LHC - wielki zderzacz hadronów

Wielkość: px
Rozpocząć pokaz od strony:

Download "LHC - wielki zderzacz hadronów"

Transkrypt

1 LHC - wielki zderzacz hadronów Ewa Rondio zakład VI / CERN na podstawie wykładów dla nauczycieli w CERNie dr A. Siemko

2 Dwa bieguny w badaniu struktury materii Akceleratory Mikroskopy Lunety Optyczne i radioteleskopy

3 Jak poznać lepiej strukturę materii? Dwie drogi do lepszego poznania fundamentalnej struktury materii Wzrost energii Nowe zjawiska (nowa fizyka) są spodziewane gdy użyteczna energia > mc 2 [ 2] Wzrost precyzji Znane zjawiska badane z większa precyzja mogą pokazać niezgodności z istniejącymi teoriami

4 Akcelerator protonów Najważniejsze daty Projektu LHC: 1982 : Pierwsze idee i opracowania 1994 : Zatwierdzenie projektu LHC przez Rade CERN 1996 : Decyzja o rozpoczęciu budowy 2004 : Początek instalacji LHC 2006 : Początek uruchamiania systemów technicznych 2008 : Początek pracy akceleratora z wiązkami protonów 2008 : Niespodziewana awaria 2009 : Ponowne uruchomienie pierwsze zderzenia : praca przy energii 3,5 TeV i eksperymenty fizyczne 2013 : przerwa techniczna : praca trzy pełnej energii 7 TeV Największe i najbardziej złożone urządzenie ( maszyna ) jakie kiedykolwiek zostało zbudowane 2018 : przerwa, instalacja Linika : praca z wiekszą intensywnością skala projektu : 50 lat

5 Kompleks akceleratorów w CERN?? 2004: The 20 member states

6 Kompleks Akceleratorów w CERN Schemat tuneli LHC i SPS A. Siemko

7 CERN najbardziej zaawansowany kompleks akceleratorowy na świecie A. Siemko

8 CERN najbardziej zaawansowany kompleks akceleratorowy na świecie Akcelerator Liniowy (LINAC 2) 1978

9 CERN najbardziej zaawansowany kompleks akceleratorowy na świecie Booster (PSB) 1972 protony są rozpędzane do v=0,87 c

10 CERN najbardziej zaawansowany kompleks akceleratorowy na świecie Synchrotron Protonowy (PS) 1959 na wyjściu z PS v = 0, c

11 CERN najbardziej zaawansowany kompleks akceleratorowy na świecie Supersynchrotron Protonowy (SPS) 1976 po SPS protony mają v= c

12 CERN najbardziej zaawansowany kompleks akceleratorowy na świecie Wielki Zderzacz Hadronow (LHC) 2008 w LHC v=0, c

13 Plany na przyszłość tu mamy zaangażowanie NCBJu

14 Główne parametry LHC Energia nominalna 7 TeV (3,5TeV) Energia początkowa (injection) 450 GeV Obwód pierścienia m Średnica pierścienia ~8.6 km Nominalne pole dipolowe 8.33 Tesla Pierścień podzielony jest na 8 niezależnych sektorów (kriogenika, zasilanie) Sektor składa sie z 23 komórek ca. 105m

15 LHC jest podwójnym synchrotronem o ośmiokrotnej symetrii: Główne parametry LHC 8 sektorów 8 łuków (ca. 2500m) 8 sekcji prostych (ca. 600m) Dwie przeciwbieżne wiazki 4 punkty przecięcia wiązek

16 LHC Wyzwania LHC pierwszy akcelerator z magnesami nadprzewodnikowymi chłodzonymi nadpłynnym helem o temperaturze T=1.9 K: Nowe materiały, Nowe technologie produkcji, Nowe systemy detekcji i zabezpieczenia, Niezawodność.

17 Magnesy nadprzewodnikowe LHC

18 Regular arc: Magnesy 1232 główne dipole główne kwadrupole magnesów korekcyjnych 4928 multipolowych magnesów korekcyjnych

19 Połączenie poprzez moduł serwisowy Regular arc: Kriogenika Kriogeniczna linia dystrybucyjna (26 km) A. Siemko Statyczny nadciekły hel o temperaturze 1.9 K w izolowanych komorkach kriogenicznych o długości 214 m

20 Ultra wysoka próżnia wiązki Beam 1 + Beam 2 Regular arc: Próżnia Próżnia izolacyjna w kriogenicznej linii dystrybucyjnej Próżnia izolacyjna w kriostatach magnesów

21 Parametry glownych magnesów dipolowych LHC Liczba głównych dipoli 1232 Pole dipolowe dla 7 TeV 8.33 T Prąd w dipolach dla 7 TeV A Energia zmagazynowana w dipolach 10 GJ Liczba dipolowych obwodów elektrycznych 8 Całkowita liczba magnesów ~9600 Liczba wszystkich obwodów elektrycznych 1766

22 Nadprzewodnictwo Nadprzewodnictwo jest cechą wielu pierwiastków i materiałów polegającą na tym, że w pewnych warunkach maja one zerową rezystancję Poprawne określenie nadprzewodnictwa wymaga spełnienia jednocześnie dwóch warunków: zaniku oporu elektrycznego doskonałego diamagnetyzmu materiałów nadprzewodzących, zwanego efektem Meissnera

23 Odkrycie nadprzewodnictwa 1908 Kamerlingh Onnes skrapla hel 1911 Pomiar zależności R-T dla rtęci Metal TC [K] TC [ C] Nb Pb V La Ta Hg Sn In Pd Cr Tl Al Zn Ti Rh Podstawową właściwością stanu nadprzewodzącego jest to, że prąd elektryczny może płynąć bez występowania różnicy potencjałów

24 Diagram fazowy - powierzchnia krytyczna J c Gęstość prądu [A/m 2 ] Temperatura krytyczna T c Krytyczna gęstość prądu J c Krytyczne pole magnetyczne B c Indukcja [T] B c Stan nadprzewodzący: T c T < T c, J < J c, B < B c Temperatura [K] LHC wykorzystuje: Klasyczne nadprzewodniki niskotemperaturowe stop Nb-Ti Wysokotemperaturowe nadprzewodniki typu BSCO Bi-2223

25 Nadprzewodniki LHC km kabli Cu/Nb-Ti

26 Produkcja nadprzewodników typu Nb-Ti ~ 1 m Ø~ 20 cm Nb-Ti Folia Nb Cylinder z Cu Uszczelnienie i odpompowanie Ekstruzja i ciągnienie ~ 10 m Ø~ 7cm

27 Produkcja nadprzewodników typu Nb-Ti Dalsze wielokrotne ciągnienie połączone z obróbką cieplną Redukcja średnicy od Ø 7 cm to Ø 1-5 mm Ostateczne ciągnienie połączone z formowaniem kształtu sześciokątnego i ciecie na odcinki ~ 1 m

28 Produkcja nadprzewodników typu Nb-Ti 1 m 20 cm Copper bar ca hexagons Copper tube

29 Produkcja w przemyśle

30 Testy w stacji testów

31 Podroż 100m pod ziemie

32 i podroż w tunelu km z prędkością 2 km/h! Waga urządzeń w tunelu: t

33 Instalacja setki tysięcy połączeń

34 Magnesy nadprzewodnikowe w tunelu LHC Magnesy w regularnej części uku LHC 1232 g ówne magnesy dipolowe 474 ogniskujące magnesy kwadrupolowe plus oko o 8000 magnesów korekcyjnych 7 listopada 2007 ostatnie połączenie magnesów 30 kwietnia 2008 zamknięcie wszystkich podłączeń

