Języki Modelowania i Symulacji

Wielkość: px
Rozpocząć pokaz od strony:

Download "Języki Modelowania i Symulacji"

Transkrypt

1 Języki Modelowania i Symulacji Podstawowe Marcin Ciołek Katedra Systemów Automatyki WETI, Politechnika Gdańska 13 października 211

2 Literatura: 1. D. Kincaid, W. Cheney: Analiza numeryczna, Wydawnictwo Naukowo Techniczne, P. Davis, W.: Differential Equations - Modelling with MATLAB, Prentice Hall, Dokumentacja MATLABA i SIMULINKA. 4. B.Mrozek, Z. Mrozek: MATLAB Uniwersalne środowisko do obliczeń naukowo-technicznych, Kraków T.P. Zieliński: Cyfrowe przetwarzanie sygnałów - Od teori do zastosowań, Warszawa 29.

3 O czym będziemy dziś mówili?

4 FFT Funkcje fft(x) i ifft(x) (Fast Fourier Transform) impementuja prosta i odwrotna transformatę gdzie w N = e (2πi)/N X(k) = x(j) = 1 N N j=1 N k=1 x(j)w (j 1)(k 1) N X(k)w (j 1)(k 1) N

5 FFT Sygnał y(t) Fs=1; T = 1/Fs; L= 1; t= (:L-1).*T; f1=2; f2=5; f3=1; y= sin(2*pi*f1.*t)+sin(2*pi*f2.*t)+sin(2*pi*f3.*t); plot(t,y)

6 1 Widmo amplitudowe FFT Y(f) Częstotliwość (Hz) NFFT = 2^nextpow2(L); Y = fft(y,nfft)/l; f = Fs/2*linspace(,1,NFFT/2+1); plot(f,2*abs(y(1:nfft/2+1))) set(gca,'fontname', 'Times New Roman CE', 'FontSize',16) title('widmo amplitudowe') xlabel('częstotliwość (Hz)') ylabel(' Y(f) ')

7 FFT Sygnał y(t) Fs=1; T = 1/Fs; L= 1; t= (:L-1).*T; f1=2; f2=5; f3=1; y= sin(2*pi*f1.*t)+sin(2*pi*f2.*t)+sin(2*pi*f3.*t); y = y +.625*randn(size(t)); plot(t,y)

8 FFT Y(f) Widmo amplitudowe Częstotliwość (Hz)

9 IFFT 2 x Różnica sygnału oryginalnego z sygnałem otrzymanym po odwrotnej transformacie. Czy bład jest akceptowalny?

10 rand Funkcja gęstości rozkładu równomiernego (prostokatnego) w przedziale (a, b), gdzie h = b a { 1/h dla x (a, b) p(x) = dla x / (a, b) Funkcja MATLAB-a p = a + (b a). rand(n, 1)

11 rand równomiernym a = ; b = 1; n = 1; x = a + (b-a).* rand(n,1); plot(x)

12 hist równomiernym hist(x)

13 zadanie Jak wygenerować sygnał losowy, który przyjmuje stan wysoki(h = 1) z prawdopodobieństwem.2 oraz stan niski (L = ) z prawdopodobieństwem.8? Sygnał losowy

14 find Sygnał losowy a = ; b = 1; n = 1; x = a + (b-a).*rand(n,1); ii = find(x>=.8); length(ii) ans = 19 y = zeros(n,1); y(ii)=1; stairs(y) axis([ n ])

15 randn Funkcja gęstości rozkładu normalnego (gaussowskiego) ze średnia µ i odchyleniem standardowym σ φ µ,σ (x) = 1 ( ) (x µ) 2 σ 2π exp 2σ 2 Funkcja MATLAB-a p = µ + σ. randn(n, 1)

16 randn mi =.5; xs = ; n = 1; x = xs + mi.*randn(n,1); plot(x) mean(x) >> ans = e-4 std(x) >> ans =.51 var(x) >> ans =.2511

17 hist h = -2:.1:2; hist(x,h)

18 cov P jest uogólnieniem pojęcia wariancji na przypadek wielowymiarowy. taka dla macierzy X = (x 1, x 2,..., x n ) ma postać: P = cov(x) σ 2 1 σ σ 1n σ 21 σ σ 2n P = σ n1 σ n2... σn 2 P jest symetryczna i dodatnio określona

19 cov x1 = [1 2 3]'; x2 = [4 2 6]'; A = [6 2 3; 6 5 6; 9 8 9]; cov(x1) >> ans = 1 cov(x1,x2) >> ans = [1 1; 1 4] cov(a) >> ans = [ ; ; ] v = diag(cov(a))' >> ans =???

20 xcorr Funkcja korelacji wzajemnej w MATLAB-ie c = xcorr(x,y, option ) ˆR xy (m) = biased - obciażony N m n=1 x(n)y(n m) R xy (m) = 1 N R xy(m) unbiased - nieobciażony R xy (m) = 1 N m R xy(m)

21 xcorr Funkcja korelacji wzajemnej c = xcorr(x,y, option ) x = [ ]'; y = [ ]'; xcorr(x,y) ans = xcorr(y,x) ans = xcorr(x,x) ans =

22 xcorr y(t)=sin(2πft) xcorr(y,y,'unbiased') xcorr(y,y,'biased') xcorr(y,y) Funkcja autokorelacji sygnału y(t)

23 xcorr Fragment sygnału mowy dźwięcznej x 1-3 xcorr(y,y,'unbiased') x 1-3 xcorr(y,y,'biased') xcorr(y,y)

24 xcorr Fragment sygnału mowy bezdźwięcznej x 1-3 xcorr(y,y,'unbiased') x 1-3 xcorr(y,y,'biased') xcorr(y,y)

25 xcorr Funkcja autokorelacji szumu o Dla jakiego przesunięcia szum jest skorelowany sam ze soba?

