GEODEZJA. Zestaw I. Kinematyka i dynamika

Wielkość: px
Rozpocząć pokaz od strony:

Download "GEODEZJA. Zestaw I. Kinematyka i dynamika"

Transkrypt

1 GEODEZJA Zestaw I Kinematyka i dynamika 1. Staś jest młodym koszykarzem, ale niestety ma zbyt mało siły i nie potrafi wykonać rzutu do kosza za trzy punkty, tzn. z odległości powyżej 6m. Chodzi więc na siłownię, by poprawić siłę mięśni. Oblicz, jaką siłą powinien Staś działać na piłkę, by dolatywała do kosza. Załóż, że wyrzut piłki następuje pod kątem 45, a kosz znajduje się 1,5 m powyżej punktu wyrzutu piłki. Czas oddziaływania rąk koszykarza na piłkę podczas rzutu wynosi 0,2 s, a piłka ma masę 0,5 kg. 2. Zmierzono, iż płynąc prostopadle do brzegów rzeki łódź przepływa na drugą stronę w czasie t. Jak na podstawie tej informacji można wyznaczyć prędkość nurtu rzeki? Wiadomo, że prędkość łodzi na stojącej wodzie wynosi v oraz znana jest szerokość rzeki L. 3. Na poziomej wspólnej osi obracają się z prędkością 3000 obr/min dwa cienkie krążki zamocowane w odległości s=1 m od siebie. Pocisk lecący równolegle do osi obrotu trafia oba krążki, przy czym zmierzono, że drugi punkt przebicia jest przesunięty względem pierwszego o kąt 30. Pokaż, jak pomiar ten pozwala wyznaczyć prędkość pocisku. 4. U podnóża równi pochyłej o kącie nachylenia α nadano ciału prędkość v. Jak mierząc wysokość h, na którą wzniesie się to ciało poruszając się po równi, wyznaczyć można współczynnik tarcia występujący podczas tego ruchu? 5. Z jaką prędkością powinien pokonywać zakręt o promieniu krzywizny rowerzysta, aby nie wpaść w poślizg? Pod jakim kątem powinien pochylić rower jadąc z maksymalną bezpieczną szybkością? Współczynnik tarcia kół o podłoże wynosi µ. 6. Z jaką minimalną prędkością może jechać na motocyklu akrobata cyrkowy po wewnętrznej stronie powierzchni bocznej walca o średnicy 18 m, jeżeli środek ciężkości motocyklisty wraz z motocyklem znajduje się w odległości h=1 m od miejsca styku kół ze ścianą, a współczynnik tarcia opon kół motocykla o ściany wynosi f=0,4 (rys. 1)? ys. 1. 1

2 Zestaw II Dynamika bryły sztywnej 1. Oliczyć moment bezwładności jednorodnego walca o promieniu i masie m względem osi symetrii? Wyprowadź odpowiedni wzór z definicji momentu bezwładności I = r 2 dm. 2. Do końca nici nawiniętej na jednorodny krążek o masie M i promieniu przywiązany jest ciężar o masie m. Z jakim przyspieszeniem obniża się ciężar i jakie jest naprężenie nici? 3. Koło zamachowe o promieniu i momencie bezwładności I wiruje z prędkością kątową ω 0. W pewnej chwili do jego krawędzi dociśnięto z siłą F klocek hamulcowy. Pokaż, jak można wyznaczyć współczynnik tarcia klocka hamulcowego o koło, mierząc czas t, po którym koło się zatrzymuje. Zasady zachowania energii, pędu i momentu pędu 1. Proton zbliża się do jądra atomowego o dużej masie i ładunku Ze. W odległości nieskończenie dużej od jądra energia protonu jest równa 1/2 mv 2. Tor protonu ekstrapolowany liniowo od dużych odległości do małych przechodzi przez minimum odległości b od jądra, jak na ys. 1 (b - nazywa się parametrem zderzenia). Obliczyć odległość S największego zbliżenia dla orbity rzeczywistej protonu. Ze b S ys. 1 E k = mv 2 /2 2. W celu zmierzenia prędkości pocisku posługujemy się tak zwanym wahadłem balistycznym. Składa się ono z ciała o dużej masie (worek z piaskiem) zawieszonego na sztywnym pręcie (ys. 2). Gdy wystrzelona kula zostanie zahamowana w danej masie wahadła, powoduje to wychylenie się wahadła o pewien kąt α. Wiedząc, że α = 31, a długość wahadła l = 90 cm, oblicz prędkość v pocisku o masie m = 10 g, jeżeli masa wahadła wynosi M = 5 kg. l α ys. 2. 2

3 3. Wyjaśnij, dlaczego łyżwiarz, chcąc wykonać piruet, najpierw rozkłada szeroko ręce, a następnie składa je na piersi trzymając jak najbliżej siebie. 4. W wesołym miasteczku zbudowano diabelską pętlę o promieniu (ys. 3). Jaka powinna być wysokość H zjeżdżalni dla wózków, aby wraz z pasażerami mijały bezpiecznie (nie odrywały się od toru) najwyższy punkt pętli. ys. 3. Grawitacja 1. Oblicz prędkość, jaką należy nadać satelicie, aby mógł krążyć po orbicie stacjonarnej. Na jakiej będzie się znajdował wysokości? Zakładając, iż znajduje się on dokładnie na południe of Krakowa, znajdź kąt, pod jakim będzie on widziany nad horyzontem w Krakowie. 2. Na powierzchnię Ziemi spada z bardzo dużej odległości meteoryt. Z jaką prędkością upadłby on na Ziemię, gdyby nie było hamowania atmosfery? 3