35 Jakwiązek Budowano LHC Kolimacja protonów LHC 56.0 mm 1 mm Kurs dla polskich nauczycieli fizyki w CERN 20-26/9/2009

36 Parametry wiązek protonów LHC Częstotliwość obiegu wiązki Liczba paczek w wiązce khz Liczba protonów w paczce 1.15 x Średnica paczki w punkcie zderzeń 16µm Długość paczki Odstęp miedzy paczkami Energia wiązki Prąd wiązki 7.55 cm ~7 m 2 * 360 MJ 0.54 A

37 Energia wiazek LHC Momentum at collision 7 TeV (1 ev = 1, Joule) Number of bunches 2808 Protons per bunch Total number of protons (1 ng of H + ) Energia zmagazynowana w 2 wiązkach: Energia potrzebna do stopienia 1 tony Cu: 724 MJoule 700 MJoule 700 MJ może stopić 1 tonę miedzi 700 MJ zdysypowane w czasie 88 µs / TW Kurs dla polskich nauczycieli fizyki w CERN 20-26/9/2009 Moc wszystkich elektrowni na świecie 3.8 TW

38 Chłodzenie nadpłynym helem Zwykły hel gazowy to atomy izotopu 4 He. Przy normalnym ciśnieniu atmosferycznym 4 He skrapla się w T = 4.22 K. Przy obniżeniu ciśnienia do 50 mbar T < 2.17K (T λ = 2.17 K punkt λ ) zachodzi dramatyczna zmiana jego właściwości K K T He II I He I I He Najbardziej niezwykłą zdolnością nadpłynnego helu jest to, ze ciepło może w nim płynąć bez występowania gradientu temperatury Nadpłynność jest zjawiskiem nadprzewodnictwa ciepła

39 Kriogenika LHC Point 8 Storage QSCC QSCA QSRA QSCB QSRB QSCC Shaft Surface QURA QUIC Cavern QURC QURC Sector 7-8 Sector 8-1 Tunnel

40 LHC - najzimniejsza cześć wszechświata

41 Uruchamianie LHC 10/09/2008

42 Czy zawsze wszystko jest tak jak tego chcielibyśmy? Not really.

43 19/ poważna awaria

44 Co potrafi zrobić duże ciśnienie!!!

45 Ponowne uruchamianie LHC 20-23/11/2009

46 Detektory Cząstek CMS Detektory cząstek są elektronicznymi oczami fizyków. Detektory rejestrują cząstki powstałe w zderzeniach wiązek. Współczesne detektory są wielkimi, niezwykle złożonymi i czułymi instrumentami. A. Siemko

47 Pierwsze zderzenia w LHC 2*450GeV i 2*1.18 TeV 12/2009

48 Pierwsze zderzenia w LHC 2*3.5 TeV 30/3/2010

49 tak zbieraliśmy dane w 2010 roku

50 a tak teraz (wczorajszy wieczór)

51 Podsumowanie LHC jest najwiekszym i najbardziej zlożonym urzadzeniem badawczym jakie kiedykolwiek zostalo wymyslone i skonstruowane Po awarii w 2008 LHC zostało naprawione i ponownie uruchomione do energii 2*3.5 TeV Akcelerator i detektory funkcjonują poprawnie Osiągniecie docelowej energii 2*7 TeV będzie wymagało dodatkowej naprawy (korekcji) połączeń miedzy magnesami (2013 rok) Rozwój wysokich technologii, wymaganych w większości badan fizycznych, umożliwia odkrywanie i zrozumienie nowych zjawisk, co w efekcie prowadzi do dalszego rozwoju, coraz to nowszych technologii Wiele z opracowanych nowych technologii znajdzie późniejsze zastosowania zarówno w przemyśle, jak i w życiu codziennym Należy pamiętać, że badania naukowe w dzisiejszych laboratoriach fizycznych to technika jutra

52 Dziękuję za uwagę A ja najbardziej lubię akcelerator van de Graaffa

53 Montaż finalny magnesów w kriostatach

54 Jak Budowano LHC Kurs dla polskich nauczycieli fizyki w CERN 20-26/9/2009

55 Jak Budowano LHC Kurs dla polskich nauczycieli fizyki w CERN 20-26/9/2009

56 Jak Budowano LHC Kurs dla polskich nauczycieli fizyki w CERN 20-26/9/2009

57 Jak Budowano LHC Kurs dla polskich nauczycieli fizyki w CERN 20-26/9/2009

58 CERN najbardziej zaawansowany kompleks akceleratorowy na świecie Wielki Zderzacz elektronow i pozytonow (LEP) 1989 A. Siemko 16/04/2007

59 Nadprzewodniki I i II rodzaju B c2 Indukcja [T] B c1 0 B c2 (T) Stan mieszany B c1 (T) Stan Meissnera Stan normalny Temperatura [K] T c Stan nadprzewodzący drugiego rodzaju (stan mieszany) ρ = 0 B 0 Stan nadprzewodzący pierwszego rodzaju (stan Meissnera) ρ = 0 B = 0

60 Jak Budowano LHC Kurs dla polskich nauczycieli fizyki w CERN 20-26/9/2009

61 Produkcja w przemyśle: montaż cewek nadprzewodnikowych

62 Jak Budowano LHC Kurs dla polskich nauczycieli fizyki w CERN 20-26/9/2009

63

64 Wystarczyło, ze wśród połączeń 13kA jedno było wadliwe

65 Protekcja urządzeń nadprzewodnikowych ca Elektrycznych obwodów magnesów nadprzewodnikowych ~20000 kanałów zabezpieczających urządzenia nadprzewodnikowe 4000 monitorów strat wiązki

66 Czy zawsze wszystko jest tak jak tego chcielibyśmy? W projekcie takim jak LHC, przy jego bezprecedensowej skali złożoności unikatowości technologicznym nowatorstwie Problemy techniczne musza wystąpić Ważne jest by te problemy zidentyfikować, zrozumieć i rozwiązać Przyczyny ostatniej awarii zostały wyjaśnione i zakończył sie proces naprawy

Jak budowano LHC. Andrzej SIEMKO CERN, Departament Technologii Akceleratorów

Jak budowano LHC. Andrzej SIEMKO CERN, Departament Technologii Akceleratorów Jak budowano LHC Andrzej SIEMKO CERN, Departament Technologii Akceleratorów Plan wykładu Wstęp Czym jest Wielki Zderzacz Hadronów LHC Wybrane wyzwania LHC Nadprzewodnictwo w LHC i urządzenia nadprzewodnikowe

Bardziej szczegółowo

Jak Budowano LHC. Andrzej SIEMKO CERN, Departament Technologii Akceleratorów

Jak Budowano LHC. Andrzej SIEMKO CERN, Departament Technologii Akceleratorów Jak Budowano LHC Andrzej SIEMKO CERN, Departament Technologii Akceleratorów Plan wykładu Czym jest Wielki Zderzacz Hadronów LHC Wybrane wyzwania LHC Nadprzewodnictwo w LHC i urządzenia nadprzewodnikowe