26 sygnał Sygnał składa się z części deterministycznej oraz części losowej. Przykład: model autoregresyjny y(t) = r a i y(t i) + n(t) i=1 y(t) - bieżace wyjście modelu r - rzad modelu a i - współczynniki autoregresji n(t) - szum gaussowski o zerowej wartości średniej i wariancji σn 2 Aby model był stabilny pierwiastki wielomianu charakterystycznego W(z) musza leżeć wewnatrz okręgu jednostkowego na płaszczyźnie zespolonej z. W (z) = 1 a 1 z 1 a r z z r

27 pierwiastki Określakac wartości pierwiastków wewnatrz okręgu jednostkowego na płaszczyźnie zespolonej z można otrzymać poszukiwany wektor współczynników Im ZERA i BIEGUNY Re re = [ ]'; im = [ ]'; NP = 1; fi=2*pi*(:1:np-1)/np; s=sin(fi); c=cos(fi); plot(s,c,'-k',re,im,'r*'); title('zera i BIEGUNY'); xlabel('re') ylabel('im') grid;

28 poly Funkcja MATLABA-a zwraca współczynniki wielomianu c = poly(p) gdzie p to wektor pierwiastków naszego wielomianu W(z) p = [ ]'; r = poly(p) ans>> p = roots(r) ans>> a = -r(2:4) ans>>

29 generowanie sygnału Autoregresyjny model sygnału, gdzie zakładamy σn 2 = 1 r y(t) = a i y(t i) + n(t) i= Wygenerowany sygnał dla obliczonych współczynników

30 generowanie sygnału N = 1; r = 3; a = [ ]'; sr = ; war = 1; odch = sqrt(war); n = sr + odch.*randn(n,1); y=zeros(n,1); for t=1:n if t < r + 1 y(t)= ; else fi = y(t-1:-1:t-r); y(t)= fi'*a+n(t); end end plot(y)

31 Jak filtrujemy sygnał? (z ang. finite impulse response ) filtr FIR H(z 1 ) = b + b 1 z b n z n

32 Własności filtrów FIR: Zalety: liniowy przebieg fazy filtr stabilny względnie łatwe procedury projektowania filtrów łatwość implemaentacji hardware owej wpływ warunków poczatkowych jest zawsze skończony Wady: duży wymagany rz ad filtru (większy niż odpowiednich filtrów IIR) większe opóźnienie w torach sygnałowych

33 Idelana charakterystyka amplitudowa filtru idealny filr odpowiedź impulsowa tego filtru h(n) = 1 2π π π H(ω)e jωn dω = 1 2π ωo ω o e jωn dω = = ω o π sinc(ω on π ) Co powiesz o odpowiedzi impulsowej idealnego filtru FIR?

34 sinc Idelana charakterystyka amplitudowa filtru obcięta za pomoca okna prostokatnego Ile wynosi częstotliwość odcięcia? b =.4*sinc(.4.*(-25:25)); stem(.4.*(-25:25),b)

35 Jak można ograniczyć ten efekt? efekt Gibbsa Efekt obcinania metodą okna prostokątnego Fp = 2; %Hz n = 512; [H,w]=freqz(b,1,n,Fp); plot(w,abs(h)) set(gca,'fontname', 'Times New Roman CE', 'FontSize',16) title('efekt obcinania metodą okna prostokątnego') xlabel('rad/sek')

36 Co się poprawiło, a co się pogorszyło? hamming Zastosowanie okna Hamminga rad/sek Fp = 2; %Hz n = 512; b=b.*hamming(51)'; [H,w]=freqz(b,1,512,2); plot(w,abs(h)) set(gca,'fontname', 'Times New Roman CE', 'FontSize',16) title('zastosowanie okna Hamminga') xlabel('rad/sek')

37 Co się poprawiło, a co się pogorszyło? Porównanie obu okien hamming prostokątne hamming rad/sek

38 w[k] = bartlett { 2(k 1) n 1 dla 1 k n (k 1) n 1 dla n+1 2 k n Okno Bartletta w3 = bartlett(51); stem(-25:25,w3)

39 blackman ( w[k] =.42.5 cos 2π k 1 ) ( +.8 cos 4π k 1 ) n 1 n 1 k = 1,..., n Okno Blackmana w3 = blackman(51); stem(-25:25,w3)

40 Okno prostokatne w = boxcar(n) Okno prostokątne boxcar w3 = boxcar(51); stem(-25:25,w3)

41 Okno Czebyszewa w = chebwin(n,r) Okno Czebyszewa chebwin n=51; r=1;%db w3 = chebwin(n,r); h=stem(-25:25,w3)

42 Okno Czebyszewa w = chebwin(n,r) chebwin n - punktowe okno dla n nieparzystego (n + 1) - punktowe okno dla n parzystego r - wielkość tłumienia zafalowań poza pasmem przenoszenia w [db] Amplitude Time domain Magnitude (db) Frequency domain Samples Normalized Frequency ( π rad/sample) n=51; r=1;%db wvtool(chebwin(n,r))

43 ( w[k] = cos 2π k ) n Okno Hamminga hamming k =,..., n w3 = hamming(51); stem(-25:25,w3)

44 ( w[k] =.5(1 cos 2π k ) n Okno Hanninga hanning k = 1,..., n w3 = hanning(51); stem(-25:25,w3)

45 Okno Kaisera w = kaiser(n,β) kaiser β - współczynnik odpowiedzialny za tłumienie listków bocznych α - [db] tłumienie listków bocznych.112(α 8.7) dla α 5 β =.5842(α 21) (α.21) dla 5 α 21 dla α 21 zwiększajac β uzyskuje się: poszerzenie listka głównego zwiększenie tłumienia listków bocznych n α gdzie [rad/s] pasmo 2.285

46 kaiser 1.8 Time domain Frequency domain Amplitude Magnitude (db) Samples Normalized Frequency ( π rad/sample) n=54; beta = ; alpha = 1;%dB wvtool(kaiser(n,beta))

47 triang Okno trójkatne n - nieparzyste n - parzyste w[k] = w[k] = { 2k w = triang(n) n+1 dla 1 k n+1 2 2(n k+1) n+1 dla n+1 2 k n { 2k 1 n+1 dla 1 k n 2 2(n k+1) n dla n+2 2 k n

48 triang 1.8 Time domain Frequency domain Amplitude Samples Magnitude (db) Normalized Frequency ( π rad/sample) n=54; wvtool(triang(n))

49 kaiser Magnitude (db) and Phase Responses.313 Magnitude (db) Phase (radians) Normalized Frequency ( π rad/sample) b = fir1(8,.5,kaiser(81,8)); hd = dfilt.dffir(b); freqz(hd);

