Stochastyczne równania różniczkowe, model Blacka-Scholesa

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Stochastyczne równania różniczkowe, model Blacka-Scholesa"

Transkrypt

1 Stochastyczne równania różniczkowe, model Blacka-Scholesa Marcin Orchel Spis treści 1 Wstęp Błądzenie losowe Proces Wienera Stochastyczne równania różniczkowe Opcje Wyprowadzenie wzoru Blacka-Scholesa Zadania 7.1 Zadanie obowiązkowe Zadanie na Zadanie na Wstęp 1.1 Błądzenie losowe Błądzenie losowe jest matematycznym sformalizowaniem trajektorii powstałej przez wykonywanie kolejnych losowych kroków. Jednowymiarowe błądzenie losowe. Niech będzie dana prosta z liczbami naturalnymi. Błądzenie losowe zaczyna się w liczbie S 0 = 0. W każdym kroku przesuwamy się o ±1 z jednakowym prawdopodobieństwem. Formalnie mamy dane zmienne losowe Z 1, Z,...,, gdzie każda zmienna losowa przyjmuje z jednakowym prawd. wartości -1 i 1. Jeśli: S n := Z j j=1 to szereg {S n } jest nazywany prostym błądzeniem losowym na Z, określa on położenie punktu po n krokach. Błądzenie losowe dla dużych liczby kroków jest opisywane przez centralne twierdzenie graniczne, to znaczy dla dużej liczby kroków pozycja jest zgodna z rozkładem normalnym z wariancją: σ = t δt ɛ 1

2 gdzie t to czas który minął od startu, ɛ długość kroku, δt czas pomiędzy dwoma następującymi po sobie krokami. Zmniejszając krok w błądzeniu losowym do bardzo małego dostajemy aproksymację procesu Wienera. Przejście z modelu dyskretnego do ciągłego. To znaczy, jeśli ω Nt) oznacza błądzenie losowe w czasie t podzielone przez N, a N t) oznacza ile kroków możemy wykonać w czasie t, to przy N dążącym do nieskończoności rozkłady ω N dążą do rozkładu ω t, oznaczającego proces Wienera. 1. Proces Wienera Proces Wienera to model matematyczny ruchów Browna. Jest przykładem procesu Gaussowskiego. Proces stochastyczny {ω t } t 0 nazywamy procesem Wienera, gdy spełnia następujące warunki: ω 0 = 0 ω ma przyrosty niezależne, co oznacza, że jeśli 0 s 1 t 1 s t, wtedy ω t1 ω s1 oraz ω t ω s są niezależnymi zmiennymi losowymi dla każdego 0 s t ω t ω s = N 0, t s) gdzie N µ, σ ) to rozkład normalny z oczekiwaną wartością µ i wariancją σ. trajektorie procesu ω są ciągłe prawie na pewno, z prawdopodobieństwem 1 Jest to model ruchów Browna. Rozpatrzmy cząstkę poruszającą się w jednym wymiarze. W każdej jednostce czasu cząstka przemieszcza się o jednostkę odległości w prawo lub lewo z prawd. 1/. Kierunek poruszania nie zależy od poprzedniego przebiegu ruchu. Zmniejszając odpowiednio jednostkę długości i przyspieszając czas uzyskujemy obraz cząstki wykonującej ruch chaotyczny. Proces Wienera jest procesem granicznym dla błądzenia losowego. Wartość średnia jest dana punktem startowym: E [ω t)] = ω 0 = ω t 0 ) = 0 a wariancja: a kowariancja: [ E ω t) ω 0 ) ] = t t 0 = t E [ω t) ω s)] = min t, s)

3 1.3 Stochastyczne równania różniczkowe Stochastyczne równanie różniczkowe to równanie w którym jeden lub więcej ze składników równania jest procesem stochastycznym, co implikuje rozwiązanie będące procesem stochastycznym. Załóżmy, że x t) jest procesem stochastycznym, który spełnia następujące stochastyczne równanie różniczkowe: dx t) = a x t), t) dt + b x t), t) dω t) gdzie ω t) jest procesem Wienera. Przykładowe ścieżki ω t) są ciągłe, ale nie są różniczkowalne. Równanie po zmianie oznaczeń możemy zapisać jako: dx t) = µ x t), t) dt + σ x t), t) dω t) i interpretować jako w bardzo małym przedziale czasowym o długości δ proces stochastyczny x t) zmienia swoją wartość o wartość pochodzącą z rozkładu normalnego z średnią µ i wariancją σ. Wartość µ nazywamy współczynnikiem dryftu, a wartość σ współczynnikiem dyfuzji. Proces stochastyczny x t) jest zwany procesem dyfuzji. Przykładem równania stochastycznego jest równanie dla geometrycznego ruchu Browna. Geometryczny ruch Browna to proces stochastyczny, w którym logarytm wielkości losowej podąża ruchami Browna, inaczej mówiąc jest procesem Wienera. Używany jest do opisu cen akcji. Proces stochastyczny jest geometrycznym ruchem Browna jeśli spełnia równanie: dx t) = µx t) dt + σx t) ω t) gdzie µ i σ są stałymi. Rozwiązaniem tego równania dla wartości początkowej x 0 jest: ) ) x t) = x 0 exp µ σ t + σω t) gdzie x t) ma rozkład logarytmicznie normalny z wartością oczekiwaną E x t)) = x 0 e µt i wariancją ) V ar x t)) = x 0e µt e σt 1 Rozwiązanie równania stochastycznego. Jeśli zdefiniujemy α x, t) = a x, t) 1 b x, t) b x, t) x to rozwiązanie równania stochastycznego jest postaci: x t) = x t 0 ) + α [x s), s] ds + t 0 b [x s), s] dω s) S t 0 gdzie druga całka jest stochastyczną całką Stratonovicha. 3

