b, c, d} (abcd) (acbd) (bacd) (bcad) (cabd) (cbad) (dabc) (dacb) (dbac) (dbca) (dcab) (dcba) (adbc) (adcb) (bdac) (bdca) (cdab) (cdba) (abdc) (acdb) (badc) (bcda) (cadb) (cbda) Liczba możliwych ustawień ciągu 4-wyrazowego wynosi Wstęp do probabilistyki i statystyki. wykład 2 4!=4 3 2=24

29 Permutacje z powtórzeniami: Liczba permutacji Niech A oznacza zbiór złożony z k elementów A={a 1, a 2,a 3...a k }. Permutacją n-elementową, w której elementy a 1, a 2,a 3...a k powtarzają się odpowiednio n 1, n 2,n 3...n k razy, n 1, n 2,n 3...n k = n, jest każdy n-wyrazowy ciąg, w którym elementy a 1, a 2,a 3...a k powtarzają się podaną liczbę razy. Liczba takich permutacji z powtórzeniami wynosi Wstęp do probabilistyki i statystyki. wykład 2 29

30 Permutacje z powtórzeniami Permutacje z powtórzeniami: Niech A oznacza zbiór złożony z k elementów A={a 1, a 2,a 3...a k }. Permutacją n-elementową, w której elementy a 1, a 2,a 3...a k powtarzają się odpowiednio n 1, n 2,n 3...n k razy, n 1, n 2,n 3...n k = n, jest każdy n-wyrazowy ciąg, w którym elementy a 1, a 2,a 3...a k powtarzają się podaną liczbę razy. Liczba takich permutacji z powtórzeniami wynosi Na przykład przestawiając litery w, a, n, n, a można otrzymać różnych napisów: wanna wnnaa nanaw awnan nwnaa anwan aawnn nanwa anawn aannw waann annaw naanw awnna nwana nawna nnwaa nnawa naawn nnaaw wnana ananw awann nwaan anwna nawan annwa aanwn annaw naanw 30

31 Kombinacje Kombinacją k wyrazową ze zbioru n elementowego nazywamy każdy k wyrazowy podzbiór (brak uporządkowania) utworzony z elementów tego zbioru. Ilość (podzbiorów) kombinacji zależy od tego czy elementy podzbioru mogą się powtarzać czy nie. Istotny jest zatem sposób losowania: bez zwracania =bez powtórzeń; ze zwracaniem=z powtórzeniami Wstęp do probabilistyki i statystyki. wykład 2 31

32 Kombinacje bez powtórzeń Przykład: Rozważmy 3-elementowy zbiór Z={a,b,c} i wypiszmy wszystkie kombinacje 2-wyrazowe bez powtórzeń: {a,b} {a,c} {b,c} Obliczyć liczbę tych podzbiorów 6/2 = 3 Ogólnie: C ( k ) n = ( k Vn k! ) Wstęp do probabilistyki i statystyki. wykład 2 32

33 Liczba kombinacji bez powtórzeń Liczbę kombinacji k wyrazowych bez powtórzeń ze zbioru n elementowego można obliczyć ze wzoru: ( ) C k n = k n!!( n k)! Czyli: C ( k ) n n k Wstęp do probabilistyki i statystyki. wykład 2 33

34 Kombinacje z powtórzeniami Przykład: Rozważmy 3-elementowy zbiór Z={a,b,c} i wypiszmy wszystkie kombinacje 2-wyrazowe z powtórzeniami: {a,a} {a,b} {a,c} {b,b} {b,c} {c,c} Obliczyć liczbę tych podzbiorów 6 Ogólnie liczba kombinacji z powtórzeniami: ( k ) c n nk1 k Wstęp do probabilistyki i statystyki. wykład 2 34

35 Podsumowanie metod obliczania liczby możliwych zdarzeń Elementy kombinatoryki Wariacje (ciągi) - istotna jest kolejność z powtórzeniami Kombinacje (podzbiory) kolejność nie jest istotna z powtórzeniami bez powtórzeń bez powtórzeń Wstęp do probabilistyki i statystyki. wykład 2 35

36 Kombinatoryka Wstęp do probabilistyki i statystyki. wykład 2 36

37 Prawdopodobieństwo warunkowe Wprowadzenie: Interesuje nas częstość występowania daltonizmu wśród ludzi. W związku z tym wybieramy n osób i badamy, które z nich cierpią na daltonizm. Rozwiązanie: A zdarzenie polegające na tym, że wybrana losowo osoba cierpi na daltonizm n(a) = d oznacza liczbę osób wybranych z n, które cierpią na daltonizm Częstość występowania daltonizmu dana jest wzorem: (A) = d n Wstęp do probabilistyki i statystyki. wykład 2 37