50 wymnażanie okien w[n] - okno 1 n N h[n] - odpowiedź impulsowa idealnego filtru ( prototypu ), czyli odwrotna transformata idealnej charakterystyki częstotliwościowej zatem b[n] = w[n]h[n] 1 n N

51 fir1 Klasyczna metoda syntezy filtru FIR-owego o liniowej fazie b = fir1(n,wn, ftype, window ) b(z 1 ) = b(1) + b(2)z b(n + 1)z n n - rzad filtru W n [, 1] - wektor unormowanych pulsacji (1 - odpowiada pulsacji Nyquista) ftype - high, stop window - typ okna poprawjajacego charakterystykę filtru (domyślnie window = hamming )

52 fir1 F p, f g1, f g2, w 1 = 2f g1 F p, w 2 = 2f g2 F p filtr dolnopasmowy b = fir1(n,w1) filtr górnopasmowy (n - parzyste!) filtr pasmowoprzepustowy b = fir1(n, high,w1, hann ) b = fir1(n,[w1 w2], bartlett ) filtr pasmowozaporowy (n - parzyste!) b = fir1(n, stop,[w1 w2], boxcar )

53 F p = 1Hz, f 1 = 5Hz, f 2 = 4Hz, f g = 2Hz, w 1 = 2fg F p fir1(n,w1) Sygnal filtrowany fir Odp impulsowa filtru FIR

54 fir1 N = 64; fpr=1; fx1=5; fx2=4; nx = :N-1; dt = 1/fpr; t = dt*nx; x1 = cos(2*pi*fx1*t); x2 = cos(2*pi*fx2*t); x = x1 + x2; M = 7; fg = 2; h = fir1(m-1,2*fg/fpr,boxcar(m)) >>ans = subplot(211); stem(x,'filled'); grid; title('sygnał filtrowany'); subplot(212); stem(h,'filled'); grid; title('odp impulsowa filtru FIR');

55 conv Funkcja MATLAB-a pozwala w łatwy sposób dokonać splotu dwóch wektorów conv(x,h) sygnal po filtracji sygnal x 1 o f 1 = 5Hz

56 Funkcja splotu realizowana przez MATLAB-a conv % odwróć kolejność próbek h = h(m:-1:1); % uzupełnij sygnał M-1 zerami po obu stronach xe = [zeros(1,m-1) x zeros(1,m-1)]; % sygnał wyjściowy ye = zeros(1,n+2*(m-1)); subplot(311); stem(xe,'filled'); title('we'); pause % liczba próbek niezerowych for n = 1 : N+(M-1) % przesuń (ustaw) odp impulsową he = [zeros(1,n-1) h zeros(1,(n-1)+(m-1)-(n-1))]; % wymnóż x i przesunięte h y(n) = sum( xe.* he ); ye((m-1)+n)=y(n); % narysuj przesunięte h subplot(312); stem(he,'filled'); title('odp impuls'); % narysuj aktualne wyjście subplot(313); stem(ye,'filled'); title('wy'); pause end subplot(111); plot(t,x1,'r',t,y(1:n),'b'); grid; title('we (R) i Wy (B)');

57 splot bezpośredni % długość sygnałów z dodanymi zerami K = N+M-1; % dodaj zera jeśli krótszy xz=[x zeros(1,k-n)]; % odwróć kolejność próbek hh = h(m:-1:1); % bufor na próbki wejściowe bx = zeros(1,m); % wyzeruj sygnał wyjściowy y = []; % pętla po próbkach for n = 1 : K % przesuń próbki w buforze o jedną do tyłu, bx(1)=x(n); bx = [xz(n) bx(1:m-1)]; % filtracja; inaczej (szybciej): y(n)=bx*h' y(n) = sum(bx.*hh); end

58 szybki splot % znajdź dłuższy NM = max(n,m); % dodaj zera, jeśli krótszy xz=[x zeros(1,nm-n)]; % dodaj zera, jeśli krótszy hz=[h zeros(1,nm-m)]; X = fft(xz); H=fft(hz); Y = X.* H; yfft = ifft(y); y1 = real(yfft);

59 splot liniowy % długość sygnałów z dodanymi zerami K = N+M-1; % dodaj zera, jeśli krótszy xz=[x zeros(1,k-n)]; % dodaj zera, jeśli krótszy hz=[h zeros(1,k-m)]; X = fft(xz); H=fft(hz); Y = X.* H; yfft = ifft(y); y2 = real(yfft);

Języki Modelowania i Symulacji

Języki Modelowania i Symulacji Języki Modelowania i Symulacji Podstawowe Marcin Ciołek Katedra Systemów Automatyki WETI, Politechnika Gdańska 18 października 211 Literatura: 1. D. Kincaid, W. Cheney: Analiza numeryczna, Wydawnictwo

Bardziej szczegółowo

DYSKRETNA TRANSFORMACJA FOURIERA

DYSKRETNA TRANSFORMACJA FOURIERA Laboratorium Teorii Sygnałów - DFT 1 DYSKRETNA TRANSFORMACJA FOURIERA Cel ćwiczenia Celem ćwiczenia jest przeprowadzenie analizy widmowej sygnałów okresowych za pomocą szybkiego przekształcenie Fouriera

Bardziej szczegółowo

Transformacje i funkcje statystyczne

Transformacje i funkcje statystyczne Generacja okien: win = window(@fwin,n); Generacja okien gui: wintool; Rodzaje niektórych okien: @bartlett - Bartletta. @blackman - Blackmana. @chebwin - Czebyszewa. @gausswin - gausowskie. @hamming - Hamminga.

Bardziej szczegółowo

ĆWICZENIE III ANALIZA WIDMOWA SYGNAŁÓW DYSKRETNYCH. ver.3

ĆWICZENIE III ANALIZA WIDMOWA SYGNAŁÓW DYSKRETNYCH. ver.3 1 Zakład Elektrotechniki Teoretycznej ver.3 ĆWICZEIE III AALIZA WIDMOWA SYGAŁÓW DYSKRETYCH (00) Celem ćwiczenia jest przeprowadzenie analizy widmowej dyskretnych sygnałów okresowych przy zastosowaniu szybkiego

Bardziej szczegółowo

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem: PPS 2 kartkówka 1 RÓWNANIE RÓŻNICOWE Jest to dyskretny odpowiednik równania różniczkowego. Równania różnicowe to pewne związki rekurencyjne określające w sposób niebezpośredni wartość danego wyrazu ciągu.

