Prawdopodobieństwo i kombinatoryka

Wielkość: px
Rozpocząć pokaz od strony:

Download "Prawdopodobieństwo i kombinatoryka"

Transkrypt

1 robabilistyka i statystyka rawdopodobieństwo i kombinatoryka Wykład dr inż. Barbara Swatowska Katedra Elektroniki, GH swatow@agh.edu.pl Definicja prawdopodobieństwa Klasyczna Geometryczna Częstościowa (von Misesa) ksjomatyczna (Kołmogorowa) 2 1

2 rawdopodobieństwo ogólnie Ogólne określenie jednego z wielu pojęć służących modelowaniu doświadczenia losowego poprzez przypisanie poszczególnym zdarzeniom losowym liczb, zwykle z przedziału jednostkowego (w zastosowaniach często wyrażanych procentowo), wskazujących szanse ich zajścia. W rozumieniu potocznym wyraz prawdopodobieństwo odnosi się do oczekiwania względem rezultatu zdarzenia, którego wynik nie jest znany (niezależnie od tego, czy jest ono w jakimś sensie zdeterminowane, miało miejsce w przeszłości, czy dopiero się wydarzy); w ogólności należy je rozumieć jako pewną miarę nieprzewidywalności. ( ) Ω 3 rawdopodobieństwo DEFINICJ RWDOODOBIEŃSTW (DL X TYU SKOKOWEGO) KLSYCZN równych szans Gdy eksperyment losowy ma n równoprawdopodobnych wyników, to prawdopodobieństwo danego jest p(e i )1/n CZESTOTLIWOŚCIOW (EKSERYMENTLN) rzyjmuje, że prawdopodobieństwo danego zdarzenia jest równe częstotliwości jego zajścia w wielokrotnie powtarzanym doświadczeniu losowym p() f() MTEMTYCZN Spełnione są warunki: 1)p(Ω) 1 2)0 p() 1 dla każdego 3)p( n )Σp( n ) dla dowolnego ciągu, parami rozłącznych 1, 2,. 4 2

3 Klasyczna definicja prawdopodobieństwa ierwszą (klasyczną) definicję prawdopodobieństwa podał.s. Laplace w 1812 r. Rozważmy doświadczenie losowe kończące się zawsze dokładnie jednym spośród N jednakowo możliwych wyników. rawdopodobieństwem zdarzenia nazywamy stosunek liczby n a zdarzeń sprzyjających zdarzeniu do liczby wszystkich zdarzeń N ( ) n N jest podzbiorem tzw. zdarzenia pewnego Ω. a Ω 5 Geometryczna definicja prawdopodobieństwa Wprowadzono ją, aby móc mówić o prawdopodobieństwie także w odniesieniu do nieskończenie wielu wyników. rzypuśćmy, że w przestrzeni r-wymiarowej mamy pewien obszar G i zawarty w nim obszar g. Doświadczenie polega na losowym wyborze punktu w obszarze G, przy czym wszystkie punkty są równoprawne. rzez równoprawność rozumiemy, że wybory punktów z obszarów o identycznej mierze (przy dowolnym ich kształcie i położeniu) są jednakowo możliwe. rawdopodobieństwo zdarzenia polegającego na tym, że losowo wybrany punkt znajdzie się w obszarze g wynosi: ( ) miara( g) miara( G) 6 3

4 aradoks Bertranda W danym kole prowadzimy na chybił trafił ( w sposób losowy) cięciwę. Jakie jest prawdopodobieństwo, że będzie ona dłuższa od boku trójkąta równobocznego wpisanego w to koło? Trzy sposoby rozwiązania, trzy różne odpowiedzi: ½, 1/3, ¼. rzyczyna paradoksu tkwi w tym, że w treści zadania nie sprecyzowano dokładnie, co należy rozumieć przez poprowadzenie średnicy w sposób losowy. 7 Częstościowa definicja prawdopodobieństwa Zaproponowana przez R. von Misesa w 1931 r. Nie ma wad definicji klasycznej ani geometrycznej. Jest zgodna z intuicją i z obserwowalną prawidłowością dotyczącą częstości. Nie jest jednak akceptowalna jako definicja pojęcia matematycznego ( a posteriori). rawdopodobieństwo zdarzenia jest to granica częstości tego zdarzenia, gdy liczba doświadczeń n dąży do nieskończoności. n( ) ( ) lim n n 8 4

5 Klasyczna definicja prawdopodobieństwa 9 rawdopodobieństwo c.d. {e 1, e 2,, e k } p( ) i k i 1 p( p() 1-p( ) Zdarzenia i B są niezależne, gdy: e i ) p ( B) p( ) p( B) rawdopodobieństwo sumy dwóch zdarzeń jest równe: p( B) p( ) + p( B) p( B) 10 5

6 ksjomatyczna definicja prawdopodobieństwa Każdemu zdarzeniu losowemu przypisujemy liczbę (), zwaną prawdopodobieństwem tego zdarzenia, taką że: 1. 0 () 1 2. rawdopodobieństwo zdarzenia pewnego jest równe jedności ( Ω ) 1 3. (przeliczalna addytywność prawdopodobieństwa) rawdopodobieństwo alternatywy przeliczalnej ilości parami wykluczających się zdarzeń jest równe sumie prawdopodobieństw tych zdarzeń: jeżeli 1, 2, Є M, przy czym dla każdej pary wskaźników i, j (i j) jest i j Ø, to: k ( k ) k 1 k 1 11 Konsekwencje aksjomatów rawdopodobieństwo sumy wzajemnie wykluczających się zdarzeń losowych i B jest równe sumie prawdopodobieństw tych zdarzeń» (Kołmogorov, 1933) czyli: ( B) ( ) + ( B),gdzie B B 12 6

7 Eksperyment losowy Doświadczenie losowe jest to proces, którego wynikiem jest jeden z kilku możliwych i którego nie można z pewnością przewidzieć. rzykłady: DOŚWIDCZENIE WYNIK 1. Rzut monetą orzeł (O), reszka (R) 2. Rzut kostką 1, 2, 3, 4, 5, 6 parzysta lub nieparzysta liczba oczek 3. Losowanie Toto-Lotka szóstka liczb: ze zbioru {1,2 49} 4. Narodziny chłopiec, dziewczynka, bliźniaki itp 5. Notowania dzienne kursu zł wzrost, spadek, stagnacja 13 Zdarzenia losowe Zbiór zdarzeń elementarnych (rzestrzeń zdarzeń elementarnych); Sample space (list of simple events) - Zbiór wszystkich prostych wyników doświadczenia losowego. Wyniki muszą być wykluczające się i wyczerpujące wszystkie możliwości. Ω {e 1, e 2,. } Zdarzenie losowe (event) - odzbiór zbioru zdarzeń losowych:, B, Eksperyment losowy (EL) ekperyment, którego wyniki są losowe. ojedynczy wynik EL nazywamy elementarnym zdarzeniem losowym. Zakładamy, że wszystkie możliwe wyniki EL są znane i tworzą przestrzeń zdarzeń elementarnych Ω. Zdarzeniami losowymi nazywamy podzbiory przestrzeni Ω, których elementami są zdarzenia elementarne. Ω ; B Ω e i є mówimy, że zaszło ( e i - sprzyja ) Ω zdarzenie pewne zdarzenie przeciwne do Ω Ø zdarzenie niemożliwe e i є B zaszło lub B e i є B zaszło i B 14 7