38 Prawdopodobieństwo warunkowe Teraz interesuje nas częstość występowania daltonizmu wśród kobiet. Trzeba przeprowadzić nowy eksperyment, wybierając pewną liczbę kobiet (a więc teraz wybór odbywałby się w innej zbiorowości zbiorowości kobiet, zawartej w poprzednio rozpatrywanej zbiorowości ludzi) i licząc, ile wśród nich jest daltonistek. Jednak ten nowy eksperyment jest zbyteczny. Częstość występowania daltonizmu u kobiet można wyznaczyć za pomocą częstości zaobserwowanych w pierwszym eksperymencie. Wstęp do probabilistyki i statystyki. wykład 2 38

39 Prawdopodobieństwo warunkowe Rozwiązanie: B zdarzenie polegające na tym, że osoba jest kobietą n(b) = k oznacza liczbę kobiet wśród wybranych n osób Wśród wybranych kobiet było L daltonistek: n ( A B) = L Odpowiednie częstości zdarzeń B i A B są dane jako: (B) = k n ( A B) = L n Wstęp do probabilistyki i statystyki. wykład 2 39

40 Prawdopodobieństwo warunkowe Dotychczasowe rozważania dotyczą wszystkich n obserwacji. Ograniczmy się teraz do tych k obserwacji, które dały wynik B, i obliczmy jak często występowało w nich zdarzenie A, tzn. obliczmy zaobserwowaną częstość daltonizmu wśród kobiet. Dla zaznaczenia, że chodzi obecnie o częstość zdarzenia A w stosunku do tych obserwacji, które dały wynik B przyjmijmy inne oznaczenie: ( A B) Zauważamy, że zachodzi: L k ( A B) ( A B) ( B) Wstęp do probabilistyki i statystyki. wykład 2 40

41 Prawdopodobieństwo warunkowe Ogólna definicja: P A B = P A PB B przy założeniu, że P(B) > 0 (tj. zdarzenie B musi być prawdopodobne) Wstęp do probabilistyki i statystyki. wykład 2 41

42 Prawdopodobieństwo warunkowe Użyteczne wzory: P A= PA Ω A B = A B P B A A P P B A = B P P = A B= 1 dla dowolnego zdarzenia A 0 A B Wstęp do probabilistyki i statystyki. wykład 2 42

43 Przykład Rzucamy trzy razy kostką 6-cio-ścienną. Wiemy, że za każdym razem wypadła inna liczba oczek. Jakie jest prawdopodobieństwo, że raz wypadło 5 pod warunkiem że za każdym razem wypadła inna cyfra? 2 1 ' Ω Ω = B P B A P = B A P Ω = B P Ω Ω = B A P Ω = B A P Wstęp do probabilistyki i statystyki. wykład 2 43

Wykład 2. Prawdopodobieństwo i elementy kombinatoryki

Wykład 2. Prawdopodobieństwo i elementy kombinatoryki Wstęp do probabilistyki i statystyki Wykład 2. Prawdopodobieństwo i elementy kombinatoryki dr hab.inż. Katarzyna Zakrzewska, prof.agh Katedra Elektroniki, AGH e-mail: zak@agh.edu.pl http://home.agh.edu.pl/~zak

Bardziej szczegółowo

Wykład 4. Elementy kombinatoryki

Wykład 4. Elementy kombinatoryki Wstęp do probabilistyki i statystyki Wykład 4. Elementy kombinatoryki dr inż. Krystyna Schneider, Katedra Elektroniki, AGH e-mail: kryschna@agh.edu.pl http://home.agh.edu.pl/~kryschna Wstęp do probabilistyki

Bardziej szczegółowo

Wstęp do probabilistyki i statystyki Wykład 3. Prawdopodobieństwo i algebra zdarzeń

Wstęp do probabilistyki i statystyki Wykład 3. Prawdopodobieństwo i algebra zdarzeń Wstęp do probabilistyki i statystyki Wykład 3. Prawdopodobieństwo i algebra zdarzeń dr inż. Krystyna Schneider, Katedra Elektroniki, AGH e-mail: kryschna@agh.edu.pl http://home.agh.edu.pl/~kryschna 1 Plan:

Bardziej szczegółowo

Prawdopodobieństwo i kombinatoryka

Prawdopodobieństwo i kombinatoryka robabilistyka i statystyka rawdopodobieństwo i kombinatoryka Wykład dr inż. Barbara Swatowska Katedra Elektroniki, GH e-mail: swatow@agh.edu.pl http://home.agh.edu.pl/~swatow Definicja prawdopodobieństwa

Bardziej szczegółowo

Rachunek prawdopodobieństwa

Rachunek prawdopodobieństwa Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry

Bardziej szczegółowo

Kombinatoryka. Reguła dodawania. Reguła dodawania

Kombinatoryka. Reguła dodawania. Reguła dodawania Kombinatoryka Dział matematyki, który zajmuje się obliczaniem liczebności zbiorów bądź długości ciągów, które łączą w określony sposób elementy należące do skończonego zbioru (teoria zliczania). W jakich