4 Zestaw III Elektrostatyka 1. Trzy kondensatory o pojemnościach C 1 = 1 mf, C 2 = 2 mf, C 3 = 3 mf połączono, jak ma ys. 1 i dołączono do źródła napięcia stałego U = 12 V. Obliczyć ładunki zgromadzone na każdym z kondensatorów. C 1 C 2 C 3 U 1 U 2 U + ys Dwie metalowe kule o promieniach 1 i 2 posiadają ładunki odpowiednio Q 1 i Q 2. Jaki ładunek będzie zgromadzony na każdej z kul po połączeniu ich cienkim przewodem? 3. Aby porównać pojemności dwóch kondensatorów C 1 i C 2 naładowano je odpowiednio do napięć U 1 = 300 V i U 2 = 100 V i połączono równolegle. Przy tym różnica potencjałów między okładkami kondensatorów okazała się równa 250 V. Wyznaczyć stosunek pojemności C 1 /C Preszpan ulega przebiciu przy natężeniu pola o wartości E = 1, V/m. Dwa płaskie kondensatory o pojemnościach C 1 = 2/3 µf i C 2 = 5/3 µf z izolacyjną warstwą preszpanu o grubości 2 mm są połączone szeregowo. Przy jakim napięciu układ ten ulegnie przebiciu? Prąd elektryczny stały 1. Znaleźć opór zastępczy obwody przedstawionego na ys. 1. Opór każdego z oporników wynosi = 1 Ω. 2. Wyprowadź wzór na wartość dodatkowego oporu, który należy dołączyć do woltomierza, aby można było nim mierzyć napięcia do 1000 V, jeżeli woltomierz był przeznaczony do napięcia maksymalnego 50 V i ma opór wewnętrzny 2000 Ω. 3. Skala mikroamperomierza o oporze wewnętrznym 10 Ω ma 100 podziałek, a wartość jednej podziałki wynosi 10 µa. Wyprowadź wzór na wartość oporu bocznika, który należy dołączyć do przyrządu, aby można było nim mierzyć natężenia prądu do 1 A. 4. Znaleźć natężenie prądu w każdej części obwodu z ys. 2, jeżeli E 1 = 24 V, E 2 = 18 V, 1 = 20 Ω, 2 = 3 = 2 Ω. 5. Bateria o sile elektromotorycznej 40 V i oporze wewnętrznym 5 Ω zamknięta jest oporem zewnętrznym zmieniającym się od 0 do 35 V. Narysować zależność od oporu 4

5 zewnętrznego: 1) mocy wydzielanej w obwodzie zewnętrznym, 2)mocy wydzielanej wewnątrz źródła, 3) mocy całkowitej, 4) sprawności źródła prądu. 6. Wyznaczyć siłę elektromotoryczną ogniwa, jeżeli wiadomo, że po zwiększeniu oporu zewnętrznego 3 razy, zamykającego to ogniwo, napięcie na zaciskach wynoszące 3 V zwiększy się o 20 %. 7. Dwie żarówki przystosowane do napięcia 220 V o mocy 25 W i 75 W połączono szeregowo i włączono do sieci o napięciu 220 V. Z jaką mocą świeci każda z tych żarówek? 8. Jaki jest opór zastępczy układu oporników przedstawionego na ys. 3. ys E 1 E ys ys. 3 5

6 Zestaw IV Magnetyzm 1. Przez poprzeczkę o masie m= 50 g i długości 5 cm zawieszoną poziomo na nieważkich niciach płynie prąd o natężeniu 10 A. Poprzeczka znajduje się w polu magnetycznym o wektorze indukcji skierowanym pionowo do góry. Znajdź wartość wektora indukcji pola magnetycznego, wiedząc, że nici odchyliły się od pionu o kąt Oblicz energię kinetyczną protonów poruszających się w jednorodnym polu magnetycznym o indukcji B = 1,5 T, jeśli promień okręgu, po którym krążą, wynosi r =0,5 m. Masa protonu m =1, kg, ładunek e=1, C. 3. Znajdź indukcję pola magnetycznego w środku prostokąta o bokach a = 1 m i b = 3 1/2 m, w którym płynie prąd o natężeniu 2 A. 4. W prostym umieszczonym poziomo długim przewodniku płynie prąd o natężeniu I 1 = 5 A. Pod tym przewodnikiem znajduje się drugi równoległy do niego aluminiowy przewodnik, w którym płynie prąd o natężeniu I 2 = 1 A. Odległość między przewodnikami wynosi d = 1 cm. Jakie powinno być pole przekroju poprzecznego drugiego przewodnika, aby znajdował się on w stanie równowagi, wisząc swobodnie? Jaki to będzie rodzaj równowagi? 6. Do dwóch punktów przewodnika kołowego dołączono ułożone radialnie przewody połączone ze źródłem prądu (ys. 1.). Znajdź indukcję pola magnetycznego w środku koła. 7. Jednorodne pole magnetyczne rośnie proporcjonalnie do czasu: B=kt, gdzie k = 10 T/s. Jaka ilość ciepła wydzieli się w ramce mającej kształt kwadratu o boku a = 1 m w czasie t = 2 s? amka zrobiona jest z przewodnika aluminiowego o przekroju poprzecznym S = 1 mm 2. Powierzchnia ramki jest prostopadła do pola magnetycznego. 8. W przewodniku kołowym, którego promień równa się r =1 m, umieszczonym w jednorodnym polu magnetycznym zmiennym w czasie, indukuje się SEM E = kt (k= π V/s). Kąt pomiędzy normalną do powierzchni przewodnika kołowego i wektorem indukcji magnetycznej równa się 60. Wyznaczyć zależność B(t), jeżeli B(t=0) = Do sieci prądu zmiennego o napięciu skutecznym U S =120 V włączono szeregowo przewodnik o oporze = 15 Ω oraz cewkę o indukcyjności L = 50 mh. Obliczyć częstotliwość napięcia, jeżeli amplituda prądu I 0 = 7 A. I l 1 I 1 l 2 I 2 I ys. 1. 6