Bardziej szczegółowo

Jak Budowano LHC. Andrzej SIEMKO CERN, Departament Technologii Akceleratorów

Jak Budowano LHC. Andrzej SIEMKO CERN, Departament Technologii Akceleratorów Jak Budowano LHC Andrzej SIEMKO CERN, Departament Technologii Akceleratorów Plan wykładu Wstęp Czym jest Wielki Zderzacz Hadronów LHC Wybrane wyzwania LHC Nadprzewodnictwo w LHC i urządzenia nadprzewodnikowe

Bardziej szczegółowo

WYKŁAD 8. Wszechświat cząstek elementarnych dla przyrodników

WYKŁAD 8. Wszechświat cząstek elementarnych dla przyrodników Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 8 1 Maria Krawczyk, Wydział Fizyki UW 2.12. 2009 Współczesne eksperymenty-wprowadzenie Detektory Akceleratory Zderzacze LHC Mapa drogowa Tevatron-

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA Wydział: BMiZ Kierunek: MiBM / KMiU Prowadzący: dr hab. Tomasz Stręk Przygotował: Adrian Norek Plan prezentacji 1. Wprowadzenie 2. Chłodzenie największego na świecie magnesu w CERN

Bardziej szczegółowo

WYKŁAD 8. Wszechświat cząstek elementarnych dla przyrodników. Maria Krawczyk, Wydział Fizyki UW 25.11.2011

WYKŁAD 8. Wszechświat cząstek elementarnych dla przyrodników. Maria Krawczyk, Wydział Fizyki UW 25.11.2011 Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 8 Maria Krawczyk, Wydział Fizyki UW 25.11.2011 Współczesne eksperymenty Wprowadzenie Akceleratory Zderzacze Detektory LHC Mapa drogowa Współczesne

Bardziej szczegółowo

Epiphany Wykład II: wprowadzenie

Epiphany Wykład II: wprowadzenie Epiphany 2008 LEP, 2: opady deszczu LHC This morning I visited the place where the street-cleaners dump the rubbish. My God, it was beautiful - Van Gogh 20 krajów europejskich należy do CERN Kraje

Bardziej szczegółowo

EDUKACYJNE ZASOBY CERN

EDUKACYJNE ZASOBY CERN EDUKACYJNE ZASOBY CERN Prezentację przygotowały: Bożena Kania, Gimnazjum nr 9 w Lublinie Ewa Pilorz, Gimnazjum nr 15 w Lublinie Joanna Russa-Resztak, IX Liceum Ogólnokształcące w Lublinie po szkoleniu

Bardziej szczegółowo

Eksperyment ALICE i plazma kwarkowo-gluonowa

Eksperyment ALICE i plazma kwarkowo-gluonowa Eksperyment ALICE i plazma kwarkowo-gluonowa CERN i LHC Jezioro Genewskie Lotnisko w Genewie tunel LHC (długość 27 km, ok.100m pod powierzchnią ziemi) CERN/Meyrin Gdzie to jest? ok. 100m Tu!!! LHC w schematycznym

Bardziej szczegółowo

Theory Polish (Poland)

Theory Polish (Poland) Q3-1 Wielki Zderzacz Hadronów (10 points) Przeczytaj Ogólne instrukcje znajdujące się w osobnej kopercie zanim zaczniesz rozwiązywać to zadanie. W tym zadaniu będą rozpatrywane zagadnienia fizyczne zachodzące

Bardziej szczegółowo

Wyzwania Technologiczne Wielkiego Zderzacza Cząstek (LHC( LHC) w CERN w Genewie Jan Kulka

Wyzwania Technologiczne Wielkiego Zderzacza Cząstek (LHC( LHC) w CERN w Genewie Jan Kulka Wyzwania Technologiczne Wielkiego Zderzacza Cząstek (LHC( LHC) w CERN w Genewie Jan Kulka 13-04 04-2010 - Po co nam Wielki Zderzacz Hadronów? - Zespół akceleratorów wokół LHC - Podstawowe systemy LHC -

Bardziej szczegółowo

Wybrane zagadnienia fizyki jądrowej i cząstek elementarnych. Seweryn Kowalski

Wybrane zagadnienia fizyki jądrowej i cząstek elementarnych. Seweryn Kowalski Wybrane zagadnienia fizyki jądrowej i cząstek elementarnych Seweryn Kowalski Listopad 2007 Akceleratory Co to jest akcelerator Każde urządzenie zdolne do przyspieszania cząstek, jonów naładowanych do wysokich

Bardziej szczegółowo

W jaki sposób dokonujemy odkryć w fizyce cząstek elementarnych? Maciej Trzebiński

W jaki sposób dokonujemy odkryć w fizyce cząstek elementarnych? Maciej Trzebiński W jaki sposób dokonujemy odkryć w fizyce cząstek elementarnych? Maciej Trzebiński Instytut Fizyki Jądrowej im. Henryka Niewodniczańskiego Polskiej Akademii Nauk Gimli Glider Boeing 767-233 lot: Air Canada

Bardziej szczegółowo

Akceleratory Cząstek

Akceleratory Cząstek M. Trzebiński Akceleratory cząstek 1/30 Akceleratory Cząstek Maciej Trzebiński Instytut Fizyki Jądrowej Polskiej Akademii Nauki Praktyki studenckie na LHC IFJ PAN, 23 sierpnia 2016 Obserwacje w makroświecie

Bardziej szczegółowo

Jak fizycy przyśpieszają cząstki?

Jak fizycy przyśpieszają cząstki? Jak fizycy przyśpieszają cząstki? Mariusz Sapiński (mariusz.sapinski@cern.ch) CERN, Departament Wiązek 10 października 2011 Definicja Akcelerator cząstek: urządzenie produkujące wiązkę cząstek (jonów lub

Bardziej szczegółowo

Witamy w CERNie. Bolesław Pietrzyk LAPP Annecy (F) Wykład przygotowany przez polskich fizyków w CERNie.

Witamy w CERNie. Bolesław Pietrzyk LAPP Annecy (F) Wykład przygotowany przez polskich fizyków w CERNie. Witamy w CERNie Bolesław Pietrzyk LAPP Annecy (F) Wykład przygotowany przez polskich fizyków w CERNie bolek.pietrzyk@cern.ch 4 lipca 2012 Joe Incandela (CMS) Fabiola Gianotti (ATLAS) Première rencontre

Bardziej szczegółowo

Udział naukowców z Politechniki Krakowskiej w programie Wielkiego Zderzacza Hadronów (LHC) w CERNie to już 18 lat!