4 Załóżmy, że ω t) jest procesem Wienera i G t, ω t)) jest dowolnie wybraną funkcją, wtedy całka stochastyczna I = t 0 G s, ω s)) dω s) jest zdefiniowana jako suma szeregu. Podzielmy przedział [t 0, t] na n podprzedziałów: t 0 t 1... t n 1 t n = t i wybierzmy punkty {τ i }, które leżą w każdym podprzedziale: t i 1 τ i t i Całka stochastyczna jest zdefiniowana jako granica sum częściowych: gdzie Rozważmy przypadek szczególny, gdy I = lim n S n S n = G τ i, ω τ i )) [ω t i ) ω t i 1 )] G t) = ω t) Wtedy wartość oczekiwana dla S n wynosi: [ n ] E [S n ] = E ω τ i ) [ω t i ) ω t i 1 )] Jeśli wybierzemy punkty τ i takie, że: gdzie 0 < α < 1, wtedy: = [min τ i, t i ) min τ i, t i 1 )] = τ i t i 1 ) τ i = αt i + 1 α) t i 1 E [S n ] = t i t i 1 ) α = t t 0 ) α Wartość sumy częściowej S n zależy od α. Są wybierane konkretne punkty {τ i }. 4

5 całka stochastyczna Ito. Wybieramy τ i = t i 1, a zatem α = 0 i otrzymujemy: { t n } G s, ω s)) dω s) = ms lim n G t i 1, ω t i 1 )) [ω t i ) ω t i 1 )] I t 0 Całka stochastyczna Stratonovicha. Wybieramy czyli α = 0, 5 i otrzymujemy: S t 0 G s, ω s)) dω s) = ms lim n τ i = t i + t i 1 ) / { n G t i 1, ω ti + t i 1 Obliczmy obydwa rodzaje całek dla przypadku gdy G t) = ω t): 1.4 Opcje ω s) dω s) = ω t) ω t 0 ) t t 0 ) I t 0 ω s) dω s) = ω t) ω t 0 ) S t 0 )) } [ω t i ) ω t i 1 )] Opcje to instrumenty finansowe dające możliwość kupna lub sprzedaży instrumentu bazowego w określonym dniu w przyszłości w dniu wygaśnięcia opcji) po określonej cenie zwanej ceną wykonania. Różne rodzaje opcji: long call: pozycja długa na instrumencie bazowym, trader płaci premię opcyjną za możliwość kupna instrumentu bazowego w przyszłości long put: pozycja długa na instrumencie bazowym, trader dostaje premię opcyjną i jest zobowiązany kupić instrument bazowy w przyszłości short call: pozycja krótka na instrumencie bazowym, trader płaci premię opcyjną za możliwość sprzedaży instrumentu bazowego w przyszłości short put: pozycja krótka na instrumencie bazowym, trader dostaje premię opcyjną jest zobowiązany sprzedać instrument bazowy w przyszłości Wyróżniamy opcje europejskie i amerykańskie, europejskie gdzie wykonanie opcji jest możliwe tylko w dniu wygasania i amerykańskie gdzie wykonanie opcji jest możliwe w każdym dniu. Przykład: cena akcji spółki A wynosi 45$. Trader1 zajmuje pozycje długą na opcji call z ceną wykonania 50$. Płaci premię opcyjną traderowi w wysokości 5$. Liczba pozycji otwartych 100. Jeśli cena akcji nie pójdzie w górę to trader1 traci 500$, opcja 5

6 nie zostaje wykonana. A jeśli cena akcji wzrasta do 60$, trader1 wykonuje opcje kupując 100 akcji za 5000$ i sprzedaje je na giełdzie za 6000$. Ponieważ zapłacił jeszcze 500$ premii to zarobił w sumie 500$. Trader stracił 500$, ponieważ nie miał on wcześniej tych akcji, więc kupił je na rynku po 6000$, sprzedał je za 5000$ i miał jeszcze z premii 500$, a więc stracił 500$. Jeśli natomiast cena akcji spadła do 40$, to trader1 nie będzie kupował akcji od tradera po 5000$, ponieważ na rynku może kupić je za 4000$. A więc trader1 stracił premie 500$, a trader zyskał premie 500$. Jesli cena jest duzo wyzsza od ceny wykonania to taka opcja ma pewna wartosc Analizując opcje long call amerykańską, wydaje się jasne, że jeśli cena jest dużo wyższa niż cena wykonania to opcja zostanie wykonana. Aktualna cena opcji będzie w przybliżeniu równa cenie akcji pomniejszonej o cenę obligacji dyskontowej, która wygasa w tym samym dniu co opcja, i ma wartość nominalną równą cenie wykonania. Z drugiej strony jeśli cena opcji jest dużo mniejsza niż cena instrumentu bazowego opcja wygaśnie najprawdopodobniej bez wykonania, jej wartość jest bliska zeru. Jeśli data wygaśnięcia jest odległa w czasie, to cena opcji europejskiej będzie w przybliżeniu równa cene akcji. Z drugiej strony kiedy data wygaśnięcia jest bliska w czasie wartość opcji będzie równa wartości akcji pomniejszonej o cenę wykonania lub zero kiedy cena akcji jest mniejsza od ceny wykonania. Normalnie cena opcji zmniejsza się, jak jest coraz bliżej do daty wygaśnięcia, przy brak zmian w cenie akcji. 1.5 Wyprowadzenie wzoru Blacka-Scholesa Niech S będzie ceną akcji. Browna, to znaczy: Zakładamy, że ceny akcji spełniają geometryczny ruch ds = µsdt + σsdω gdzie t jest czasem, µ jest stałą i σ stałą określającą zmienność cen akcji. Niech V s, t) będzie ceną opcji zależną od czasu i ceny akcji instrumentu bazowego. Stosujemy lemat Ito postaci, dla każdej funkcji f t, x) dwóch zmiennych t i x zachodzi: f df t, X t ) = t + µ f t x + σ t Wykorzystując ten lemat dla funkcji V : dv = t ) f f x dt + σ t x db t + µs S + 1 ) σ S V S dt + σs S dω Należy skonstruować portfel zawierający jedną opcję V i akcji. Wartość portfela jest dana wzorem: P = V + S Po zróżniczkowaniu: dp = dv + ds 6