Egzamin z fizyki Informatyka Stosowana

Egzamin z fizyki Informatyka Stosowana Egzamin z fizyki Informatyka Stosowana 1) Dwie kulki odległe od siebie o d=8m wystrzelono w tym samym momencie czasu z prędkościami v 1 =4m/s i v 2 =8m/s, jak pokazano na rysunku. v 1 8 m v 2 α a) kulka

Bardziej szczegółowo

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m.

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m. Segment B.XIV Prądy zmienne Przygotowała: dr Anna Zawadzka Zad. 1 Obwód drgający składa się z pojemności C = 4 nf oraz samoindukcji L = 90 µh. Jaki jest okres, częstotliwość, częstość kątowa drgań oraz

Bardziej szczegółowo

MAGNETYZM. PRĄD PRZEMIENNY

MAGNETYZM. PRĄD PRZEMIENNY Włodzimierz Wolczyński 47 POWTÓRKA 9 MAGNETYZM. PRĄD PRZEMIENNY Zadanie 1 W dwóch przewodnikach prostoliniowych nieskończenie długich umieszczonych w próżni, oddalonych od siebie o r = cm, płynie prąd.

Bardziej szczegółowo

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna

Bardziej szczegółowo

Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Siła Coulomba. F q q = k r 1 = 1 4πεε 0 q q r 1. Pole elektrostatyczne. To przestrzeń, w której na ładunek

Bardziej szczegółowo

5) W czterech rogach kwadratu o boku a umieszczono ładunki o tej samej wartości q jak pokazano na rysunku. k=1/(4πε 0 )

5) W czterech rogach kwadratu o boku a umieszczono ładunki o tej samej wartości q jak pokazano na rysunku. k=1/(4πε 0 ) Zadania zamknięte 1 1) Ciało zostało wyrzucono z prędkością V 0 skierowną pod kątem α względem poziomu (x). Wiedząc iż porusza się ono w polu grawitacyjnym o przyspieszeniu g skierowanym pionowo w dół

Bardziej szczegółowo

A. 0,3 N B. 1,5 N C. 15 N D. 30 N. Posługiwać się wzajemnym związkiem między siłą, a zmianą pędu Odpowiedź

A. 0,3 N B. 1,5 N C. 15 N D. 30 N. Posługiwać się wzajemnym związkiem między siłą, a zmianą pędu Odpowiedź Egzamin maturalny z fizyki z astronomią W zadaniach od 1. do 10. należy wybrać jedną poprawną odpowiedź i wpisać właściwą literę: A, B, C lub D do kwadratu obok słowa:. m Przyjmij do obliczeń, że przyśpieszenie

Bardziej szczegółowo

1. Wykres przedstawia zależność wzrostu temperatury T dwóch gazów zawierających w funkcji ciepła Q dostarczonego gazom.

1. Wykres przedstawia zależność wzrostu temperatury T dwóch gazów zawierających w funkcji ciepła Q dostarczonego gazom. . Wykres przedstawia zależność wzrostu temperatury T dwóch gazów zawierających i N N w funkcji ciepła Q dostarczonego gazom. N N T I gaz II gaz Molowe ciepła właściwe tych gazów spełniają zależność: A),

Bardziej szczegółowo

Bryła sztywna Zadanie domowe

Bryła sztywna Zadanie domowe Bryła sztywna Zadanie domowe 1. Podczas ruszania samochodu, w pewnej chwili prędkość środka przedniego koła wynosiła. Sprawdź, czy pomiędzy kołem a podłożem występował poślizg, jeżeli średnica tego koła

Bardziej szczegółowo

1. Na ile kawałków (n) należy podzielić przewodnik o oporze R = 144, aby po ich równoległym połączeniu opór zastępczy wynosił r = 4?

1. Na ile kawałków (n) należy podzielić przewodnik o oporze R = 144, aby po ich równoległym połączeniu opór zastępczy wynosił r = 4? Fizyka Klasa III Liceum Pytania egzaminacyjne 2017 1. Na ile kawałków (n) należy podzielić przewodnik o oporze R = 144, aby po ich równoległym połączeniu opór zastępczy wynosił r = 4? 2. Dwie żarówki przystosowane

Bardziej szczegółowo

5. (2 pkt) Uczeń miał za zadanie skonstruował zwojnicę do wytwarzania pola magnetycznego o wartości indukcji

5. (2 pkt) Uczeń miał za zadanie skonstruował zwojnicę do wytwarzania pola magnetycznego o wartości indukcji Magnetyzm Dane ogólne do zadań: ładunek elektronu: masa elektronu: masa protonu: masa neutronu: 1,6 19 9,11 C 31 1,67 1,675 kg 7 7 kg kg Własności magnetyczne substancji 1. (1 pkt). ( pkt) 3. ( pkt) Jaka

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 27 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 2

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 27 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 2 autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 27 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 2 Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania TEST JEDNOKROTNEGO WYBORU

Bardziej szczegółowo

Wykład 14: Indukcja cz.2.