Udział naukowców z Politechniki Krakowskiej w programie Wielkiego Zderzacza Hadronów (LHC) w CERNie to już 18 lat! Udział naukowców z Politechniki Krakowskiej w programie Wielkiego Zderzacza Hadronów (LHC) w CERNie to już 18 lat! Błażej Skoczeń 1 Jednym z najbardziej prestiżowych ośrodków naukowych w Europie i na Świecie

Bardziej szczegółowo

Systemy ekstrakcji energii magnetycznej z nadprzewodzących obwodów LHC

Systemy ekstrakcji energii magnetycznej z nadprzewodzących obwodów LHC Stosowane metody ochrony przed skutkami utraty nadprzewodnictwa (Quench Protection System): 1. Diody półprzedownikowe bocznikujące główne magnesy LHC 2. Grzejniki propagujące quench na całą cewkę elektromagnesów

Bardziej szczegółowo

Wstęp do fizyki akceleratorów

Wstęp do fizyki akceleratorów Wstęp do fizyki akceleratorów Mariusz Sapiński (mariusz.sapinski@cern.ch) CERN, Departament Wiązek 3 września 2013 Definicja Akcelerator cząstek: urządzenie produkujące wiązkę cząstek (jonów lub cząstek

Bardziej szczegółowo

Elementy fizyki czastek elementarnych

Elementy fizyki czastek elementarnych Źródła czastek Elementy fizyki czastek elementarnych Wykład II Naturalne źródła czastek Źródła promieniotwórcze Promieniowanie kosmiczne Akceleratory czastek Akceleratory elektrostatyczne, liniowe i kołowe

Bardziej szczegółowo

Wstęp do Akceleratorów wykład dla nauczycieli. Mariusz Sapiński CERN, Departament Wiązek 12 kwietnia 2010

Wstęp do Akceleratorów wykład dla nauczycieli. Mariusz Sapiński CERN, Departament Wiązek 12 kwietnia 2010 Wstęp do Akceleratorów wykład dla nauczycieli Mariusz Sapiński CERN, Departament Wiązek 12 kwietnia 2010 Definicja Akcelerator cząstek: urządzenie produkujące wiązkę cząstek (jonów lub cząstek subatomowych)

Bardziej szczegółowo

Wstęp do Akceleratorów. Mariusz Sapiński CERN BE/BI 24 listopada 2009

Wstęp do Akceleratorów. Mariusz Sapiński CERN BE/BI 24 listopada 2009 Wstęp do Akceleratorów Mariusz Sapiński CERN BE/BI 24 listopada 2009 Definicja Akcelerator cząstek (wg. Encyclopedia Brittanica): każde urządzenie produkujące wiązkę szybkich, naładowanych cząstek (jonów

Bardziej szczegółowo

Techniczne aspekty zderzacza LHC

Techniczne aspekty zderzacza LHC Techniczne aspekty zderzacza LHC Jan Kulka Wydział Fizyki i Informatyki Stosowanej, Akademia Górniczo-Hutnicza, Kraków Technical merit of Large Hadron Collider Abstract: New accelerator LHC is commonly

Bardziej szczegółowo

Specyficzne własności helu w temperaturach kriogenicznych

Specyficzne własności helu w temperaturach kriogenicznych POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY Specyficzne własności helu w temperaturach kriogenicznych Opracowała: Joanna Pałdyna W ramach przedmiotu: Techniki niskotemperaturowe w medycynie Kierunek studiów:

Bardziej szczegółowo

CERN pierwsze globalne laboratorium. Andrzej SIEMKO CERN, Departament Technologii Akceleratorów

CERN pierwsze globalne laboratorium. Andrzej SIEMKO CERN, Departament Technologii Akceleratorów CERN pierwsze globalne laboratorium Andrzej SIEMKO CERN, Departament Technologii Akceleratorów Plan wykładu CERN trochę historii Kto pracuje w CERN Misja i zadania CERN Kompleks akceleratorów w CERN Jakie

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA NADPRZEWODNICTWO I EFEKT MEISSNERA

POLITECHNIKA GDAŃSKA NADPRZEWODNICTWO I EFEKT MEISSNERA POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA ENERGETYKI I APARATURY PRZEMYSŁOWEJ NADPRZEWODNICTWO I EFEKT MEISSNERA Katarzyna Mazur Inżynieria Mechaniczno-Medyczna Sem. 9 1. Przypomnienie istotnych

Bardziej szczegółowo

Wstęp do Akceleratorów wykład dla uczniów. Mariusz Sapiński CERN, Departament Instrumentacji Wiązki 22 marca 2010

Wstęp do Akceleratorów wykład dla uczniów. Mariusz Sapiński CERN, Departament Instrumentacji Wiązki 22 marca 2010 Wstęp do Akceleratorów wykład dla uczniów Mariusz Sapiński CERN, Departament Instrumentacji Wiązki 22 marca 2010 Definicja Akcelerator cząstek: urządzenie produkujące wiązkę cząstek (jonów lub cząstek

Bardziej szczegółowo

Zamiast przewodnika z miedzi o bardzo dużych rozmiarach możemy zastosowad niewielki nadprzewodnik niobowo-tytanowy

Zamiast przewodnika z miedzi o bardzo dużych rozmiarach możemy zastosowad niewielki nadprzewodnik niobowo-tytanowy Nadprzewodniki Nadprzewodnictwo Nadprzewodnictwo stan materiału polegający na zerowej rezystancji, jest osiągany w niektórych materiałach w niskiej temperaturze. Nadprzewodnictwo zostało wykryte w 1911

Bardziej szczegółowo

Źródła czastek. Wszechświat Czastek Elementarnych. Wykład 7. prof. dr hab. Aleksander Filip Żarnecki

Źródła czastek. Wszechświat Czastek Elementarnych. Wykład 7. prof. dr hab. Aleksander Filip Żarnecki Źródła czastek prof. dr hab. Aleksander Filip Żarnecki Wszechświat Czastek Elementarnych Wykład 7 Wprowadzenie Naturalne źródła czastek Źródła promieniotwórcze, promieniowanie kosmiczne Akceleratory czastek

Bardziej szczegółowo

Fizyka cząstek elementarnych. Tadeusz Lesiak

Fizyka cząstek elementarnych. Tadeusz Lesiak Fizyka cząstek elementarnych Tadeusz Lesiak 1 WYKŁAD IV Akceleratory T.Lesiak Fizyka cząstek elementarnych 2 Cykl pracy eksperymentu fizyki cząstek elementarnych AKCELERATOR DETEKTOR SUROWE DANE SYMULACJE

Bardziej szczegółowo

Poszukiwany: bozon Higgsa

Poszukiwany: bozon Higgsa Poszukiwany: bozon Higgsa Higgs widoczny w świetle kolajdera liniowego Fizyka Czastek i Oddziaływań Fundamentalnych: TESLA & ZEUS Poszukiwane: czastki sypersymetryczne (SUSY) Fizyka Czastek i Oddziaływań

Bardziej szczegółowo

Nadprzewodnictwo i efekt Meissnera oraz ich wykorzystanie.

Nadprzewodnictwo i efekt Meissnera oraz ich wykorzystanie. Nadprzewodnictwo i efekt Meissnera oraz ich wykorzystanie. Aleksandra Galikowska IMM, sem.2, st.ii Spis treści 1. Wstęp, historia... 3 2. Nadprzewodnictwo... 4 3. Własności nadprzewodników... 5 3. Teoria

Bardziej szczegółowo

CERN pierwsze globalne laboratorium. Andrzej SIEMKO CERN, Departament Technologii Akceleratorów

CERN pierwsze globalne laboratorium. Andrzej SIEMKO CERN, Departament Technologii Akceleratorów CERN pierwsze globalne laboratorium Andrzej SIEMKO CERN, Departament Technologii Akceleratorów Plan wykładu CERN trochę historii Kto pracuje w CERN Misja i zadania CERN Kompleks akceleratorów w CERN Jakie

Bardziej szczegółowo

KRIOGENIKA HELOWA I NADPRZEWODNICTWO W DUŻYCH URZĄDZENIACH BADAWCZYCH OD NAUKI DO GOSPODARKI

KRIOGENIKA HELOWA I NADPRZEWODNICTWO W DUŻYCH URZĄDZENIACH BADAWCZYCH OD NAUKI DO GOSPODARKI KRIOGENIKA HELOWA I NADPRZEWODNICTWO W DUŻYCH URZĄDZENIACH BADAWCZYCH OD NAUKI DO GOSPODARKI Maciej CHOROWSKI Politechnika Wrocławska Wydział Mechaniczno-Energetyczny 10 lipca 2008 roku minęło 100 lat