7 Stosując lemat Ito do zastąpienia dv i zastępując ds zgodnie z podanym wcześniej wzorem otrzymujemy: dp = + µs t S + 1 ) σ S V S + µ S dt + σs ) S + σ S dω Człon losowy zmiany wartości portfela może zostać usunięty przez wybór Po zastąpieniu otrzymujemy: dp = = S t + 1 ) σ S V S dt Aby nie było możliwości arbitrażu, a więc możliwości zarobku bez ryzyka, musi zachodzić: dp = rp dt gdzie r jest stałą oznaczającą stopę procentową bez ryzyka. Podstawiając powyższe oraz wartość portfela otrzymujemy: t + 1 σ S V + rs S S rv = 0 Powyższe równanie może być zapisane w postaci równania przewodnictwa cieplnego dla funkcji u x, t): u t = u α x Zadania.1 Zadanie obowiązkowe Napisać program w Javie, który generuje 100 możliwych przewidywań dla parametrów S 0 = 1, µ = 0.001, σ = 0.0 oraz wizualizuje przewidywania na wykresie wykorzystując program gnuplot.. Zadanie na 4.0 Napisać program w Javie, który generuje 100 możliwych przewidywań dla parametrów S 0 = 1, µ = 0.001, σ = 0.0. Kolejne punkty powinny być generowane na podstawie poprzednich. Przedstawić przewidywania na wykresie wykorzystując program gnuplot..3 Zadanie na 5.0 Dobrać parametry S 0, µ i σ tak aby pasowały do danych historycznych indeksu NA- SDAQ. Zamieścić na wykresie dane historyczne oraz przyszłe dane wygenerowane za pomocą modelu stochastycznego cen akcji z dobranymi parametrami. 7

PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω)

PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) określonych na tej samej przestrzeni probabilistycznej

Bardziej szczegółowo

Wycena opcji. Dr inż. Bożena Mielczarek

Wycena opcji. Dr inż. Bożena Mielczarek Wycena opcji Dr inż. Bożena Mielczarek Stock Price Wahania ceny akcji Cena jednostki podlega niewielkim wahaniom dziennym (miesięcznym) wykazując jednak stały trend wznoszący. Cena może się doraźnie obniżać,

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (I)

Równanie przewodnictwa cieplnego (I) Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca

Bardziej szczegółowo

Wycena papierów wartościowych - instrumenty pochodne

Wycena papierów wartościowych - instrumenty pochodne Matematyka finansowa - 8 Wycena papierów wartościowych - instrumenty pochodne W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,

Bardziej szczegółowo

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy. XXXII Egzamin dla Aktuariuszy z 7 czerwca 2004 r. Część I. Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy. XXXII Egzamin dla Aktuariuszy z 7 czerwca 2004 r. Część I. Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXII Egzamin dla Aktuariuszy z 7 czerwca 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Trzy osoby biorą

Bardziej szczegółowo

Inżynieria Finansowa: 8. Model Blacka-Scholesa

Inżynieria Finansowa: 8. Model Blacka-Scholesa Inżynieria Finansowa: 8. Model Blacka-Scholesa Piotr Bańbuła Katedra Ekonomii Ilościowej, KAE Maj 7 r. Warszawa, Szkoła Główna Handlowa Historia opcji Pierwsze użycie: Tales z Miletu Przełomowy model cen:

Bardziej szczegółowo

ANALIZA OPCJI ANALIZA OPCJI - WYCENA. Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu

ANALIZA OPCJI ANALIZA OPCJI - WYCENA. Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu Podstawowe pojęcia Opcja: in-the-money (ITM call: wartość instrumentu podstawowego > cena wykonania

Bardziej szczegółowo

OPCJE NA GPW. Zespół Rekomendacji i Analiz Giełdowych Departament Klientów Detalicznych Katowice, luty 2004

OPCJE NA GPW. Zespół Rekomendacji i Analiz Giełdowych Departament Klientów Detalicznych Katowice, luty 2004 OPCJE NA GPW Zespół Rekomendacji i Analiz Giełdowych Departament Klientów Detalicznych Katowice, luty 2004 CO TO JEST OPCJA, RODZAJE OPCJI Opcja - prawo do kupna, lub sprzedaży instrumentu bazowego po

Bardziej szczegółowo

Ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym. Opcje Strategie opcyjne

Ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym. Opcje Strategie opcyjne Ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym Opcje Strategie opcyjne 1 Współczynniki greckie Współczynniki greckie określają o ile zmieni się kurs opcji w wyniku zmiany wartości poszczególnych

Bardziej szczegółowo

Matematyka finansowa w pakiecie Matlab

Matematyka finansowa w pakiecie Matlab Matematyka finansowa w pakiecie Matlab Wykład 5. Wycena opcji modele dyskretne Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK Kurs letni dla studentów studiów zamawianych na kierunku Matematyka

Bardziej szczegółowo

Uniwersytet Ekonomiczny we Wrocławiu Wydział Ekonomii, Zarządzania i Turystyki Katedra Ekonometrii i Informatyki

Uniwersytet Ekonomiczny we Wrocławiu Wydział Ekonomii, Zarządzania i Turystyki Katedra Ekonometrii i Informatyki Wydział Ekonomii, Zarządzania i Turystyki Katedra Ekonometrii i Informatyki http://keii.ue.wroc.pl Analiza ryzyka transakcji wykład ćwiczenia Literatura Literatura podstawowa: 1. Kaczmarek T. (2005), Ryzyko

Bardziej szczegółowo

Matematyka finansowa i ubezpieczeniowa - 8 Wycena papierów wartościowych

Matematyka finansowa i ubezpieczeniowa - 8 Wycena papierów wartościowych Matematyka finansowa i ubezpieczeniowa - 8 Wycena papierów wartościowych W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,