Bardziej szczegółowo

Zdarzenia losowe i prawdopodobieństwo

Zdarzenia losowe i prawdopodobieństwo Rozdział 1 Zdarzenia losowe i prawdopodobieństwo 1.1 Klasyfikacja zdarzeń Zdarzenie elementarne pojęcie aprioryczne, które nie może być zdefiniowane. Odpowiednik pojęcia punkt w geometrii. Zdarzenie elementarne

Bardziej szczegółowo

Podstawy metod probabilistycznych. dr Adam Kiersztyn

Podstawy metod probabilistycznych. dr Adam Kiersztyn Podstawy metod probabilistycznych dr Adam Kiersztyn Przestrzeń zdarzeń elementarnych i zdarzenia losowe. Zjawiskiem lub doświadczeniem losowym nazywamy taki proces, którego przebiegu i ostatecznego wyniku

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne 2. Aksjomatyczna definicja prawdopodobieństwa Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 10.10.2017 1 / 33 Klasyczna definicja prawdopodobieństwa

Bardziej szczegółowo

Podstawy nauk przyrodniczych Matematyka

Podstawy nauk przyrodniczych Matematyka Podstawy nauk przyrodniczych Matematyka Elementy rachunku prawdopodobieństwa dr inż. Małgorzata Szeląg Zakład Genetyki Molekularnej Człowieka tel. 61 829 59 04 malgorzata.szelag@amu.edu.pl Pokój 1.118

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. L. Kowalski, Statystyka, 2005

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. L. Kowalski, Statystyka, 2005 RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. Literatura: Marek Cieciura, Janusz Zacharski, Metody probabilistyczne w ujęciu praktycznym, L. Kowalski, Statystyka, 2005 R.Leitner, J.Zacharski, "Zarys matematyki

Bardziej szczegółowo

Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018

Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018 Katedra Matematyki i Ekonomii Matematycznej SGH 16 października 2018 Definicja σ-algebry Definicja Niech Ω oznacza zbiór niepusty. Rodzinę M podzbiorów zbioru Ω nazywamy σ-algebrą (lub σ-ciałem) wtedy

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 2 Magdalena Alama-Bućko 5 marca 2018 Magdalena Alama-Bućko Statystyka matematyczna 5 marca 2018 1 / 14 Prawdopodobieństwo klasyczne Ω - zbiór wszystkich zdarzeń elementarnych

Bardziej szczegółowo

P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt.

P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. Lekcja 2 Temat: Podstawowe pojęcia związane z prawdopodobieństwem. Str. 10-21 1. Doświadczenie losowe jest to doświadczenie,

Bardziej szczegółowo

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1 Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Jakubowski, Sztencel:

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Wybrane litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilon η eta Θ θ theta

Bardziej szczegółowo

Matematyczne Podstawy Kognitywistyki

Matematyczne Podstawy Kognitywistyki Matematyczne Podstawy Kognitywistyki Dorota Leszczyńska-Jasion Kombinatoryka, ci agi liczbowe, skończone przestrzenie probabilistyczne Przykłady zagadnień kombinatorycznych Rozważmy układ n miast o bardzo

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne 1. Prawdopodobieństwo klasyczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 03.10.2017 1 / 19 Rys historyczny Francja, XVII w.: gry hazardowe

Bardziej szczegółowo

Prawdopodobieństwo

Prawdopodobieństwo Prawdopodobieństwo http://www.matemaks.pl/ Wstęp do rachunku prawdopodobieństwa http://www.matemaks.pl/wstep-do-rachunku-prawdopodobienstwa.html Rachunek prawdopodobieństwa pomaga obliczyć szansę zaistnienia

Bardziej szczegółowo

Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( )

Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( ) Nowa matura kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Doświadczenie losowe polega na rzucie dwiema symetrycznymi monetami i sześcienną kostką do gry. Prawdopodobieństwo

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA

RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA Doświadczenia losowe Rachunek prawdopodobieństwa zajmuje się zdarzeniami jakie zachodzą, gdy przeprowadzamy doświadczenia losowe. Mówimy, że doświadczenie jest

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna. Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2016/2017

Rachunek prawdopodobieństwa i statystyka matematyczna. Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2016/2017 Rachunek prawdopodobieństwa i statystyka matematyczna Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2016/2017 1 1 Wstęp Rachunek prawdopodobieństwa i statystyka to: działy matematyki

Bardziej szczegółowo

WYKŁAD 1. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Instytut Matematyki Uniwersytet Warszawski

WYKŁAD 1. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Instytut Matematyki Uniwersytet Warszawski WYKŁAD 1 Witold Bednorz, Paweł Wolff Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Wprowadzenie Gry hazardowe Wprowadzenie Gry hazardowe Klasyczna definicja prawdopodobieństwa.