Bardziej szczegółowo

Jak działają detektory. Julia Hoffman

Jak działają detektory. Julia Hoffman Jak działają detektory Julia Hoffman wielki Hadronowy zderzacz Wiązka to pociąg ok. 2800 wagonów - paczek protonowych Każdy wagon wiezie ok.100 mln protonów Energia chemiczna: 80 kg TNT lub 16 kg czekolady

Bardziej szczegółowo

Frialit -Degussit Ceramika tlenkowa Jednostka akceleratora cząstek

Frialit -Degussit Ceramika tlenkowa Jednostka akceleratora cząstek Frialit -Degussit Ceramika tlenkowa Jednostka akceleratora cząstek Zastosowanie: Akceleratory wysokiego napięcia Materiał: Tlenek glinu FRIALIT F99.7 Pierścienie miedziane L = 560 mm D = 350 mm Produkcja

Bardziej szczegółowo

Nadprzewodniki. W takich materiałach kiedy nastąpi przepływ prądu może on płynąć nawet bez przyłożonego napięcia przez długi czas! )Ba 2. Tl 0.2.

Nadprzewodniki. W takich materiałach kiedy nastąpi przepływ prądu może on płynąć nawet bez przyłożonego napięcia przez długi czas! )Ba 2. Tl 0.2. Nadprzewodniki Pewna klasa materiałów wykazuje prawie zerową oporność (R=0) poniżej pewnej temperatury zwanej temperaturą krytyczną T c Większość przewodników wykazuje nadprzewodnictwo dopiero w temperaturze

Bardziej szczegółowo

Kurs dla nauczycieli fizyki - Cząstki elementarne w CERN pod Genewą.

Kurs dla nauczycieli fizyki - Cząstki elementarne w CERN pod Genewą. Kurs dla nauczycieli fizyki - Cząstki elementarne w CERN pod Genewą. Europejska Organizacja Badań Jądrowych CERN (European Organization for Nuclear Research) pod Genewą i Centralny Ośrodek Doskonalenia

Bardziej szczegółowo

Czego już dowiedzieliśmy się dzięki Wielkiemu Zderzaczowi Hadronów LHC

Czego już dowiedzieliśmy się dzięki Wielkiemu Zderzaczowi Hadronów LHC Czego już dowiedzieliśmy się dzięki Wielkiemu Zderzaczowi Hadronów LHC Jan Królikowski Wydział Fizyki Uniwersytetu Warszawskiego i Współpraca Compact Muon Solenoid (CMS) przy LHC 1 20 krajów członkowskich

Bardziej szczegółowo

Techniki niskotemperaturowe w medycynie

Techniki niskotemperaturowe w medycynie Politechnika Gdańska Wydział Mechaniczny Katedra Energetyki i Aparatury Przemysłowej Zakład Termodynamiki, Chłodnictwa i Klimatyzacji Przedmiot: Techniki niskotemperaturowe w medycynie Temat: Zmiana własności

Bardziej szczegółowo

Promieniowanie kosmiczne składa się głównie z protonów, z niewielką. domieszką cięższych jąder. Przechodząc przez atmosferę cząstki

Promieniowanie kosmiczne składa się głównie z protonów, z niewielką. domieszką cięższych jąder. Przechodząc przez atmosferę cząstki Odkrycie hiperjąder Hiperjądra to struktury jądrowe w skład których, poza protonami I neutronami, wchodzą hiperony. Odkrycie hiperjąder miało miejsce w 1952 roku, 60 lat temu, w Warszawie. Wówczas nie

Bardziej szczegółowo

Akceleratory. Urządzenia do wytwarzania strumieni cząstek o znacznej energii kinetycznej

Akceleratory. Urządzenia do wytwarzania strumieni cząstek o znacznej energii kinetycznej Akceleratory Urządzenia do wytwarzania strumieni cząstek o znacznej energii kinetycznej Przegląd ważniejszych typów akceleratorów: akceleratory elektrostatyczne, akceleratory liniowe ze zmiennym polem

Bardziej szczegółowo

FRIALIT -DEGUSSIT ZAAWANSOWANA CERAMIKA IZOLATOR DO ŹRÓDŁA JONÓW

FRIALIT -DEGUSSIT ZAAWANSOWANA CERAMIKA IZOLATOR DO ŹRÓDŁA JONÓW FRIALIT -DEGUSSIT ZAAWANSOWANA CERAMIKA IZOLATOR DO ŹRÓDŁA JONÓW Zastosowanie: Źródło ciężkich jonów Materiał: Tlenek glinu FRIALIT F99,7 Pierścienie metalowe z NiFeCo (Kovar / 1.3981) Elementy wykonane

Bardziej szczegółowo

Wstęp do akceleratorów

Wstęp do akceleratorów Wstęp do akceleratorów Mariusz Sapinski BE/BI CERN/Czerwiec 2009 Spis treści Co to jest przyśpieszenie Po co przyśpieszać? Jak przyśpieszać? Jak przyśpiesza natura: mechanizm Fermiego Metody przyśpieszania

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY Techniki niskotemperaturowe w Inżynierii Mechaniczno Medycznej Zmiana własności ciał w temperaturach kriogenicznych Prowadzący: dr inż. Waldemar Targański Emilia

Bardziej szczegółowo

SCENARIUSZ LEKCJI FIZYKI Z WYKORZYSTANIEM FILMU PĘDZĄCE CZĄSTKI.

SCENARIUSZ LEKCJI FIZYKI Z WYKORZYSTANIEM FILMU PĘDZĄCE CZĄSTKI. SCENARIUSZ LEKCJI FIZYKI Z WYKORZYSTANIEM FILMU PĘDZĄCE CZĄSTKI. SPIS TREŚCI: I. Wprowadzenie. II. Części lekcji. 1. Część wstępna. 2. Część realizacji. 3. Część podsumowująca. III. Karty pracy. 1. Karta

Bardziej szczegółowo

POŻYTKI Z NISKICH TEMPERATUR czyli dlaczego na zimno widzimy więcej

POŻYTKI Z NISKICH TEMPERATUR czyli dlaczego na zimno widzimy więcej POŻYTKI Z NISKICH TEMPERATUR czyli dlaczego na zimno widzimy więcej Maciej CHOROWSKI POLITECHNIKA WROCŁAWSKA Wydział Mechaniczno-Energetyczny Zakład Kriogeniki i Technologii Gazowych O czym rozmawiamy

Bardziej szczegółowo

Andrzej SIEMKO CERN, Departament Technologii Akceleratorów

Andrzej SIEMKO CERN, Departament Technologii Akceleratorów CERN - mekka dla fizyków Andrzej SIEMKO CERN, Departament Technologii Akceleratorów Plan wykładu CERN w 7 punktach Czym jest CERN trochę historii Kto pracuje w CERN Polska w CERN Jak funkcjonuje CERN Misja

Bardziej szczegółowo

DLACZEGO BUDUJEMY AKCELERATORY?