8 Zdarzenie losowe a zdarzenie elementarne W każdym doświadczeniu losowym można wyróżnić pewne najprostsze, nierozkładalne, elementarne wyniki (zdarzenia), charakteryzujące się tym, że każde powtórzenie tego doświadczenia kończy się jednym i tylko jednym z nich. Są to zdarzenia elementarne. Dla każdego doświadczenia losowego rozważamy zbiór wszystkich możliwych wyników tego doświadczenia. oszczególne wyniki nazywamy zdarzeniami elementarnymi. Zbiór wszystkich wyników nazywamy przestrzenią wyników albo przestrzenią (zbiorem) zdarzeń elementarnych i oznaczamy symbolem Ω. 15 rzykład do samodzielnego rozwiązania Dokonać przeglądu wszystkich (uwzględniając zdarzenie pewne i niemożliwe) zdarzeń (jedno-, dwu-, trzy-, cztero-, pięcio- i sześcio- elementowych) w doświadczeniu polegającym na rzucie kostką. Określić przestrzeń zdarzeń elementarnych. odać liczbę wszystkich możliwych zdarzeń 16 8

9 Zmienna losowa Ω {e 1, e 2,. } f: Ω R f ( e ) x R i i rzykłady: 1) Rzut monetą: zdarzeniu orzeł przypisujemy 0; zdarzeniu reszka przypisujemy 1. 2) nalog. losowanie wyrobów: zdarzeniu brak (wadliwy) - 0, dobry 1 3) Rzut kostką: wyrzucenie 1 1, 2 2 itd 4) Odcinek [a, b] na osi liczbowej wybór punktu o współrzędnej x przypisujemy np. wartość x ; wartość sin 2 (3x+17) itp. GDY WRTOŚCI ZMIENNEJ LOSOWEJ X SĄ IZOLOWNYMI UNKTMI N OSI LICZBOWEJ TO ZMIENN LOSOW JEST DYSKRETN (SKOKOW). NTOMIST GDY STNOWI ZBIÓR CIĄGŁY (np. wszystkie punkty odcinka) TO JEST ON CIĄGŁĄ. 17 Relacje zdarzeń Suma zdarzeń zachodzi co najmniej jedno ze zdarzeń lub B B B Iloczyn zdarzeń zachodzi zdarzenie oraz zdarzenie B B B B B 18 9

10 Relacje zdarzeń Zdarzenie przeciwne nie zachodzi zdarzenie : ' Zdarzenie pociąga zdarzenie B (operator: zbiór zawiera się w zbiorze B): B Zdarzenia i B wzajemnie wykluczające się: B B 19 B B C B B lgebra zbiorów a algebra zdarzeń Zaszło co najmniej jedno ze zdarzeń i B Zaszły oba zdarzenia B i C Zajście zdarzenia implikuje zajście zdarzenia B Zdarzenia i B nie mogą zajść jednocześnie (są rozłączne, wzajemnie się wyłączają). Operacje sumy i iloczynu zbiorów spełniają prawa łączności, przemienności i rozdzielności: ( B C) ( B) C B C ( B C) ( B) C B C B B B B ( B C) ( B) ( C) ( B C) ( B) ( C) 20 10

11 Liczba obiektów w prostych sytuacjach kombinatorycznych W wielu sytuacjach konieczne jest wyznaczenie liczby elementów rozważanego zbioru. Mogą tu być pomocne proste zasady arytmetyczne: reguła dodawania reguła mnożenia rzut monetą wyciąganie kart z talii rzut kostką 21 Reguła dodawania Jeżeli dwa zdarzenia wzajemnie się wykluczają, tzn. nie mogą wystąpić jednocześnie, wtedy możemy stosować regułę dodawania. Twierdzenie dotyczące dodawania Jeżeli zdarzenie e 1 można zrealizować na n 1 sposobów, a zdarzenie e 2 na n 2 sposobów oraz zdarzenia e 1 i e 2 wzajemnie się wykluczają, to liczba sposobów w jakich realizują się oba zdarzenia wynosi: n 1 + n 2 B 22 11

12 Uogólnienie reguły dodawania Jeżeli rozważany zbiór Z jest sumą, rozłącznych parami podzbiorów, Z 1 2 m i znamy liczbę elementów każdego podzbioru, to liczba elementów zbioru Z jest sumą liczb elementów wszystkich podzbiorów 1, 2,., m Jest to szczególny przypadek zasady włączeń-wyłączeń ang. rinciple of Inclusion-Exclusion, IE B 23 Zasada włączeń wyłączeń (rinciple of Inclusion-Exclusion IE) Rozważmy dwa zdarzenia, e 1 i e 2, dla których możliwe jest wystąpienie odpowiednio n 1 i n 2 rezultatów. Jednak, tylko jedno zdarzenie może zachodzić a nie oba. W tej sytuacji nie stosuje się reguły dodawania. W języku zdarzeń: od sumy wszystkich możliwych wyników należy odjąć liczbę tych, które są wspólne dla obu zdarzeń. W języku zbiorów: B 24 12

13 Reguła mnożenia Jeżeli dwa zdarzenia nie wykluczają się, tzn. mogą zachodzić osobno, wtedy możemy stosować regułę mnożenia. Twierdzenie dotyczące mnożenia Jeżeli pewne doświadczenie można wykonać w m kolejnych etapach, przy czym w k-tym etapie można uzyskać w k wyników, to liczba wszystkich wyników doświadczenia jest równa iloczynowi w 1 w 2 w m B 25 Zastosowanie reguł mnożenia i dodawania Zamek jest strzeżony przez dwie wieże, jedna z nich jest zamknięta kodem dwucyfrowym nieparzystym, druga kodem dwucyfrowym parzystym. Wystarczy złamać kod na jednej wieży, aby wejść. Na ile sposobów możemy wejść do zamku? Mamy tutaj jednocześnie regułę mnożenia i dodawania. Najpierw mnożenia, wieża z kodem parzystym składa się z 2 cyfr. Możliwe dziesiątki: 2,4,6,8 Możliwe jedności: 0,2,4,6,8 Zatem z reguły mnożenia kombinacji jest Tak samo w wieży nieparzystej. Możliwe dziesiątki: 1,3,5,7,9 Możliwe jedności: 1,3,5,7,9 Z reguły mnożenia kombinacji jest Z racji, że mamy albo (ta wieża albo tamta) sumujemy nasze wyliczone kombinacje: B 26 13