Bardziej szczegółowo

R NKI K I F I F N N NSOW OPCJE

R NKI K I F I F N N NSOW OPCJE RYNKI FINANSOWE OPCJE Wymagania dotyczące opcji Standard opcji Interpretacja nazw Sposoby ustalania ostatecznej ceny rozliczeniowej dla opcji na GPW OPCJE - definicja Kontrakt finansowy, w którym kupujący

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Rozważmy

Bardziej szczegółowo

Model Blacka-Scholesa

Model Blacka-Scholesa WYCENA OPCJI EUROPEJSKIEJ I AMERYKAŃSKIEJ W MODELACH DWUMIANOWYCH I TRÓJMIANOWYCH COXA-ROSSA-RUBINSTEINA I JARROWA-RUDDA Joanna Karska W modelach dyskretnych wyceny opcji losowość wyrażana jest poprzez

Bardziej szczegółowo

Dokumentacja. Portal Mathfinance Wycena opcji paryskich metoda. Wiktor Madejski

Dokumentacja. Portal Mathfinance Wycena opcji paryskich metoda. Wiktor Madejski Dokumentacja Portal Mathfinance Wycena opcji paryskich metoda PDE Wiktor Madejski Spis treści 1 Wstęp 2 2 Opcje paryskie 2 2.1 Układ PDE dla opcji paryskich..................... 2 2.2 Schemat numeryczny..........................

Bardziej szczegółowo

Teoria ze Wstępu do analizy stochastycznej

Teoria ze Wstępu do analizy stochastycznej eoria ze Wstępu do analizy stochastycznej Marcin Szumski 22 czerwca 21 1 Definicje 1. proces stochastyczny - rodzina zmiennych losowych X = (X t ) t 2. trajektoria - funkcja (losowa) t X t (ω) f : E 3.

Bardziej szczegółowo

Opcja jest to prawo przysługujące nabywcy opcji wobec jej wystawcy do:

Opcja jest to prawo przysługujące nabywcy opcji wobec jej wystawcy do: Jesteś tu: Bossa.pl Opcje na WIG20 - wprowadzenie Opcja jest to prawo przysługujące nabywcy opcji wobec jej wystawcy do: żądania w ustalonym terminie dostawy instrumentu bazowego po określonej cenie wykonania

Bardziej szczegółowo

Ośrodkowość procesów, proces Wienera. Ośrodkowość procesów, proces Wienera Procesy Stochastyczne, wykład, T. Byczkowski,

Ośrodkowość procesów, proces Wienera. Ośrodkowość procesów, proces Wienera Procesy Stochastyczne, wykład, T. Byczkowski, Procesy Stochastyczne, wykład, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 27 luty, 2012 Ośrodkowość procesów Dalej zakładamy, że (Ω, Σ, P) jest zupełną przestrzenią miarową. Definicja.

Bardziej szczegółowo

Inżynieria Finansowa: 5. Opcje

Inżynieria Finansowa: 5. Opcje Inżynieria Finansowa: 5. Opcje Piotr Bańbuła atedra Ekonomii Ilościowej, AE wiecień 2017 r. Warszawa, Szkoła Główna Handlowa Amounts outstanding of assets and derivatives Derivatives Derivatives Note:

Bardziej szczegółowo

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym

Bardziej szczegółowo

Matematyka finansowa w pakiecie Matlab

Matematyka finansowa w pakiecie Matlab Matematyka finansowa w pakiecie Matlab Wykład 6. Wycena opcji modele ciągłe, metoda Monte Carlo Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK Kurs letni dla studentów studiów zamawianych na

Bardziej szczegółowo

Strategie zabezpieczaj ce

Strategie zabezpieczaj ce 04062008 Plan prezentacji Model binarny Model Black Scholesa Bismut- Elworthy -Li formuła Model binarny i opcja call Niech cena akcji w chwili pocz tkowej wynosi S 0 = 21 Zaªó»my,»e ceny akcji po trzech

Bardziej szczegółowo

INSTRUMENTY POCHODNE OPCJE EUROPEJSKIE OPCJE AMERYKAŃSKIE OPCJE EGZOTYCZNE

INSTRUMENTY POCHODNE OPCJE EUROPEJSKIE OPCJE AMERYKAŃSKIE OPCJE EGZOTYCZNE INSTRUMENTY POCHODNE OPCJE EUROPEJSKIE OPCJE AMERYKAŃSKIE OPCJE EGZOTYCZNE OPCJE / DEFINICJA Opcja jest prawem do zakupu lub sprzedaży określonej ilości wyspecyfikowanego przedmiotu (tzw. instrumentu bazowego)

Bardziej szczegółowo

Rozwiązanie z Zasady gry: - Rzucamy 12 stronną kością - Za każdym razem wygrywamy wartość wyrzuconych oczek w zł.

Rozwiązanie z Zasady gry: - Rzucamy 12 stronną kością - Za każdym razem wygrywamy wartość wyrzuconych oczek w zł. Rozwiązanie z 23.04.15 1. Zasady gry: - Rzucamy 12 stronną kością - Za każdym razem wygrywamy wartość wyrzuconych oczek w zł. Długoterminowo, ile jesteś w stanie zapłacić za każdy rzut tak, aby zarobić:

Bardziej szczegółowo

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)

Bardziej szczegółowo

Warszawska Giełda Towarowa S.A.