DLACZEGO BUDUJEMY AKCELERATORY? FIZYKA WYSOKICH ENERGII W EDUKACJI SZKOLNEJ Puławy, 29.02.2008r. DLACZEGO BUDUJEMY AKCELERATORY? Dominika Domaciuk I. Wprowadzenie Na świecie jest 17390 akceleratorów! (2002r). Różne zastosowania I. Wprowadzenie

Bardziej szczegółowo

Fizyka cząstek elementarnych

Fizyka cząstek elementarnych Wykład III Metody doświadczalne fizyki cząstek elementarnych I Źródła cząstek elementarnych Elektrony, protony i neutrony tworzą otaczającą nas materię. Aby eksperymentować z elektronami wystarczy zjonizować

Bardziej szczegółowo

Pole magnetyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Pole magnetyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Pole magnetyczne Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Pole magnetyczne Pole magnetyczne jest nierozerwalnie związane z polem elektrycznym. W zależności

Bardziej szczegółowo

Wyznaczanie efektywności mionowego układu wyzwalania w CMS metodą Tag & Probe

Wyznaczanie efektywności mionowego układu wyzwalania w CMS metodą Tag & Probe Wyznaczanie efektywności mionowego układu wyzwalania w CMS metodą Tag & Probe Uniwersytet Warszawski - Wydział Fizyki opiekun: dr Artur Kalinowski 1 Plan prezentacji Eksperyment CMS Układ wyzwalania Metoda

Bardziej szczegółowo

WSTĘP DO FIZYKI JADRA ATOMOWEGOO Wykład 12. IV ROK FIZYKI - semestr zimowy Janusz Braziewicz - Zakład Fizyki Atomowej IF AŚ

WSTĘP DO FIZYKI JADRA ATOMOWEGOO Wykład 12. IV ROK FIZYKI - semestr zimowy Janusz Braziewicz - Zakład Fizyki Atomowej IF AŚ WSTĘP DO FIZYKI JADRA ATOMOWEGOO Wykład 12 IV ROK FIZYKI - semestr zimowy Janusz Braziewicz - Zakład Fizyki Atomowej IF AŚ 1 Metody przyspieszania cząstek - akceleratory cząstek Akcelerator urządzenie

Bardziej szczegółowo

Frialit -Degussit Ceramika tlenkowa Komora próżniowa

Frialit -Degussit Ceramika tlenkowa Komora próżniowa Frialit -Degussit Ceramika tlenkowa Komora próżniowa Zastosowanie: Zaginanie toru cząstki w akceleratorze Materiał: Tlenek glinu FRIALIT F99.7 L = 1350 mm D = 320 mm Produkcja Friatec Na całym świecie

Bardziej szczegółowo

Nadprzewodnictwo w materiałach konwencjonalnych i topologicznych

Nadprzewodnictwo w materiałach konwencjonalnych i topologicznych LTN - Lublin 29 XI 2018 r. Nadprzewodnictwo w materiałach konwencjonalnych i topologicznych Tadeusz Domański Uniwersytet M. Curie-Skłodowskiej LTN - Lublin 29 XI 2018 r. Nadprzewodnictwo w materiałach

Bardziej szczegółowo

Wykład monograficzny 0 1

Wykład monograficzny 0 1 Fizyka zderzeń relatywistycznych ciężkich jonów Wykład 0: LHC okno na Mikroświat Wykład 1: AA: Motywacja, cele fizyczne, akceleratory, eksperymenty Wykład 2: Plazma kwarkowo-gluonowa Wykład 3: Geometria

Bardziej szczegółowo

Grzegorz Wrochna Narodowe Centrum Badań Jądrowych Z czego składa się Wszechświat?

Grzegorz Wrochna Narodowe Centrum Badań Jądrowych  Z czego składa się Wszechświat? Narodowe Centrum Badań Jądrowych www.ncbj.gov.pl Z czego składa się Wszechświat? 1 Budowa materii ~ cała otaczająca nas materia składa się z atomów pierwiastek chemiczny = = zbiór jednakowych atomów Znamy

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA

POLITECHNIKA GDAŃSKA POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY,,ZMIANA WŁASNOŚCI CIAŁ W TEMPERATURACH KRIOGENICZNYCH Jakub Bazydło Inżynieria Mechaniczno-Medyczna Sem. II mgr GDAŃSK 2012/2013 1. KRIOGENIKA Kriogenika - Słowo

Bardziej szczegółowo

CERN - pierwsze globalne laboratorium. Magdalena Kowalska CERN, PH-Dept.

CERN - pierwsze globalne laboratorium. Magdalena Kowalska CERN, PH-Dept. CERN - pierwsze globalne laboratorium Magdalena Kowalska CERN, PH-Dept. Menu Co to jest właściwie CERN? Kilku CERN-owskich Noblistów Co badamy? Obecne przyspieszacze Przykłady eksperymentów: cząstki elementarne

Bardziej szczegółowo

Źródła czastek. Wszechświat Czastek Elementarnych. Wykład 4. prof. dr hab. Aleksander Filip Żarnecki

Źródła czastek. Wszechświat Czastek Elementarnych. Wykład 4. prof. dr hab. Aleksander Filip Żarnecki Źródła czastek prof. dr hab. Aleksander Filip Żarnecki Wszechświat Czastek Elementarnych Wykład 4 Wprowadzenie Naturalne źródła czastek Źródła promieniotwórcze, promieniowanie kosmiczne Akceleratory czastek

Bardziej szczegółowo

Reportaż ze szkolenia w CERN w Genewie, 11 17.04.2010 r.

Reportaż ze szkolenia w CERN w Genewie, 11 17.04.2010 r. Reportaż ze szkolenia w CERN w Genewie, 11 17.04.2010 r. Do CERN wyruszyliśmy z parkingu Instytutu Fizyki Uniwersytetu Śląskiego, który był organizatorem tego bardzo interesującego dla fizyków wyjazdu.

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

Ruch cząstek naładowanych w polach elektrycznym i magnetycznym. Równania ruchu cząstek i ich rozwiązania. Ireneusz Mańkowski

Ruch cząstek naładowanych w polach elektrycznym i magnetycznym. Równania ruchu cząstek i ich rozwiązania. Ireneusz Mańkowski Ruch cząstek naładowanych w polach elektrycznym i magnetycznym. Równania ruchu cząstek i ich rozwiązania. I LO im. Stefana Żeromskiego w Lęborku 2 kwietnia 2012 Ruch ładunku równolegle do linii pola Ruch

Bardziej szczegółowo

Zjawisko utraty stanu nadprzewodzącego w magnesach LHC i sposoby zapobiegania skutkom jego wystąpienia

Zjawisko utraty stanu nadprzewodzącego w magnesach LHC i sposoby zapobiegania skutkom jego wystąpienia Zjawisko utraty stanu nadprzewodzącego w magnesach LHC i sposoby zapobiegania skutkom jego wystąpienia Andrzej Skoczeń, AGH-WFiIS-KOiDC Nasza grupa Polska grupa z AGH pracująca w AT-MEL-PM: Adam Drózd

Bardziej szczegółowo

Źródła czastek. Wszechświat Czastek Elementarnych. Wykład 8. prof. dr hab. Aleksander Filip Żarnecki

Źródła czastek. Wszechświat Czastek Elementarnych. Wykład 8. prof. dr hab. Aleksander Filip Żarnecki Źródła czastek prof. dr hab. Aleksander Filip Żarnecki Wszechświat Czastek Elementarnych Wykład 8 Wprowadzenie Pole elektryczne i magnetyczne, jednostki Naturalne źródła czastek Źródła promieniotwórcze,