Bardziej szczegółowo

Wymagania egzaminacyjne z matematyki. Klasa 3C. MATeMATyka. Nowa Era. Klasa 3

Wymagania egzaminacyjne z matematyki. Klasa 3C. MATeMATyka. Nowa Era. Klasa 3 Wymagania egzaminacyjne z matematyki. lasa 3C. MATeMATyka. Nowa Era. y są ze sobą ściśle powiązane ( + P + R + D + W), stanowiąc ocenę szkolną, i tak: ocenę dopuszczającą (2) otrzymuje uczeń, który spełnił

Bardziej szczegółowo

Rachunek prawdopodobieństwa dla informatyków

Rachunek prawdopodobieństwa dla informatyków Rachunek prawdopodobieństwa dla informatyków Adam Roman Instytut Informatyki UJ Wykład 1 rys historyczny zdarzenia i ich prawdopodobieństwa aksjomaty i reguły prawdopodobieństwa prawdopodobieństwo warunkowe

Bardziej szczegółowo

= 10 9 = Ile jest wszystkich dwucyfrowych liczb naturalnych podzielnych przez 3? A. 12 B. 24 C. 29 D. 30. Sposób I = 30.

= 10 9 = Ile jest wszystkich dwucyfrowych liczb naturalnych podzielnych przez 3? A. 12 B. 24 C. 29 D. 30. Sposób I = 30. Kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Flagę, taką jak pokazano na rysunku, należy zszyć z trzech jednakowej szerokości pasów kolorowej tkaniny. Oba pasy zewnętrzne

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 20 lutego 2017 Magdalena Alama-Bućko Statystyka matematyczna 20 lutego 2017 1 / 21 Wykład : 10h (przez 10 tygodni po 45 minut) Ćwiczenia : 15h (45

Bardziej szczegółowo

Rachunek prawdopodobieństwa- wykład 2

Rachunek prawdopodobieństwa- wykład 2 Rachunek prawdopodobieństwa- wykład 2 Pojęcie dyskretnej przestrzeni probabilistycznej i określenie prawdopodobieństwa w tej przestrzeni dr Marcin Ziółkowski Instytut Matematyki i Informatyki Uniwersytet

Bardziej szczegółowo

Probabilistyczne podstawy statystyki matematycznej. Dr inż. Małgorzata Michalcewicz-Kaniowska

Probabilistyczne podstawy statystyki matematycznej. Dr inż. Małgorzata Michalcewicz-Kaniowska Probabilistyczne podstawy statystyki matematycznej Dr inż. Małgorzata Michalcewicz-Kaniowska 1 Zdarzenia losowe, algebra zdarzeń Do podstawowych pojęć w rachunku prawdopodobieństwa zaliczamy: doświadczenie

Bardziej szczegółowo

Wstęp. Kurs w skrócie

Wstęp. Kurs w skrócie Mariola Zalewska Zakład Metod Matematycznych i Statystycznych Zarządzania Wydział Zarządzania Uniwersystet Warszawski I rok DSM Rachunek Prawdopodobieństwa Wstęp Kombinatoryka Niezależność zdarzeń, Twierdzenie

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 25 lutego 2019 Magdalena Alama-Bućko Statystyka matematyczna 25 lutego 2019 1 / 18 Wykład : 10h (przez 10 tygodni po 45 minut) Ćwiczenia : 15h (45

Bardziej szczegółowo

Doświadczenie i zdarzenie losowe

Doświadczenie i zdarzenie losowe Doświadczenie i zdarzenie losowe Doświadczenie losowe jest to takie doświadczenie, które jest powtarzalne w takich samych warunkach lub zbliżonych, a którego wyniku nie można przewidzieć jednoznacznie.

Bardziej szczegółowo

Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska)

Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Twierdzenie (o mnożeniu) Podstawowe pojęcia i wzory kombinatoryczne. Niech,, będą zbiorami mającymi odpowiednio,,

Bardziej szczegółowo

Wprowadzenie do kombinatoryki

Wprowadzenie do kombinatoryki Wprowadzenie do kombinatoryki http://www.matemaks.pl/kombinatoryka.html Kombinatoryka jest działem matematyki, który pomaga odpowiedzieć na pytania typu: "ile jest możliwych wyników w rzucie monetą?",

Bardziej szczegółowo

Wykład 1: Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo geometryczne.

Wykład 1: Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo geometryczne. Rachunek prawdopodobieństwa MAP1151 Wydział Elektroniki, rok akad. 2011/12, sem. letni Wykładowca: dr hab. A. Jurlewicz Wykład 1: Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo

Bardziej szczegółowo

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2 Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Prawdopodobieństwo geometryczne

Bardziej szczegółowo

Statystyka Astronomiczna

Statystyka Astronomiczna Statystyka Astronomiczna czyli zastosowania statystyki w astronomii historycznie astronomowie mieli wkład w rozwój dyscypliny Rachunek prawdopodobieństwa - gałąź matematyki Statystyka - metoda oceny właściwości

Bardziej szczegółowo

Statystyka podstawowe wzory i definicje

Statystyka podstawowe wzory i definicje 1 Statystyka podstawowe wzory i definicje Średnia arytmetyczna to suma wszystkich liczb (a 1, a 2,, a n) podzielona przez ich ilość (n) Przykład 1 Dany jest zbiór liczb {6, 8, 11, 2, 5, 3}. Oblicz średnią