Wykład 14: Indukcja cz.2. Wykład 14: Indukcja cz.. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 10.05.017 Wydział Informatyki, Elektroniki i 1 Przykład

Bardziej szczegółowo

v 6 i 7 j. Wyznacz wektora momentu pędu czaski względem początku układu współrzędnych.

v 6 i 7 j. Wyznacz wektora momentu pędu czaski względem początku układu współrzędnych. Dynamika bryły sztywnej.. Moment siły. Moment pędu. Moment bezwładności. 171. Na cząstkę o masie kg znajdującą się w punkcie określonym wektorem r 5i 7j działa siła F 3i 4j. Wyznacz wektora momentu tej

Bardziej szczegółowo

3.5 Wyznaczanie stosunku e/m(e22)

3.5 Wyznaczanie stosunku e/m(e22) Wyznaczanie stosunku e/m(e) 157 3.5 Wyznaczanie stosunku e/m(e) Celem ćwiczenia jest wyznaczenie stosunku ładunku e do masy m elektronu metodą badania odchylenia wiązki elektronów w poprzecznym polu magnetycznym.

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka 7. Pole magnetyczne zadania z arkusza I 7.8 7.1 7.9 7.2 7.3 7.10 7.11 7.4 7.12 7.5 7.13 7.6 7.7 7. Pole magnetyczne - 1 - 7.14 7.25 7.15 7.26 7.16 7.17 7.18 7.19 7.20 7.21 7.27 Kwadratową ramkę (rys.)

Bardziej szczegółowo

30P4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM PODSTAWOWY

30P4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM PODSTAWOWY 30P4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV Magnetyzm POZIOM PODSTAWOWY Indukcja elektromagnetyczna Prąd przemienny Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod

Bardziej szczegółowo

Lista zadań nr 5 Ruch po okręgu (1h)

Lista zadań nr 5 Ruch po okręgu (1h) Lista zadań nr 5 Ruch po okręgu (1h) Pseudo siły ruch po okręgu Zad. 5.1 Na cząstkę o masie 2 kg znajdującą się w punkcie R=5i+7j działa siła F=3i+4j. Wyznacz moment siły względem początku układu współrzędnych.

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY LISTOPAD 2013 Czas pracy: 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

Materiały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Energia mechaniczna. Energia mechaniczna dzieli się na energię kinetyczną i potencjalną. Energia kinetyczna

Bardziej szczegółowo

III Powiatowy konkurs szkół ponadgimnazjalnych z fizyki finał

III Powiatowy konkurs szkół ponadgimnazjalnych z fizyki finał Zduńska Wola, 2012.03.28 Stowarzyszenie Nauczycieli Łódzkiej III Powiatowy konkurs szkół ponadgimnazjalnych z fizyki finał od ucznia XXX Pesel ucznia Instrukcja dla uczestnika konkursu 1. Etap finałowy

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie 11B Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym 11B.1. Zasada ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY LISTOPAD 01 Czas pracy: 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY

30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY 30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY Magnetyzm Indukcja elektromagnetyczna Prąd przemienny Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod

Bardziej szczegółowo

Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Indukcja elektromagnetyczna Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Strumień indukcji magnetycznej Analogicznie do strumienia pola elektrycznego można

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Bryła sztywna Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Typ równowagi zależy od zmiany położenia środka masy ( Równowaga Statyka Bryły sztywnej umieszczonej

Bardziej szczegółowo

12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa

12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa Włodzimierz Wolczyński Przyspieszenie kątowe 1 RUCH OROTOWY RYŁY SZTYWNEJ I = = ε przyspieszenie kątowe [ ] ω prędkość kątowa = = T okres, = - częstotliwość s=αr v=ωr a=εr droga = kąt x promień prędkość

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie E6 Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym E6.1. Cel ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający moment

Bardziej szczegółowo

Zakład Dydaktyki Fizyki UMK

Zakład Dydaktyki Fizyki UMK Toruński poręcznik do fizyki I. Mechanika Materiały dydaktyczne Krysztof Rochowicz Zadania przykładowe Dr Krzysztof Rochowicz Zakład Dydaktyki Fizyki UMK Toruń, czerwiec 2012 1. Samochód jadący z prędkością

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 26 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 1

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 26 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 1 autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 26 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 1 Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie 1 1 punkt TEST JEDNOKROTNEGO

Bardziej szczegółowo

46 POWTÓRKA 8 PRĄD STAŁY. Włodzimierz Wolczyński. Zadanie 1. Oblicz i wpisz do tabeli R 2 = 2 Ω R 4 = 2 Ω R 3 = 6 Ω. E r = 1 Ω U [V] I [A] P [W]

46 POWTÓRKA 8 PRĄD STAŁY. Włodzimierz Wolczyński. Zadanie 1. Oblicz i wpisz do tabeli R 2 = 2 Ω R 4 = 2 Ω R 3 = 6 Ω. E r = 1 Ω U [V] I [A] P [W] Włodzimierz Wolczyński 46 POWTÓRKA 8 PRĄD STAŁY Zadanie 1 Oblicz i wpisz do tabeli R 1 = 4 Ω RR 22 = = 22 Ω I 2 = 1,5 A R 4 = 2 Ω R 3 = 6 Ω R 1 = 4 Ω R 2 = 2 Ω R 3 = 6 Ω R 4 = 2 Ω r = 1 Ω SEM ogniwa wynosi