14 Wariacje Wariacją k elementową ze zbioru n elementowego nazywamy każdy ciąg (uporządkowanie) k elementowy utworzony z elementów tego zbioru. Ilość (ciągów) wariacji zależy od tego czy elementy ciągu mogą się powtarzać czy nie. Istotny jest zatem sposób losowania: bez zwracania bez powtórzeń ze zwracaniem z powtórzeniami 27 Wariacje bez powtórzeń rzykład: Rozważmy 3-elementowy zbiór Z{a,b,c} i wypiszmy wszystkie wariacje 2-wyrazowe bez powtórzeń: (a,b) (b,a) (a,c) (c,a) (b,c) (c,b) Obliczyć liczbę tych ciągów: 3x26 Ogólnie: V ( k ) n k 1 i 0 ( n i) n( n 1)( n 2)...( n k + 1) 28 14

15 Liczba wariacji bez powtórzeń Liczbę wariacji k elementowych bez powtórzeń ze zbioru n elementowego można obliczyć ze wzoru: ( ) V k n n! ( n k)! Gdy kn, tzn. ciąg n elementowy ze zbioru n elementowego (permutacja bez powtórzeń) rzykład: (abc) (acb) (bac) (bca) (cab) (cba) Liczba permutacji wynosi n! 29 rzykład: Wariacje z powtórzeniami Rozważmy 3-elementowy zbiór Z{a,b,c} i wypiszmy wszystkie wariacje 2-wyrazowe z powtórzeniami: (a,a) (b,a) (c,a) (a,b) (b,b) (c,b) (a,c) (b,c) (c,c) Obliczyć liczbę tych ciągów: 3x

16 Liczba wariacji z powtórzeniami Liczbę wariacji k elementowych z powtórzeniami ze zbioru n elementowego można obliczyć ze wzoru: k k W ( ) n n Zadanie: Wiele urządzeń elektronicznych wymaga od użytkownika wprowadzenia osobistego kodu złożonego z czterech cyfr. Oblicz, ile jest możliwych takich kodów. Rozwiązanie: Każdy kod to czteroelementowa wariacja z powtórzeniami ze zbioru dziesięciu cyfr {0,1,2,3,4,5,6,7,8,9} W (4) Kombinacje Kombinacją k wyrazową ze zbioru n elementowego nazywamy każdy k wyrazowy podzbiór (brak uporządkowania) utworzony z elementów tego zbioru. Ilość (podzbiorów) kombinacji zależy od tego czy elementy podzbioru mogą się powtarzać czy nie. Istotny jest zatem sposób losowania: bez zwracania bez powtórzeń; ze zwracaniem z powtórzeniami 32 16

17 Kombinacje bez powtórzeń rzykład: Rozważmy 3-elementowy zbiór Z{a,b,c} i wypiszmy wszystkie kombinacje 2-wyrazowe bez powtórzeń: {a,b} {a,c} {b,c} Obliczyć liczbę tych podzbiorów: 6/23 Ogólnie: C ( k ) n ( k Vn k! ) Liczbę kombinacji k wyrazowych bez powtórzeń ze zbioru n elementowego można obliczyć ze wzoru: ( ) C k n n! k!( n k)! czyli: k C ( ) n n k 33 Kombinacje z powtórzeniami rzykład: Rozważmy 3-elementowy zbiór Z{a,b,c} i wypiszmy wszystkie kombinacje 2-wyrazowe z powtórzeniami: {a,a} {a,b} {a,c} {b,b} {b,c} {c,c} Obliczyć liczbę tych podzbiorów 6 Ogólnie liczba kombinacji z powtórzeniami: ( k ) c n n+ k 1 k 34 17

18 rzykład z kombinacji W pudełku jest 10 kulek, w tym 6 czerwonych i 4 zielone. Wybrano losowo 5 kulek. Obliczyć prawdopodobieństwo, że 3 z nich są czerwone i 2 z nich zielone. Rozwiązanie: onieważ losowanie jest bez zwracania i kolejność wylosowanych kulek jest nieistotna, więc jako zdarzenia elementarne przyjmiemy 5-elementowe kombinacje zbioru 10 kulek. Zdarzeń elementarnych jest więc (10 nad 5). Obliczymy liczbę zdarzeń elementarnych sprzyjających zajściu zdarzenia wybrano 3 kulki czerwone i 2 kulki zielone. onieważ jest 6 kulek cz., więc 3 z nich można wybrać na (6 nad 3) sposobów. Jeśli już wybrano 3 kulki cz., to należy wybrać teraz 2 kulki z. spośród 4 kulek. Można to uczynić na (4 nad 2) sposobów. Tak więc dla każdego wyboru 3 kulek cz. można na (4 nad 2) sposobów wybrać 2 kulki z., dlatego mamy (6 nad 3) (4 nad 2) zdarzeń elementarnych sprzyjających zajściu zdarzenia, więc: ( ) : odsumowanie metod obliczania liczby możliwych zdarzeń Elementy kombinatoryki Wariacje (ciągi) - istotna jest kolejność z powtórzeniami Kombinacje (podzbiory) kolejność nie jest istotna z powtórzeniami bez powtórzeń bez powtórzeń 36 18

19 Kombinatoryka 37 Wprowadzenie: rawdopodobieństwo warunkowe rzykładowo interesuje nas częstość występowania daltonizmu wśród ludzi. W związku z tym wybieramy n osób i badamy, które z nich cierpią na daltonizm. Rozwiązanie: zdarzenie polegające na tym, że wybrana losowo osoba cierpi na daltonizm n() d oznacza liczbę osób wybranych z n, które cierpią na daltonizm Częstość występowania daltonizmu dana jest wzorem: d ν () n 38 19

20 rawdopodobieństwo warunkowe Zmieniamy założenie, że teraz interesuje nas częstość występowania daltonizmu wśród kobiet. Trzeba przeprowadzić nowy eksperyment, wybierając pewną liczbę kobiet (a więc teraz wybór odbywałby się w innej zbiorowości zbiorowości kobiet, zawartej w poprzednio rozpatrywanej zbiorowości ludzi) i licząc, ile wśród nich jest daltonistek. Jednak ten nowy eksperyment jest zbyteczny. Częstość występowania daltonizmu u kobiet można wyznaczyć za pomocą częstości zaobserwowanych w pierwszym eksperymencie. 39 Rozwiązanie: rawdopodobieństwo warunkowe B zdarzenie polegające na tym, że osoba jest kobietą n(b) k oznacza liczbę kobiet wśród wybranych n osób Wśród wybranych kobiet było K daltonistek: n ( B) K Odpowiednie częstości zdarzeń B i B są dane jako: k ν (B) n ν ( B) K n 40 20