Warszawska Giełda Towarowa S.A. OPCJE Opcja jest prawem do kupna lub sprzedaży określonego towaru po określonej cenie oraz w z góry określonym terminie. Stanowią formę zabezpieczenia ekonomicznego dotyczącego ryzyka niekorzystnej zmiany

Bardziej szczegółowo

Sprzedający => Wystawca opcji Kupujący => Nabywca opcji

Sprzedający => Wystawca opcji Kupujący => Nabywca opcji Opcja walutowa jest to umowa, która daje kupującemu prawo (nie obowiązek) do kupna lub sprzedaży instrumentu finansowego po z góry ustalonej cenie przed lub w określonym terminie w przyszłości. Kupujący

Bardziej szczegółowo

Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy

Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy Instrumenty pochodne 2014 Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy Jerzy Dzieża, WMS, AGH Kraków 28 maja 2014 (Instrumenty pochodne 2014 ) Wycena equity derivatives

Bardziej szczegółowo

OPCJE MIESIĘCZNE NA INDEKS WIG20

OPCJE MIESIĘCZNE NA INDEKS WIG20 OPCJE MIESIĘCZNE NA INDEKS WIG20 1 TROCHĘ HISTORII 1973 Fisher Black i Myron Scholes opracowują precyzyjną metodę obliczania wartości opcji słynny MODEL BLACK/SCHOLES 2 TROCHĘ HISTORII 26 kwietnia 1973

Bardziej szczegółowo

Wycena opcji Dynamika cen akcji: ds(t) = as(t)dt + σs(t)dw (t)

Wycena opcji Dynamika cen akcji: ds(t) = as(t)dt + σs(t)dw (t) Wycena opcji Dynamika cen akcji: ds(t) = as(t)dt + σs(t)dw (t) Wycena opcji Dynamika cen akcji: ds(t) = as(t)dt + σs(t)dw (t) Figure 1: Aproksymacja drzewem dwumianowym Wycena opcji Dynamika cen akcji:

Bardziej szczegółowo

Opcje. Dr hab Renata Karkowska; Wydział Zarządzania UW

Opcje. Dr hab Renata Karkowska; Wydział Zarządzania UW Opcje 1 Opcje Narysuj: Profil wypłaty dla nabywcy opcji kupna. Profil wypłaty dla nabywcy opcji sprzedaży. Profil wypłaty dla wystawcy opcji kupna. Profil wypłaty dla wystawcy opcji sprzedaży. 2 Przykład

Bardziej szczegółowo

r u du. Proces wartości aktywów firmy V. Proces bariery v wykorzystywany do zdefiniowania defaultu. moment defaultu τ.

r u du. Proces wartości aktywów firmy V. Proces bariery v wykorzystywany do zdefiniowania defaultu. moment defaultu τ. Wprowadzenie Mamy ustalone T > 0 horyzont, (Ω, F, P) z F filtracja, F = {F t } t [0,T ] oraz Proces chwilowej stopy procentowej r = (r t ) t [0,T ], tzn. rachunek bankowy spełnia ODE: db t = B t r t dt,

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Quantile hedging. czyli jak tanio i dobrze zabezpieczyć opcję. Michał Krawiec, Piotr Piestrzyński

Quantile hedging. czyli jak tanio i dobrze zabezpieczyć opcję. Michał Krawiec, Piotr Piestrzyński czyli jak tanio i dobrze zabezpieczyć opcję Michał Krawiec Piotr Piestrzyński Koło Naukowe Probabilistyki i Statystyki Matematycznej Uniwersytet Wrocławski Niedziela, 19 kwietnia 2015 Przykład (opis problemu)

Bardziej szczegółowo

STRATEGIE NA RYNKU OPCJI. KUPNO OPCJI KUPNA (Long Call)

STRATEGIE NA RYNKU OPCJI. KUPNO OPCJI KUPNA (Long Call) STRATEGIE NA RYNKU OPCJI KUPNO OPCJI KUPNA (Long Call) * * * Niniejsza broszura ma charakter jedynie edukacyjny i nie stanowi oferty kupna ani oferty sprzedaży żadnych instrumentów finansowych ani usług

Bardziej szczegółowo

1) jednostka posiada wystarczające środki aby zakupić walutę w dniu podpisania kontraktu

1) jednostka posiada wystarczające środki aby zakupić walutę w dniu podpisania kontraktu Przykład 1 Przedsiębiorca będący importerem podpisał kontrakt na zakup materiałów (surowców) o wartości 1 000 000 euro z datą płatności za 3 miesiące. Bieżący kurs 3,7750. Pozostałe koszty produkcji (wynagrodzenia,

Bardziej szczegółowo

Inżynieria Finansowa: 5. Opcje

Inżynieria Finansowa: 5. Opcje Inżynieria Finansowa: 5. Opcje Piotr Bańbuła atedra Ekonomii Ilościowej, AE Listopad 2014 r. Warszawa, Szkoła Główna Handlowa Opcje - typy Opcja jest asymetrycznym instrumentem. Opcja (standardowa, prosta,

Bardziej szczegółowo

OPCJE FINANSOWE, W TYM OPCJE EGZOTYCZNE, ZBYWALNE STRATEGIE OPCYJNE I ICH ZASTOSOWANIA DARIA LITEWKA I ALEKSANDRA KOŁODZIEJCZYK

OPCJE FINANSOWE, W TYM OPCJE EGZOTYCZNE, ZBYWALNE STRATEGIE OPCYJNE I ICH ZASTOSOWANIA DARIA LITEWKA I ALEKSANDRA KOŁODZIEJCZYK OPCJE FINANSOWE, W TYM OPCJE EGZOTYCZNE, ZBYWALNE STRATEGIE OPCYJNE I ICH ZASTOSOWANIA DARIA LITEWKA I ALEKSANDRA KOŁODZIEJCZYK OPCJE Opcja jest umową, która daje posiadaczowi prawo do kupna lub sprzedaży

Bardziej szczegółowo

Część II teoretyczne modele wyceny opcji. Filip Duszczyk Dział Rynku Terminowego

Część II teoretyczne modele wyceny opcji. Filip Duszczyk Dział Rynku Terminowego Część II teoretyczne modele wyceny opcji Filip Duszczyk Dział Rynku Terminowego Rozwiązanie zagadnienia z 16.04.15 I.) Kurs rozliczeniowy = 90-1 short 90 call = 0 + (8,45 x 1) = + 8,45-2 long 100 calls

Bardziej szczegółowo

13 Równanie struny drgającej. Równanie przewodnictwa ciepła.

13 Równanie struny drgającej. Równanie przewodnictwa ciepła. Równanie struny drgającej. Równanie przewodnictwa ciepła 13 1 13 Równanie struny drgającej. Równanie przewodnictwa ciepła. 13.1 Równanie struny drgającej Równanie różniczkowe liniowe drugiego rzędu typu

Bardziej szczegółowo

Opcje na GPW (I) Możemy wyróżnić dwa rodzaje opcji: opcje kupna (ang. call options), opcje sprzedaży (ang. put options).

