Właściwości reologiczne materiałów dr inż. Anna Krztoń-Maziopa (lab 411 Gmach Chemii)

Wielkość: px
Rozpocząć pokaz od strony:

Download "Właściwości reologiczne materiałów dr inż. Anna Krztoń-Maziopa (lab 411 Gmach Chemii)"

Transkrypt

1 Właściwości reologiczne materiałów dr inż. Anna Krztoń-Maziopa (lab 411 Gmach Chemii) 1. Cel ćwiczenia - poznanie metod badań reologicznych umożliwiających analizę zachowania się różnego rodzaju substancji (takich jak: stopy i roztworów polimerów, masy ceramiczne, środki spożywcze, farmaceutyczne lub kosmetyki) pod wpływem naprężeń ścinających - wyznaczenie krzywych płynięcia płynów Newtona i Binghama - odstępstwa od zachowań newtonowskich i binghamowskich - poznanie zjawiska tiksotropii wybranych płynów nienewtonowskich oraz wyznaczenie współczynników chrono- i mobilotiksotropii. 2. Podstawy teoretyczne Przepływ jest jedną z postaci odkształcenia ciał dlatego też zaproponowano następującą definicję reologii jako nauki zajmującej się badaniami odkształceń materii. Reologia zajmuje się mechaniką ciał rzeczywistych ulegającym odkształceniom pod wpływem działania sił zewnętrznych. Celem reologii jest umiejętność przewidywania układu sił, który spowoduje określone odkształcenie danego ciała lub odwrotnie- przewidywania odkształceń wynikających z przyłożenia określonego układu sił (obciążenia). Reologię dzielimy na mikro- i makroreologię. Mikroreologia, która znajduje się w obszarze zainteresowań fizykochemików, zajmuje się związkami, jakie występują między rzeczywistą strukturą materii (np. budową wewnętrzną polimerów) a jej właściwościami. Makroreologia obejmuje zachowanie układu (np. zawiesiny) jako całości pod wpływem przyłożonego układu sił Odkształcenie Pod działaniem sił zewnętrznych wszystkie ciała rzeczywiste ulegają odkształceniu (deformacji). Odkształceniem nazywamy zmianę wzajemnego położenia elementów ciała Rodzaje odkształceń Wyróżniamy trzy rodzaje odkształceń: odkształcenia sprężyste, odkształcenia plastyczne, oraz przepływ. Odkształcenie nazywamy sprężystym, gdy jest ono samorzutnie odwracalne, tzn. gdy zanika natychmiast i całkowicie po ustaniu działania siły. Odkształcenie plastyczne jest nieodwracalne. Nie zanika ono po ustaniu działania siły. Energia zużyta na odkształcenie plastyczne ulega rozproszeniu i zmianie na energię cieplną. Przepływem nazywamy nieodwracalne odkształcenie, którego stopień, pod działaniem sił o skończonej wartości, wzrasta stale z upływem czasu. Energia zużyta na

2 wymuszenie przepływu ulega rozproszeniu Odkształcenie objętościowe i postaciowe Odkształcenie, które zmienia jedynie objętość ciała - bez zmiany jego kształtu - nazywamy odkształceniem objętościowym. Przykładowo, w wyniku wzrostu ciśnienia ciało o kształcie kuli zmniejszy swoją objętość, lecz zachowa kształt kulisty. Odkształcenie objętościowe powodujące zmniejszenie objętości nazywamy kompresją, zaś powodujące jej zwiększenie - dylatacją. Odkształcenie postaciowe powoduje zmianę kształtu ciała bez zmiany jego objętości (oczywiście gęstość ciała nie ulega wówczas zmianie). Najprostszym przypadkiem odkształcenia postaciowego jest tzw. ścinanie proste Ciała reologicznie doskonałe Zgodnie z drugim aksjomatem reologii każde ciało rzeczywiste posiada wszelkie możliwe własności reologiczne, ale ujawnia je w różnym stopniu zależnie od panujących warunków. Stąd też o ciele rzeczywistym nie możemy nigdy powiedzieć w sposób ścisły, że ma dokładnie określone własności reologiczne. Oczywiste jest, że ciała doskonałe w rzeczywistości nie istnieją. Ciała doskonałe definiowane są za pomocą odpowiednich reologicznych równań stanu (zwanych także po prostu równaniami reologicznymi lub równaniami konstytutywnymi). Reologiczne równanie stanu podaje zależność między naprężeniem, odkształceniem i czasem, a parametry występujące w tym równaniu definiują własności reologiczne danego ciała. W określonych warunkach własności reologiczne ciał rzeczywistych można przybliżyć za pomocą matematycznych modeli reologicznych takich jak: a) ciało doskonale sprężyste Hooke'a (np. sprężyna) b) ciało doskonale plastyczne St. Venanta (np. suwak) c) płyn doskonale lepki Newtona (np. tłumik hydrauliczny lub tłok).

3 Rys.1. Podstawowe zależności opisujące zachowanie oraz modele mechaniczne ciał reologicznie doskonałych. Podstawowe parametry reologiczne: - naprężenie styczne (ścinające) miara sił wewnętrznych powstających w ciele pod wpływem zewnętrznej siły odkształcającej, przyłożonej stycznie do powierzchni, symbol: τ, jednostka [Pa] w układzie SI lub [dyna/cm 2 ] w cgs, - odkształcenie chwilowa lub trwała zmiana geometrycznego kształtu lub wymiaru ciała wywołana działaniem sił zewnętrznych; symbol γ, bezwymiarowe lub podawane w procentach, - szybkość ścinania zmian odkształcenia w jednostce czasu, symbol: jednostka [s -1 ] - lepkość - miara oporu wewnętrznego płynu poddanego odkształceniom pod wpływem przyłożonego naprężenia. Po raz pierwszy naprężenie i szybkość odkształcania substancji pod jego wpływem zostały powiązane przez Newtona równaniem: w którym współczynnik proporcjonalności h nazywany jest lepkością dynamiczną płynu. Jeżeli wartość h płynu w danej temperaturze jest stała w czasie i niezależna od szybkości ścinania, to taki

4 płyn nazywa się płynem newtonowskim. Jednostką lepkości dynamicznej jest paskalosekunda [Pas] lub centipuaz [cp] (1mPas =1cP). Przykładowe wartości lepkości dynamicznej dla wybranych substancji przedstawiono w Tabeli 1. Prócz lepkości dynamicznej w praktyce przemysłowej używa się także lepkości kinematycznej definiowanej jako stosunek lepkości dynamicznej płynu do jego gęstości: n =h/r, jednostką lepkości kinematycznej jest Stokes [St] (w Układzie SI: m 2 /s]. Przy matematycznym opisie zachowania reologicznego płynów przyjmuje się szereg założeń dotyczących między innymi charakteru przepływu płynu: - przepływ wiskozymetryczny (ustalony), - płyn nieściśliwy - stała temperatura. Wśród przepływów wiskozymetrycznych wyróżniamy: 1) przepływ wleczony między płaskimi płytami (przedstawiony na Rys.2)

5 Rys. 2. Proste ścinanie płynu między równoległymi płytami (przepływ wleczony). 2) przepływ ciśnieniowy w przewodzie cylindrycznym przepływ Poiseuille a (reometry kapilarne lub rurowe) (Rys.3a), 3) przepływ ciśnieniowy między płaskimi równoległymi płytami lub przepływ w kierunku osiowym przez pierścieniową szczelinę utworzoną przez dwa współosiowe cylindry, 4) przepływ wleczony w szczelinie między wirującymi względem siebie współosiowymi cylindrami tzw. przepływ Couette a (Rys.3.b), 5) przepływ wleczony między stożkiem a płytką, wirującymi względem siebie (Rys.3c), 6) przepływ wleczony między płaskimi równoległymi płytami, wirującymi względem siebie (Rys.3d). a) b) c) d) Rys. 3. Przykłady przepływów wiskozymetrycznych Płyny newtonowskie i nienewtonowskie Mianem płynu określa się każdą substancję, która płynie. Zalicza się tutaj zarówno gazy i ciecze, jak również te ciała stałe, które w pewnych, łatwych do zrealizowania warunkach wykazują przepływ. Koncepcja płynu doskonale lepkiego Newtona (płynu newtonowskiego) opisuje własności reologiczne wielu układów rzeczywistych, takich jak np. płyny, w których lepkie rozpraszanie energii następuje w wyniku zdarzeń stosunkowo małych cząsteczek.