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów Biomedycznych

Laboratorium Przetwarzania Sygnałów Biomedycznych Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 3 Analiza sygnału o nieznanej strukturze Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - mgr inż. Tomasz Kubik Politechnika Warszawska,

Bardziej szczegółowo

Języki Modelowania i Symulacji

Języki Modelowania i Symulacji Języki Modelowania i Symulacji Przetwarzanie sygnałów fonicznych Marcin Ciołek Katedra Systemów Automatyki WETI, Politechnika Gdańska 3 listopada 211 O czym będziemy mówili? 1 2 wavrecord wavplay y = wavrecord(n,

Bardziej szczegółowo

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI)

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH

ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH Generowanie podstawowych przebiegów okresowych sawtooth() przebieg trójkątny (wierzhołki +/-1, okres 2 ) square() przebieg kwadratowy (okres 2 ) gauspuls()przebieg sinusoidalny

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów Biomedycznych

Laboratorium Przetwarzania Sygnałów Biomedycznych Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 1 Wydobywanie sygnałów z szumu z wykorzystaniem uśredniania Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - mgr inż. Tomasz Kubik

Bardziej szczegółowo

Przekształcenie Fouriera i splot

Przekształcenie Fouriera i splot Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Przekształcenie Fouriera i splot Wstęp Na tym wykładzie: przekształcenie Fouriera

Bardziej szczegółowo

Podstawy Przetwarzania Sygnałów

Podstawy Przetwarzania Sygnałów Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech

Bardziej szczegółowo

CYFROWE PRZETWARZANIE SYGNAŁÓW

CYFROWE PRZETWARZANIE SYGNAŁÓW POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI Katedra Metrologii i Systemów Diagnostycznych CYFROWE PRZETWARZANIE SYGNAŁÓW Analiza widmowa sygnałów (2) dr inż. Robert

Bardziej szczegółowo

Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej

Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej. Filtry FIR o skończonej odpowiedzi impulsowej (SOI) Filtracja FIR polega na tym, że sygnał wyjściowy powstaje

Bardziej szczegółowo

x(n) x(n-1) x(n-2) D x(n-n+1) h N-1

x(n) x(n-1) x(n-2) D x(n-n+1) h N-1 Laboratorium Układy dyskretne LTI projektowanie filtrów typu FIR Z1. apisać funkcję y = filtruj(x, h), która wyznacza sygnał y będący wynikiem filtracji sygnału x przez filtr FIR o odpowiedzi impulsowej

Bardziej szczegółowo

Przetwarzanie sygnałów dyskretnych

Przetwarzanie sygnałów dyskretnych Przetwarzanie sygnałów dyskretnych System dyskretny p[ n ] r[ n] Przykłady: [ ] = [ ] + [ ] r n a p n a p n [ ] r n = 2 [ + ] + p[ n ] p n 2 r[ n] = a p[ n] + b n [ ] = [ ] r n a p n n [ ] = [ + ] r n

Bardziej szczegółowo

Przetwarzanie sygnałów

Przetwarzanie sygnałów Przetwarzanie sygnałów Ćwiczenie 3 Filtry o skończonej odpowiedzi impulsowej (SOI) Spis treści 1 Filtracja cyfrowa podstawowe wiadomości 1 1.1 Właściwości filtru w dziedzinie czasu............... 1 1.2

Bardziej szczegółowo

ZASTOSOWANIA PRZEKSZTAŁCENIA ZET

ZASTOSOWANIA PRZEKSZTAŁCENIA ZET CPS - - ZASTOSOWANIA PRZEKSZTAŁCENIA ZET Rozwiązywanie równań różnicowych Dyskretny system liniowy-stacjonarny można opisać równaniem różnicowym w postaci ogólnej N M aky[ n k] bkx[ n k] k k Przekształcenie

Bardziej szczegółowo

Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1-

Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Filtry cyfrowe cz. Zastosowanie funkcji okien do projektowania filtrów SOI Nierównomierności charakterystyki amplitudowej filtru cyfrowego typu SOI można

Bardziej szczegółowo

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

Przetwarzanie sygnałów

Przetwarzanie sygnałów Przetwarzanie sygnałów Ćwiczenie 5 Filtry o nieskończonej odpowiedzi impulsowej (NOI) Spis treści 1 Wprowadzenie 1 1.1 Filtry jednobiegunowe....................... 1 1.2 Filtry wąskopasmowe........................

Bardziej szczegółowo

Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej

Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej 1. Filtry FIR o skończonej odpowiedzi impulsowej (SOI) Filtracja FIR polega na tym, że sygnał wyjściowy powstaje

Bardziej szczegółowo

Przetwarzanie i transmisja danych multimedialnych. Wykład 8 Transformaty i kodowanie cz. 2. Przemysław Sękalski.

Przetwarzanie i transmisja danych multimedialnych. Wykład 8 Transformaty i kodowanie cz. 2. Przemysław Sękalski. Przetwarzanie i transmisja danych multimedialnych Wykład 8 Transformaty i kodowanie cz. 2 Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS

Bardziej szczegółowo

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

Technika regulacji automatycznej

Technika regulacji automatycznej Technika regulacji automatycznej Wykład 3 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 32 Plan wykładu Wprowadzenie Układ pierwszego rzędu Układ drugiego

Bardziej szczegółowo

Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 8

Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 8 Teoria Synałów rok nformatyki Stosowanej Wykład 8 Analiza częstotliwościowa dyskretnych synałów cyfrowych okna widmowe (cd poprzednieo wykładu) N = 52; T =.24; %czas trwania synału w sekundach dt = T/N;

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów. Ćwiczenie 2. Analiza widmowa

Laboratorium Przetwarzania Sygnałów. Ćwiczenie 2. Analiza widmowa PTS laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 2 Analiza widmowa Opracowali: - prof. dr hab. inż. Krzysztof Kałużyński - dr inż. Beata Leśniak-Plewińska - dr inż. Jakub Żmigrodzki Zakład

Bardziej szczegółowo

Filtrowanie a sploty. W powyższym przykładzie proszę zwrócić uwagę na efekty brzegowe. Wprowadzenie Projektowanie filtru Zadania

Filtrowanie a sploty. W powyższym przykładzie proszę zwrócić uwagę na efekty brzegowe. Wprowadzenie Projektowanie filtru Zadania Filtrowanie a sploty idea x=[2222222222] %sygnałstochastycznyodługości5próbek h=[1111]/4; %Filtruśredniającypo4sąsiednichelementach y=conv(h,x)%zaaplikowaniefiltruhdosygnałux W powyższym przykładzie proszę

Bardziej szczegółowo

Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ

Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ Projektowanie układów regulacji w dziedzinie częstotliwości dr hab. inż. Krzysztof Patan, prof. PWSZ Wprowadzenie Metody projektowania w dziedzinie częstotliwości mają wiele zalet: stabilność i wymagania

Bardziej szczegółowo

Detekcja zespołów QRS w sygnale elektrokardiograficznym

Detekcja zespołów QRS w sygnale elektrokardiograficznym Detekcja zespołów QRS w sygnale elektrokardiograficznym 1 Wprowadzenie Zadaniem algorytmu detekcji zespołów QRS w sygnale elektrokardiograficznym jest określenie miejsc w sygnale cyfrowym w których znajdują

Bardziej szczegółowo

ZAJĘCIA II. Zmienne losowe, sygnały stochastyczne, zakłócenia pomiarowe

ZAJĘCIA II. Zmienne losowe, sygnały stochastyczne, zakłócenia pomiarowe ZAJĘCIA II Zmienne losowe, sygnały stochastyczne, zakłócenia pomiarowe Po co statystyka w identyfikacji? Zmienne losowe i ich parametry Korelacja zmiennych losowych Rozkłady wielowymiarowe i sygnały stochastyczne

Bardziej szczegółowo

Wprowadzenie. Spis treści. Analiza_sygnałów_-_ćwiczenia/Filtry

Wprowadzenie. Spis treści. Analiza_sygnałów_-_ćwiczenia/Filtry Analiza_sygnałów_-_ćwiczenia/Filtry Spis treści 1 Wprowadzenie 2 Filtry cyfrowe: powtórka z wykładu 2.1 Działanie filtra w dziedzinie czasu 2.2 Nazewnictwo 2.3 Przejście do dziedziny częstości 2.3.1 Działanie

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów

Laboratorium Przetwarzania Sygnałów PTS - laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 4 Transformacja falkowa Opracował: - prof. dr hab. inż. Krzysztof Kałużyński Zakład Inżynierii Biomedycznej Instytut Metrologii i Inżynierii

Bardziej szczegółowo

b n y k n T s Filtr cyfrowy opisuje się również za pomocą splotu dyskretnego przedstawionego poniżej:

b n y k n T s Filtr cyfrowy opisuje się również za pomocą splotu dyskretnego przedstawionego poniżej: 1. FILTRY CYFROWE 1.1 DEFIICJA FILTRU W sytuacji, kiedy chcemy przekształcić dany sygnał, w inny sygnał niezawierający pewnych składowych np.: szumów mówi się wtedy o filtracji sygnału. Ogólnie Filtracją

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:

Bardziej szczegółowo

Akwizycja i przetwarzanie sygnałów cyfrowych

Akwizycja i przetwarzanie sygnałów cyfrowych Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Projektowania filtrów IIR Metoda niezmienności odpowiedzi impulsowej Podstawowa zasada określajaca: projektujemy

Bardziej szczegółowo

Laboratorium nr 4: Porównanie filtrów FIR i IIR. skończonej odpowiedzi impulsowej (FIR) zawsze stabilne, mogą mieć liniową charakterystykę fazową

Laboratorium nr 4: Porównanie filtrów FIR i IIR. skończonej odpowiedzi impulsowej (FIR) zawsze stabilne, mogą mieć liniową charakterystykę fazową Teoria Sygnałów sprawozdanie z zajęć laboratoryjnych Zajęcia z dnia 07.01.2009 Prowadzący: dr inż. Stanisław Nuckowski Sprawozdanie wykonał: Tomasz Witka Laboratorium nr 4: Porównanie filtrów FIR i IIR

Bardziej szczegółowo

Układy i Systemy Elektromedyczne

Układy i Systemy Elektromedyczne UiSE - laboratorium Układy i Systemy Elektromedyczne Laboratorium 1 Stetoskop elektroniczny parametry sygnałów rejestrowanych. Opracował: dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej, Instytut

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:

Bardziej szczegółowo

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów. Ćwiczenie 3. Filtracja i korelacja sygnałów dyskretnych

Laboratorium Przetwarzania Sygnałów. Ćwiczenie 3. Filtracja i korelacja sygnałów dyskretnych PTS laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 3 Filtracja i korelacja sygnałów dyskretnych Opracowali: - prof. dr hab. inż. Krzysztof Kałużyński - dr inż. Beata Leśniak-Plewińska - dr

Bardziej szczegółowo

SPRZĘTOWA REALIZACJA FILTRÓW CYFROWYCH TYPU SOI

SPRZĘTOWA REALIZACJA FILTRÓW CYFROWYCH TYPU SOI 1 ĆWICZENIE VI SPRZĘTOWA REALIZACJA FILTRÓW CYFROWYCH TYPU SOI (00) Celem pracy jest poznanie sposobu fizycznej realizacji filtrów cyfrowych na procesorze sygnałowym firmy Texas Instruments TMS320C6711

Bardziej szczegółowo

8. Realizacja projektowanie i pomiary filtrów IIR

8. Realizacja projektowanie i pomiary filtrów IIR 53 8. Realizacja projektowanie i pomiary filtrów IIR Cele ćwiczenia Realizacja na zestawie TMX320C5515 ezdsp prostych liniowych filtrów cyfrowych. Pomiary charakterystyk amplitudowych zrealizowanych filtrów

Bardziej szczegółowo

DYSKRETNE PRZEKSZTAŁCENIE FOURIERA C.D.

DYSKRETNE PRZEKSZTAŁCENIE FOURIERA C.D. CPS 6 DYSKRETE PRZEKSZTAŁCEIE FOURIERA C.D. Twierdzenie o przesunięciu Istnieje ważna właściwość DFT, znana jako twierdzenie o przesunięciu. Mówi ono, że: Przesunięcie w czasie okresowego ciągu wejściowego

Bardziej szczegółowo

Zaawansowane algorytmy DSP

Zaawansowane algorytmy DSP Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Zaawansowane algorytmy DSP Wstęp Cztery algorytmy wybrane spośród bardziej zaawansowanych

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1C400027 Temat ćwiczenia:

Bardziej szczegółowo

Kartkówka 1 Opracowanie: Próbkowanie częstotliwość próbkowania nie mniejsza niż podwojona szerokość przed spróbkowaniem.

Kartkówka 1 Opracowanie: Próbkowanie częstotliwość próbkowania nie mniejsza niż podwojona szerokość przed spróbkowaniem. Znowu prosta zasada - zbierzmy wszystkie zagadnienia z tych 3ech kartkówek i opracujmy - może się akurat przyda na dopytkę i uda się zaliczyć labki :) (dodatkowo można opracowania z tych rzeczy z doc ów

Bardziej szczegółowo

13.2. Filtry cyfrowe

13.2. Filtry cyfrowe Bibliografia: 1. Chassaing Rulph, Digital Signal Processing and Applications with the C6713 and C6416 DSK, Wiley-Interscience 2005. 2. Borodziewicz W., Jaszczak K., Cyfrowe Przetwarzanie sygnałów, Wydawnictwo

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów. Ćwiczenie 2. Filtracja i korelacja sygnałów dyskretnych

Laboratorium Przetwarzania Sygnałów. Ćwiczenie 2. Filtracja i korelacja sygnałów dyskretnych PTS laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 2 Filtracja i korelacja sygnałów dyskretnych Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - dr inż. Beata Leśniak-Plewińska

Bardziej szczegółowo

Dyskretne przekształcenie Fouriera cz. 2

Dyskretne przekształcenie Fouriera cz. 2 Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Dyskretne przekształcenie Fouriera cz. 2 Twierdzenie o przesunięciu Istnieje ważna właściwość DFT, znana jako twierdzenie o przesunięciu. Mówi ono, że: przesunięcie

Bardziej szczegółowo

Transformaty. Kodowanie transformujace

Transformaty. Kodowanie transformujace Transformaty. Kodowanie transformujace Kodowanie i kompresja informacji - Wykład 10 10 maja 2009 Szeregi Fouriera Każda funkcję okresowa f (t) o okresie T można zapisać jako f (t) = a 0 + a n cos nω 0

Bardziej szczegółowo

2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27

2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27 SYGNAŁY STOCHASTYCZNE Przestrzeń probabilistyczna i zmienna losowa Definicja Przestrzenią probabilistyczną (doświadczeniem) nazywamy trójkę uporządkowaną (E, B, P ), gdzie: E przestrzeń zdarzeń elementarnych;

Bardziej szczegółowo

Katedra Elektrotechniki Teoretycznej i Informatyki

Katedra Elektrotechniki Teoretycznej i Informatyki Katedra Elektrotechniki Teoretycznej i Informatyki Przedmiot: Zintegrowane Pakiety Obliczeniowe W Zastosowaniach InŜynierskich Numer ćwiczenia: 7,8 Temat: Signal Processing Toolbox - filtry cyfrowe, transmitancja

Bardziej szczegółowo

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20). SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy

Bardziej szczegółowo

Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe.

Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe. Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Komputerowe wspomaganie eksperymentu Zjawisko aliasingu.. Przecieki widma - okna czasowe. dr inż. Roland PAWLICZEK Zjawisko aliasingu

Bardziej szczegółowo

Adaptacyjne Przetwarzanie Sygnałów. Filtracja adaptacyjna w dziedzinie częstotliwości

Adaptacyjne Przetwarzanie Sygnałów. Filtracja adaptacyjna w dziedzinie częstotliwości W Filtracja adaptacyjna w dziedzinie częstotliwości Blokowy algorytm LMS (BLMS) N f n+n = f n + α x n+i e(n + i), i= N L Slide e(n + i) =d(n + i) f T n x n+i (i =,,N ) Wprowadźmy nowy indeks: n = kn (

Bardziej szczegółowo

FFT i dyskretny splot. Aplikacje w DSP

FFT i dyskretny splot. Aplikacje w DSP i dyskretny splot. Aplikacje w DSP Marcin Jenczmyk m.jenczmyk@knm.katowice.pl Wydział Matematyki, Fizyki i Chemii 10 maja 2014 M. Jenczmyk Sesja wiosenna KNM 2014 i dyskretny splot 1 / 17 Transformata

Bardziej szczegółowo

przedmiot kierunkowy (podstawowy / kierunkowy / inny HES) obieralny (obowiązkowy / nieobowiązkowy) polski semestr VI

przedmiot kierunkowy (podstawowy / kierunkowy / inny HES) obieralny (obowiązkowy / nieobowiązkowy) polski semestr VI Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2018/2019

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA

WOJSKOWA AKADEMIA TECHNICZNA WOJSKOWA AKADEMIA TECHNICZNA LABORATORIUM CYFROWE PRZETWARZANIE SYGNAŁÓW Stopień, imię i nazwisko prowadzącego Imię oraz nazwisko słuchacza Grupa szkoleniowa Data wykonania ćwiczenia dr inż. Andrzej Wiśniewski

Bardziej szczegółowo

Kompresja Danych. Streszczenie Studia Dzienne Wykład 13, f(t) = c n e inω0t, T f(t)e inω 0t dt.

Kompresja Danych. Streszczenie Studia Dzienne Wykład 13, f(t) = c n e inω0t, T f(t)e inω 0t dt. 1 Kodowanie podpasmowe Kompresja Danych Streszczenie Studia Dzienne Wykład 13, 18.05.2006 1.1 Transformaty, próbkowanie i filtry Korzystamy z faktów: Każdą funkcję okresową można reprezentować w postaci

Bardziej szczegółowo

Twierdzenie o splocie

Twierdzenie o splocie Twierdzenie o splocie g(t) = (s h) (t) G(f ) = S(f ) H(f ) (1) To twierdzenie działa też w drugą stronę: G(f ) = (S H) (f ) g(t) = s(t) h(t) (2) Zastosowania: zamiana splotu na mnożenie daje wgląd w okienkowanie

Bardziej szczegółowo

Akwizycja i przetwarzanie sygnałów cyfrowych

Akwizycja i przetwarzanie sygnałów cyfrowych Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Plan na dziś 1 Przedstawienie przedmiotu i zakresu wykładu polecanej iteratury zasad zaliczenia 2 Wyklad