21 rawdopodobieństwo warunkowe Dotychczasowe rozważania dotyczą wszystkich n obserwacji. Ograniczmy się teraz do tych k obserwacji, które dały wynik B, i obliczmy jak często występowało w nich zdarzenie, tzn. obliczmy zaobserwowaną częstość daltonizmu wśród kobiet. Dla zaznaczenia, że chodzi obecnie o częstość zdarzenia w stosunku do tych obserwacji, które dały wynik B przyjmijmy inne oznaczenie: Zauważamy, że zachodzi: ν ( \ B) K k ν ( B) ν ( \ B) ν ( B) 41 rawdopodobieństwo warunkowe definicja Ogólna definicja ( \ B ) ( B ) ( B ) przy założeniu, że (B) > 0 (tj. zdarzenie B musi być prawdopodobne) 42 21

22 rawdopodobieństwo warunkowe użyteczne wzory B B B ( ) ( Ω) ( B) 0 ( ) ( ) B ( B) ( B) 1 dla dowolnego zdarzenia 43 rawdopod. warunkowe przykład Rzucamy trzy razy kostką 6-cio-ścienną. Wiemy, że za każdym razem wypadła inna liczba oczek. Jakie jest prawdopodobieństwo, że raz wypadło 5, pod warunkiem, że za każdym razem wypadła inna cyfra? ( B) ( B) ( B) Ω Ω ( B) 5 4 3Ω ( B) Ω 44 22

23 Dziękuję za uwagę 45 23

Wykład 2. Prawdopodobieństwo i elementy kombinatoryki

Wykład 2. Prawdopodobieństwo i elementy kombinatoryki Wstęp do probabilistyki i statystyki Wykład 2. Prawdopodobieństwo i elementy kombinatoryki dr hab.inż. Katarzyna Zakrzewska, prof.agh Katedra Elektroniki, AGH e-mail: zak@agh.edu.pl http://home.agh.edu.pl/~zak

Bardziej szczegółowo

Wykład 2. Prawdopodobieństwo i elementy kombinatoryki

Wykład 2. Prawdopodobieństwo i elementy kombinatoryki Wstęp do probabilistyki i statystyki Wykład 2. Prawdopodobieństwo i elementy kombinatoryki dr inż. Krystyna Schneider, Katedra Elektroniki, AGH e-mail: kryschna@agh.edu.pl http://home.agh.edu.pl/~kryschna

Bardziej szczegółowo

Wstęp do probabilistyki i statystyki Wykład 3. Prawdopodobieństwo i algebra zdarzeń

Wstęp do probabilistyki i statystyki Wykład 3. Prawdopodobieństwo i algebra zdarzeń Wstęp do probabilistyki i statystyki Wykład 3. Prawdopodobieństwo i algebra zdarzeń dr inż. Krystyna Schneider, Katedra Elektroniki, AGH e-mail: kryschna@agh.edu.pl http://home.agh.edu.pl/~kryschna 1 Plan:

Bardziej szczegółowo

Rachunek prawdopodobieństwa

Rachunek prawdopodobieństwa Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry

Bardziej szczegółowo

Wykład 4. Elementy kombinatoryki

Wykład 4. Elementy kombinatoryki Wstęp do probabilistyki i statystyki Wykład 4. Elementy kombinatoryki dr inż. Krystyna Schneider, Katedra Elektroniki, AGH e-mail: kryschna@agh.edu.pl http://home.agh.edu.pl/~kryschna Wstęp do probabilistyki

Bardziej szczegółowo

Kombinatoryka. Reguła dodawania. Reguła dodawania

Kombinatoryka. Reguła dodawania. Reguła dodawania Kombinatoryka Dział matematyki, który zajmuje się obliczaniem liczebności zbiorów bądź długości ciągów, które łączą w określony sposób elementy należące do skończonego zbioru (teoria zliczania). W jakich

Bardziej szczegółowo

Zdarzenia losowe i prawdopodobieństwo

Zdarzenia losowe i prawdopodobieństwo Rozdział 1 Zdarzenia losowe i prawdopodobieństwo 1.1 Klasyfikacja zdarzeń Zdarzenie elementarne pojęcie aprioryczne, które nie może być zdefiniowane. Odpowiednik pojęcia punkt w geometrii. Zdarzenie elementarne

Bardziej szczegółowo

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1 Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Jakubowski, Sztencel:

Bardziej szczegółowo

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15 II WYKŁAD STATYSTYKA 12/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 2 Rachunek prawdopodobieństwa zdarzenia elementarne zdarzenia losowe zmienna losowa skokowa i ciągła prawdopodobieństwo i gęstość prawdopodobieństwa

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 2 Magdalena Alama-Bućko 5 marca 2018 Magdalena Alama-Bućko Statystyka matematyczna 5 marca 2018 1 / 14 Prawdopodobieństwo klasyczne Ω - zbiór wszystkich zdarzeń elementarnych

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne 2. Aksjomatyczna definicja prawdopodobieństwa Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 10.10.2017 1 / 33 Klasyczna definicja prawdopodobieństwa

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. L. Kowalski, Statystyka, 2005

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. L. Kowalski, Statystyka, 2005 RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. Literatura: Marek Cieciura, Janusz Zacharski, Metody probabilistyczne w ujęciu praktycznym, L. Kowalski, Statystyka, 2005 R.Leitner, J.Zacharski, "Zarys matematyki

Bardziej szczegółowo

Podstawy metod probabilistycznych. dr Adam Kiersztyn

Podstawy metod probabilistycznych. dr Adam Kiersztyn Podstawy metod probabilistycznych dr Adam Kiersztyn Przestrzeń zdarzeń elementarnych i zdarzenia losowe. Zjawiskiem lub doświadczeniem losowym nazywamy taki proces, którego przebiegu i ostatecznego wyniku

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA

RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA Doświadczenia losowe Rachunek prawdopodobieństwa zajmuje się zdarzeniami jakie zachodzą, gdy przeprowadzamy doświadczenia losowe. Mówimy, że doświadczenie jest

Bardziej szczegółowo

Podstawy nauk przyrodniczych Matematyka

Podstawy nauk przyrodniczych Matematyka Podstawy nauk przyrodniczych Matematyka Elementy rachunku prawdopodobieństwa dr inż. Małgorzata Szeląg Zakład Genetyki Molekularnej Człowieka tel. 61 829 59 04 malgorzata.szelag@amu.edu.pl Pokój 1.118

Bardziej szczegółowo

Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018

Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018 Katedra Matematyki i Ekonomii Matematycznej SGH 16 października 2018 Definicja σ-algebry Definicja Niech Ω oznacza zbiór niepusty. Rodzinę M podzbiorów zbioru Ω nazywamy σ-algebrą (lub σ-ciałem) wtedy

Bardziej szczegółowo

P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt.