6 Charakterystykę reologiczną płynu newtonowskiego, obrazującą zależność naprężenia stycznego (τ) od szybkości ścinania (γ), opisaną równaniem: τ = f ( γ) nazywamy krzywą płynięcia. Krzywa płynięcia płynu newtonowskiego jest linią prostą przechodzącą przez początek układu współrzędnych. Wszystkie płyny, dla których krzywa płynięcia w ustalonych warunkach temperatury i ciśnienia nie jest linią prostą przechodzącą przez początek układu współrzędnych, nazywamy płynami nienewtonowskimi. Ogólna klasyfikacja płynów nienewtonowskich Wśród płynów nienewtonowskich wyróżnia się trzy podstawowe grupy: a) Płyny reostabilne, których własności reologiczne nie zależą od czasu ścinania. Przykładowe krzywe płynięcia dla tego rodzaju płynów przedstawiono na Rys. 3. Rys. 3. Ogólna klasyfikacja płynów reostabilnych. Płyny lepkie nie mające granicy płynięcia nazywane są płynami Stokesa. Płyn Stokesa w warunkach laminarnego ścinania, może zachowywać się w różny sposób: a) może występować prosta proporcjonalność między naprężeniem stycznym a szybkością ścinania - mamy wtedy do czynienia z płynem newtonowskim; b) dwukrotny wzrost naprężenia stycznego może spowodować więcej niż dwukrotny wzrost szybkości ścinania - mamy wówczas do czynienia ze zjawiskiem rozrzedzenia ścinaniem (ang. shear thinning); c) dwukrotny wzrost naprężenia stycznego może spowodować mniej niż dwukrotny wzrost szybkości ścinania tzw. efekt zagęszczania ścinaniem (ang. shear thickening). Do ich opisu matematycznego płynów Stokesa wykorzystuje się najczęściej następujące modele

7 reologiczne: Zasadniczo istnieje wiele innych modeli reologicznych, które w sposób bardziej dokładny niż te wymienione wyżej, pozwalają opisać zachowanie się danego układu reologicznego w warunkach niskich czy wysokich szybkości ścinania. Każdorazowo dobór odpowiedniego modelu do opisu danego układu powinien być poprzedzony pozyskaniem informacji o składzie badanej próbki (układ homogeniczny, heterogeniczny, jedno-, wielofazowy, rodzaj i ilość faz, rodzaj i ilość dodatków takich jak: modyfikatory reologii (zagęstniki, upłynniacze, plastyfikatory, elektrolity, etc.) oraz możliwych oddziaływaniach między elementami składowymi układu. Z punktu widzenia reologii układami, które są najtrudniejsze do zbadania i jednoznacznej identyfikacji są układy wielofazowe i napełniane. Jednakże, jeżeli przyjrzymy się substancjom, z którymi mamy niemal na co dzień do czynienia, to szybko zauważamy, ze większość z nich: stopy i roztwory polimerów, środki spożywcze (np. przetwory mleczne, majonezy, sosy, lody, musztarda, ketchup, kleiki, galarety, lody, stopiona czekolada, pulpy owocowe), kosmetyczne (np. kremy, mleczka, odżywki, żele), leki (zawiesiny, roztwory i emulsje), farby (dyspersyjne i emulsyjne, drukarskie), lakiery, kleje, piany, zaprawy, kity, szpachle, zawiesiny ceramiczne, stanowią materiały niezwykle skomplikowane reologicznie. Jako użytkownicy niekoniecznie zdajemy sobie sprawę, że za jedwabistą konsystencją kremu, jogurtu czy innego produktu, odpowiednim przetwórstwem mieszanki polimerowej, zapobieganiem spływaniu farby, kleju do glazury czy szpachli, stoi właśnie reologia. Technolog produkcji z kolei musi mieć tego pełną świadomość. Znajomość reologii danego układu pozwala na dokładne planowanie procesu produkcji i znaczną redukcję kosztów. W praktyce przemysłowej najczęściej mamy do czynienia z płynami rozrzedzanymi ścinaniem (pseudoplastycznymi) stabilnymi bądź niestabilnymi reologicznie. Do płynów stabilnych reologicznie zaliczamy te, których parametry, takie jak np. lepkość nie ulegają zmianie w funkcji czasu przy stałej szybkości ścinania, a do niestabilnych takie, których odpowiednie parametry w tych samych warunkach są zmienne w czasie. Dla płynów nienewtonowskich rozrzedzanych ścinaniem lepkość maleje wraz ze wzrostem szybkości ścinania, przy czym dla bardzo małych (bliskich zeru) i bardzo dużych szybkości ścinania ( >10 5 s -1 ) płyny te zachowują się jak ciecze newtonowskie o stałej lepkości. Obszary

8 graniczne charakteryzowane są odpowiednio przez h 0 lepkość graniczna przy szybkości ścinania zmierzającej do 0 i h - dla wysokich szybkości ścinania. Uogólnione krzywe płynięcia i lepkości dla tego rodzaju płynu przedstawiono na Rys. 4. Rys. 4. Krzywe płynięcia i lepkosci dla płynu rozrzedzanego ścinaniem. Przyczyny rozrzedzania ścinaniem: przyjmuje się, że w zawiesinach cząstek o pokroju liniowym oraz w roztworach polimerów nierozgałęzionych, w stanie spoczynku na skutek ruchów Browna cząsteczki przyjmują przypadkowe położenie, bez wyróżnionego kierunku orientacji. Pojawienie się sił ścinających powoduje orientację cząsteczek w kierunku przepływu. Takie równoległe ułożenie cząsteczek powoduje zmniejszenie oporów tarcia, co makroskopowo przejawia się jako spadek lepkości. Należy pamiętać, że w układzie nadal działają siły zapobiegające orientacji przestrzennej cząstek w kierunku przepływu. Dla określonej szybkości ścinania ustala się więc stan równowagi dynamicznej między położeniem równoległym, a przypadkowym wynikającym z ruchów termicznych cząsteczek. Zatem im większa szybkość ścinania, tym bardziej równowaga przesunięta jest w kierunku ułożenia równoległego cząstek, czyli tym większy obserwowany spadek lepkości. W oparciu o powyższe zachowanie można wytłumaczyć dlaczego przy niskich i bardzo wysokich szybkościach ścinania płyny rozrzedzane ścinaniem wykazują cechy newtonowskie. Otóż przy bardzo małych szybkościach ścinania przeważają chaotyczne ruchy cząstek, co nie powoduje zniszczenia struktury płynu, czyli jego lepkość nie ulega zmianie. Z kolei przy bardzo wysokich szybkościach ścinania następuje pełne uporządkowanie cząstek w kierunku przepływu, a dalszy wzrost szybkości ścinania nie wpływa na strukturę płynu. Z kolei występowanie rozrzedzania ścinaniem dla dyspersji cząstek pokroju kulistym może wynikać z tworzenia się w stężonych układach aglomeratów (tzn. ugrupowań cząstek o objętości większej niż sumaryczna objętość cząstek wchodzących w ich skład), co powoduje pozorny wzrost objętościowego stężenia fazy zawieszonej prowadzący do zwiększenia lepkości. W warunkach przepływu, wskutek działających naprężeń następuje częściowe rozrywanie aglomeratów na mniejsze struktury. Powoduje to

9 uwolnienie części fazy ciekłej zatrzymanej między ziarnami, pozorny spadek stężenia fazy zawieszonej i obniżenie lepkości. Nadal jednak w układzie mają miejsce oddziaływania prowadzące do formowania aglomeratów, prowadzi to do ustalenia się stanu równowagi między rozpadem struktur i ich tworzeniem się na skutek wewnętrznych oddziaływań. Im większe naprężenia działają na taki układ, tym bardziej stan równowagi jest przesunięty w kierunku rozpadu aglomeratów. Zatem im wyższa szybkość ścinania tym mniejsza lepkość i odwrotnie. Na tej podstawie można także wyjaśnić przyczyny zachowania newtonowskiego w obszarach granicznych szybkości ścinania. Niewielkie szybkości nie powodują zniszczenia aglomeratów, zatem struktura płynu zostaje zachowana i jego lepkość się nie zmienia. Z kolei przy wysokich szybkościach ścinania, cząstki ulegają całkowitemu rozproszeniu, a dalszy wzrost szybkości ścinania nie wpływa ani na strukturę płynu ani też na jego lepkość, która utrzymuje się wówczas na stałym poziomie. Płyny nienewtonowskie zagęszczane ścinaniem spotykane są dość rzadko w praktyce przemysłowej, ich lepkość w warunkach izotermicznych rośnie ze wzrostem szybkości ścinania. Uważa się, że zjawisko zagęszczania ścinaniem (dylatacji) wynika z występowania tarcia między cząstkami fazy zawieszonej wywołanego działaniem naprężeń ścinających. Efekt ten spotykany jest częściej w przypadku stężonych zawiesin. W stanie spoczynku lub przy niewielkich szybkościach ścinania siły tarcia są niewielkie ponieważ ciecz znajdująca między ziarnami pełni rolę smaru. Zwiększenie szybkości ścinania powoduje szybsze przemieszczanie się cząstek i wzrost odległości między nimi, co z kolei przekłada się na zwiększenie objętości całego układu wskutek wzrostu obszarów międzyziarnowych. Faza ciekła nie jest w stanie wypełnić wówczas wszystkich przestrzeni międzyziarnowych i przestaje pełnić rolę smaru. Konsekwencją tego jest wzrost tarcia między ziarnami co obserwowane jest jako makroskopowy wzrost lepkości układu. Zachowanie takie ilustruje Rys. 5 Rys. 5. Krzywa lepkości i mechanizm zagęszczania ścinaniem w zawiesinach.