Bardziej szczegółowo

KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA MAZOWIECKIEGO

KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA MAZOWIECKIEGO KOD UCZNIA KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA MAZOWIECKIEGO II ETAP REJONOWY 6 grudnia 2017 r. Uczennico/Uczniu: 1. Na rozwiązanie wszystkich zadań masz 90 minut. 2. Pisz długopisem/piórem

Bardziej szczegółowo

Ćwiczenie: "Dynamika"

Ćwiczenie: Dynamika Ćwiczenie: "Dynamika" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Układy nieinercjalne

Bardziej szczegółowo

Pole elektromagnetyczne

Pole elektromagnetyczne Pole elektromagnetyczne Pole magnetyczne Strumień pola magnetycznego Jednostką strumienia magnetycznego w układzie SI jest 1 weber (1 Wb) = 1 N m A -1. Zatem, pole magnetyczne B jest czasem nazywane gęstością

Bardziej szczegółowo

30R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (od początku do drgań)

30R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (od początku do drgań) Włodzimierz Wolczyński 30R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY (od początku do drgań) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania

Bardziej szczegółowo

ZADANIA DLA CHĘTNYCH NA 6 (SERIA I) KLASA II

ZADANIA DLA CHĘTNYCH NA 6 (SERIA I) KLASA II ZADANIA DLA CHĘTNYCH NA 6 (SERIA I) KLASA II Oblicz wartość prędkości średniej samochodu, który z miejscowości A do B połowę drogi jechał z prędkością v 1 a drugą połowę z prędkością v 2. Pociąg o długości

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni

Bardziej szczegółowo

Uniwersytet Rolniczy im. Hugona Kołłątaja w Krakowie, Geodezja I rok ZADANIA Z FIZYKI I. MECHANIKA

Uniwersytet Rolniczy im. Hugona Kołłątaja w Krakowie, Geodezja I rok ZADANIA Z FIZYKI I. MECHANIKA ZADANIA Z FIZYKI I. MECHANIKA Zagadnienia: Przemieszczenie i prędkość w ruchu jednostajnym i jednostajnie zmiennym. Wektorowy opis ruchu jednostajnego na płaszczyźnie. Druga i trzecia zasada dynamiki Newtona.

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - - zadania fizyka, wzory fizyka, matura fizyka

pobrano z serwisu Fizyka Dla Każdego -  - zadania fizyka, wzory fizyka, matura fizyka 6. Prąd elektryczny zadania z arkusza I 6.7 6.1 6.8 6.9 6.2 6.3 6.10 6.4 6.5 6.11 Na zmieszczonym poniżej wykresie przedstawiono charakterystykę prądowo-napięciową żarówki. 600 500 400 I, ma 300 200 6.6

Bardziej szczegółowo

Konkurs przedmiotowy z fizyki dla uczniów gimnazjów

Konkurs przedmiotowy z fizyki dla uczniów gimnazjów Pieczęć Konkurs przedmiotowy z fizyki dla uczniów gimnazjów 20 stycznia 2017 r. zawody II stopnia (rejonowe) Witamy Cię na drugim etapie konkursu i życzymy powodzenia. Maksymalna liczba punktów 60. Czas

Bardziej szczegółowo

KINEMATYKA Zad.1 Pierwszą połowę drogi pojazd przebył z szybkością V 1 =72 km/h, a drugą z szybkością V 2 =90km/h. Obliczyć średnią szybkość pojazdu

KINEMATYKA Zad.1 Pierwszą połowę drogi pojazd przebył z szybkością V 1 =72 km/h, a drugą z szybkością V 2 =90km/h. Obliczyć średnią szybkość pojazdu KINEMATYKA Zad.1 Pierwszą połowę drogi pojazd przebył z szybkością V 1 =72 km/h, a drugą z szybkością V 2 =90km/h. Obliczyć średnią szybkość pojazdu na trasie. Na wykresie szybkości przedstawić geometrycznie

Bardziej szczegółowo

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1

Bardziej szczegółowo

I. DYNAMIKA PUNKTU MATERIALNEGO

I. DYNAMIKA PUNKTU MATERIALNEGO I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć

Bardziej szczegółowo

36P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do optyki geometrycznej)

36P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do optyki geometrycznej) Włodzimierz Wolczyński 36P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (od początku do optyki geometrycznej) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod

Bardziej szczegółowo

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Obrót wokół ustalonej osi Prawa ruchu Dla bryły sztywnej obracajacej się wokół ostalonej osi mement

Bardziej szczegółowo

(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu.