Bardziej szczegółowo

Rys. 1. Wzmacniacz odwracający

Rys. 1. Wzmacniacz odwracający Ćwiczenie. 1. Zniekształcenia liniowe 1. W programie Altium Designer utwórz schemat z rys.1. Rys. 1. Wzmacniacz odwracający 2. Za pomocą symulacji wyznaczyć charakterystyki częstotliwościowe (amplitudową

Bardziej szczegółowo

Laboratorium nr 3. Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka

Laboratorium nr 3. Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka Laboratorium nr 3. Cele ćwiczenia Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka poznanie sposobów tworzenia liniowych modeli układów automatyki, zmiana postaci modeli, tworzenie

Bardziej szczegółowo

Generowanie sygnałów na DSP

Generowanie sygnałów na DSP Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Generowanie sygnałów na DSP Wstęp Dziś w programie: generowanie sygnałów za pomocą

Bardziej szczegółowo

Stabilność. Krzysztof Patan

Stabilność. Krzysztof Patan Stabilność Krzysztof Patan Pojęcie stabilności systemu Rozważmy obiekt znajdujący się w punkcie równowagi Po przyłożeniu do obiektu siły F zostanie on wypchnięty ze stanu równowagi Jeżeli po upłynięciu

Bardziej szczegółowo

Opis matematyczny. Równanie modulatora. Charakterystyka statyczna. Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy. dla 0 v c.

Opis matematyczny. Równanie modulatora. Charakterystyka statyczna. Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy. dla 0 v c. Opis matematyczny Równanie modulatora Charakterystyka statyczna d t = v c t V M dla 0 v c t V M D 1 V M V c Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy v c (t )=V c + v c (t ) d (t

Bardziej szczegółowo

Przetwarzanie i transmisja danych multimedialnych. Wykład 9 Kodowanie podpasmowe. Przemysław Sękalski.

Przetwarzanie i transmisja danych multimedialnych. Wykład 9 Kodowanie podpasmowe. Przemysław Sękalski. Przetwarzanie i transmisja danych multimedialnych Wykład 9 Kodowanie podpasmowe Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Wykład opracowano

Bardziej szczegółowo

TEORIA STEROWANIA I, w 5. dr inż. Adam Woźniak ZTMiR MEiL PW

TEORIA STEROWANIA I, w 5. dr inż. Adam Woźniak ZTMiR MEiL PW TEORIA STEROWANIA I, w 5 dr inż. Adam Woźniak ZTMiR MEiL PW Układy LTI- SISO Stacjonarne, przyczynowe liniowe układy z jednym wyjściem i jednym wejściem najczęściej modeluje się przy pomocy właściwej transmitancji

Bardziej szczegółowo

Filtry cyfrowe. h(n) odpowiedź impulsowa. Filtr cyfrowy. Procesory sygnałowe (DSP), układy programowalne

Filtry cyfrowe. h(n) odpowiedź impulsowa. Filtr cyfrowy. Procesory sygnałowe (DSP), układy programowalne Filtry cyfrowe Procesory sygnałowe (DSP), układy programowalne x(n) Filtr cyfrowy y(n) h(n) odpowiedź impulsowa x(n) y(n) y(n) = x(n) h(n) 1 Filtry cyfrowe Po co filtrujemy sygnały? Aby uzyskać: redukcję

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi

Bardziej szczegółowo

4 Zasoby językowe Korpusy obcojęzyczne Korpusy języka polskiego Słowniki Sposoby gromadzenia danych...

4 Zasoby językowe Korpusy obcojęzyczne Korpusy języka polskiego Słowniki Sposoby gromadzenia danych... Spis treści 1 Wstęp 11 1.1 Do kogo adresowana jest ta książka... 12 1.2 Historia badań nad mową i językiem... 12 1.3 Obecne główne trendy badań... 16 1.4 Opis zawartości rozdziałów... 18 2 Wyzwania i możliwe

Bardziej szczegółowo

Języki Modelowania i Symulacji

Języki Modelowania i Symulacji Języki Modelowania i Symulacji Marcin Ciołek Katedra Systemów Automatyki WETI, Politechnika Gdańska 18 stycznia 2012 Literatura: 1. D. Kincaid, W. Cheney: Analiza numeryczna, Wydawnictwo Naukowo Techniczne,

Bardziej szczegółowo

Analiza szeregów czasowych: 2. Splot. Widmo mocy.

Analiza szeregów czasowych: 2. Splot. Widmo mocy. Analiza szeregów czasowych: 2. Splot. Widmo mocy. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2006/07 Splot Jedna z najważniejszych własności transformaty Fouriera jest to, że transformata

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:

Bardziej szczegółowo

Technika audio część 2

Technika audio część 2 Technika audio część 2 Wykład 12 Projektowanie cyfrowych układów elektronicznych Mgr inż. Łukasz Kirchner lukasz.kirchner@cs.put.poznan.pl http://www.cs.put.poznan.pl/lkirchner Wprowadzenie do filtracji

Bardziej szczegółowo

9. Dyskretna transformata Fouriera algorytm FFT

9. Dyskretna transformata Fouriera algorytm FFT Transformata Fouriera ma szerokie zastosowanie w analizie i syntezie układów i systemów elektronicznych, gdyż pozwala na połączenie dwóch sposobów przedstawiania sygnałów reprezentacji w dziedzinie czasu

Bardziej szczegółowo

Katedra Elektrotechniki Teoretycznej i Informatyki

Katedra Elektrotechniki Teoretycznej i Informatyki Katedra Elektrotechniki Teoretycznej i Inormatyki Przedmiot: Zintegrowane Pakiety Obliczeniowe W Zastosowaniach InŜynierskich umer ćwiczenia: 7 Temat: Wprowadzenie do Signal Processing Toolbox 1. PRÓBKOWAIE

Bardziej szczegółowo

1 Gaussowskie zmienne losowe

1 Gaussowskie zmienne losowe Gaussowskie zmienne losowe W tej serii rozwiążemy zadania dotyczące zmiennych o rozkładzie normalny. Wymagana jest wiedza na temat własności rozkładu normalnego, CTG oraz warunkowych wartości oczekiwanych..

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)

Bardziej szczegółowo

GENERACJA PRZEBIEGU SINUSOIDALNEGO.