10 b) Płyny lepkosprężyste, łączące własności reologiczne płynów lepkich i ciał stałych sprężystych. Wykazują one częściowy powrót sprężysty po usunięciu naprężenia stycznego powodującego odkształcenie. Płyny lepkosprężyste (lepkoplastyczne) opisywane są najczęściej za pomocą następujących modeli reologicznych: Szczególnymi przypadkami tego rodzaju płynów są: płyn Maxwella oraz płyn Binghama. Płyn Maxwella można przedstawić poglądowo za pomocą szeregowo połączonych elementów Newtona (tłumik) oraz Hooke'a (sprężyna) Rys 6.a. Pod wpływem stałego naprężenia stycznego działającego na taki płyn początkowo następuje jego sprężyste odkształcenie (rozciągnięcie sprężyny) i dopiero po przekroczeniu wartości granicznej naprężenia następuje odkształcenie lepkie (przesunięcie tłoka). Po odjęciu naprężenia następuje częściowy powrót sprężysty materiału. (sprężyna wraca do stanu poprzedniego odkształcenie odwracalne, natomiast przesunięcie tłoka obrazuje odkształcenie nieodwracalne lepkie). Płyn Binghama (Rys.6b) można z kolei opisać zespołem trzech elementów, w którym układ równolegle połączonych elementów St. Venanta i Newtona jest szeregowo połączony z elementem Hooke'a. W zależności od wartości przyłożonego naprężenia stycznego, ciało Binghama zachowuje się albo jak ciało stałe, albo jak ciecz: przy naprężeniach małych, tj. t < t o (naprężenie styczne graniczne jest równe sile tarcia stycznego suwaka) odkształca się jedynie sprężyna, po przekroczeniu naprężenia granicznego, tj. gdy t > t o ciało zaczyna się odkształcać (płynąć), przy czym szybkość odkształcenia będzie wprost proporcjonalna do różnicy między przyłożoną siłą a siłą tarcia elementu St. Venanta. a) b)

11 Rys. 6. Modele mechaniczne płynów Maxwell (a) i Binghama (b). Płyny lepkosprężyste (lepkoplastyczne) charakteryzują się występowaniem tzw. granicy płynięcia τ o : definiowanej jako wartość naprężenia, przy której kończy się zakres odkształceń sprężystych materiału i rozpoczyna obszar odkształceń nieodwracalnych (lepkosprężystych i/lub lepkich). Przyjmuje się że za pojawianie się granicy płynięcia w cieczach odpowiadają między innymi: oddziaływania miedzycząsteczkowe (van der Waalsa) tzn. oddziaływania elektrostatyczne między dipolami trwałymi (siły Keesoma), dipolami trwałymi i indukowanymi (siły Debye'a), siły dyspersyjne Londona oraz wiązania wodorowe. W układzie dyspersyjnym, w którym jedna lub więcej faz jest rozproszona w postaci cząstek lub pęcherzyków w ośrodku ciągłym, tworzy się struktura odporna na naprężenia styczne nie przekraczające wartości granicznej (granicy płynięcia). Im bardziej cząstki fazy zawieszonej przylegają do siebie, tzn. im bardziej sztywna jest struktura, tym większa jest granica płynięcia. Po przekroczeniu granicy płynięcia struktura ulega całkowitemu zniszczeniu i układ zachowuje się jak ciecz, na którą działa naprężenie styczne równe różnicy między rzeczywistym naprężeniem i τ o : Z kolei przy obniżeniu naprężenia stycznego poniżej wartości τ o zakładamy, że struktura ulega natychmiastowej odbudowie (ponieważ układ jest reostabilny). Przykłady substancji z granicą płynięcia: - zawiesiny i emulsje o dużej zawartości fazy rozproszonej - żele - smary - kity - farby dyspersyjne - farby drukarskie - masy ceramiczne - tynki - niektóre kosmetyki i leki (kremy, szminki, fluidy, maści) - środki spożywcze (ketchup, majonez, jogurt, masło, margaryna, stopiona czekolada) - materiały elektro- i magnetoreologiczne c) Płyny reologicznie niestabilne, których własności reologiczne zależą od czasu ścinania (np. płyny tiksotropowe lub reopeksyjne). W rozważaniach dotyczących zjawisk zagęszczanie i rozrzedzania ścinaniem zakłada się, że następuje natychmiastowe przystosowanie się struktury płynu do warunków ścinania. W

12 rzeczywistości zmiany te przebiegają z określoną szybkością, często są one na tyle szybkie, że to co obserwujemy to warunki równowagi. Płyny nienewtonowskie są na ogół płynami, których właściwości reologiczne zmieniają się w czasie (płyny niestabilne reologicznie). Często wykazują również tzw. efekty pamięci, które mogą wynikać np. z magazynowania przez niektóre płyny energii mechanicznej, w wyniku czego następuje pewne opóźnienie w ich odpowiedzi (charakterystyczne dla płynów lepkosprężystych) lub z całkowitego rozpraszania energii mechanicznej struktura płynu z opóźnieniem przystosowuje się do warunków ścinania charakterystyczne dla płynów lepkich. Zjawisko lepkiego (niesprężystego), zależnego od czasu zachowania płynów nazywane jest tiksotropią lub antytiksotropią. Terminem tiksotropia określa się takie procesy odwracalne, w których wskutek niszczenia wewnętrznej struktury układu, następuje izotermiczne zmniejszanie się tarcia wewnętrznego płynu wraz z upływem czasu ścinania (np. podczas jego mieszania), a w czasie spoczynku mamy do czynienia z wyraźnym (dającym się zmierzyć w czasie) powrotem do pierwotnej konsystencji. Antytiksotropia jest zjawiskiem odwrotnym. Tiksotropią nie jest nieodwracalne zmniejszanie tarcia na skutek zjawisk powodujących rzeczywistą destrukcję cząstek (np. rozrywanie łańcuchów polimerowych). Tiksotropię wykazuje wiele środków spożywczych, farb drukarskich, klejów, zapraw, smarów, płuczek wiertniczych itp. Płyn tiksotropowy charakteryzuje się następującymi cechami: 1) tworzenie struktury w stanie spoczynku 2) struktura ta może być zniszczona wskutek ścinania 3) proces zniszczenia i odbudowy struktury jest odwracalny i zachodzi izotermicznie 4) przy stałej szybkości i laminarnym przepływie płyn zachowuje się następująco: - naprężenie styczne maleje z upływem czasu jeśli płyn znajdował się uprzednio w stanie spoczynku lub był ścinany przy niższej szybkości ścinania - naprężenie styczne wzrasta upływem czasu gdy płyn był uprzednio ścinany w warunkach wyższej szybkości ścinania - gdy szybkość ścinania płynu jest utrzymywana na stałym poziomie przez dostatecznie długi okres czasu to niezależnie od historii płynu, naprężenie ścinające dąży do wartości równowagowej zależnej jedynie od szybkości ścinania 5) odpowiedź naprężenia stycznego na skokową zmianę szybkości ścinania jest natychmiastowa (nie ma opóźnienia charakterystycznego dla odpowiedzi sprężystej) Typową charakterystyką rejestrowaną dla cieczy tiksotropowych jest tzw. pętla histerezy. Porównanie pętli histerezy dla płynu tiksotropowego i reopeksyjnego przedstawiono na Rys. 7. :

13 Rys. 7. Przykładowe przebiegi pętli histerezy dla płynów tiksotropowego i antytiksotropowego. Płyn tiksotropowy po dostatecznie długim okresie spoczynku poddawany jest ścinaniu z szybkością rosnącą w sposób ciągły od zera do pewnej wartości maksymalnej, zaś po osiągnięciu tego punktu szybkość ścinania maleje w sposób ciągły z powrotem do zera. Na podstawie pętli histerezy można określić tiksotropię układu. Przy czym, z uwagi na to że właściwości tiksotropowe układu są silnie zależne od historii próbki ma to często wymiar wyłącznie jakościowy. Zwykle rejestrowana pętla histerezy często odbiega od idealnego przebiegu, przedstawionego na Rys.7, przykładowe krzywe dla układów rzeczywistych przedstawiono na Rys.8. Rys. 8. Przykładowe przebiegi pętli histerezy dla płynów rzeczywistych. Ilościowo tiksotropię układu można szacować wyznaczając współczynniki chrono (H) i mobilotiksotropii (M).