Opcje na GPW (I) Możemy wyróżnić dwa rodzaje opcji: opcje kupna (ang. call options), opcje sprzedaży (ang. put options). Opcje na GPW (I) Opcje (ang. options) to podobnie jak kontrakty terminowe bardzo popularny instrument notowany na rynkach giełdowych. Ich konstrukcja jest nieco bardziej złożona od kontraktów. Opcje można

Bardziej szczegółowo

Opcje. Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Opcje. Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Opcje Ćwiczenia ZPI 1 Kupno opcji Profil wypłaty dla nabywcy opcji kupna. Z/S Premia (P) np. 100 Kurs wykonania opcji (X) np. 2500 Punkt opłacalności X + P 2500+100=2600 WIG20 2 Kupno opcji Profil wypłaty

Bardziej szczegółowo

Ważne rozkłady i twierdzenia

Ważne rozkłady i twierdzenia Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne

Bardziej szczegółowo

OPCJE WALUTOWE. kurs realizacji > kurs terminowy OTM ATM kurs realizacji = kurs terminowy ITM ITM kurs realizacji < kurs terminowy ATM OTM

OPCJE WALUTOWE. kurs realizacji > kurs terminowy OTM ATM kurs realizacji = kurs terminowy ITM ITM kurs realizacji < kurs terminowy ATM OTM OPCJE WALUTOWE Opcja walutowa jako instrument finansowy zdobył ogromną popularność dzięki wielu możliwości jego wykorzystania. Minimalizacja ryzyka walutowego gdziekolwiek pojawiają się waluty to niewątpliwie

Bardziej szczegółowo

Wstęp do analitycznych i numerycznych metod wyceny opcji

Wstęp do analitycznych i numerycznych metod wyceny opcji Wstęp do analitycznych i numerycznych metod wyceny opcji Jan Palczewski Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 16 maja 2008 Jan Palczewski Wycena opcji Warszawa, 2008

Bardziej szczegółowo

Powtórzenie. Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Powtórzenie. Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Powtórzenie Ćwiczenia ZPI 1 Zadanie 1. Średnia wartość stopy zwrotu dla wszystkich spółek finansowych wynosi 12%, a odchylenie standardowe 5,1%. Rozkład tego zjawiska zbliżony jest do rozkładu normalnego.

Bardziej szczegółowo

STRATEGIE NA RYNKU OPCJI. KUPNO OPCJI SPRZEDAŻY (Long Put)

STRATEGIE NA RYNKU OPCJI. KUPNO OPCJI SPRZEDAŻY (Long Put) STRATEGIE NA RYNKU OPCJI KUPNO OPCJI SPRZEDAŻY (Long Put) * * * Niniejsza broszura ma charakter jedynie edukacyjny i nie stanowi oferty kupna ani oferty sprzedaży żadnych instrumentów finansowych ani usług

Bardziej szczegółowo

Opcje - wprowadzenie. Mała powtórka: instrumenty liniowe. Anna Chmielewska, SGH,

Opcje - wprowadzenie. Mała powtórka: instrumenty liniowe. Anna Chmielewska, SGH, Opcje - wprowadzenie Mała powtórka: instrumenty liniowe Punkt odniesienia dla rozliczania transakcji terminowej forward: ustalony wcześniej kurs terminowy. W dniu rozliczenia transakcji terminowej forward:

Bardziej szczegółowo

OPCJE - PODSTAWY TEORETYCZNE cz.1

OPCJE - PODSTAWY TEORETYCZNE cz.1 OPCJE - PODSTAWY TEORETYCZNE cz.1 Opcja to prawo do kupna instrumentu bazowego po cenie, która jest z góry określona - głosi definicja opcji. Owa cena, które jest z góry określona to tzw. cena wykonania

Bardziej szczegółowo

Równania różniczkowe wyższych rzędów

Równania różniczkowe wyższych rzędów Równania różniczkowe wyższych rzędów Marcin Orchel Spis treści 1 Wstęp 1 1.1 Istnienie rozwiązań............................... 1 1. Rozwiązanie ogólne............................... 1.3 Obniżanie rzędu

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Opcje jako uzupełnienie portfela inwestycyjnego

Opcje jako uzupełnienie portfela inwestycyjnego Opcje jako uzupełnienie portfela inwestycyjnego forex, wszystkie towary, rynki giełda w jednym miejscu Istota opcji Łac. optio- oznacza wolna wola, wolny wybór Kontrakt finansowy, który nabywcy daje prawo

Bardziej szczegółowo

Opcje. Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Opcje. Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Opcje Ćwiczenia ZPI 1 Kupno opcji Profil wypłaty dla nabywcy opcji kupna. Z/S Premia (P) np. 100 Kurs wykonania opcji (X) np. 2500 Punkt opłacalności X + P 2500+100=2600 WIG20 2 Kupno opcji Profil wypłaty

Bardziej szczegółowo

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pan

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r.

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Komisja Egzaminacyjna dla Aktuariuszy XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Strategie: sposób na opcje

Strategie: sposób na opcje X-Trade Brokers Dom Maklerski S.A. Strategie: sposób na opcje z wykorzystaniem systemu Option Trader Tomasz Uściński X-Trade Brokers Dom Maklerski S.A. www.xtb.pl 1 Definicja opcji Opcja: Kontrakt finansowy,

Bardziej szczegółowo

Zakładamy, że są niezależnymi zmiennymi podlegającymi (dowolnemu) rozkładowi o skończonej wartości oczekiwanej i wariancji.