GENERACJA PRZEBIEGU SINUSOIDALNEGO. GENERACJA PRZEBIEGU SINUSOIDALNEGO. Podstawą generacji sygnału sinusoidalnego jest równanie różnicowe wyprowadzone w sposób następujący. Transmitancja układu generującego jest równa: Na wyjściu spodziewany

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Analiza szeregów czasowych: 2. Splot. Widmo mocy.

Analiza szeregów czasowych: 2. Splot. Widmo mocy. Analiza szeregów czasowych: 2. Splot. Widmo mocy. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Splot Jedna z najważniejszych własności transformaty Fouriera jest to, że transformata

Bardziej szczegółowo

PORÓWNANIE METOD PROJEKTOWANIA FILTRÓW CYFROWYCH

PORÓWNANIE METOD PROJEKTOWANIA FILTRÓW CYFROWYCH POZNAN UNIVERSITY OF TECHNOLOGY ACADEMIC JOURNALS No 93 Electrical Engineering 2018 DOI 10.21008/j.1897-0737.2018.93.0029 Dominik MATECKI * PORÓWNANIE METOD PROJEKTOWANIA FILTRÓW CYFROWYCH W artykule zostały

Bardziej szczegółowo

Przekształcenie Fouriera obrazów FFT

Przekształcenie Fouriera obrazów FFT Przekształcenie ouriera obrazów T 6 P. Strumiłło, M. Strzelecki Przekształcenie ouriera ourier wymyślił sposób rozkładu szerokiej klasy funkcji (sygnałów) okresowych na składowe harmoniczne; taką reprezentację

Bardziej szczegółowo

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 2 Badanie funkcji korelacji w przebiegach elektrycznych.

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 2 Badanie funkcji korelacji w przebiegach elektrycznych. Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie Badanie unkcji korelacji w przebiegach elektrycznych. Cel ćwiczenia: Celem ćwiczenia jest zbadanie unkcji korelacji w okresowych sygnałach

Bardziej szczegółowo

Andrzej Leśnicki Laboratorium CPS Ćwiczenie 10 1/12 ĆWICZENIE 10. Filtry FIR

Andrzej Leśnicki Laboratorium CPS Ćwiczenie 10 1/12 ĆWICZENIE 10. Filtry FIR Andrzej Leśnicki Laboratorium CPS Ćwiczenie 10 1/12 ĆWICZENIE 10 Filtry FIR 1. Cel ćwiczenia Przyczynowy system DLS służący do filtrowania synałów i mający skończoną odpowiedź impulsową nazywa się w skrócie

Bardziej szczegółowo

Wykład 3 Jednowymiarowe zmienne losowe

Wykład 3 Jednowymiarowe zmienne losowe Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej

Bardziej szczegółowo

Transformata Fouriera i analiza spektralna

Transformata Fouriera i analiza spektralna Transformata Fouriera i analiza spektralna Z czego składają się sygnały? Sygnały jednowymiarowe, częstotliwość Liczby zespolone Transformata Fouriera Szybka Transformata Fouriera (FFT) FFT w 2D Przykłady

Bardziej szczegółowo

Algorytmy detekcji częstotliwości podstawowej

Algorytmy detekcji częstotliwości podstawowej Algorytmy detekcji częstotliwości podstawowej Plan Definicja częstotliwości podstawowej Wybór ramki sygnału do analizy Błędy oktawowe i dokładnej estymacji Metody detekcji częstotliwości podstawowej czasowe

Bardziej szczegółowo

Stacjonarność i ergodyczność

Stacjonarność i ergodyczność Stacjonarność i ergodyczność Stacjonarność: Jeśli dla procesu stochastycznego ξ(t) wszystkie momenty są niezależne od czasu to jest on stajonarny wścisłymsensie.jeślitylkośrednia µ x i autokorelacjar x

Bardziej szczegółowo

Filtracja. Krzysztof Patan

Filtracja. Krzysztof Patan Filtracja Krzysztof Patan Wprowadzenie Działanie systemu polega na przetwarzaniu sygnału wejściowego x(t) na sygnał wyjściowy y(t) Równoważnie, system przetwarza widmo sygnału wejściowego X(jω) na widmo

Bardziej szczegółowo

Inżynieria Systemów Dynamicznych (3)

Inżynieria Systemów Dynamicznych (3) Inżynieria Systemów Dynamicznych (3) Charakterystyki podstawowych członów dynamicznych Piotr Jacek Suchomski Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 grudnia 2010 O czym będziemy mówili?

Bardziej szczegółowo

Biometryczna Identyfikacja Tożsamości

Biometryczna Identyfikacja Tożsamości Biometryczna Identyfikacja Tożsamości Wykład 9: Rozpoznawanie mówiącego Adam Czajka Wykład na Wydziale Elektroniki i Technik Informacyjnych Politechniki Warszawskiej Semestr letni 2015 c Adam Czajka, IAiIS

Bardziej szczegółowo

Interpolacja, aproksymacja całkowanie. Interpolacja Krzywa przechodzi przez punkty kontrolne

Interpolacja, aproksymacja całkowanie. Interpolacja Krzywa przechodzi przez punkty kontrolne Interpolacja, aproksymacja całkowanie Interpolacja Krzywa przechodzi przez punkty kontrolne Aproksymacja Punkty kontrolne jedynie sterują kształtem krzywej INTERPOLACJA Zagadnienie interpolacji można sformułować

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów Biomedycznych

Laboratorium Przetwarzania Sygnałów Biomedycznych PSB - laboratorium Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 5 Analiza sygnału świergotowego przy zastosowaniu transformacji Hilberta Opracowali: - prof. dr hab. inż. Krzysztof Kałużyński

Bardziej szczegółowo

Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II. Podstawy MATLABA, cz2.

Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II. Podstawy MATLABA, cz2. Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II Podstawy MATLABA, cz2. 1. Wielomiany

Bardziej szczegółowo

Przetwarzanie sygnałów z czasem ciągłym

Przetwarzanie sygnałów z czasem ciągłym Przetwarzanie sygnałów z czasem ciągłym Model systemowy układu p( t ) r ( t) wejście Układ wyjście p( t ) pobudzenie r ( t) reakcja Układ wykonuje pewną operację { i } na sygnale wejściowym p t (pobudzeniu),

Bardziej szczegółowo