Bardziej szczegółowo

Jak działają detektory. Julia Hoffman# Southern Methodist University# Instytut Problemów Jądrowych

Jak działają detektory. Julia Hoffman# Southern Methodist University# Instytut Problemów Jądrowych Jak działają detektory Julia Hoffman# Southern Methodist University# Instytut Problemów Jądrowych LHC# Wiązka to pociąg ok. 2800 paczek protonowych Każda paczka składa się. z ok. 100 mln protonów 160km/h

Bardziej szczegółowo

Na tropach czastki Higgsa

Na tropach czastki Higgsa Na tropach czastki Higgsa Wykład inauguracyjny 2004/2005 A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Na tropach czastki Higgsa Wykład inauguracyjny 2004/2005

Bardziej szczegółowo

Źródła cząstek. Naturalne: Sztuczne. Promieniowanie kosmiczne Różne źródła neutrin. Akceleratory Reaktory. D. Kiełczewska wykład 2

Źródła cząstek. Naturalne: Sztuczne. Promieniowanie kosmiczne Różne źródła neutrin. Akceleratory Reaktory. D. Kiełczewska wykład 2 Źródła cząstek Naturalne: Promieniowanie kosmiczne Różne źródła neutrin Sztuczne Akceleratory Reaktory Promieniowanie kosmiczne Na początku XX wieku Theodore Wulf umieścił na szczycie wieży Eiffla detektory

Bardziej szczegółowo

JÜLICH ELECTRIC DIPOLE INVESTIGATIONS MEASUREMENT WITH STORAGE RING

JÜLICH ELECTRIC DIPOLE INVESTIGATIONS MEASUREMENT WITH STORAGE RING JÜLICH ELECTRIC DIPOLE INVESTIGATIONS MEASUREMENT WITH STORAGE RING testowe pomiary i demonstracja iż proponowana metoda pracuje są wykonywane na działającym akceleratorze COSY pierwszy pomiar z precyzją

Bardziej szczegółowo

O egzotycznych nuklidach i ich promieniotwórczości

O egzotycznych nuklidach i ich promieniotwórczości O egzotycznych nuklidach i ich promieniotwórczości Marek Pfützner Instytut Fizyki Doświadczalnej Uniwersytet Warszawski Tydzień Kultury w VIII LO im. Władysława IV, 13 XII 2005 Instytut Radowy w Paryżu

Bardziej szczegółowo

Źródła cząstek o wysokich energiach. Promieniowanie kosmiczne. Akceleratory. Ograniczenia na energię maksymalną. Parametry wiązek.

Źródła cząstek o wysokich energiach. Promieniowanie kosmiczne. Akceleratory. Ograniczenia na energię maksymalną. Parametry wiązek. Źródła cząstek o wysokich energiach II Promieniowanie kosmiczne. Akceleratory. Ograniczenia na energię maksymalną. Parametry wiązek. Świetlność LHC 1 Źródła cząstek o wysokich energiach I. PROMIENOWANIE

Bardziej szczegółowo

CERN. Często zadawane pytania. Przewodnik po LHC LHC SPS CMS. LHCb ALICE ATLAS CNGS BOOSTER ISOLDE. n-tof LEIR. neutrinos. Gran Sasso.

CERN. Często zadawane pytania. Przewodnik po LHC LHC SPS CMS. LHCb ALICE ATLAS CNGS BOOSTER ISOLDE. n-tof LEIR. neutrinos. Gran Sasso. CERN Często zadawane pytania Przewodnik po LHC TI2 ALICE LHC TT10 TT60 CMS ATLAS North Area SPS TT40 TI8 TT41 LHCb CNGS neutrinos Gran Sasso TT2 n-tof neutrons AD p p LINAC 2 LINAC 3 Ions BOOSTER ISOLDE

Bardziej szczegółowo

Nadprzewodnictwo i efekt Meissnera oraz ich wykorzystanie. Anna Rutkowska IMM sem. 2 mgr

Nadprzewodnictwo i efekt Meissnera oraz ich wykorzystanie. Anna Rutkowska IMM sem. 2 mgr Nadprzewodnictwo i efekt Meissnera oraz ich wykorzystanie Anna Rutkowska IMM sem. 2 mgr Gdańsk, 2012 Spis treści: 1. Nadprzewodnictwo...3 2. Efekt Meissnera...5 2.1 Lewitacja...5 3. Zastosowanie...6 3.1

Bardziej szczegółowo

LVIII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA

LVIII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA LVIII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA (Za każde z zadań można otrzymać maks. 20 pkt.) ZADANIE 1 W Wielkim Zderzaczu Hadronów (LHC) w CERN pod Genewą protony o energii E = 7 10 12 ev będą krążyć w

Bardziej szczegółowo

Akceleratory (Å roda, 16 marzec 2005) - Dodał wtorek

Akceleratory (Å roda, 16 marzec 2005) - Dodał wtorek Akceleratory (Å roda, 16 marzec 2005) - Dodał wtorek Definicja: Urządzenie do przyspieszania cząstek naładowanych, tj. zwiększania ich energii. Akceleratory można sklasyfikować ze względu na: kształt toru

Bardziej szczegółowo

Perspektywy fizyki czastek elementarnych

Perspektywy fizyki czastek elementarnych Perspektywy fizyki czastek elementarnych Wykład XIII Nowe projekty akceleratorowe: CLIC ( VLHC ( Photon Collider zderzenia ) Elementy fizyki czastek elementarnych ) fabryki neutrin Astro-cz astki?!...

Bardziej szczegółowo

Akceleratory. Instytut Fizyki Jądrowej PAN 1

Akceleratory. Instytut Fizyki Jądrowej PAN 1 Akceleratory fizyka cząstek elementarnych fizyka wysokich energii ruch cząstki w polu magnetycznym i elektrycznym akceleratory elektrostatyczne akcelaratory liniowe akcelaratory kołowe (cykliczne): - cyklotron

Bardziej szczegółowo

W poszukiwaniu Boskiej cząstki.

W poszukiwaniu Boskiej cząstki. W poszukiwaniu Boskiej cząstki. W dniach 21 stycznia 28 stycznia 2012 roku odbyły się Warsztaty CERN III w Genewie. Grupa 45 uczestników programu: Odkrywad nieznane-tworzyd nowe, program rozwijania zainteresowao

Bardziej szczegółowo

LHC klucz do Mikroświata

LHC klucz do Mikroświata LHC klucz do Mikroświata Barbara Wosiek Dzień Otwarty, IFJ PAN 26.09.2008 1 LHC Large Hadron Collider Wielki Zderzacz Hadronów Gigantyczny akcelerator cząstek w Europejskim Ośrodku Fizyki Cząstek CERN

Bardziej szczegółowo

Fizyka do przodu w zderzeniach proton-proton

Fizyka do przodu w zderzeniach proton-proton Fizyka do przodu w zderzeniach proton-proton Leszek Adamczyk (KOiDC WFiIS AGH) Seminarium WFiIS March 9, 2018 Fizyka do przodu w oddziaływaniach proton-proton Fizyka do przodu: procesy dla których obszar

Bardziej szczegółowo

Sławomir Wronka, r

Sławomir Wronka, r Introduction to accelerators Wstęp do fizyki akceleratorów Sławomir Wronka, 01.04.09r Pojęcia podstawowe Prędkość światła Energia Pęd c = 2.99792458 10 E = mc 2 = m γ c p = mv = m0γ β c 0 2 8 msec v 1

Bardziej szczegółowo

Jan Godlewski CERN PH-DT-DI

Jan Godlewski CERN PH-DT-DI Jan Godlewski CERN PH-DT-DI Wprowadzenie Skąd się tu wziąłem? 1973 praca dyplomowa na Wydziale Mechanicznym, specjalność Chłodnictwo i Klimatyzacja 1973 1988 Centralny Osrodek Chłodnictwa, Zakład Badań

Bardziej szczegółowo

Wszystko, co kiedykolwiek chcieliście wiedzieć o CERNie i o fizyce cząstek

Wszystko, co kiedykolwiek chcieliście wiedzieć o CERNie i o fizyce cząstek Wszystko, co kiedykolwiek chcieliście wiedzieć o CERNie i o fizyce cząstek i jeszcze kilka, których nie chcieliście wiedzieć, ale i tak się dowiecie mgr inż. Małgorzata Janik - majanik@cern.ch mgr inż.