Zakładamy, że są niezależnymi zmiennymi podlegającymi (dowolnemu) rozkładowi o skończonej wartości oczekiwanej i wariancji. Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Centralne Twierdzenie Graniczne 1.1 Twierdzenie Lindeberga Levy'ego 1.2 Dowód 1.2.1 funkcja tworząca sumy zmiennych niezależnych 1.2.2 pochodna funkcji

Bardziej szczegółowo

Opcje giełdowe i zabezpieczenie inwestycji. Filip Duszczyk Dział Rynku Terminowego

Opcje giełdowe i zabezpieczenie inwestycji. Filip Duszczyk Dział Rynku Terminowego Opcje giełdowe i zabezpieczenie inwestycji Filip Duszczyk Dział Rynku Terminowego Agenda: Analiza Portfela współczynnik Beta (β) Opcje giełdowe wprowadzenie Podstawowe strategie opcyjne Strategia Protective

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

Inżynieria Finansowa - Egzamin - 28 stycznia Rozwiązania zadań Wersja z dnia 1 marca 2005, z drobnymi poprawkami

Inżynieria Finansowa - Egzamin - 28 stycznia Rozwiązania zadań Wersja z dnia 1 marca 2005, z drobnymi poprawkami Inżynieria Finansowa - Egzamin - 28 stycznia 2005 Rozwiązania zadań Wersja z dnia marca 2005, z drobnymi poprawkami Uwaga: Dla uproszczenia we wszelkich obliczeniach przyjęliśmy, że długość n-miesięcznego

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym Ćwiczenia ZPI 1 Współczynniki greckie Odpowiadają na pytanie o ile zmieni się wartość opcji w wyniku: Współczynnik Delta (Δ) - zmiany wartości instrumentu bazowego Współczynnik Theta (Θ) - upływu czasu

Bardziej szczegółowo

Wzory matematyka finansowa

Wzory matematyka finansowa Wzory matematyka finansowa MaciejRomaniuk 29 września 29 K(t) funkcjaopisującaakumulacjęwchwiliczasut,k() kapitał,i stopazyskuwchwilit: i= K(t) K() (1) K() K kapitał,i stałastopaprocentowadlaustalonegookresuczasut,

Bardziej szczegółowo

Strategie inwestowania w opcje. Filip Duszczyk Dział Rynku Terminowego

Strategie inwestowania w opcje. Filip Duszczyk Dział Rynku Terminowego Strategie inwestowania w opcje Filip Duszczyk Dział Rynku Terminowego Agenda: Opcje giełdowe Zabezpieczenie portfela Spekulacja Strategie opcyjne 2 Opcje giełdowe 3 Co to jest opcja? OPCJA JAK POLISA Zabezpieczenie

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1

Bardziej szczegółowo

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Ćwiczenia ZPI 1 Kupno opcji Profil wypłaty dla nabywcy opcji kupna. Z/S Premia (P) np. 100 Kurs wykonania opcji (X) np. 2500 Punkt opłacalności X + P 2500+100=2600 WIG20 2 Kupno opcji Profil wypłaty dla

Bardziej szczegółowo

Lista 1. Procesy o przyrostach niezależnych.

Lista 1. Procesy o przyrostach niezależnych. Lista. Procesy o przyrostach niezależnych.. Niech N t bedzie procesem Poissona o intensywnoci λ = 2. Obliczyć a) P (N 2 < 3, b) P (N =, N 3 = 6), c) P (N 2 = N 5 = 2), d) P (N =, N 2 = 3, N 4 < 5), e)

Bardziej szczegółowo

1/ W oparciu o znajomość MSSF, które zostały zatwierdzone przez UE (dalej: MSR/MSSF): (Punktacja dot. pkt 1, razem: od 0 do 20 pkt)

1/ W oparciu o znajomość MSSF, które zostały zatwierdzone przez UE (dalej: MSR/MSSF): (Punktacja dot. pkt 1, razem: od 0 do 20 pkt) II Etap Maj 2013 Zadanie 1 II Etap Maj 2013 1/ W oparciu o znajomość MSSF, które zostały zatwierdzone przez UE (dalej: MSR/MSSF): (Punktacja dot. pkt 1, razem: od 0 do 20 pkt) 1.1/podaj definicję składnika

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, czerwiec 2015 Biomatematyka

EGZAMIN MAGISTERSKI, czerwiec 2015 Biomatematyka Biomatematyka Rozpatrzmy chorobę, która rozprzestrzenia się za pośrednictwem nosicieli, u których nie występują jej symptomy. Niech C(t) oznacza liczbę nosicieli w chwili t. Zakładamy, że nosiciele są

Bardziej szczegółowo

Modele rynku, kontrakty terminowe, spekulacje

Modele rynku, kontrakty terminowe, spekulacje Modele rynku, kontrakty terminowe, spekulacje Marcin Abram WFAIS UJ w Krakowie 9 marca 2009 Założenia modelu Cena rozpatrywanego obiektu zmienia się skokowo co czas δt. Bezwzględna wartość zmiany ceny

Bardziej szczegółowo

F t+ := s>t. F s = F t.

F t+ := s>t. F s = F t. M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną

Bardziej szczegółowo

OPCJE. Slide 1. This presentation or any of its parts cannot be used without prior written permission of Dom Inwestycyjny BRE Banku S..A.

OPCJE. Slide 1. This presentation or any of its parts cannot be used without prior written permission of Dom Inwestycyjny BRE Banku S..A. OPCJE Slide 1 Informacje ogólne definicje opcji: kupna (call)/sprzedaŝy (put) terminologia typy opcji krzywe zysk/strata Slide 2 Czym jest opcja KUPNA (CALL)? Opcja KUPNA (CALL) jest PRAWEM - nie zobowiązaniem

Bardziej szczegółowo

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

Zadanie 1. są niezależne i mają rozkład z atomami: ( ),

Zadanie 1. są niezależne i mają rozkład z atomami: ( ), Zadanie. Zmienne losowe są niezależne i mają rozkład z atomami: ( ) ( ) i gęstością: ( ) na przedziale ( ). Wobec tego ( ) wynosi: (A) 0.2295 (B) 0.2403 (C) 0.2457 (D) 0.25 (E) 0.269 Zadanie 2. Niech:

Bardziej szczegółowo

Matematyka finansowa 30.09.2013 r. Komisja Egzaminacyjna dla Aktuariuszy. LXV Egzamin dla Aktuariuszy z 30 września 2013 r.