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub

RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub 1. W grupie jest 15 kobiet i 18 mężczyzn. Losujemy jedną osobę

Bardziej szczegółowo

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Rachunek Prawdopodobieństwa Brian Wynne podał następującą typologię zagrożeń znanych i niewiadomych: 1. ryzyko to wiadome nam przyszłe zagrożenia,

Bardziej szczegółowo

METODY PROBABILISTYCZNE I STATYSTYKA

METODY PROBABILISTYCZNE I STATYSTYKA Andrzej Marciniak METODY PROBABILISTYCZNE I STATYSTYKA Wykłady dla studentów kierunku informatyka Państwowej Wyższej Szkoły Zawodowej w Kaliszu Wykłady są przeznaczone wyłącznie do indywidualnego użytku

Bardziej szczegółowo

( ) ( ) Przykład: Z trzech danych elementów: a, b, c, można utworzyć trzy następujące 2-elementowe kombinacje: ( ) ( ) ( ).

( ) ( ) Przykład: Z trzech danych elementów: a, b, c, można utworzyć trzy następujące 2-elementowe kombinacje: ( ) ( ) ( ). KOMBINATORYKA Kombinatoryka zajmuje się wyznaczaniem liczby elementów zbiorów skończonych utworzonych zgodnie z określonymi zasadami. Do podstawowych pojęć kombinatorycznych należą: PERMUTACJE Silnia.

Bardziej szczegółowo

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I (SGH)

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I (SGH) WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I (SGH) Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 1 1 / 24 Warunki zaliczenia 1 Do egzaminu dopuszczeni wszyscy, którzy uczęszczali na

Bardziej szczegółowo

Spotkanie olimpijskie nr lutego 2013 Kombinatoryka i rachunek prawdopodobieństwa

Spotkanie olimpijskie nr lutego 2013 Kombinatoryka i rachunek prawdopodobieństwa Spotkanie olimpijskie nr 5 16 lutego 2013 Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka Jadwiga Słowik Reguła mnożenia Jeśli wybór polega na podjęciu k decyzji, przy czym pierwszą decyzję możemy

Bardziej szczegółowo

KOMBINATORYKA. Problem przydziału prac

KOMBINATORYKA. Problem przydziału prac KOMBINATORYKA Dział matematyki zajmujący się badaniem różnych możliwych zestawień i ugrupowań, jakie można tworzyć z dowolnego zbioru skończonego. Zbiory skończone, najczęściej wraz z pewną relacją obiekty

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3.2. Niezależność zdarzeń Katarzyna Rybarczyk-Krzywdzińska Niezależność dwóch zdarzeń Intuicja Zdarzenia losowe

Bardziej szczegółowo

2. Lesław Gajek, Marek Kałuszka, Wnioskowanie statystyczne. Modele i metody. Dla studentów.

2. Lesław Gajek, Marek Kałuszka, Wnioskowanie statystyczne. Modele i metody. Dla studentów. Literatura:. Jerzy Greń, Statystyka matematyczna. Modele i zadania.. Lesław Gajek, Marek Kałuszka, Wnioskowanie statystyczne. Modele i metody. Dla studentów.. J. Koronacki, J. Mielniczuk, Statystyka dla

Bardziej szczegółowo

2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego

2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego Wymagania dla kl. 3 Zakres podstawowy Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za pomocą drzewa

Bardziej szczegółowo

W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1

W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1 W. Guzicki Próbna matura, grudzień 20 r. poziom rozszerzony Próbna matura rozszerzona (jesień 20 r.) Zadanie kilka innych rozwiązań Wojciech Guzicki Zadanie. Oblicz prawdopodobieństwo warunkowe, że w trzykrotnym

Bardziej szczegółowo

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej.

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej. Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające;

Bardziej szczegółowo

Zdarzenie losowe (zdarzenie)

Zdarzenie losowe (zdarzenie) Zdarzenie losowe (zdarzenie) Ćw. 1. Ze zbioru cyfr (l, 2,3,..., 9} losowo wybieramy jedną. a) Wypisz zdarzenia elementarne, sprzyjające: zdarzeniu A, że wybrano liczbę parzystą zdarzeniu B, że wybrano

Bardziej szczegółowo

Elementy statystyki opisowej, teoria prawdopodobieństwa i kombinatoryka

Elementy statystyki opisowej, teoria prawdopodobieństwa i kombinatoryka Wymagania egzaminacyjne: a) oblicza średnią arytmetyczną, średnią ważoną, medianę i odchylenie standardowe danych; interpretuje te parametry dla danych empirycznych, b) zlicza obiekty w prostych sytuacjach

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 26 lutego 2018 Magdalena Alama-Bućko Statystyka matematyczna 26 lutego 2018 1 / 16 Wykład : 10h (przez 10 tygodni po 45 minut) zaliczenie wykładu

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019

Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019 Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019 Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające,

Bardziej szczegółowo

Matematyka podstawowa X. Rachunek prawdopodobieństwa

Matematyka podstawowa X. Rachunek prawdopodobieństwa Matematyka podstawowa X Rachunek prawdopodobieństwa Zadania wprowadzające: 1. Rzucasz trzy razy monetą a) Napisz zbiór wszystkich wyników tego doświadczenia losowego. Ile ich jest? Wyrzuciłeś większą liczbę

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA

RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA Wydział: WiLiŚ, Transport, sem.2 dr Jolanta Dymkowska RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA Przestrzeń probabilistyczna Modelem matematycznym (tj. teoretycznym, wyidealizowanym,

Bardziej szczegółowo

Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w

Bardziej szczegółowo

Spis treści. Definicje prawdopodobieństwa. Częstościowa definicja prawdopodobieństwa. Wnioskowanie_Statystyczne_-_wykład

Spis treści. Definicje prawdopodobieństwa. Częstościowa definicja prawdopodobieństwa. Wnioskowanie_Statystyczne_-_wykład Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Definicje prawdopodobieństwa 1.1 Częstościowa definicja prawdopodobieństwa 1.1.1 Przykład 1.1.2 Rozwiązanie: 1.1.3 Inne rozwiązanie: 1.1.4 Jeszcze inne

Bardziej szczegółowo

Ćwiczenia z metodyki nauczania rachunku prawdopodobieństwa

Ćwiczenia z metodyki nauczania rachunku prawdopodobieństwa Ćwiczenia z metodyki nauczania rachunku prawdopodobieństwa 25 marca 209 Zadanie. W urnie jest b kul białych i c kul czarnych. Losujemy n kul bez zwracania. Jakie jest prawdopodobieństwo, że pierwsza kula

Bardziej szczegółowo

Plan wynikowy klasa 3. Zakres podstawowy

Plan wynikowy klasa 3. Zakres podstawowy Plan wynikowy klasa 3 Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające. RACHUNE PRAWDOPODOBIEŃSTWA

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 5 marca 2011 Zasady 10 wyk ladów; egzamin pisemny; Literatura 1 A. Lomnicki Wprowadzenie do statystyki dla przyrodników PWN 1999. 2 W. Krysicki, J. Bartos, W. Dyczka, K. Królikowska, M. Wasilewski Rachunek

Bardziej szczegółowo

Kombinatoryka i rachunek prawdopodobieństwa

Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka i rachunek prawdopodobieństwa Jerzy Rutkowski 2. Elementy kombinatoryki 2.. Permutacje Teoria Definicja. Niech n N. Permutacją n-elementowego zbioru

Bardziej szczegółowo

Rachunek prawdopodobieństwa i kombinatoryka. Rachunek prawdopodobieństwa. Podstawowe pojęcia rachunku prawdopodobieństwa

Rachunek prawdopodobieństwa i kombinatoryka. Rachunek prawdopodobieństwa. Podstawowe pojęcia rachunku prawdopodobieństwa Rachunek prawdopodobieństwa i kombinatoryka Spis treści Rachunek prawdopodobieństwa Podstawowe pojęcia rachunku prawdopodobieństwa Liczba wyników doświadczenia losowego. Reguła mnożenia i reguła dodawania

Bardziej szczegółowo

Po co nam statystyka matematyczna? Żeby na podstawie próby wnioskować o całej populacji

Po co nam statystyka matematyczna? Żeby na podstawie próby wnioskować o całej populacji ODSTWY STTYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. opulacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne 6.

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona

Bardziej szczegółowo

= A. A - liczba elementów zbioru A. Lucjan Kowalski

= A. A - liczba elementów zbioru A. Lucjan Kowalski Lucjan Kowalski ZADANIA, PROBLEMY I PARADOKSY W PROBABILISTYCE Przypomnienie. Ω - zbiór zdarzeń elementarnych. A zdarzenie (podzbiór Ω). A - liczba elementów zbioru A Jeśli zdarzeń elementarnych jest skończenie

Bardziej szczegółowo

PRAWDOPODOBIEŃSTWO I KOMBINATORYKA

PRAWDOPODOBIEŃSTWO I KOMBINATORYKA PRAWDOPODOBIEŃSTWO I KOMBINATORYKA ZADANIE ( PKT) Z urny zawierajacej kule w dwóch kolorach wybieramy losowo dwie. Prawdopodobieństwo wylosowania co najmniej jednej kuli białej jest równe 8, a prawdopodobieństwo

Bardziej szczegółowo

Kombinatoryka i rachunek prawdopodobieństwa

Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka i rachunek prawdopodobieństwa Jerzy Rutkowski Kombinatoryka i rachunek prawdopodobieństwa 2. Elementy kombinatoryki 2.1. Permutacje Definicja 1. Niech n N. Permutacją n-elementowego zbioru

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa 2.1. σ ciało (algebra) zdarzeń Katarzyna Rybarczyk-Krzywdzińska losowe Zdarzenie losowe to pewien podzbiór przestrzeni zdarzeń

Bardziej szczegółowo

Matematyka z el. statystyki, # 2 /Geodezja i kartografia II/

Matematyka z el. statystyki, # 2 /Geodezja i kartografia II/ Matematyka z el. statystyki, # 2 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a bud. Agro II, e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

STATYSTYKA wykład 1. Wanda Olech. Katedra Genetyki i Ogólnej Hodowli Zwierząt

STATYSTYKA wykład 1. Wanda Olech. Katedra Genetyki i Ogólnej Hodowli Zwierząt STTYSTYK wykład 1 Wanda Olech Katedra Genetyki i Ogólnej Hodowli Zwierząt Statystyka Pierwotnie oznaczała stan rzeczy (od status) i do XVIII wieku używana dla określenia zbioru wiadomości o państwie Statystyka

Bardziej szczegółowo

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Plan wynikowy Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania

Bardziej szczegółowo

Biostatystyka, # 2 /Weterynaria I/

Biostatystyka, # 2 /Weterynaria I/ Biostatystyka, # 2 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a bud. Agro II, e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

Statystyka z elementami rachunku prawdopodobieństwa

Statystyka z elementami rachunku prawdopodobieństwa Statystyka z elementami rachunku prawdopodobieństwa dr hab. Tomasz Górecki tomasz.gorecki@amu.edu.pl Zakład Rachunku Prawdopodobieństwa i Statystyki Matematycznej Wydział Matematyki i Informatyki Uniwersytet

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 2 Klasyczna definicja prawdopodobieństwa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Według klasycznej

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna. Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2014/2015

Rachunek prawdopodobieństwa i statystyka matematyczna. Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2014/2015 Rachunek prawdopodobieństwa i statystyka matematyczna Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2014/2015 1 1 Wstęp Rachunek prawdopodobieństwa i statystyka to: działy matematyki

Bardziej szczegółowo

STATYSTYKA wykład 1. Wanda Olech. Katedra Genetyki i Ogólnej Hodowli Zwierząt

STATYSTYKA wykład 1. Wanda Olech. Katedra Genetyki i Ogólnej Hodowli Zwierząt STTYSTYK wykład 1 Wanda Olech Katedra Genetyki i Ogólnej Hodowli Zwierząt Plan wykładów Data WYKŁDY 1.X rachunek prawdopodobieństwa; 8.X zmienna losowa jednowymiarowa, funkcja rozkładu, dystrybuanta 15.X

Bardziej szczegółowo

a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.);

a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.); 03DRAP - Przykłady przestrzeni probabilistycznych Definicja 1 Przestrzeń probabilistyczna to trójka (Ω, F, P), gdzie Ω zbiór zdarzeń elementarnych, F σ ciało zdarzeń (podzbiorów Ω), P funkcja prawdopodobieństwa/miara

Bardziej szczegółowo

Wybrane treści z rachunku prawdopodobieństwa w kontekście medycznym. M.Zalewska

Wybrane treści z rachunku prawdopodobieństwa w kontekście medycznym. M.Zalewska Wybrane treści z rachunku prawdopodobieństwa w kontekście medycznym M.Zalewska Podstawowe pojęcia Doświadczenie losowe obserwacja zjawiska, którego przebiegu nie umiemy w pełni przewidzieć. Możemy oceniać

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 1. Wstęp

Rachunek prawdopodobieństwa Rozdział 1. Wstęp Rachunek prawdopodobieństwa Rozdział 1. Wstęp 1.1. Prawdopodobieństwo klasyczne Katarzyna Rybarczyk-Krzywdzińska Definicja Zadaliśmy pytanie. Bolek, Lolek i Tola wstąpili do kasyna. Dla każdego z nich

Bardziej szczegółowo

Rachunku prawdopodobieństwa: rys historyczny, aksjomatyka, prawdopodobieństwo warunkowe,

Rachunku prawdopodobieństwa: rys historyczny, aksjomatyka, prawdopodobieństwo warunkowe, Rachunku prawdopodobieństwa: rys historyczny, aksjomatyka, prawdopodobieństwo warunkowe, niezależność zdarzeń dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu Semestr letni

Bardziej szczegółowo

Uczeń otrzymuje ocenę dostateczną, jeśli opanował wiadomości i umiejętności konieczne na ocenę dopuszczającą oraz dodatkowo:

Uczeń otrzymuje ocenę dostateczną, jeśli opanował wiadomości i umiejętności konieczne na ocenę dopuszczającą oraz dodatkowo: WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI Rok szkolny 2018 / 2019 POZIOM PODSTAWOWY KLASA 3 1. RACHUNEK PRAWDOPODOBIEŃSTWA wypisuje

Bardziej szczegółowo

Wykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa

Wykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa Wykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy, rok akademicki 2015 2016 Doświadczenie losowe Doświadczenie

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω)

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω) ZADANIA - ZESTAW 1 Zadanie 1.1 Rzucamy trzy razy monetą. A i - zdarzenie polegające na tym, że otrzymamy orła w i - tym rzucie. Określić zbiór zdarzeń elementarnych. Wypisać zdarzenia elementarne sprzyjające

Bardziej szczegółowo

02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w

02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w 02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w A Zadania na ćwiczenia Zadanie A.1. Niech Ω = R oraz F będzie σ-ciałem generowanym przez rodzinę wszystkich przedziałów otwartych typu (,

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3.1 Prawdopodobieństwo warunkowe Katarzyna Rybarczyk-Krzywdzińska Przykład 1 Alicja wylosowała jedną kartę z

Bardziej szczegółowo

Prawdopodobieństwo geometryczne

Prawdopodobieństwo geometryczne Prawdopodobieństwo geometryczne Krzysztof Jasiński Wydział Matematyki i Informatyki UMK, Toruń V Lieceum Ogólnokształące im. Jana Pawała II w Toruniu 13.03.2014 Krzysztof Jasiński (WMiI UMK) Prawdopodobieństwo

Bardziej szczegółowo

Wykład 11: Podstawowe pojęcia rachunku prawdopodobieństwa

Wykład 11: Podstawowe pojęcia rachunku prawdopodobieństwa Wykład : Podstawowe pojęcia rachunku prawdopodobieństwa dr Mariusz Grządziel 3 maja 203 Doświadczenie losowe Doświadczenie nazywamy losowym, jeśli: może być powtarzane (w zasadzie) w tych samych warunkach;

Bardziej szczegółowo

Jak odróżnić wariację z powtórzeniami od wariacji bez powtórzeń, kombinacji?

Jak odróżnić wariację z powtórzeniami od wariacji bez powtórzeń, kombinacji? Jak odróżnić wariację z powtórzeniami od wariacji bez powtórzeń, kombinacji? Porada niniejsza traktuje o tzw. elementach kombinatoryki. Często zdarza się, że rozwiązujący zadania z tej dziedziny mają problemy

Bardziej szczegółowo

a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.);

a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.); 03DRAP - Przykłady przestrzeni probabilistycznych A Zadania na ćwiczenia Zadanie A1 (wskazówka: pierwsze ćwicznia i rozdział 23 przykł 1 i 2) Zbuduj model przestrzeni klasycznej (czyli takiej, w której

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3.1 Prawdopodobieństwo warunkowe Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2016/2017 Przykład 1 Alicja

Bardziej szczegółowo

51. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń.

51. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń. Matematyka lekcja 5 5. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń. I. rzypomnij sobie:. Jak rysujemy drzewo stochastyczne i przy jego pomocy obliczamy prawdopodobieństwo

Bardziej szczegółowo

3. Podstawowe pojęcia statystyki matematycznej i rachunku prawdopodobieństwa wykład z Populacja i próba

3. Podstawowe pojęcia statystyki matematycznej i rachunku prawdopodobieństwa wykład z Populacja i próba 3. Podstawowe pojęcia statystyki matematycznej i rachunku prawdopodobieństwa wykład z 12.03.2007 Populacja i próba Populacja- zbiorowość skończona lub nieskończona, w stosunku do której mają być formułowane

Bardziej szczegółowo

Prawdopodobieństwo. jest ilościową miarą niepewności

Prawdopodobieństwo. jest ilościową miarą niepewności Prawdopodobieństwo jest ilościową miarą niepewności Eksperyment - zdarzenie elementarne Eksperymentem nazywamy proces, który prowadzi do jednego z możliwych wyników. Nazywamy je wynikami obserwacji, zdarzeniami

Bardziej szczegółowo

{( ) ( ) ( ) ( )( ) ( )( ) ( RRR)

{( ) ( ) ( ) ( )( ) ( )( ) ( RRR) .. KLASYCZNA DEFINICJA PRAWDOPODOBIEŃSTWA Klasyczna definicja prawdopodobieństwa JeŜeli jest skończonym zbiorem zdarzeń elementarnych jednakowo prawdopodobnych i A, to liczbę A nazywamy prawdopodobieństwem

Bardziej szczegółowo

Wymagania kl. 3. Zakres podstawowy i rozszerzony

Wymagania kl. 3. Zakres podstawowy i rozszerzony Wymagania kl. 3 Zakres podstawowy i rozszerzony Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za

Bardziej szczegółowo

KOMBINATORYKA OBIEKTY KOMBINATORYCZNE MATEMATYKA DYSKRETNA (2014/2015)

KOMBINATORYKA OBIEKTY KOMBINATORYCZNE MATEMATYKA DYSKRETNA (2014/2015) MATEMATYKA DYSKRETNA (2014/2015) dr hab. inż. Małgorzata Sterna malgorzata.sterna@cs.put.poznan.pl www.cs.put.poznan.pl/msterna/ KOMBINATORYKA OBIEKTY KOMBINATORYCZNE TEORIA ZLICZANIA Teoria zliczania

Bardziej szczegółowo

MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych

MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy Klasa 3 Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające

Bardziej szczegółowo