14 Współczynnik chronotiksotropii, H, można traktować jako miarę szybkości rozpadu struktury wewnętrznej płynu tiksotropowego w czasie przy stałej szybkości ścinania. Zaś współczynnik mobilotiksotropii, M, jest miarą rozpadu tiksotropowego wywołanego rosnącą szybkością ścinania. Sposób wyznaczania obu współczynników przedstawiono na Rys.9. Rys. 9. Metoda wyznaczania współczynników chrono- i mobilotiksotropii. Mechanizm Zjawisko to występuje zazwyczaj w liofobowych stężonych zawiesinach koloidalnych, których cząstki w stanie spoczynku agregują wskutek fizycznych oddziaływań i tworzą sieć przestrzenną - mikrostrukturę. Powstała sieć przestrzenna musi być wystarczająco silna aby przezwyciężyć ruchy Browna. Podczas ścinania słabe wiązania fizyczne rozrywają się i sieć przestrzenna ulega rozpadowi na fragmenty. Po pewnym czasie, przy określonej szybkości ścinania ustala się równowaga dynamiczna między tworzeniem a rozpadem agregatów. Przy wyższych szybkościach, równowaga przesuwa się w kierunku większej dyspersji. Główną przyczyną spadku lepkości układu ze wzrostem szybkości ścinania jest zmniejszanie się ilości energii rozpraszanej w wyniku rozrywania wiązań miedzy cząstkami (liczba wiązań jest mniejsza przy wyższych szybkościach ścinania) czyli jest to typowe rozrzedzanie ścinaniem. Drugą charakterystyczną cechą cieczy tiksotropowych jest zależność lepkości od czasu, którą można wyjaśnić jako wynik opóźnionego przystosowania się struktury płynu do chwilowych warunków ścinania. Dodatki tiksotropujące Są to substancje dodawane do środków mieszanek nadając im właściwości tiksotropowe. Jest to niezwykle istotne w technologii środków spożywczych, kosmetyków, farb, lakierów, mas tynkarskich, kitów, klejów ponieważ dodatki tiksotropowe zapewniają stosunkowo małą lepkość

15 produktu w momencie nakładania i zapobiegają spływaniu kompozycji z pionowych powierzchni. Stosowane są między innymi etery celulozy (metyloceluloza, hydroksyetyloceluloza) - do wodnych roztworów i dyspersji polimerów, smektyty (bentonit, montmorylonit) zastosowania j.w., krzemionka koloidalna głównie do układów niewodnych, polimery (poliuretany, epoksydy) stosowane w kompozycjach polimerowych Ogólne zasady pomiaru własności reologicznych płynów nienewtonowskich Własności reologiczne płynów charakteryzują ich zachowanie w warunkach przepływu i tylko w warunkach przepływu mogą być mierzone. Ogólne zasady reometrii płynów nienewtonowskich wynikają z ich charakterystycznych cech. Wśród płynów nienewtonowskich możemy wyróżnić takie, które nie wykazują efektów naprężeń normalnych (płyny nienewtonowskie reostabilne oraz reologicznie niestabilne) oraz płyny wykazujące efekty naprężeń normalnych. Do pomiarów reologicznych płynów nie wykazujących efektów naprężeń normalnych stosujemy metody wiskozymetryczne, jednak większość wiskozymetrów stosowanych w laboratoriach do pomiaru lepkości cieczy newtonowskich nie nadaje się do badania właściwości reologicznych płynów nienewtonowskich. W większości z nich, z uwagi na cechy konstrukcyjne, nie jest możliwe równoczesne określenie naprężenia stycznego i szybkości ścinania w dowolnym punkcie przyrządu (wiskozymetry porównawcze). Do określenia rzeczywistej wartości naprężenia stycznego i szybkości ścinania niezbędny jest tzw. przyrząd absolutny, w którym oznaczenia dokonuje się na podstawie znajomości praw fizycznych opisujących przepływ oraz znajomości geometrii pomiarowej. Stosowane w wiskozymetrii płynów newtonowskich wiskozymetry absolutne pozwalają na wykonanie tzw. pomiaru jednopunktowego polegającego na pomiarze tylko jednej wartości naprężenia stycznego i szybkości ścinania czyli otrzymujemy tutaj jeden punkt na krzywej płynięcia. Takie podejście jest wystarczające w przypadku cieczy newtonowskich gdyż ich lepkość nie zależy od szybkości ścinania, ale nie nadaje się do określania własności płynów nienewtonowskich. Taką samą lepkość pozorną mogą bowiem wykazywać płyny o odmiennych własnościach reologicznych jeśli tylko ich krzywe płynięcia przecinają się w tym samym punkcie. Do określenia właściwości reologicznych cieczy nienewtonowskiej niezbędne jest wyznaczenie krzywej płynięcia, a pomiary muszą być wykonane w całym zakresie szybkości ścinania występujących w danym procesie technologicznym. Pomiary wykonywane są za pomocą przyrządów absolutnych wielopunktowych zwanych reometrami. W przypadku każdego reometru należy dysponować ścisłym rozwiązaniem równań opisujących realizowany w urządzeniu przepływ. W przypadku, gdy uzyskanie ścisłych rozwiązań równań ruchu płynu jest niemożliwe, należy zadbać aby błąd popełniany przy korzystaniu z rozwiązań przybliżonych był mniejszy niż dopuszczalny błąd pomiaru. Konieczność zachowania tego wymogu powoduje, że pomiary

16 reologiczne wykonuje się wyłącznie dla przepływów wiskozymetrycznych (opisanych wyżej). Dla tego rodzaju przepływów można w sposób jednoznaczny określić zależność między naprężeniem stycznym a szybkością ścinania. Z kolei w przypadku płynów wykazujących efekty naprężeń normalnych (płyny lepkosprężyste) różnica naprężeń normalnych może, w pewnych warunkach, przekraczać wartość naprężenia stycznego. Dla tych płynów wyznaczenie krzywej płynięcia nie jest wystarczające do uzyskania pełnej charakterystyki reologicznej. W takim wypadku niezbędny jest również pomiar różnic naprężeń normalnych w funkcji szybkości ścinania. Do pomiarów tego rodzaju wykorzystuje się metody reogoniometryczne, w których wykorzystujemy te same, co w metodach wiskozymetrycznych proste przypadki przepływu. W szczególnych przypadkach do uzyskania pełnej charakterystyki materiału o złożonych właściwościach wykorzystuje się także metody oscylacyjne (przepływy niewiskozymetryczne) badania wykonywane przy użyciu drgań o niewielkiej amplitudzie. Zasada działania reometru rotacyjnego W reometrze rotacyjnym ścinanie badanej próbki następuje w szczelinie między dwoma elementami, z których jeden wykonuje ruch obrotowy, a drugi jest nieruchomy. Elementy te, to najczęściej układ dwóch współosiowych cylindrów lub też układ równoległych płytek lub stożka i płytki. Wykorzystywane są także rozwiązania, w których wirujący element jest umieszczony w nieograniczonej objętości płynu. Wyznaczanie krzywej płynięcia badanej cieczy polega na pomiarze momentu skręcającego od wirującego elementu pomiarowego przy znanej częstości jego obrotów. Pozwala to na drodze odpowiednich obliczeń wyznaczyć szybkość ścinania i odpowiadające jej naprężenie styczne występujące w ścinanej próbce. Zmieniając częstość obrotową elementu pomiarowego można przy równoczesnej rejestracji odpowiadających jej wartości momentu skręcającego wyznaczyć krzywą płynięcia badanego płynu. Obliczenia naprężenia stycznego i szybkości ścinania dla: a) geometrii współosiowych cylindrów:

17 b) płytka płytka: c) stożek -płytka:

18 Wykonanie ćwiczenia Ćwiczenie obejmuje badanie płynięcia wybranych cieczy newtonowskich i nienewtonowskich (żele, zawiesiny, emulsje, roztwory i stopy polimerów) z wykorzystaniem reometru rotacyjnego oraz wyznaczanie podstawowych parametrów reologicznych na podstawie krzywych płynięcia i lepkości. Analizy danych wykonywane są z wykorzystaniem odpowiedniego modelu reologicznego. Sposób obsługi reometru rotacyjnego, dobór końcówek do pomiarów wprowadzenie w trakcie ćwiczenia. 1. Przygotowanie próbek płynów newtonowskich i nienewtonowskich oraz sporządzenie kompozycji tiksotropowej według wskazówek prowadzącego. 2. Zarejestrować charakterystyki płynięcia przygotowanych próbek płynów przeanalizować otrzymane wyniki z wykorzystaniem dostępnego oprogramowania (wg. wskazówek prowadzącego) 3. Dla wybranej substancji wyznaczyć zależność zmian lepkości w funkcji temperatury przeanalizować otrzymane wyniki. Korzystając z równania Arrheniusa-Guzmana wyznaczyć energię aktywacji lepkiego płynięcia. W tym równaniu A i E są wielkościami stałymi, charakterystycznymi dla danej cieczy. Wielkość E nazywana jest energią aktywacji lepkiego płynięcia. Równanie to dobrze opisuje zachowanie się cieczy niepolarnych; dla cieczy polarnych stwierdza się stosunkowo duże odstępstwa. 4. Badanie płynu tiksotropowego: Umieścić próbkę przygotowanego płynu w cylindrze pomiarowym. Przed wykonaniem pomiaru należy termostatować próbkę przez 5 minut w układzie pomiarowym w temperaturze 25 C. Zbadać przebieg zmian naprężenia ścinającego w czasie 10 minut przy

19 ustalonej szybkości obrotowej. Początkowo odczytywać wartości co 1s przez 2 min. następnie co 10s. Podobny pomiar wykonać po 15 min. przerwy dla innej szybkości ścinania. Zarejestrować pętle histerezy cieczy tiksotropowej i wyznaczyć współczynniki chrono- i mobilotiksotropii. Pętlę histerezy wykonuje się rejestrując przebieg zmian naprężenia ścinającego dla wzrastających do arbitralnie wybranej maksymalnej wartości szybkości ścinania (ẙ 1 ) a następnie dla malejących szybkości ścinania. Czas ścinania (t 1 ) przy maksymalnej szybkości powinien wynosić 300s. Po upływie tego czasu należy rozpocząć rejestrację krzywej opadającej. Drugą pętlę histerezy można zarejestrować po upływie 30 minut, czas ścinania przy maksymalnej szybkości (t 2 ) powinien tutaj wynosić 600s. W celu wyznaczenia współczynnika mobilotiksotropii należy zdjąć 2 pętle histerezy, każdą przy innej maksymalnej szybkości ścinania ẙ 1 i ẙ 2, czas ścinania w obu przypadkach powinien być jednakowy i równy np. t Opracowanie wyników. - wyniki zebrać w tabeli, która powinna zawierać obliczone wartości naprężenia ścinającego i szybkości ścinania, - wykonać wykresy zależności lepkości i naprężenia stycznego od szybkości ścinania, wyznaczyć parametry reologiczne z wykorzystaniem odpowiednio dobranych modeli reologicznych, wyznaczyć energię aktywacji przepływu lepkiego, - wyznaczyć współczynniki chrono- i mobilotiksotropii wg Rys. 9. Przedyskutować otrzymane wyniki, powiązać parametry reologiczne badanych układów z występującymi w nich oddziaływaniami. Literatura uzupełniająca: J. Ferguson, Z. Kembłowski Reologia stosowana płynów, MARCUS Sc, Łódź 1995, K. Wilczyński Reologia w przetwórstwie tworzyw sztucznych WNT Warszawa 2001, W. Wilkinson Ciecze nienewtonowskie WNT Warszawa 1963, A. Malkin Rheology Fundamentals ChemTec Publishing, Toronto 1994, A.V. Shenoy Rheology of filled polymer systems Kluwer Academic Publishers 1999

Właściwości reologiczne materiałów dr inż. Anna Krztoń-Maziopa (lab 411 Gmach Chemii)

Właściwości reologiczne materiałów dr inż. Anna Krztoń-Maziopa (lab 411 Gmach Chemii) Właściwości reologiczne materiałów dr inż. Anna Krztoń-Maziopa (lab 411 Gmach Chemii) 1. Cel ćwiczenia - poznanie metod badań reologicznych umożliwiających analizę zachowania się różnego rodzaju substancji

Bardziej szczegółowo

modele ciał doskonałych

modele ciał doskonałych REOLOGIA - PODSTAWY REOLOGIA Zjawiska odkształcenia i płynięcia materiałów jako przebiegi reologiczne opisuje się przez przedstawienie zależności pomiędzy działającymi naprężeniami i występującymi przy

Bardziej szczegółowo

Właściwości reologiczne

Właściwości reologiczne Ćwiczenie nr 4 Właściwości reologiczne 4.1. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z pojęciem reologii oraz właściwości reologicznych a także testami reologicznymi. 4.2. Wstęp teoretyczny:

Bardziej szczegółowo

dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG

dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG 7.WŁAŚCIWOŚCI LEPKOSPRĘŻYSTE POLIMERÓW dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG Politechnika Gdaoska, 2011 r. Publikacja współfinansowana ze środków Unii Europejskiej

Bardziej szczegółowo

LABORATORIUM REOLOGICZNE PODSTAWY TECHNOLOGII POLIMERÓW ĆWICZENIE NR 3 WŁAŚCIWOŚCI REOLOGICZNE POLIMERÓW (OZNACZANIE KRZYWEJ PŁYNIĘCIA)

LABORATORIUM REOLOGICZNE PODSTAWY TECHNOLOGII POLIMERÓW ĆWICZENIE NR 3 WŁAŚCIWOŚCI REOLOGICZNE POLIMERÓW (OZNACZANIE KRZYWEJ PŁYNIĘCIA) LABORATORIUM REOLOGICZNE PODSTAWY TECHNOLOGII POLIMERÓW ĆWICZENIE NR 3 WŁAŚCIWOŚCI REOLOGICZNE POLIMERÓW (OZNACZANIE KRZYWEJ PŁYNIĘCIA) 1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie krzywej płynięcia

Bardziej szczegółowo

RHEOTEST Medingen Reometr RHEOTEST RN - Artykuły farmaceutyczne i kosmetyczne.

RHEOTEST Medingen Reometr RHEOTEST RN - Artykuły farmaceutyczne i kosmetyczne. RHEOTEST Medingen Reometr RHEOTEST RN - Artykuły farmaceutyczne i kosmetyczne. Zadania pomiarowe w pracach badawczo-rozwojowych Głównym przedmiotem zainteresowań farmacji i kosmetyki w tym zakresie są

Bardziej szczegółowo

Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis

Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis Nauka o Materiałach Wykład VIII Odkształcenie materiałów właściwości sprężyste Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Klasyfikacja reologiczna odkształcenia

Bardziej szczegółowo

RHEOTEST Medingen Reometr rotacyjny RHEOTEST RN oraz lepkościomierz kapilarny RHEOTEST LK Zastosowanie w chemii polimerowej

RHEOTEST Medingen Reometr rotacyjny RHEOTEST RN oraz lepkościomierz kapilarny RHEOTEST LK Zastosowanie w chemii polimerowej RHEOTEST Medingen Reometr rotacyjny RHEOTEST RN oraz lepkościomierz kapilarny RHEOTEST LK Zastosowanie w chemii polimerowej Zadania w zakresie badań i rozwoju Roztwory polimerowe stosowane są w różnych

Bardziej szczegółowo

Spis treści. Wprowadzenie... 9

Spis treści. Wprowadzenie... 9 Spis treści Wprowadzenie... 9 Rozdział pierwszy Wstęp... 14 Lepkość... 16 Lepkość w aspekcie reologii... 16 Reologia a ceramika... 17 Płynięcie... 17 Podsumowanie... 19 Rozdział drugi Podstawy reologii...

Bardziej szczegółowo

Fizyczne właściwości materiałów rolniczych

Fizyczne właściwości materiałów rolniczych Fizyczne właściwości materiałów rolniczych Właściwości mechaniczne TRiL 1 rok Stefan Cenkowski (UoM Canada) Marek Markowski Katedra Inżynierii Systemów WNT UWM Podstawowe koncepcje reologii Reologia nauka

Bardziej szczegółowo

RHEOTEST Medingen Reometr RHEOTEST RN: Zakres zastosowań Smary

RHEOTEST Medingen Reometr RHEOTEST RN: Zakres zastosowań Smary RHEOTEST Medingen Reometr RHEOTEST RN: Zakres zastosowań Smary Zadania pomiarowe w pracach badawczo-rozwojowych Właściwości reologiczne materiałów smarnych, które determinuje sama ich nazwa, mają główny

Bardziej szczegółowo

Laboratorium syntezy, charakteryzacji i przetwórstwa materiałów funkcjonalnych. Podstawy reologii ceramicznych mas lejnych

Laboratorium syntezy, charakteryzacji i przetwórstwa materiałów funkcjonalnych. Podstawy reologii ceramicznych mas lejnych Laboratorium syntezy, charakteryzacji i przetwórstwa materiałów funkcjonalnych Podstawy reologii ceramicznych mas lejnych Warszawa 2011 1 1. Reologia Reologia (od greckich słów: rheo płynąć i logos nauka)

Bardziej szczegółowo

Spis treści. Wprowadzenie... 9

Spis treści. Wprowadzenie... 9 Spis treści Wprowadzenie... 9 Rozdział pierwszy Wstęp... 14 Lepkość... 16 Lepkość w aspekcie reologii... 16 Reologia a ceramika... 17 Płynięcie... 17 Podsumowanie... 19 Rozdział drugi Podstawy reologii...

Bardziej szczegółowo

Prędkości cieczy w rurce są odwrotnie proporcjonalne do powierzchni przekrojów rurki.

Prędkości cieczy w rurce są odwrotnie proporcjonalne do powierzchni przekrojów rurki. Spis treści 1 Podstawowe definicje 11 Równanie ciągłości 12 Równanie Bernoulliego 13 Lepkość 131 Definicje 2 Roztwory wodne makrocząsteczek biologicznych 3 Rodzaje przepływów 4 Wyznaczania lepkości i oznaczanie

Bardziej szczegółowo

Płyny newtonowskie (1.1.1) RYS. 1.1

Płyny newtonowskie (1.1.1) RYS. 1.1 Miniskrypt: Płyny newtonowskie Analizujemy cienką warstwę płynu zawartą pomiędzy dwoma równoległymi płaszczyznami, które są odległe o siebie o Y (rys. 1.1). W warunkach ustalonych następuje ścinanie w

Bardziej szczegółowo

Sprawozdanie. z ćwiczeń laboratoryjnych z przedmiotu: Współczesne Materiały Inżynierskie. Temat ćwiczenia

Sprawozdanie. z ćwiczeń laboratoryjnych z przedmiotu: Współczesne Materiały Inżynierskie. Temat ćwiczenia Sprawozdanie z ćwiczeń laboratoryjnych z przedmiotu: Współczesne Materiały Inżynierskie Temat ćwiczenia Badanie właściwości reologicznych cieczy magnetycznych Prowadzący: mgr inż. Marcin Szczęch Wykonawcy

Bardziej szczegółowo

WŁAŚCIWOŚCI REOLOGICZNE CIECZY NIENIUTONOWSKICH

WŁAŚCIWOŚCI REOLOGICZNE CIECZY NIENIUTONOWSKICH Ćwiczenie 2: WŁAŚCIWOŚCI REOLOGICZNE CIECZY NIENIUTONOWSKICH 1. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z budową i działaniem wiskozymetru rotacyjnego oraz wyznaczenie krzywych płynięcia wybranych

Bardziej szczegółowo

Zjawiska w sąsiedztwie krawędzi stożka Ustawienie stożka pomiarowego w stosunku do płytki REOMETRY KAPILARNE...