(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu. 1 1 x (m/s) 4 0 4 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 t (s) a) Narysuj wykres a x (t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka

Bardziej szczegółowo

PRZED KONKURSEM CZĘŚĆ 13

PRZED KONKURSEM CZĘŚĆ 13 POWTÓRKA PRZED KONKURSEM CZĘŚĆ 13 Zadanie 1 Przez cewkę przepuszczono prąd elektryczny, podłączając ją do źródła prądu, a nad nią zawieszono magnes sztabkowy na dół biegunem N. Naciąg tej nici A. Zwiększy

Bardziej szczegółowo

EGZAMIN MATURALNY Z FIZYKI Z ASTRONOMIĄ

EGZAMIN MATURALNY Z FIZYKI Z ASTRONOMIĄ Miejsce na naklejkę z kodem (Wpisuje zdający przed rozpoczęciem pracy) KOD ZDAJĄCEGO MFA-W1D1P-01 EGZAMIN MATURALNY Z FIZYKI Z ASTRONOMIĄ Instrukcja dla zdającego Czas pracy 90 minut 1. Proszę sprawdzić,

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 09 PĘD Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 09 PĘD Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 09 PĘD Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie 1 1 punkt PYTANIA ZAMKNIĘTE Jeśli energia kinetyczna

Bardziej szczegółowo

Egzamin w dniu zestaw pierwszy

Egzamin w dniu zestaw pierwszy Fizyka 1 Zestaw pierwszy Egzamin w dniu 1.02.2013- zestaw pierwszy 1. Jednostką podstawową układu SI jest: A) amper(a) B) coulomb(c) C) niuton(n) D) wolt(v) 2. RządwielkościzredukowanejstałejPlancka h=1,054571

Bardziej szczegółowo

Dynamika ruchu obrotowego

Dynamika ruchu obrotowego Dynamika ruchu obrotowego 1. Mając dane r = îx + ĵy + ˆkz i = î x + ĵ y + ˆk z znaleźć moment siły τ = r. Pokazać, że jeżeli r i leżą w danej płaszczyźnie, to τ nie ma składowych w tej płaszczyźnie. 2.

Bardziej szczegółowo

3. Zadanie nr 21 z rozdziału 7. książki HRW

3. Zadanie nr 21 z rozdziału 7. książki HRW Lista 3. do kursu Fizyka; rok. ak. 2012/13 sem. letni W. Inż. Środ.; kierunek Inż. Środowiska Tabele wzorów matematycznych (http://www.if.pwr.wroc.pl/~wsalejda/mat-wzory.pdf) i fizycznych (http://www.if.pwr.wroc.pl/~wsalejda/wzf1.pdf;

Bardziej szczegółowo

Powtórka 5. między biegunami ogniwa przepłynął ładunek 13,5 C. Oblicz pracę wykonaną przez ogniwo podczas przemieszczania ładunku między biegunami.

Powtórka 5. między biegunami ogniwa przepłynął ładunek 13,5 C. Oblicz pracę wykonaną przez ogniwo podczas przemieszczania ładunku między biegunami. owtórka 5 1. Do ogniwa o sile elektromotorycznej 12 V podłączono odbiornik o oporze 50 W. W czasie minuty między biegunami ogniwa przepłynął ładunek 13,5 C. Oblicz pracę wykonaną przez ogniwo podczas przemieszczania

Bardziej szczegółowo

PF11- Dynamika bryły sztywnej.

PF11- Dynamika bryły sztywnej. Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Zasady dynamiki Newtona

Zasady dynamiki Newtona Zasady dynamiki Newtona 1. Znajdź masę ciała (poruszającego się po prostej), które pod działaniem siły o wartości F = 30 N w czasie t= 5s zmienia swą szybkość z v 1 = 15 m/s na v 2 = 30 m/s. 2. Znajdź

Bardziej szczegółowo

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. PRACA Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. Rozważmy sytuację, gdy w krótkim czasie działająca siła spowodowała przemieszczenie ciała o bardzo małą wielkość Δs Wtedy praca wykonana

Bardziej szczegółowo

UKŁADY KONDENSATOROWE

UKŁADY KONDENSATOROWE UKŁADY KONDENSATOROWE 3.1. Wyprowadzić wzory na: a) pojemność kondensatora sferycznego z izolacją jednorodną (ε), b) pojemność kondensatora sferycznego z izolacją warstwową (ε 1, ε 2 ) c) pojemność odosobnionej

Bardziej szczegółowo

Lista zadań nr 6 Środek masy, Moment bezwładności, Moment siły (2h)

Lista zadań nr 6 Środek masy, Moment bezwładności, Moment siły (2h) Lista zadań nr 6 Środek masy, Moment bezwładności, Moment siły (2h) Środek ciężkości Zaad.6.1 Wyznacz środek masy układu pięciu mas o odpowiednich współrzędnych: m 1 (2,2), m 2 (2,5), m 3 (-4,2), m 4 (-3,-2),

Bardziej szczegółowo

A = (A X, A Y, A Z ) A X i + A Y j + A Z k A X e x + A Y e y + A Z e z wektory jednostkowe: i e x j e y k e z.

A = (A X, A Y, A Z ) A X i + A Y j + A Z k A X e x + A Y e y + A Z e z wektory jednostkowe: i e x j e y k e z. Ćwiczenia rachunkowe z fizyki dla I roku Transport Morski. Zestaw zadań nr 1. Zestaw 1. Wielkości i jednostki. Wektory. Zapisać w jednostkach układu SI: 2 doby; 14 minut;2,5 godz.; 3 000 lat; 3 MM (mile

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły

Bardziej szczegółowo

14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY

14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY 14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY Ruch jednostajny po okręgu Dynamika bryły sztywnej Pole grawitacyjne Rozwiązanie zadań należy zapisać w wyznaczonych

Bardziej szczegółowo

Człowiek najlepsza inwestycja

Człowiek najlepsza inwestycja Człowiek najlepsza inwestycja Fizyka ćwiczenia F6 - Prąd stały, pole magnetyczne magnesów i prądów stałych Prowadzący: dr Edmund Paweł Golis Instytut Fizyki Konsultacje stałe dla projektu; od Pn. do Pt.

Bardziej szczegółowo

Elektrostatyka, część pierwsza

Elektrostatyka, część pierwsza Elektrostatyka, część pierwsza ZADANIA DO PRZEROBIENIA NA LEKJI 1. Dwie kulki naładowano ładunkiem q 1 = 1 i q 2 = 3 i umieszczono w odległości r = 1m od siebie. Oblicz siłę ich wzajemnego oddziaływania.

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,

Bardziej szczegółowo

LIII MIĘDZYSZKOLNY TURNIEJ FIZYCZNY dla uczniów szkół ponadgimnazjalnych w roku szkolnym 2010/2011 TEST

LIII MIĘDZYSZKOLNY TURNIEJ FIZYCZNY dla uczniów szkół ponadgimnazjalnych w roku szkolnym 2010/2011 TEST LIII MIĘDZYSZKOLNY TURNIEJ FIZYCZNY dla uczniów szkół ponadgimnazjalnych w roku szkolnym 00/0 TEST. Jeżeli długość sekundowego wahadła matematycznego które znajduje się na powierzchni Ziemi zwiększymy

Bardziej szczegółowo

26 MAGNETYZM. Włodzimierz Wolczyński. Indukcja magnetyczna a natężenie pola magnetycznego. Wirowe pole magnetyczne wokół przewodnika prostoliniowego

26 MAGNETYZM. Włodzimierz Wolczyński. Indukcja magnetyczna a natężenie pola magnetycznego. Wirowe pole magnetyczne wokół przewodnika prostoliniowego Włodzimierz Wolczyński 26 MAGETYZM Indukcja magnetyczna a natężenie pola magnetycznego B indukcja magnetyczna H natężenie pola magnetycznego μ przenikalność magnetyczna ośrodka dla paramagnetyków - 1 1,

Bardziej szczegółowo

Elektrostatyka. A. tyle samo B. będzie 2 razy mniejsza C. będzie 4 razy większa D. nie da się obliczyć bez znajomości odległości miedzy ładunkami

Elektrostatyka. A. tyle samo B. będzie 2 razy mniejsza C. będzie 4 razy większa D. nie da się obliczyć bez znajomości odległości miedzy ładunkami Elektrostatyka Zadanie 1. Dwa jednoimienne ładunki po 10C każdy odpychają się z siłą 36 10 8 N. Po dwukrotnym zwiększeniu odległości między tymi ładunkami i dwukrotnym zwiększeniu jednego z tych ładunków,

Bardziej szczegółowo

POWTÓRKA PRZED KONKURSEM CZĘŚĆ 14 ZADANIA ZAMKNIĘTE

POWTÓRKA PRZED KONKURSEM CZĘŚĆ 14 ZADANIA ZAMKNIĘTE DO ZDOBYCIA PUNKTÓW 50 POWTÓRKA PRZED KONKURSEM CZĘŚĆ 14 Jest to powtórka przed etapem rejonowym (głównie elektrostatyka). ZADANIA ZAMKNIĘTE łącznie pkt. zamknięte otwarte SUMA zadanie 1 1 pkt Po włączeniu

Bardziej szczegółowo

14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do grawitacji)

14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do grawitacji) Włodzimierz Wolczyński 14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (od początku do grawitacji) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią

Bardziej szczegółowo

14-TYP-2015 POWTÓRKA PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ROZSZERZONY

14-TYP-2015 POWTÓRKA PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ROZSZERZONY Włodzimierz Wolczyński 14-TYP-2015 POWTÓRKA PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ROZSZERZONY Obejmuje działy u mnie wyszczególnione w konspektach jako 10 RUCH JEDNOSTAJNY PO OKRĘGU 11 POWTÓRKA

Bardziej szczegółowo

Wyznaczanie stosunku e/m elektronu

Wyznaczanie stosunku e/m elektronu Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się

Bardziej szczegółowo

Ćwiczenie nr 43: HALOTRON

Ćwiczenie nr 43: HALOTRON Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel

Bardziej szczegółowo

Cel ćwiczenia: zapoznanie się z wielkościami opisującymi ruch i zastosowanie równań ruchu do opisu rzeczywistych

Cel ćwiczenia: zapoznanie się z wielkościami opisującymi ruch i zastosowanie równań ruchu do opisu rzeczywistych Zestaw 1 KINEMATYKA Cel ćwiczenia: zapoznanie się z wielkościami opisującymi ruch i zastosowanie równań ruchu do opisu rzeczywistych sytuacji. Wiadomości wstępne: wektory i operacje na nich. Rodzaje ruchu,

Bardziej szczegółowo

Wykład 15: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Wykład 15: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok Wykład 15: Indukcja Dr inż. Zbigniew zklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ 1 Pole magnetyczne a prąd elektryczny Do tej pory omawiano skutki

Bardziej szczegółowo

Fizyka I. Kolokwium

Fizyka I. Kolokwium Fizyka I. Kolokwium 13.01.2014 Wersja A UWAGA: rozwiązania zadań powinny być czytelne, uporządkowane i opatrzone takimi komentarzami, by tok rozumowania był jasny dla sprawdzającego. Wynik należy przedstawić

Bardziej szczegółowo

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon

Bardziej szczegółowo

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia.

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Grupa 1. Kinematyka 1. W ciągu dwóch sekund od wystrzelenia z powierzchni ziemi pocisk przemieścił się o 40 m w poziomie i o 53

Bardziej szczegółowo

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie

Bardziej szczegółowo

Dynamika ruchu obrotowego 1

Dynamika ruchu obrotowego 1 Dynamika ruchu obrotowego 1 1. Obliczyć moment bezwładności jednorodnego pręta o masie M i długości L względem osi prostopadłej do niego i przechodzącej przez: (a) koniec pręta, (b) środek pręta. 2. Obliczyć

Bardziej szczegółowo

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII

Bardziej szczegółowo

Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe

Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy bryły sztywnej Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy ruch po okręgu P, t 1 P 1, t 1 θ 1 θ Ruch obrotowy ruch po okręgu P,

Bardziej szczegółowo

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc.

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przypuśćmy, że wszyscy ludzie na świecie zgromadzili się w jednym miejscu na Ziemi i na daną komendę jednocześnie

Bardziej szczegółowo

Drgania - zadanka. (b) wyznacz maksymalne położenie, prędkość i przyspieszenie ciała,

Drgania - zadanka. (b) wyznacz maksymalne położenie, prędkość i przyspieszenie ciała, Zadania do przeliczenia na lekcji. Drgania - zadanka 1. Ciało o masie m = 0.5kg zawieszono na nieważkiej nitce o długości l = 1m a następne wychylono o 2cm z położenia równowagi (g = 10 m s 2), (a) oblicz

Bardziej szczegółowo

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA E1. OBWODY PRĄDU STŁEGO WYZNCZNIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁ tekst opracowała: Bożena Janowska-Dmoch Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych wywołany

Bardziej szczegółowo

Konkurs fizyczny szkoła podstawowa. 2018/2019. Etap rejonowy

Konkurs fizyczny szkoła podstawowa. 2018/2019. Etap rejonowy UWAGA: W zadaniach o numerach od 1 do 8 spośród podanych propozycji odpowiedzi wybierz i zaznacz tą, która stanowi prawidłowe zakończenie ostatniego zdania w zadaniu. Zadanie 1. (0 1pkt.) odczas testów

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA Miejsce na identyfikację szkoły AKUSZ PÓBNEJ MATUY Z OPEONEM FIZYKA I ASTONOMIA Instrukcja dla zdającego POZIOM PODSTAWOWY Czas pracy: 120 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 10 stron (zadania

Bardziej szczegółowo

Theory Polish (Poland) Przed rozpoczęciem rozwiązywania przeczytaj ogólne instrukcje znajdujące się w osobnej kopercie.

Theory Polish (Poland) Przed rozpoczęciem rozwiązywania przeczytaj ogólne instrukcje znajdujące się w osobnej kopercie. Q1-1 Dwa zagadnienia mechaniczne (10 points) Przed rozpoczęciem rozwiązywania przeczytaj ogólne instrukcje znajdujące się w osobnej kopercie. Część A. Ukryty metalowy dysk (3.5 points) Rozważmy drewniany

Bardziej szczegółowo

Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika. r opór wewnętrzny baterii R- opór opornika

Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika. r opór wewnętrzny baterii R- opór opornika Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika r opór wewnętrzny baterii - opór opornika V b V a V I V Ir Ir I 2 POŁĄCZENIE SZEEGOWE Taki sam prąd płynący przez oba oporniki

Bardziej szczegółowo

cz. 1. dr inż. Zbigniew Szklarski

cz. 1. dr inż. Zbigniew Szklarski Wykład 14: Pole magnetyczne cz. 1. dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Wektor indukcji pola magnetycznego, siła Lorentza v F L Jeżeli na dodatni ładunek

Bardziej szczegółowo

Ćwiczenie: "Ruch po okręgu"

Ćwiczenie: Ruch po okręgu Ćwiczenie: "Ruch po okręgu" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Kinematyka

Bardziej szczegółowo

Ćwiczenie 41. Busola stycznych

Ćwiczenie 41. Busola stycznych Ćwiczenie 41. Busola stycznych Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Zapoznanie się z budową i działaniem busoli, wyznaczenie składowej poziomej ziemskiego pola magnetycznego. Wprowadzenie

Bardziej szczegółowo

Konkurs fizyczny - gimnazjum. 2018/2019. Etap rejonowy

Konkurs fizyczny - gimnazjum. 2018/2019. Etap rejonowy UWAGA: W zadaniach o numerach od 1 do 7 spośród podanych propozycji odpowiedzi wybierz i zaznacz tą, która stanowi prawidłowe zakończenie ostatniego zdania w zadaniu. Zadanie 1. (0 1pkt.) Podczas testów

Bardziej szczegółowo

We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2

We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2 m We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2. s Zadanie 1. (1 punkt) Pasażer samochodu zmierzył za pomocą stopera w telefonie komórkowym, że mija słupki kilometrowe co

Bardziej szczegółowo

BADANIE AMPEROMIERZA

BADANIE AMPEROMIERZA BADANIE AMPEROMIERZA 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metod pomiaru prądu, nabycie umiejętności łączenia prostych obwodów elektrycznych, oraz poznanie warunków i zasad sprawdzania amperomierzy

Bardziej szczegółowo

Zasady dynamiki Isaak Newton (1686 r.)

Zasady dynamiki Isaak Newton (1686 r.) Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają

Bardziej szczegółowo