P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. Lekcja 2 Temat: Podstawowe pojęcia związane z prawdopodobieństwem. Str. 10-21 1. Doświadczenie losowe jest to doświadczenie,

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 25 lutego 2019 Magdalena Alama-Bućko Statystyka matematyczna 25 lutego 2019 1 / 18 Wykład : 10h (przez 10 tygodni po 45 minut) Ćwiczenia : 15h (45

Bardziej szczegółowo

Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( )

Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( ) Nowa matura kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Doświadczenie losowe polega na rzucie dwiema symetrycznymi monetami i sześcienną kostką do gry. Prawdopodobieństwo

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 20 lutego 2017 Magdalena Alama-Bućko Statystyka matematyczna 20 lutego 2017 1 / 21 Wykład : 10h (przez 10 tygodni po 45 minut) Ćwiczenia : 15h (45

Bardziej szczegółowo

Prawdopodobieństwo

Prawdopodobieństwo Prawdopodobieństwo http://www.matemaks.pl/ Wstęp do rachunku prawdopodobieństwa http://www.matemaks.pl/wstep-do-rachunku-prawdopodobienstwa.html Rachunek prawdopodobieństwa pomaga obliczyć szansę zaistnienia

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne 1. Prawdopodobieństwo klasyczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 03.10.2017 1 / 19 Rys historyczny Francja, XVII w.: gry hazardowe

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna. Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2016/2017

Rachunek prawdopodobieństwa i statystyka matematyczna. Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2016/2017 Rachunek prawdopodobieństwa i statystyka matematyczna Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2016/2017 1 1 Wstęp Rachunek prawdopodobieństwa i statystyka to: działy matematyki

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Wybrane litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilon η eta Θ θ theta

Bardziej szczegółowo

Probabilistyczne podstawy statystyki matematycznej. Dr inż. Małgorzata Michalcewicz-Kaniowska

Probabilistyczne podstawy statystyki matematycznej. Dr inż. Małgorzata Michalcewicz-Kaniowska Probabilistyczne podstawy statystyki matematycznej Dr inż. Małgorzata Michalcewicz-Kaniowska 1 Zdarzenia losowe, algebra zdarzeń Do podstawowych pojęć w rachunku prawdopodobieństwa zaliczamy: doświadczenie

Bardziej szczegółowo

Rachunek prawdopodobieństwa dla informatyków

Rachunek prawdopodobieństwa dla informatyków Rachunek prawdopodobieństwa dla informatyków Adam Roman Instytut Informatyki UJ Wykład 1 rys historyczny zdarzenia i ich prawdopodobieństwa aksjomaty i reguły prawdopodobieństwa prawdopodobieństwo warunkowe

Bardziej szczegółowo

Matematyczne Podstawy Kognitywistyki

Matematyczne Podstawy Kognitywistyki Matematyczne Podstawy Kognitywistyki Dorota Leszczyńska-Jasion Kombinatoryka, ci agi liczbowe, skończone przestrzenie probabilistyczne Przykłady zagadnień kombinatorycznych Rozważmy układ n miast o bardzo

Bardziej szczegółowo

Rachunek prawdopodobieństwa- wykład 2

Rachunek prawdopodobieństwa- wykład 2 Rachunek prawdopodobieństwa- wykład 2 Pojęcie dyskretnej przestrzeni probabilistycznej i określenie prawdopodobieństwa w tej przestrzeni dr Marcin Ziółkowski Instytut Matematyki i Informatyki Uniwersytet

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 1 Magdalena Alama-Bućko 26 lutego 2018 Magdalena Alama-Bućko Statystyka matematyczna 26 lutego 2018 1 / 16 Wykład : 10h (przez 10 tygodni po 45 minut) zaliczenie wykładu

Bardziej szczegółowo

KOMBINATORYKA. Problem przydziału prac

KOMBINATORYKA. Problem przydziału prac KOMBINATORYKA Dział matematyki zajmujący się badaniem różnych możliwych zestawień i ugrupowań, jakie można tworzyć z dowolnego zbioru skończonego. Zbiory skończone, najczęściej wraz z pewną relacją obiekty

Bardziej szczegółowo

METODY PROBABILISTYCZNE I STATYSTYKA

METODY PROBABILISTYCZNE I STATYSTYKA Andrzej Marciniak METODY PROBABILISTYCZNE I STATYSTYKA Wykłady dla studentów kierunku informatyka Państwowej Wyższej Szkoły Zawodowej w Kaliszu Wykłady są przeznaczone wyłącznie do indywidualnego użytku

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub

RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub 1. W grupie jest 15 kobiet i 18 mężczyzn. Losujemy jedną osobę

Bardziej szczegółowo

Doświadczenie i zdarzenie losowe

Doświadczenie i zdarzenie losowe Doświadczenie i zdarzenie losowe Doświadczenie losowe jest to takie doświadczenie, które jest powtarzalne w takich samych warunkach lub zbliżonych, a którego wyniku nie można przewidzieć jednoznacznie.

Bardziej szczegółowo

2. Lesław Gajek, Marek Kałuszka, Wnioskowanie statystyczne. Modele i metody. Dla studentów.

2. Lesław Gajek, Marek Kałuszka, Wnioskowanie statystyczne. Modele i metody. Dla studentów. Literatura:. Jerzy Greń, Statystyka matematyczna. Modele i zadania.. Lesław Gajek, Marek Kałuszka, Wnioskowanie statystyczne. Modele i metody. Dla studentów.. J. Koronacki, J. Mielniczuk, Statystyka dla

Bardziej szczegółowo

Po co nam statystyka matematyczna? Żeby na podstawie próby wnioskować o całej populacji

Po co nam statystyka matematyczna? Żeby na podstawie próby wnioskować o całej populacji ODSTWY STTYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. opulacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne 6.

Bardziej szczegółowo

Wykład 1: Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo geometryczne.

Wykład 1: Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo geometryczne. Rachunek prawdopodobieństwa MAP1151 Wydział Elektroniki, rok akad. 2011/12, sem. letni Wykładowca: dr hab. A. Jurlewicz Wykład 1: Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo

Bardziej szczegółowo

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I (SGH)

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I (SGH) WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I (SGH) Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 1 1 / 24 Warunki zaliczenia 1 Do egzaminu dopuszczeni wszyscy, którzy uczęszczali na

Bardziej szczegółowo

Elementy statystyki opisowej, teoria prawdopodobieństwa i kombinatoryka

Elementy statystyki opisowej, teoria prawdopodobieństwa i kombinatoryka Wymagania egzaminacyjne: a) oblicza średnią arytmetyczną, średnią ważoną, medianę i odchylenie standardowe danych; interpretuje te parametry dla danych empirycznych, b) zlicza obiekty w prostych sytuacjach

Bardziej szczegółowo

Statystyka podstawowe wzory i definicje

Statystyka podstawowe wzory i definicje 1 Statystyka podstawowe wzory i definicje Średnia arytmetyczna to suma wszystkich liczb (a 1, a 2,, a n) podzielona przez ich ilość (n) Przykład 1 Dany jest zbiór liczb {6, 8, 11, 2, 5, 3}. Oblicz średnią

Bardziej szczegółowo

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2 Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Prawdopodobieństwo geometryczne

Bardziej szczegółowo

Wymagania egzaminacyjne z matematyki. Klasa 3C. MATeMATyka. Nowa Era. Klasa 3

Wymagania egzaminacyjne z matematyki. Klasa 3C. MATeMATyka. Nowa Era. Klasa 3 Wymagania egzaminacyjne z matematyki. lasa 3C. MATeMATyka. Nowa Era. y są ze sobą ściśle powiązane ( + P + R + D + W), stanowiąc ocenę szkolną, i tak: ocenę dopuszczającą (2) otrzymuje uczeń, który spełnił

Bardziej szczegółowo

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Rachunek Prawdopodobieństwa Brian Wynne podał następującą typologię zagrożeń znanych i niewiadomych: 1. ryzyko to wiadome nam przyszłe zagrożenia,

Bardziej szczegółowo

( ) ( ) Przykład: Z trzech danych elementów: a, b, c, można utworzyć trzy następujące 2-elementowe kombinacje: ( ) ( ) ( ).

( ) ( ) Przykład: Z trzech danych elementów: a, b, c, można utworzyć trzy następujące 2-elementowe kombinacje: ( ) ( ) ( ). KOMBINATORYKA Kombinatoryka zajmuje się wyznaczaniem liczby elementów zbiorów skończonych utworzonych zgodnie z określonymi zasadami. Do podstawowych pojęć kombinatorycznych należą: PERMUTACJE Silnia.

Bardziej szczegółowo

WYKŁAD 1. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Instytut Matematyki Uniwersytet Warszawski

WYKŁAD 1. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Instytut Matematyki Uniwersytet Warszawski WYKŁAD 1 Witold Bednorz, Paweł Wolff Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Wprowadzenie Gry hazardowe Wprowadzenie Gry hazardowe Klasyczna definicja prawdopodobieństwa.

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa 2.1. σ ciało (algebra) zdarzeń Katarzyna Rybarczyk-Krzywdzińska losowe Zdarzenie losowe to pewien podzbiór przestrzeni zdarzeń

Bardziej szczegółowo

STATYSTYKA wykład 1. Wanda Olech. Katedra Genetyki i Ogólnej Hodowli Zwierząt

STATYSTYKA wykład 1. Wanda Olech. Katedra Genetyki i Ogólnej Hodowli Zwierząt STTYSTYK wykład 1 Wanda Olech Katedra Genetyki i Ogólnej Hodowli Zwierząt Plan wykładów Data WYKŁDY 1.X rachunek prawdopodobieństwa; 8.X zmienna losowa jednowymiarowa, funkcja rozkładu, dystrybuanta 15.X

Bardziej szczegółowo

Wstęp. Kurs w skrócie

Wstęp. Kurs w skrócie Mariola Zalewska Zakład Metod Matematycznych i Statystycznych Zarządzania Wydział Zarządzania Uniwersystet Warszawski I rok DSM Rachunek Prawdopodobieństwa Wstęp Kombinatoryka Niezależność zdarzeń, Twierdzenie

Bardziej szczegółowo

Matematyka podstawowa X. Rachunek prawdopodobieństwa

Matematyka podstawowa X. Rachunek prawdopodobieństwa Matematyka podstawowa X Rachunek prawdopodobieństwa Zadania wprowadzające: 1. Rzucasz trzy razy monetą a) Napisz zbiór wszystkich wyników tego doświadczenia losowego. Ile ich jest? Wyrzuciłeś większą liczbę

Bardziej szczegółowo

Spis treści. Definicje prawdopodobieństwa. Częstościowa definicja prawdopodobieństwa. Wnioskowanie_Statystyczne_-_wykład

Spis treści. Definicje prawdopodobieństwa. Częstościowa definicja prawdopodobieństwa. Wnioskowanie_Statystyczne_-_wykład Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Definicje prawdopodobieństwa 1.1 Częstościowa definicja prawdopodobieństwa 1.1.1 Przykład 1.1.2 Rozwiązanie: 1.1.3 Inne rozwiązanie: 1.1.4 Jeszcze inne

Bardziej szczegółowo

Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska)

Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Twierdzenie (o mnożeniu) Podstawowe pojęcia i wzory kombinatoryczne. Niech,, będą zbiorami mającymi odpowiednio,,

Bardziej szczegółowo

Zdarzenie losowe (zdarzenie)

Zdarzenie losowe (zdarzenie) Zdarzenie losowe (zdarzenie) Ćw. 1. Ze zbioru cyfr (l, 2,3,..., 9} losowo wybieramy jedną. a) Wypisz zdarzenia elementarne, sprzyjające: zdarzeniu A, że wybrano liczbę parzystą zdarzeniu B, że wybrano

Bardziej szczegółowo

zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno.

zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno. Rachunek prawdopodobieństwa Podstawowym celem rachunku prawdopodobieństwa jest określanie szans zajścia pewnych zdarzeń. Pojęcie podstawowe rachunku prawdopodobieństwa to: zdarzenie losowe - zdarzenie

Bardziej szczegółowo

2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego

2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego Wymagania dla kl. 3 Zakres podstawowy Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za pomocą drzewa

Bardziej szczegółowo

Statystyka Astronomiczna

Statystyka Astronomiczna Statystyka Astronomiczna czyli zastosowania statystyki w astronomii historycznie astronomowie mieli wkład w rozwój dyscypliny Rachunek prawdopodobieństwa - gałąź matematyki Statystyka - metoda oceny właściwości

Bardziej szczegółowo

Wprowadzenie do kombinatoryki

Wprowadzenie do kombinatoryki Wprowadzenie do kombinatoryki http://www.matemaks.pl/kombinatoryka.html Kombinatoryka jest działem matematyki, który pomaga odpowiedzieć na pytania typu: "ile jest możliwych wyników w rzucie monetą?",

Bardziej szczegółowo

Rachunek Prawdopodobieństwa i Statystyka Matematyczna

Rachunek Prawdopodobieństwa i Statystyka Matematyczna Rachunek rawdopodobieństwa i Statystyka Matematyczna rowadzący: prof. dr hab. inż. Ireneusz Jóźwiak Zestaw nr. Opracowanie: Grzegorz Drzymała 4996 Grzegorz Dziemidowicz 49965 drian Gawor 49985 Zadanie..

Bardziej szczegółowo

51. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń.

51. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń. Matematyka lekcja 5 5. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń. I. rzypomnij sobie:. Jak rysujemy drzewo stochastyczne i przy jego pomocy obliczamy prawdopodobieństwo

Bardziej szczegółowo

Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w

Bardziej szczegółowo

= 10 9 = Ile jest wszystkich dwucyfrowych liczb naturalnych podzielnych przez 3? A. 12 B. 24 C. 29 D. 30. Sposób I = 30.

= 10 9 = Ile jest wszystkich dwucyfrowych liczb naturalnych podzielnych przez 3? A. 12 B. 24 C. 29 D. 30. Sposób I = 30. Kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Flagę, taką jak pokazano na rysunku, należy zszyć z trzech jednakowej szerokości pasów kolorowej tkaniny. Oba pasy zewnętrzne

Bardziej szczegółowo

Prawdopodobieństwo geometryczne

Prawdopodobieństwo geometryczne Prawdopodobieństwo geometryczne Krzysztof Jasiński Wydział Matematyki i Informatyki UMK, Toruń V Lieceum Ogólnokształące im. Jana Pawała II w Toruniu 13.03.2014 Krzysztof Jasiński (WMiI UMK) Prawdopodobieństwo

Bardziej szczegółowo

Statystyka i Rachunek Prawdopodobieństwa dla Bioinzynierii Lista zadań 2, 2018/19z (zadania na ćwiczenia)

Statystyka i Rachunek Prawdopodobieństwa dla Bioinzynierii Lista zadań 2, 2018/19z (zadania na ćwiczenia) Statystyka i Rachunek Prawdopodobieństwa dla Bioinzynierii Lista zadań 2, 2018/19z (zadania na ćwiczenia) 1 Przestrzeń probabilistyczna Zadanie 1 Rzucamy dwiema kostkami do gry. Opisać przestrzeń zdarzeń

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 2 Klasyczna definicja prawdopodobieństwa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Według klasycznej

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

PRAWDOPODOBIEŃSTWO I KOMBINATORYKA

PRAWDOPODOBIEŃSTWO I KOMBINATORYKA PRAWDOPODOBIEŃSTWO I KOMBINATORYKA ZADANIE ( PKT) Z urny zawierajacej kule w dwóch kolorach wybieramy losowo dwie. Prawdopodobieństwo wylosowania co najmniej jednej kuli białej jest równe 8, a prawdopodobieństwo

Bardziej szczegółowo

STATYSTYKA wykład 1. Wanda Olech. Katedra Genetyki i Ogólnej Hodowli Zwierząt

STATYSTYKA wykład 1. Wanda Olech. Katedra Genetyki i Ogólnej Hodowli Zwierząt STTYSTYK wykład 1 Wanda Olech Katedra Genetyki i Ogólnej Hodowli Zwierząt Statystyka Pierwotnie oznaczała stan rzeczy (od status) i do XVIII wieku używana dla określenia zbioru wiadomości o państwie Statystyka

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3.2. Niezależność zdarzeń Katarzyna Rybarczyk-Krzywdzińska Niezależność dwóch zdarzeń Intuicja Zdarzenia losowe

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019

Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019 Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019 Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające,

Bardziej szczegółowo

Statystyka z elementami rachunku prawdopodobieństwa

Statystyka z elementami rachunku prawdopodobieństwa Statystyka z elementami rachunku prawdopodobieństwa dr hab. Tomasz Górecki tomasz.gorecki@amu.edu.pl Zakład Rachunku Prawdopodobieństwa i Statystyki Matematycznej Wydział Matematyki i Informatyki Uniwersytet

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna. Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2014/2015

Rachunek prawdopodobieństwa i statystyka matematyczna. Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2014/2015 Rachunek prawdopodobieństwa i statystyka matematyczna Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2014/2015 1 1 Wstęp Rachunek prawdopodobieństwa i statystyka to: działy matematyki

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA

RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA Wydział: WiLiŚ, Transport, sem.2 dr Jolanta Dymkowska RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA Przestrzeń probabilistyczna Modelem matematycznym (tj. teoretycznym, wyidealizowanym,

Bardziej szczegółowo

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω)

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω) ZADANIA - ZESTAW 1 Zadanie 1.1 Rzucamy trzy razy monetą. A i - zdarzenie polegające na tym, że otrzymamy orła w i - tym rzucie. Określić zbiór zdarzeń elementarnych. Wypisać zdarzenia elementarne sprzyjające

Bardziej szczegółowo

Kombinatoryka i rachunek prawdopodobieństwa

Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka i rachunek prawdopodobieństwa Jerzy Rutkowski 2. Elementy kombinatoryki 2.. Permutacje Teoria Definicja. Niech n N. Permutacją n-elementowego zbioru

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem

Bardziej szczegółowo

Kombinatoryka i rachunek prawdopodobieństwa

Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka i rachunek prawdopodobieństwa Jerzy Rutkowski Kombinatoryka i rachunek prawdopodobieństwa 2. Elementy kombinatoryki 2.1. Permutacje Definicja 1. Niech n N. Permutacją n-elementowego zbioru

Bardziej szczegółowo

R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo.

R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo. R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo. Zadanie 1. Wyznacz średnią arytmetyczną, dominantę i medianę zestawu danych: 1, 5, 3, 2, 2, 4, 4, 6, 7, 1, 1, 4, 5, 5, 3. Zadanie 2. W zestawie danych

Bardziej szczegółowo

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A) Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. opulacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.

Bardziej szczegółowo

Plan wynikowy klasa 3. Zakres podstawowy

Plan wynikowy klasa 3. Zakres podstawowy Plan wynikowy klasa 3 Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające. RACHUNE PRAWDOPODOBIEŃSTWA

Bardziej szczegółowo

Spotkanie olimpijskie nr lutego 2013 Kombinatoryka i rachunek prawdopodobieństwa

Spotkanie olimpijskie nr lutego 2013 Kombinatoryka i rachunek prawdopodobieństwa Spotkanie olimpijskie nr 5 16 lutego 2013 Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka Jadwiga Słowik Reguła mnożenia Jeśli wybór polega na podjęciu k decyzji, przy czym pierwszą decyzję możemy

Bardziej szczegółowo

02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w

02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w 02DRAP - Aksjomatyczna definicja prawdopodobieństwa, zasada w-w A Zadania na ćwiczenia Zadanie A.1. Niech Ω = R oraz F będzie σ-ciałem generowanym przez rodzinę wszystkich przedziałów otwartych typu (,

Bardziej szczegółowo

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej.