Zjawiska w sąsiedztwie krawędzi stożka Ustawienie stożka pomiarowego w stosunku do płytki REOMETRY KAPILARNE... SPIS TREŚCI WYKAZ WAŻNIEJSZYCH OZNACZEŃ... 7 1. PRZEDMOWA... 9 2. WPROWADZENIE DO REOLOGII I REOMETRII... 11 2.1. Definicja reologii... 11 2.2. Historia reologii... 12 2.3. Kierunki badań reologicznych...

Bardziej szczegółowo

Reologiczne właściwości cieczy

Reologiczne właściwości cieczy Reologiczne właściwości cieczy Zakład Chemii Medycznej Pomorskiego Uniwersytetu Medycznego Biomechaniczna przyczyna miażdżycy Jarosław Wasilewski, Tomasz Kiljański Reologia nauka zajmująca się badaniem

Bardziej szczegółowo

Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu

Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu Ćw. 4 Kinetyka reakcji chemicznych Zagadnienia do przygotowania: Szybkość reakcji chemicznej, zależność szybkości reakcji chemicznej

Bardziej szczegółowo

ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA

ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA POLITECHNIKA RZESZOWSKA im. IGNACEGO ŁUKASIEWICZA Al. Powstańców Warszawy 8, 35-959 Rzeszów, Tel: 854-31-1,

Bardziej szczegółowo

Reologia w technologii farmaceutycznej

Reologia w technologii farmaceutycznej Reologia w technologii farmaceutycznej dr n. farm. Tomasz Osmałek Katedra i Zakład Technologii Postaci Leku Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu Podstawy reologii Panta rhei kai ouden

Bardziej szczegółowo

Projektowanie elementów z tworzyw sztucznych

Projektowanie elementów z tworzyw sztucznych Projektowanie elementów z tworzyw sztucznych Wykorzystanie technik komputerowych w projektowaniu elementów z tworzyw sztucznych Tematyka wykładu Techniki komputerowe, Problemy występujące przy konstruowaniu

Bardziej szczegółowo

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Wyznaczanie współczynnika sprężystości sprężyn i ich układów Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły.

PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły. PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły. Pracę oznaczamy literą W Pracę obliczamy ze wzoru: W = F s W praca;

Bardziej szczegółowo

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami

Bardziej szczegółowo

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 1 Temat: Wyznaczanie współczynnika

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,

Bardziej szczegółowo

Mechanika płynów : laboratorium / Jerzy Sawicki. Bydgoszcz, Spis treści. Wykaz waŝniejszych oznaczeń 8 Przedmowa

Mechanika płynów : laboratorium / Jerzy Sawicki. Bydgoszcz, Spis treści. Wykaz waŝniejszych oznaczeń 8 Przedmowa Mechanika płynów : laboratorium / Jerzy Sawicki. Bydgoszcz, 2010 Spis treści Wykaz waŝniejszych oznaczeń 8 Przedmowa 1. POMIAR CIŚNIENIA ZA POMOCĄ MANOMETRÓW HYDROSTATYCZNYCH 11 1.1. Wprowadzenie 11 1.2.

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Tarcie poślizgowe

Tarcie poślizgowe 3.3.1. Tarcie poślizgowe Przy omawianiu więzów w p. 3.2.1 reakcję wynikającą z oddziaływania ciała na ciało B (rys. 3.4) rozłożyliśmy na składową normalną i składową styczną T, którą nazwaliśmy siłą tarcia.

Bardziej szczegółowo

Q v ( ) f dr. Q d. Q dr. dv w , = n dr. v n. dv w. d n. v d

Q v ( ) f dr. Q d. Q dr. dv w , = n dr. v n. dv w. d n. v d TECHNIKA I TECHNOLOGIA st. kpt. mgr inż. Joanna RAKOWSKA Zakład-Laboratorium Badań Chemicznych i Pożarowych ZJAWISKA REOLOGICZNE W PIANOTWÓRCZYCH ŚRODKACH GAŚNICZYCH Część II Metody badań właściwości reologicznych

Bardziej szczegółowo

17. 17. Modele materiałów

17. 17. Modele materiałów 7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie

Bardziej szczegółowo

MECHANIKA PŁYNÓW Płyn

MECHANIKA PŁYNÓW Płyn MECHANIKA PŁYNÓW Płyn - Każda substancja, która może płynąć, tj. pod wpływem znikomo małych sił dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje, oraz może swobodnie się przemieszczać

Bardziej szczegółowo

Opory ruchu. Fizyka I (B+C) Wykład XII: Tarcie. Ruch w ośrodku

Opory ruchu. Fizyka I (B+C) Wykład XII: Tarcie. Ruch w ośrodku Opory ruchu Fizyka I (B+C) Wykład XII: Tarcie Lepkość Ruch w ośrodku Tarcie Tarcie kinetyczne Siła pojawiajaca się między dwoma powierzchniami poruszajacymi się względem siebie, dociskanymi siła N. Ścisły

Bardziej szczegółowo

Aerodynamika i mechanika lotu

Aerodynamika i mechanika lotu Płynem nazywamy ciało łatwo ulegające odkształceniom postaciowym. Przeciwieństwem płynu jest ciało stałe, którego odkształcenie wymaga przyłożenia stosunkowo dużego naprężenia (siły). Ruch ciała łatwo

Bardziej szczegółowo

DRUGA ZASADA TERMODYNAMIKI

DRUGA ZASADA TERMODYNAMIKI DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy

Bardziej szczegółowo

Wykład 8: Lepko-sprężyste odkształcenia ciał

Wykład 8: Lepko-sprężyste odkształcenia ciał Wykład 8: Lepko-sprężyste odkształcenia ciał Leszek CHODOR dr inż. bud, inż.arch. leszek@chodor.pl Literatura: [1] Piechnik St., Wytrzymałość materiałów dla wydziałów budowlanych,, PWN, Warszaw-Kraków,

Bardziej szczegółowo

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:

Bardziej szczegółowo

Człowiek najlepsza inwestycja FENIKS

Człowiek najlepsza inwestycja FENIKS Człowiek najlepsza inwestycja ENIKS - długofalowy program odbudowy, popularyzacji i wspomagania fizyki w szkołach w celu rozwijania podstawowych kompetencji naukowo-technicznych, matematycznych i informatycznych

Bardziej szczegółowo

Ćwiczenie 2: Wyznaczanie gęstości i lepkości płynów nieniutonowskich

Ćwiczenie 2: Wyznaczanie gęstości i lepkości płynów nieniutonowskich Gęstość 1. Część teoretyczna Gęstość () cieczy w danej temperaturze definiowana jest jako iloraz jej masy (m) do objętości (V) jaką zajmuje: Gęstość wyrażana jest w jednostkach układu SI. Gęstość cieczy

Bardziej szczegółowo

Materiały Reaktorowe. Właściwości mechaniczne

Materiały Reaktorowe. Właściwości mechaniczne Materiały Reaktorowe Właściwości mechaniczne Naprężenie i odkształcenie F A 0 l i l 0 l 0 l l 0 a. naprężenie rozciągające b. naprężenie ściskające c. naprężenie ścinające d. Naprężenie torsyjne Naprężenie

Bardziej szczegółowo

Temat 1 (2 godziny): Próba statyczna rozciągania metali

Temat 1 (2 godziny): Próba statyczna rozciągania metali Temat 1 (2 godziny): Próba statyczna rozciągania metali 1.1. Wstęp Próba statyczna rozciągania jest podstawowym rodzajem badania metali, mających zastosowanie w technice i pozwala na określenie własności

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Krzysztof Horodecki, Artur Ludwikowski, Fizyka 1. Podręcznik dla gimnazjum, Gdańskie Wydawnictwo Oświatowe

Bardziej szczegółowo

WYDZIAŁ LABORATORIUM FIZYCZNE

WYDZIAŁ LABORATORIUM FIZYCZNE 1 W S E i Z W WARSZAWIE WYDZIAŁ LABORATORIUM FIZYCZNE Ćwiczenie Nr 3 Temat: WYZNACZNIE WSPÓŁCZYNNIKA LEPKOŚCI METODĄ STOKESA Warszawa 2009 2 1. Podstawy fizyczne Zarówno przy przepływach płynów (ciecze

Bardziej szczegółowo

SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY.

SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY. ĆWICZENIE 5 SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY. Wprowadzenie Odkształcenie, którego doznaje ciało pod działaniem

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/ ) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych

WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/ ) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/2018 I. Wymagania przekrojowe. Uczeń: 1) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych lub blokowych informacje kluczowe dla

Bardziej szczegółowo

Parametry reologiczne hydrożeli a dostępność farmaceutyczna substancji leczniczych na przykładzie modelowej postaci leku o działaniu przeciwzapalnym

Parametry reologiczne hydrożeli a dostępność farmaceutyczna substancji leczniczych na przykładzie modelowej postaci leku o działaniu przeciwzapalnym Parametry reologiczne hydrożeli a dostępność farmaceutyczna substancji leczniczych na przykładzie modelowej postaci leku o działaniu przeciwzapalnym Justyna Kołodziejska Zakład Technologii Postaci Leku

Bardziej szczegółowo

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)185 4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA WYDZIAŁ CHEMICZNY KATEDRA TECHNOLOGII POLIMERÓW

POLITECHNIKA GDAŃSKA WYDZIAŁ CHEMICZNY KATEDRA TECHNOLOGII POLIMERÓW POLITECHNIKA GDAŃSKA WYDZIAŁ CHEMICZNY KATEDRA TECHNOLOGII POLIMERÓW PRZETWÓRSTWO TWORZYW SZTUCZNYCH I GUMY Lab 8. Wyznaczanie optimum wulkanizacji mieszanek kauczukowych na reometrze Monsanto oraz analiza

Bardziej szczegółowo

J. Szantyr Wykład 10 Stan naprężenia w płynie

J. Szantyr Wykład 10 Stan naprężenia w płynie J. Szantyr Wykład 10 Stan naprężenia w płynie Można udowodnić, że tensor stanu naprężenia w płynie jest tensorem symetrycznym, czyli: itd. xy = yx Redukuje to liczbę niewiadomych naprężeń lepkościowych

Bardziej szczegółowo

WYKONUJEMY POMIARY. Ocenę DOSTATECZNĄ otrzymuje uczeń, który :

WYKONUJEMY POMIARY. Ocenę DOSTATECZNĄ otrzymuje uczeń, który : WYKONUJEMY POMIARY Ocenę DOPUSZCZAJĄCĄ otrzymuje uczeń, który : wie, w jakich jednostkach mierzy się masę, długość, czas, temperaturę wie, do pomiaru jakich wielkości służy barometr, menzurka i siłomierz

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI. Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU

POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI. Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU WISKOZYMETRU KAPILARNEGO I. WSTĘP TEORETYCZNY Ciecze pod względem struktury

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II Energia mechaniczna Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia.

Bardziej szczegółowo

dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG

dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG 3. POLIMERY AMORFICZNE dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG Politechnika Gdaoska, 2011 r. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego

Bardziej szczegółowo

Pomiar ciśnienia krwi metodą osłuchową Korotkowa

Pomiar ciśnienia krwi metodą osłuchową Korotkowa Ćw. M 11 Pomiar ciśnienia krwi metodą osłuchową Korotkowa Zagadnienia: Oddziaływania międzycząsteczkowe. Siły Van der Waalsa. Zjawisko lepkości. Równanie Newtona dla płynięcia cieczy. Współczynniki lepkości;

Bardziej szczegółowo

PUNKTY KRYTYCZNE W TECHNOLOGII KOSMETYKÓW 18 LISTOPAD 2014

PUNKTY KRYTYCZNE W TECHNOLOGII KOSMETYKÓW 18 LISTOPAD 2014 PUNKTY KRYTYCZNE W TECHNOLOGII KOSMETYKÓW 18 LISTOPAD 2014 1 WPROWADZENIE Wczoraj i dziś wdrażania kosmetyków Lepsze maszyny Bardziej zaawansowane surowce Lepsze metody testowania Szybszy dostęp do wiedzy

Bardziej szczegółowo

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa Kinematyka 1. Podstawowe własności wektorów 5 1.1 Dodawanie (składanie) wektorów 7 1.2 Odejmowanie wektorów 7 1.3 Mnożenie wektorów przez liczbę 7 1.4 Wersor 9 1.5 Rzut wektora 9 1.6 Iloczyn skalarny wektorów

Bardziej szczegółowo

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ Ciepło i temperatura Pojemność cieplna i ciepło właściwe Ciepło przemiany Przejścia między stanami Rozszerzalność cieplna Sprężystość ciał Prawo Hooke a Mechaniczne

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI WYMAGANIA EDUKACYJNE Z FIZYKI KLASA I Budowa materii Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia. Uczeń: rozróżnia

Bardziej szczegółowo

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym). Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Zwykła próba rozciągania stali Numer ćwiczenia: 1 Laboratorium z przedmiotu:

Bardziej szczegółowo

Laboratorium. Hydrostatyczne Układy Napędowe

Laboratorium. Hydrostatyczne Układy Napędowe Laboratorium Hydrostatyczne Układy Napędowe Instrukcja do ćwiczenia nr Eksperymentalne wyznaczenie charakteru oporów w przewodach hydraulicznych opory liniowe Opracowanie: Z.Kudżma, P. Osiński J. Rutański,

Bardziej szczegółowo

DRUGA ZASADA TERMODYNAMIKI

DRUGA ZASADA TERMODYNAMIKI DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy

Bardziej szczegółowo

WŁAŚCIWOŚCI MECHANICZNE SPRĘŻYSTOŚĆ MATERIAŁ. Właściwości materiałów. Właściwości materiałów

WŁAŚCIWOŚCI MECHANICZNE SPRĘŻYSTOŚĆ MATERIAŁ. Właściwości materiałów. Właściwości materiałów WŁAŚCIWOŚCI MECHANICZNE SPRĘŻYSTOŚĆ Właściwości materiałów O możliwości zastosowania danego materiału decydują jego właściwości użytkowe; Zachowanie się danego materiału w środowisku pracy to zaplanowana

Bardziej szczegółowo

możliwie jak najniższą lepkość oraz / lub niską granicę płynięcia brak lub bardzo mały udział sprężystości we właściwościach przepływowych

możliwie jak najniższą lepkość oraz / lub niską granicę płynięcia brak lub bardzo mały udział sprężystości we właściwościach przepływowych RHEOTEST Medingen Reometr RHEOTEST RN służący do reologicznej oceny systemów dwuskładnikowych na przykładzie lakierów i mas uszczelniających przy pomocy testów oscylacji Zadania podstawowe Systemy dwuskładnikowe

Bardziej szczegółowo

DYNAMIKA SIŁA I JEJ CECHY

DYNAMIKA SIŁA I JEJ CECHY DYNAMIKA SIŁA I JEJ CECHY Wielkość wektorowa to wielkość fizyczna mająca cztery cechy: wartość liczbowa punkt przyłożenia (jest początkiem wektora, zaznaczamy na rysunku np. kropką) kierunek (to linia

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA ĆWICZENIE 8 WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA Cel ćwiczenia: Badanie ruchu ciał spadających w ośrodku ciekłym, wyznaczenie współczynnika lepkości cieczy metodą Stokesa

Bardziej szczegółowo

. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz

. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz ZAKŁAD MECHANIKI PŁYNÓW I AERODYNAMIKI ABORATORIUM MECHANIKI PŁYNÓW ĆWICZENIE NR DOŚWIADCZENIE REYNODSA: WYZNACZANIE KRYTYCZNEJ ICZBY REYNODSA opracował: Piotr Strzelczyk Rzeszów 997 . Cel ćwiczenia Celem

Bardziej szczegółowo

Osteoarthritis & Cartilage (1)

Osteoarthritis & Cartilage (1) Osteoarthritis & Cartilage (1) "Badanie porównawcze właściwości fizykochemicznych dostawowych Kwasów Hialuronowych" Odpowiedzialny naukowiec: Dr.Julio Gabriel Prieto Fernandez Uniwersytet León,Hiszpania

Bardziej szczegółowo

PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH

PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Reologia jest nauką,

Bardziej szczegółowo

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyn i współczynnika sztywności zastępczej

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyn i współczynnika sztywności zastępczej Doświadczalne wyznaczanie (sprężystości) sprężyn i zastępczej Statyczna metoda wyznaczania. Wprowadzenie Wartość użytej można wyznaczyć z dużą dokładnością metodą statyczną. W tym celu należy zawiesić

Bardziej szczegółowo

XIXOLIMPIADA FIZYCZNA (1969/1970). Stopień W, zadanie doświadczalne D.. Znaleźć doświadczalną zależność T od P. Rys. 1

XIXOLIMPIADA FIZYCZNA (1969/1970). Stopień W, zadanie doświadczalne D.. Znaleźć doświadczalną zależność T od P. Rys. 1 KOOF Szczecin: www.of.szc.pl XIXOLIMPIADA FIZYCZNA (1969/197). Stopień W, zadanie doświadczalne D. Źródło: Olimpiady fizyczne XIX i XX Autor: Waldemar Gorzkowski Nazwa zadania: Drgania gumy. Działy: Drgania

Bardziej szczegółowo

Ćwiczenie 5: Wyznaczanie lepkości właściwej koloidalnych roztworów biopolimerów.

Ćwiczenie 5: Wyznaczanie lepkości właściwej koloidalnych roztworów biopolimerów. Gęstość 1. Część teoretyczna Gęstość () cieczy w danej temperaturze definiowana jest jako iloraz jej masy (m) do objętości (V) jaką zajmuje: (1) Gęstość wyrażana jest w jednostkach układu SI. Gęstość cieczy

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG

dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG 2. METODY WYZNACZANIA MASY MOLOWEJ POLIMERÓW dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG Politechnika Gdaoska, 2011 r. Publikacja współfinansowana ze środków Unii Europejskiej

Bardziej szczegółowo

MAGNETOREOLOGICZNE CIECZE ROBOCZE: MOŻLIWOŚCI KSZTAŁTOWANIA NIEKTÓRYCH WŁAŚCIWOŚCI UŻYTKOWYCH

MAGNETOREOLOGICZNE CIECZE ROBOCZE: MOŻLIWOŚCI KSZTAŁTOWANIA NIEKTÓRYCH WŁAŚCIWOŚCI UŻYTKOWYCH PROBLEMY NIEKONWENCJONALNYCH UKŁADÓW ŁOŻYSKOWYCH Łódź, 12 14 maja 1999 r. Bogdan Wiślicki, Jan Holincki-Szulc Instytut Podstawowych Problemów Techniki PAN, Wojciech Lassota Instytut Pojazdów, Wydz. SiMR,

Bardziej szczegółowo

ĆWICZENIE. Oznaczanie szybkości relaksacji naprężeń wulkanizatów

ĆWICZENIE. Oznaczanie szybkości relaksacji naprężeń wulkanizatów ĆWICZENIE Oznaczanie szybkości relaksacji naprężeń wulkanizatów 1 1. CEL ĆWICZENIA Celem dwiczenia pn. Oznaczanie szybkości relaksacji naprężeo wulkanizatów jest określenie wpływu rodzaju węzłów w sieci

Bardziej szczegółowo

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi

Bardziej szczegółowo

TEMAT: PARAMETRY PRACY I CHARAKTERYSTYKI SILNIKA TŁOKOWEGO

TEMAT: PARAMETRY PRACY I CHARAKTERYSTYKI SILNIKA TŁOKOWEGO TEMAT: PARAMETRY PRACY I CHARAKTERYSTYKI SILNIKA TŁOKOWEGO Wielkościami liczbowymi charakteryzującymi pracę silnika są parametry pracy silnika do których zalicza się: 1. Średnie ciśnienia obiegu 2. Prędkości

Bardziej szczegółowo

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości

Bardziej szczegółowo

Lepkosprężystość. 2. Tłumik spełniający prawo Newtona element doskonale lepki T T

Lepkosprężystość. 2. Tłumik spełniający prawo Newtona element doskonale lepki T T Kiedy materiał po przyłożeniu naprężenia lub odkształcenia zachowuje się trochę jak ciało elastyczne a trochę jak ciecz lepka to mówimy o połączeniu tych dwóch wielkości i nazywamy lepkospreżystością.

Bardziej szczegółowo

Odwracalność przemiany chemicznej

Odwracalność przemiany chemicznej Odwracalność przemiany chemicznej Na ogół wszystkie reakcje chemiczne są odwracalne, tzn. z danych substratów tworzą się produkty, a jednocześnie produkty reakcji ulegają rozkładowi na substraty. Fakt

Bardziej szczegółowo

STATYCZNA PRÓBA ROZCIĄGANIA

STATYCZNA PRÓBA ROZCIĄGANIA STATYCZNA PRÓBA ROZCIĄGANIA Próba statyczna rozciągania jest jedną z podstawowych prób stosowanych do określenia jakości materiałów konstrukcyjnych wg kryterium naprężeniowego w warunkach obciążeń statycznych.

Bardziej szczegółowo

Zasady dynamiki Newtona. WPROWADZENIE DO MECHANIKI PŁYNÓW

Zasady dynamiki Newtona. WPROWADZENIE DO MECHANIKI PŁYNÓW Zasady dynamiki Newtona. I. Jeżeli na ciało nie działają siły, lub działające siły równoważą się, to ciało jest w spoczynku lub porusza się ruchem jednostajnym. II. Jeżeli siły się nie równoważą, to ciało

Bardziej szczegółowo

DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia

DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia ODDZIAŁYWANIA DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia 1. Organizacja pracy na lekcjach fizyki w klasie I- ej. Zapoznanie z wymaganiami na poszczególne oceny. Fizyka jako nauka przyrodnicza.

Bardziej szczegółowo

FIZYKA KLASA 7 Rozkład materiału dla klasy 7 szkoły podstawowej (2 godz. w cyklu nauczania)

FIZYKA KLASA 7 Rozkład materiału dla klasy 7 szkoły podstawowej (2 godz. w cyklu nauczania) FIZYKA KLASA 7 Rozkład materiału dla klasy 7 szkoły podstawowej (2 godz. w cyklu nauczania) Temat Proponowana liczba godzin POMIARY I RUCH 12 Wymagania szczegółowe, przekrojowe i doświadczalne z podstawy

Bardziej szczegółowo

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36 Wykład 1 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 5 października 2015 1 / 36 Podstawowe pojęcia Układ termodynamiczny To zbiór niezależnych elementów, które oddziałują ze sobą tworząc integralną

Bardziej szczegółowo

J. Szantyr -Wykład 2 Poważne wprowadzenie do Mechaniki Płynów

J. Szantyr -Wykład 2 Poważne wprowadzenie do Mechaniki Płynów J. Szantyr -ykład Poważne wprowadzenie do Mechaniki Płynów Stany skupienia materii: ciała stałe płyny, czyli ciecze i gazy -Ciała stałe przenoszą obciążenia zewnętrzne w taki sposób, że ulegają deformacji

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM

KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM WŁASNOŚCI MATERII - Uczeń nie opanował wiedzy i umiejętności niezbędnych w dalszej nauce. - Wie, że substancja występuje w trzech stanach skupienia. - Wie,

Bardziej szczegółowo

Nauka o Materiałach. Wykład IX. Odkształcenie materiałów właściwości plastyczne. Jerzy Lis

Nauka o Materiałach. Wykład IX. Odkształcenie materiałów właściwości plastyczne. Jerzy Lis Nauka o Materiałach Wykład IX Odkształcenie materiałów właściwości plastyczne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Odkształcenie plastyczne 2. Parametry makroskopowe 3. Granica plastyczności

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE TWORZYW SZTUCZNYCH OZNACZENIE WŁASNOŚCI MECHANICZNYCH PRZY STATYCZNYM ROZCIĄGANIU

Bardziej szczegółowo

[ ] ρ m. Wykłady z Hydrauliki - dr inż. Paweł Zawadzki, KIWIS WYKŁAD WPROWADZENIE 1.1. Definicje wstępne

[ ] ρ m. Wykłady z Hydrauliki - dr inż. Paweł Zawadzki, KIWIS WYKŁAD WPROWADZENIE 1.1. Definicje wstępne WYKŁAD 1 1. WPROWADZENIE 1.1. Definicje wstępne Płyn - ciało o module sprężystości postaciowej równym zero; do płynów zaliczamy ciecze i gazy (brak sztywności) Ciecz - płyn o małym współczynniku ściśliwości,

Bardziej szczegółowo

11. WŁASNOŚCI SPRĘŻYSTE CIAŁ

11. WŁASNOŚCI SPRĘŻYSTE CIAŁ 11. WŁANOŚCI PRĘŻYTE CIAŁ Efektem działania siły może być przyspieszanie ciała, ae może być także jego deformacja. Przykładami tego ostatniego są np.: rozciąganie gumy a także zginanie ub rozciąganie pręta.

Bardziej szczegółowo

WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ. Zmiany makroskopowe. Zmiany makroskopowe

WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ. Zmiany makroskopowe. Zmiany makroskopowe WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ Zmiany makroskopowe Zmiany makroskopowe R e = R 0.2 - umowna granica plastyczności (0.2% odkształcenia trwałego); R m - wytrzymałość na rozciąganie (plastyczne); 1

Bardziej szczegółowo

OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH

OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH ĆWICZENIE II OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH 1. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z metodą określania oporów przepływu w przewodach. 2. LITERATURA 1. Informacje z wykładów i ćwiczęń

Bardziej szczegółowo

Analiza zderzeń dwóch ciał sprężystych

Analiza zderzeń dwóch ciał sprężystych Ćwiczenie M5 Analiza zderzeń dwóch ciał sprężystych M5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar czasu zderzenia kul stalowych o różnych masach i prędkościach z nieruchomą, ciężką stalową przeszkodą.

Bardziej szczegółowo

Ćwiczenie 14. Maria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYMATYCZNYCH

Ćwiczenie 14. Maria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYMATYCZNYCH Ćwiczenie 14 aria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYATYCZNYCH Zagadnienia: Podstawowe pojęcia kinetyki chemicznej (szybkość reakcji, reakcje elementarne, rząd reakcji). Równania kinetyczne prostych

Bardziej szczegółowo