Bardziej szczegółowo

Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved.

Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved. Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Pierwiastki 1 1 H 3 Li 11

Bardziej szczegółowo

Wszechświat czastek elementarnych

Wszechświat czastek elementarnych Wykład 2: prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 2: Detekcja Czastek 27 lutego 2008 p.1/36 Wprowadzenie Istota obserwacji w świecie czastek

Bardziej szczegółowo

Wielki Wybuch czyli podróż do początku wszechświata. Czy może się to zdarzyć na Ziemi?

Wielki Wybuch czyli podróż do początku wszechświata. Czy może się to zdarzyć na Ziemi? Wielki Wybuch czyli podróż do początku wszechświata Czy może się to zdarzyć na Ziemi? Świat pod lupą materia: 10-4 m kryształ: 10-9 m ρ=2 3 g/cm 3 atom: 10-10 m jądro: 10-14 m nukleon: 10-15 m (1fm) ρ=10

Bardziej szczegółowo

Źródła cząstek. Naturalne: Sztuczne. Promieniowanie kosmiczne Różne źródła neutrin. Akceleratory Reaktory. D. Kiełczewska wykład 2 1

Źródła cząstek. Naturalne: Sztuczne. Promieniowanie kosmiczne Różne źródła neutrin. Akceleratory Reaktory. D. Kiełczewska wykład 2 1 Źródła cząstek Naturalne: Promieniowanie kosmiczne Różne źródła neutrin Sztuczne Akceleratory Reaktory D. Kiełczewska wykład 2 1 Promieniowanie kosmiczne Na początku XX wieku Theodore Wulf umieścił na

Bardziej szczegółowo

Metody i narzędzia. Tydzień 2

Metody i narzędzia. Tydzień 2 Metody i narzędzia Znaczną większość informacji o obiektach subatomowych uzyskujemy zasadniczo dzięki: 1) zderzeniom (reakcji) między nimi, w wyniku których zachodzi rozproszenie (zmiana kierunku) lub

Bardziej szczegółowo

PODSTAWY FIZYKI - WYKŁAD 7 PRZEWODNIKI OPÓR OBWODY Z PRADEM STAŁYM. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski

PODSTAWY FIZYKI - WYKŁAD 7 PRZEWODNIKI OPÓR OBWODY Z PRADEM STAŁYM. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski PODSTAWY FIZYKI - WYKŁAD 7 PRZEWODNIKI PRAD OPÓR OBWODY Z PRADEM STAŁYM Piotr Nieżurawski pniez@fuw.edu.pl Wydział Fizyki Uniwersytet Warszawski http://www.fuw.edu.pl/~pniez/bioinformatyka/ 1 Najważniejsze

Bardziej szczegółowo

SPECYFICZNE WŁASNOŚCI HELU W TEMPERATURACH KRIOGENICZNYCH

SPECYFICZNE WŁASNOŚCI HELU W TEMPERATURACH KRIOGENICZNYCH Politechnika Gdańska Wydział Mechaniczny Inżynieria Mechaniczno Medyczna Techniki niskotemperaturowe w medycynie SPECYFICZNE WŁASNOŚCI HELU W TEMPERATURACH KRIOGENICZNYCH Opracowała: Eliza Bisewska Spis

Bardziej szczegółowo

Warsztaty CERN II Genewa

Warsztaty CERN II Genewa Warsztaty CERN II Genewa W dniach 12 lutego 19 lutego 2011 roku odbyły się Warsztaty CERN w Genewie. Grupa 43 uczestników programu: Odkrywad nieznane-tworzyd nowe, program rozwijania zainteresowao fizyką,

Bardziej szczegółowo

Witamy w CERN. 2014-02-24 Marek Kowalski

Witamy w CERN. 2014-02-24 Marek Kowalski Witamy w CERN Co to jest CERN? CERN European Organization for Nuclear Research oryg. fr Conseil Europeén pour la Recherche Nucléaire Słowo nuclear (Jadrowy) czysto historyczne. W czasie, gdy zakładano

Bardziej szczegółowo

Skad się bierze masa Festiwal Nauki, Wydział Fizyki U.W. 25 września 2005 A.F.Żarnecki p.1/39

Skad się bierze masa Festiwal Nauki, Wydział Fizyki U.W. 25 września 2005 A.F.Żarnecki p.1/39 Skad się bierze masa Festiwal Nauki Wydział Fizyki U.W. 25 września 2005 dr hab. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Skad się bierze masa Festiwal Nauki,

Bardziej szczegółowo

Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os.

Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os. Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Copyright 2000 by Harcourt,

Bardziej szczegółowo

CERN - pierwsze globalne laboratorium. Magdalena Kowalska CERN, PH-Dept.

CERN - pierwsze globalne laboratorium. Magdalena Kowalska CERN, PH-Dept. CERN - pierwsze globalne laboratorium Magdalena Kowalska CERN, PH-Dept. Menu Co to jest właściwie CERN? Trochę historii Kilku CERN-owskich Noblistów Co badamy? Obecne przyspieszacze Przykłady eksperymentów:

Bardziej szczegółowo

Nauka i technologia dwa spojrzenia na CERN

Nauka i technologia dwa spojrzenia na CERN Nauka i technologia dwa spojrzenia na CERN Politechnika Krakowska, wykład inauguracyjny, 3.10.2014 Agnieszka Zalewska, IFJ PAN Przewodnicząca Rady CERN-u CERN utworzony został w 1954: przez 12 państw europejskich

Bardziej szczegółowo

Fragmentacja pocisków

Fragmentacja pocisków Wybrane zagadnienia spektroskopii jądrowej 2004 Fragmentacja pocisków Marek Pfützner 823 18 96 pfutzner@mimuw.edu.pl http://zsj.fuw.edu.pl/pfutzner Plan wykładu 1. Wiązki radioaktywne i główne metody ich

Bardziej szczegółowo

Podstawy fizyki kwantowej i budowy materii

Podstawy fizyki kwantowej i budowy materii Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 14 23 stycznia 2017 A.F.Żarnecki Podstawy

Bardziej szczegółowo

Sylwa czyli silva rerum na temat fizyki cz astek elementarnych

Sylwa czyli silva rerum na temat fizyki cz astek elementarnych Sylwa czyli silva rerum na temat fizyki cz astek elementarnych Barbara Badełek Uniwersytet Warszawski i Uniwersytet Uppsalski Nauczyciele fizyki w CERN 20 26 maja 2007 B. Badełek (Warsaw and Uppsala) Silva

Bardziej szczegółowo