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej. Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające;

Bardziej szczegółowo

Zmienna losowa. Rozkład skokowy

Zmienna losowa. Rozkład skokowy Temat: Zmienna losowa. Rozkład skokowy Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga * - materiał nadobowiązkowy Anna Rajfura, Matematyka i statystyka matematyczna na kierunku Rolnictwo SGGW 1 Zagadnienia

Bardziej szczegółowo

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Plan wynikowy Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania

Bardziej szczegółowo

Wybrane treści z rachunku prawdopodobieństwa w kontekście medycznym. M.Zalewska

Wybrane treści z rachunku prawdopodobieństwa w kontekście medycznym. M.Zalewska Wybrane treści z rachunku prawdopodobieństwa w kontekście medycznym M.Zalewska Podstawowe pojęcia Doświadczenie losowe obserwacja zjawiska, którego przebiegu nie umiemy w pełni przewidzieć. Możemy oceniać

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I. Trygonometria. 1. Definicje funkcji trygonometrycznych kąta ostrego w trójkącie prostokątnym. 2. Rozwiązywanie trójkątów prostokątnych

Bardziej szczegółowo

Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym

Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym Edward Stachowski Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym W podstawie programowej obowiązującej na egzaminie maturalnym od 05r pojawiły się nowe treści programowe Wśród

Bardziej szczegółowo

Rachunek Prawdopodobieństwa Anna Janicka

Rachunek Prawdopodobieństwa Anna Janicka Rachunek Prawdopodobieństwa Anna Janicka wykład I, 2.10.2018 PODSTAWY RACHUNKU PRAWDOPODOBIEŃSTWA Kwestie techniczne Kontakt: ajanicka@wne.uw.edu.pl Dyżur: wtorki, godz. 9:15 s. B006 strona z materiałami

Bardziej szczegółowo

W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1

W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1 W. Guzicki Próbna matura, grudzień 20 r. poziom rozszerzony Próbna matura rozszerzona (jesień 20 r.) Zadanie kilka innych rozwiązań Wojciech Guzicki Zadanie. Oblicz prawdopodobieństwo warunkowe, że w trzykrotnym

Bardziej szczegółowo

KOMBINATORYKA I P-WO CZ.1 PODSTAWA

KOMBINATORYKA I P-WO CZ.1 PODSTAWA KOMBINATORYKA I P-WO CZ.1 PODSTAWA ZADANIE 1 (1 PKT) Pan Jakub ma marynarki, 7 par różnych spodni i 10 różnych koszul. Na ile różnych sposobów może się ubrać, jeśli zawsze zakłada marynarkę, spodnie i

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona

Bardziej szczegółowo

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) PRAWDOPODOBIEŃSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) PRAWDOPODOBIEŃSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B KLASYCZ NA DEFINICJA PRAW DOPOD OBIEŃSTWA ( ) PRAWDOPOD OBIEŃSTW O W A RUNKOWE PRAWDOPODOBIEŃSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B ( ) WIĘC CO OZNACZA, ŻE ZDARZENIE B NIE MA WPŁYWU

Bardziej szczegółowo

a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.);

a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.); 03DRAP - Przykłady przestrzeni probabilistycznych Definicja 1 Przestrzeń probabilistyczna to trójka (Ω, F, P), gdzie Ω zbiór zdarzeń elementarnych, F σ ciało zdarzeń (podzbiorów Ω), P funkcja prawdopodobieństwa/miara

Bardziej szczegółowo

(C. Gauss, P. Laplace, Bernoulli, R. Fisher, J. Spława-Neyman) Wikipedia 2008

(C. Gauss, P. Laplace, Bernoulli, R. Fisher, J. Spława-Neyman) Wikipedia 2008 STATYSTYKA MATEMATYCZNA - dział matematyki stosowanej oparty na rachunku prawdopodobieństwa; zajmuje się badaniem zbiorów na podstawie analizy ich części. Nauka, której przedmiotem zainteresowania są metody

Bardziej szczegółowo

Rachunek prawdopodobieństwa i kombinatoryka. Rachunek prawdopodobieństwa. Podstawowe pojęcia rachunku prawdopodobieństwa

Rachunek prawdopodobieństwa i kombinatoryka. Rachunek prawdopodobieństwa. Podstawowe pojęcia rachunku prawdopodobieństwa Rachunek prawdopodobieństwa i kombinatoryka Spis treści Rachunek prawdopodobieństwa Podstawowe pojęcia rachunku prawdopodobieństwa Liczba wyników doświadczenia losowego. Reguła mnożenia i reguła dodawania

Bardziej szczegółowo

c. dokładnie 10 razy została wylosowana kula antracytowa, ale nie za pierwszym ani drugim razem;

c. dokładnie 10 razy została wylosowana kula antracytowa, ale nie za pierwszym ani drugim razem; 05DRAP - Niezależność zdarzeń, schemat Bernoulliego A Zadania na ćwiczenia Zadanie A.. Niech Ω = {ω, ω 2, ω, ω, ω 5 } i P({ω }) = 8, P({ω 2}) = P({ω }) = P({ω }) = 6 oraz P({ω 5}) = 5 6. Niech A = {ω,

Bardziej szczegółowo

Planimetria 1 12 godz.

Planimetria 1 12 godz. Planimetria godz. Funkcje trygonometryczne kąta ostrego definicje funkcji trygonometrycznych kąta ostrego wartości funkcji trygonometrycznych kątów 30º, 45º, 60º Trygonometria zastosowania Rozwiązywanie

Bardziej szczegółowo

Zadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy:

Zadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy: Zadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy: a) sumę oczek równą 6, b) iloczyn oczek równy 6, c) sumę oczek mniejszą niż 11, d) iloczyn oczek będący liczbą parzystą,

Bardziej szczegółowo

p k (1 p) n k. k c. dokładnie 10 razy została wylosowana kula amarantowa, ale nie za pierwszym ani drugim razem;

p k (1 p) n k. k c. dokładnie 10 razy została wylosowana kula amarantowa, ale nie za pierwszym ani drugim razem; 05DRAP - Niezależność zdarzeń, schemat Bernoulliego Definicja.. Zdarzenia A i B nazywamy niezależnymi, jeżeli zachodzi równość P(A B) = P(A) P(B). Definicja. 2. Zdarzenia A,..., A n nazywamy niezależnymi

Bardziej szczegółowo