Matematyka finansowa 30.09.2013 r. Komisja Egzaminacyjna dla Aktuariuszy. LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Komisja Egzaminacyjna dla Aktuariuszy LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

5.1 Stopa Inflacji - Dyskonto odpowiadające sile nabywczej

5.1 Stopa Inflacji - Dyskonto odpowiadające sile nabywczej 5.1 Stopa Inflacji - Dyskonto odpowiadające sile nabywczej Stopa inflacji, i, mierzy jak szybko ceny się zmieniają jako zmianę procentową w skali rocznej. Oblicza się ją za pomocą średniej ważonej cząstkowych

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Opcje giełdowe. Wprowadzenie teoretyczne oraz zasady obrotu

Opcje giełdowe. Wprowadzenie teoretyczne oraz zasady obrotu Opcje giełdowe Wprowadzenie teoretyczne oraz zasady obrotu NAJWAŻNIEJSZE CECHY OPCJI Instrument pochodny (kontrakt opcyjny), Asymetryczny profil wypłaty, Możliwość budowania portfeli o różnych profilach

Bardziej szczegółowo

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N = HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki

Bardziej szczegółowo

Rynek, opcje i równania SDE

Rynek, opcje i równania SDE Rynek, opcje i równania SDE Adam Majewski Uniwersytet Gdański kwiecień 2009 Adam Majewski (Uniwersytet Gdański) Rynek, opcje i równania SDE kwiecień 2009 1 / 16 1 Rynek, portfel inwestycyjny, arbitraż

Bardziej szczegółowo

IX. MECHANIKA (FIZYKA) KWANTOWA

IX. MECHANIKA (FIZYKA) KWANTOWA IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji

Bardziej szczegółowo

Prawa wielkich liczb, centralne twierdzenia graniczne

Prawa wielkich liczb, centralne twierdzenia graniczne , centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne

Bardziej szczegółowo

Zastosowania sieci neuronowych

Zastosowania sieci neuronowych Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką

Bardziej szczegółowo

Estymacja parametrów w modelu normalnym

Estymacja parametrów w modelu normalnym Estymacja parametrów w modelu normalnym dr Mariusz Grządziel 6 kwietnia 2009 Model normalny Przez model normalny będziemy rozumieć rodzine rozkładów normalnych N(µ, σ), µ R, σ > 0. Z Centralnego Twierdzenia

Bardziej szczegółowo

Wykorzystanie opcji rzeczywistych

Wykorzystanie opcji rzeczywistych RYNEK FINANSOWANIA NIERUCHOMOŚCI Wykorzystanie opcji rzeczywistych do modelowania wartości nieruchomości Metodologia opcji rzeczywistych jest prostą metodą do szacowania wartości nieruchomości w przyszłości.

Bardziej szczegółowo

Czy opcje walutowe mogą być toksyczne?

Czy opcje walutowe mogą być toksyczne? Katedra Matematyki Finansowej Wydział Matematyki Stosowanej AGH 11 maja 2012 Kurs walutowy Kurs walutowy cena danej waluty wyrażona w innej walucie np. 1 USD = 3,21 PLN; USD/PLN = 3,21 Rodzaje kursów walutowych:

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu

Bardziej szczegółowo

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut

Bardziej szczegółowo

Statystyka matematyczna. Wykład III. Estymacja przedziałowa

Statystyka matematyczna. Wykład III. Estymacja przedziałowa Statystyka matematyczna. Wykład III. e-mail:e.kozlovski@pollub.pl Spis treści Rozkłady zmiennych losowych 1 Rozkłady zmiennych losowych Rozkład χ 2 Rozkład t-studenta Rozkład Fischera 2 Przedziały ufności

Bardziej szczegółowo

21 maja, Mocna własność Markowa procesu Wienera. Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126

21 maja, Mocna własność Markowa procesu Wienera. Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 Mocna własność Markowa procesu Wienera Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 21 maja, 2012 Mocna własność Markowa W = (W 1,..., W d ) oznaczać

Bardziej szczegółowo

Układy stochastyczne

Układy stochastyczne Instytut Informatyki Uniwersytetu Śląskiego 21 stycznia 2009 Definicja Definicja Proces stochastyczny to funkcja losowa, czyli funkcja matematyczna, której wartości leżą w przestrzeni zdarzeń losowych.

Bardziej szczegółowo

8 Całka stochastyczna względem semimartyngałów

8 Całka stochastyczna względem semimartyngałów M. Beśka, Całka Stochastyczna, wykład 8 148 8 Całka stochastyczna względem semimartyngałów 8.1 Całka stochastyczna w M 2 Oznaczmy przez Ξ zbiór procesów postaci X t (ω) = ξ (ω)i {} (t) + n ξ i (ω)i (ti,

Bardziej szczegółowo

3 Ubezpieczenia na życie

3 Ubezpieczenia na życie 3 Ubezpieczenia na życie O ile nie jest powiedziane inaczej, w poniższych zadaniach zakładamy HJP. 3.1. Zadania 7.1-7.26 z Miśkiewicz-Nawrocka, Zeug-Żebro, Zbiór zadań z matematyki finansowej. 3.2. Mając

Bardziej szczegółowo

Równania różniczkowe wyższych rzędów

Równania różniczkowe wyższych rzędów Równania różniczkowe wyższych rzędów Marcin Orchel Spis treści 1 Wstęp 1 1.1 Istnienie rozwiązań............................... 1 1.2 Rozwiązanie ogólne............................... 2 1.3 Obniżanie rzędu

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo