Ćwiczenie 9 POMIARY IMPEDANCJI

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ćwiczenie 9 POMIARY IMPEDANCJI"

Transkrypt

1 Ćwiczenie 9 POMIY IMPEDNCJI I. Cel ćwiczenia Celem ćwiczenia jest poznanie wybranych metod pomiaru właściwości rezystorów, kondensatorów i cewek. II. Zagadnienia 1. Elektryczne schematy zastępcze rezystora, kondensatora, cewki.. Metoda techniczna pomiaru rezystancji. 3. Metoda pośredniego pomiaru indukcyjności 4. Obliczanie dokładności pomiaru w metodzie pośredniej. 5. Zasada pomiaru rezystancji omomierzem cyfrowym. 6. Pomiar mostkiem zmiennoprądowym i półautomatycznym. III. Wprowadzenie 1. Schematy zastępcze wybranych impedancji Mierzone impedancje, rezystorów, kondensatorów, cewk, i innych elementów charakteryzują się wielkością podstawową, najczęściej dominującą co do wartości, oraz innymi wielkościami, wynikającymi z niedoskonałości technologii wykonania, z wpływu otoczenia i innych zjawisk, zwane często wielkościami pasożytniczymi. W opisie właściwości impedancji wykorzystuje się schematy zastępcze (modele elektryczne) składające się z podstawowych wielkości - rezystancja, C - pojemność, L - indukcyjność, połączone w różny sposób zapewniający właściwy model, odpowiadający warunkom pracy obiektu. W celu uproszczenia analizy obiektu stosuje się modele uproszczone, które wynikają z przyjętych założeń związanych z rzeczywistymi warunkami pracy tego obiektu. Warunki te dotyczą: częstotliwości roboczych, wpływu otoczenia. 1.1 Schematy zastępcze kondensatora Kondensator C x jest przedstawiany w schematach układów ideowych jak na rys ys Symbol kondensatora 1

2 W rzeczywistości nie dysponujemy kondensatorami idealnymi, bezstratnymi. Model elektryczny kondensatora można przedstawić jak na rys. 9.. W zależności od technologii wykonania kondensatora, szczególnie indukcyjność rozproszenia może być różna. Kondensatory ceramiczne lub tantalowe charakteryzują się znacznie mniejszą indukcyjnością rozproszenia niż kondensatory styrofleksowe czy elektrolityczne. ys. 9.. Elektryczny schemat zastępczy kondensatora C - pojemność, - rezystancja strat, L - indukcyjność rozproszenia Do porównania mierzonych kondensatorów w układach mostkowych stosuje się zestawy: kondensator wzorcowy regulowany i rezystor wzorcowy regulowany w połączeniu równoległym rys. 9.3, dla kondensatorów których współczynnik strat jest większy niż współczynnik strat kondensatora wzorcowego, lub w połączeniu szeregowym rys. 9.4, dla kondensatorów o współczynniku strat mniejszym niż współczynnik strat kondensatora wzorcowego. ys Pojemnościowa gałąź wzorcowa w połączeniu równoległym ys Pojemnościowa gałąź wzorcowa w połączeniu szeregowym 1. Schematy zastępcze rezystora ezystor rysowany jest w schematach układów ideowych jak na rys ys Element rezystancyjny symbol W układach prądu zmiennego, urządzeń wykonawczych lub w układzie pomiarowym mierząc rezystancję, musimy uwzględnić również jej składową bierną rys. 9.6, w rezultacie schemat układu regulowanej gałęzi wzorcowej jest uproszczony rys. 9.7.

3 ys Elektryczny schemat zastępczy rezystora w układach zmienno prądowych - rezystancja podstawowa, L - indukcyjność szczątkowa C - pojemność szczątkowa ys Schemat rezystancyjnej zmiennoprądowej gałęzi wzorcowej ysunek ten jest podobny do rys. 9.3, różnica dotyczy jedynie wartości pojemności kondensatora C w. W tym przypadku jest ona zwykle dużo mniejsza, ponieważ ma kompensować jedynie pasożytnicze, niewielkie wartości pojemności mierzonego rezystora. Często, oprócz pasożytniczych pojemności, trzeba również uwzględniać pasożytniczą indukcyjność rezystora, wówczas układy komplikują się. 1.3 Schematy zastępcze cewki Cewka L, której symbol przedstawiono na rys posiada również elementy pasożytnicze, rys ys Symbol cewki indukcyjnej ys Elektryczny schemat zastępczy cewki W układzie wzorcowym cewkę można odwzorować za pomocą kondensatora wzorcowego C W i wzorcowego elementu rezystancyjnego W rys Można tak zrealizować model indukcyjności tylko wtedy, gdy na drodze układowej uzyska się przesunięcie fazy przetwarzające właściwości kondensatora we właściwości cewki (np mostek Maxwella - Wiena, rozdział 9.3 [4]). 3

4 ys Schemat gałęzi wzorcowej do równoważenia mostka Maxwella Wiena W układach modelujących cewki niechętnie stosuje się wzorcowe indukcyjności dlatego, że: - wymagają stosowania specjalnych ekranów by uniknąć wpływu otoczenia na wartość indukcyjności, - regulacja wartości indukcyjności jest trudna, - duże gabaryty dla dużych indukcyjności. Przedstawione schematy gałęzi mostka prądu zmiennego, wykorzystywane do porównania z mierzoną impedancją w postaci rezystora, kondensatora, czy cewki są jedynie najprostszymi przykładami z możliwych rozwiązań. Bardzo często w pomiarach rezystancji różnych podzespołów (rezystorów, cewek, kondensatorów, transformatorów itp) stosuje się zasilanie układów pomiarowych ze źródeł stałoprądowych ponieważ wielkości pasożytnicze takie jak pojemność lub indukcyjność rozproszenia jest wówczas niemierzalna i nie zakłóca pomiaru. Układy pomiarowe stają się wówczas prostsze. Najczęściej wykorzystywane w pomiarach są układy z metodą techniczną pomiaru impedancji i metodą mostkową, zasilane odpowiednio prądem zmiennym lub stałym. Poniżej metody te zostaną opisane. W przypadku pomiarów przy zasilaniu układów prądem zmiennym występuje problem wydzielenia informacji z sygnału o wartości składowej czynnej i składowej biernej.. Metoda techniczna pomiaru składowych impedancji Metoda techniczna pomiaru składowych impedancji rys polega na pomiarze wektorów napięcia oraz prądu za pomocą woltomierza i amperomierza wektorowego (rozdział.1 [4]). Uˆ U ys Układ metody technicznej pomiaru impedancji ju 4

5 Tę metodę nazywa się również metodą pośrednią pomiaru danej składowej impedancji (rezystancji, pojemności czy indukcyjności). Obliczenie składowych impedancji można dokonać za pomocą wzorów (9.1, 9., 9.3). Wartość składowej czynnej wynosi U ju ˆ j I ji (9.1) Z U I Składową bierną można obliczyć ze wzoru U I (9.) I I U I U I (9.3) I I Jeżeli składowa bierna ma charakter indukcyjny wówczas ze wzoru (9.4) można obliczyć indukcyjność, natomiast w przypadku charakteru pojemnościowego impedancji, wartość pojemności można obliczyć ze wzoru (9.5) L (9.4) C 1 Wartość modułu impedancji oblicza się ze wzoru (9.6): (9.5) U U U (9.6) I I I U, I - moduł wartości skutecznych składowych wektorów napięcia i prądu lub napięcie i prąd odczytane z przyrządów mierzących wartości skuteczne. Tak wyznaczone składowe impedancji są obciążone niepewnością wynikającą z błędów metody pomiarowej, niepewności instrumentalnych i zakłóceń. Przybliżoną wartość niepewności składowej impedancji obliczonej z pomiarów pośrednich można obliczyć metodą różniczki zupełnej. Pomiar w metodzie technicznej rys może być realizowany w dwóch układach pomiarowych, poprawny pomiar prądu (pozycja 1 przełącznika), poprawny pomiar napięcia poz.. Każda z tych metod wymaga uwzględnienia wpływu błędu metody na wynik pomiaru. 5

6 .1 Błąd systematyczny metody poprawnego pomiaru prądu Błąd systematyczny metody uwzględnia się w wyniku pomiaru jako poprawkę, której wartość w metodzie poprawnego pomiaru prądu jest równa rezystancji amperomierza pomnożonej przez -1 (9.7). Z ˆ Z ˆ j (9.7) pi Ẑ - wartość poprawki w metodzie poprawnego pomiaru prądu, pi Ẑ - impedancja amperomierza, której wartość wystarczy często przedstawić w formie - rezystancja amperomierza Wartość impedancji po uwzględnieniu poprawki oblicza się według wzoru (9.8) j (9.8) x pi Wartość modułu impedancji można obliczyć ze wskazań przyrządów mierzących wartości skuteczne napięcia i prądu (9.9) x U Z x (9.9) I Wartość ta jest większa od rzeczywistej o błąd wprowadzony przez układ pomiarowy (9.10) Z Z (9.10) x Z pi Poprawka wprowadza następującą zmianę wartości składowej czynnej mierzonej impedancji lub rezystancji przy zasilaniu układu prądem stałym (9.11) (9.11) Składowa bierna jest obciążona pomijalnie małym błędem metody [4].. Błąd systematyczny metody poprawnego pomiaru napięcia W metodzie poprawnego pomiaru napięcia (poz. przełącznika) rys.9.11, impedancja woltomierza reprezentowana głównie przez rezystancję jego posobnika jest elementem zmniejszającym mierzoną wartość impedancji ( Ẑ włączone równolegle do Ẑ ). Wartość poprawki można obliczyć ze wzoru (9.1) pu (9.1) - wartość poprawki w metodzie poprawnego pomiaru napięcia, Ẑ pu Ẑ - impedancja woltomierza, - rezystancja woltomierza Postać wzoru przybliżonego do obliczenia poprawki w tej metodzie jest złożona. 6

7 3. Metody mostkowe pomiaru parametrów impedancji Ogólną strukturę mostka przedstawiono na rys Jeżeli I g = 0, czyli prąd płynący w gałęzi wskaźnika równowagi jest równy zero to możemy zapisać w momencie równowagi mostka wzór (9.13). 1 4 j( 1 4 ) j( 3 ) Z Z3 e Z Z e (9.13) ys Schemat mostka czteroramiennego Jest to ogólny warunek równowagi mostka. by ten warunek był spełniony muszą być spełnione szczegółowe następujące warunki 1. warunek równowagi modułów: Z1 Z 4 Z Z3 (9.14) lub przy zasilaniu mostka prądem stałym (9.15). warunek równości wartości argumentów (dotyczy tylko mostka zasilanego prądem przemiennym): (9.16) Z konieczności spełnienia jednocześnie tych dwóch warunków przy zasilaniu mostka prądem przemiennym, wynikają trudności równoważenia układów mostkowych. by układ mostkowy można było w sposób szybki i prawidłowy zrównoważyć, konieczna jest informacja o równowadze np. modułów i o równowadze faz. W celu uzyskania tej informacji występuje potrzeba stosowania odpowiednich układów wskaźników równowagi. Wskaźniki mające wyszczególnić informacje o module i fazie sygnału nazywają się wskaźnikami synchronicznymi. We wskaźnikach synchronicznych następuje oddziaływanie sygnału z generatora zasilającego mostek, z sygnałem nierównowagi mostka, sygnał z generatora jest wówczas sygnałem odniesienia, którego zwrot pokrywa się z osią rzeczywistą, co ilustruje rys. 9.13, natomiast sygnał nierównowagi mostka U 0 jest pod kątem w stosunku do napięcia z generatora. W procesie równoważenia mostków stosuje się również selektywne wskaźniki równowagi, oscyloskopy i inne. 7

8 ys Obraz wektora napięcia nierównowagi mostka w układzie współrzędnych zespolonych Przy zasilaniu mostków prądem stałym w równaniu równowagi (9.15) pozostaje tylko składowa rezystancyjna co jest jednoznaczne z możliwością pomiaru tylko rezystancji. 3.1 Pomiar mostkiem półautomatycznym W mostkach półautomatycznych wybiera się przełącznikiem mierzoną składową (pomiar indukcyjności, pojemności, rezystancji), która jest równoważona ręcznie przełącznikami obrotowymi i jej odczyt jest dokonywany na podstawie wartości uzależnionych od uzyskanego położenia przełącznika w momencie zrównoważenia mostka, natomiast druga składowa jest równoważona automatycznie i jej wartość jest nieznana. W instrukcji obsługi takich mostków podawane są między innymi parametry mostka przedstawione w tablicy 9.1 i 9.. Tablica 9.1. Zakres i dokładność pomiaru stratności kondensatora i dobroci cewki odzaj i zakres pomiaru Niedokładność pomiaru D - Pojemność szeregowa C s 0 0,1F ±(0, % odczytu) D - Pojemność równoległa C p 0,1 50F ± 5% odczytu Q indukcyjność szeregowa L s 0,0 10H ± 5% odczytu Q indukcyjność równoległa L s H ±(0, % odczytu) dla 1/Q 8

9 Tablica 9.. Zakres i dokładność pomiaru rezystancji, indukcyjności i pojemności odzaj pomiaru Działka na Niedokładność pomiaru i zakres najmniejszym f<1khz f>1khz zakresie dodatkowe 1m 11,1M 1 m ±0,1%odczytu, ±1dz dla zakresów -7 (10-11M) ±0,3%odczytu, ±1dz dla zakresu 1m ,01H 111H 0,01H ±0,0%odczytu, ±1dz dla (0, f [ khz] Q zakresów pH 111H 0,00 ±0,3%odczytu, ±1dz dla zakresu f [ khz])% 0,01H 100H 0,01pF 111F 0,01pF ±0,1%odczytu, ±1dz dla za kresów pF 111H, ±0,3%odczytu, ±1dz dla zakresu 10F 111F (0, f [ khz] 0,00 f [ khz])% 3. Przykład obliczenia wyniku pomiaru indukcyjności Przykład obliczenia niedokładności i wyniku pomiaru indukcyjności czujnika. Po zrównoważeniu mostka odczytano: L = 10,34mH, 1[dz]= 0,01mH nieczułość mostka (najmniejsza zmiana nastawionej wartości w czasie równowagi mostka, powodująca zauważalne wychylenie wskaźnika równowagi wyznacza się ją nm. czasie pomiaru) n =0,03mH obliczenia: M 0,0 L L 1[ dz] n 10,34 0,01 0,03 0, ,043mH L (10,34, 0,043) mh 4. Pomiar miernikiem LC Mierniki LC mogą posiadać 4 zaciski do podłaczenia badanej impedancji. Najczęściej zewnętrzne zaciski są zaciskami napięciowymi i wewnętrzne są 9

10 zaciskami prądowymi. Przełącznikiem wybiera się rodzaj pracy przewodowa lub 4 przewodowa, kolejnym przełącznikiem ustala się wielkości mierzone np. Pomiar rezystora : i C lub i L Pomiar cewki : L i lub L i Q; Pomiar kondensatora: C i lub C i tg. Pierwsza wielkość często jest mierzona dokładniej niż druga. Tablica 9.3. Wybrane z instrukcji parametry miernika LC dla pomiaru rezystancji zakres maksymalne dokładność kalibracja wskazanie f=10hz f=1khz uwagi 10M 9,999M ±(%+8cyfr) ±(%+8cyfr) Po rozwarciu 10 9,999 ±(1,%+8cyfr) ±(1,%+8cyfr) Po zwarciu Tablica 9.4. Wybrane z instrukcji parametry miernika LC dla pomiaru pojemności zakres maksymalne wskazanie C x dokładność DF 10mF 9,999mF ±(5%+5cyfr) DF<0,1 ±(10%+100/C x +5cyfr) DF<0,1 10nF 9,999nF ±(1%+5cyfr) ±(%+100/C x +5cyfr) DF<0,1 DF<0,1 kalibracja uwagi Po rozwarciu Po rozwarciu Tablica 9.5. Wybrane z instrukcji parametry miernika LC dla pomiaru indukcyjności zakres Maksymal. wskazanie L x dokładność kalibracja DF/Q uwagi 1000H 999,9H ±(0,3%+Lx/10000%+5dgt) ±(1%+100/L x +5dgt) Po roz warciu 10 mh 9,999mH ±(1%+Lx/10000%+5dgt) ±(5%+100/L x +5dgt) Po zwarciu C x, L x wskazanie pola odczytowego bez przecinka dziesiętnego 4.1 Przykład obliczenia wyniku pomiaru indukcyjności miernikiem LC Wyniki pomiaru cewki przetwonika indukcyjnościowego: L=6,73mH, L x =673, Q=,01 10

11 M L L L n dz , ,005 0, ,14mH L (6,7, 0,14) mh M Q Q Q Q (,01, 0,16) n dz 5 100, ,05 0, , I. Program ćwiczenia 1. Zadania laboratoryjne 1. Zmierzyć charakterystyczne właściwości przetwornika indukcyjnościowego : a. rezystancję metodą techniczną stałoprądową b. indukcyjność, metodą techniczną zmiennoprądową, c. rezystancję i indukcyjność miernikiem LC. Opracowanie wyników pomiarów 1. Obliczyć: dobroć Q, stratność tg,. Obliczyć błąd pomiaru: Lx, Qx, tgx x.. Pytania kontrolne 1. Przedstawić schemat do pomiaru impedancji metodą techniczną.. Jak wybrać układ do pomiaru impedancji metodą techniczną, aby błąd systematyczny metody był najmniejszy? 3. Co wpływa na dokładność pomiaru indukcyjności metodą pośrednią? 4. Co wpływa na dokładność pomiaru pojemności metodą pośrednią? Literatura 1 Marcyniuk., Pasecki E., Pluciński M.: Podstawy metrologii elektrycznej. WNT, Warszawa, Chwaleba., Poniński M., Siedlecki.: Metrologia elektryczna, WNT, Warszawa, Parchański J.: Miernictwo elektryczne i elektroniczne, WSiP, Warszawa, 1997r. 4 ylski.: Metrologia II prąd zmienny, OWPz, zeszów,

ĆWICZENIE nr 5. Pomiary rezystancji, pojemności, indukcyjności, impedancji

ĆWICZENIE nr 5. Pomiary rezystancji, pojemności, indukcyjności, impedancji Politechnika Łódzka Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych WWW.DSOD.PL LABORATORIUM METROLOGII ELEKTRONICZNEJ ĆWICZENIE nr 5 Pomiary rezystancji, pojemności, indukcyjności, impedancji

Bardziej szczegółowo

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C ĆWICZENIE 4EMC POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C Cel ćwiczenia Pomiar parametrów elementów R, L i C stosowanych w urządzeniach elektronicznych w obwodach prądu zmiennego.

Bardziej szczegółowo

Mostek Wheatstone a, Maxwella, Sauty ego-wiena. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Mostek Wheatstone a, Maxwella, Sauty ego-wiena. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Mostek Wheatstone a, Maxwella, Sauty ego-wiena Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego 2 Do pomiaru rezystancji rezystorów, rezystancji i indukcyjności

Bardziej szczegółowo

Miernictwo I INF Wykład 13 dr Adam Polak

Miernictwo I INF Wykład 13 dr Adam Polak Miernictwo I INF Wykład 13 dr Adam Polak ~ 1 ~ I. Właściwości elementów biernych A. Charakterystyki elementów biernych 1. Rezystor idealny (brak przesunięcia fazowego między napięciem a prądem) brak części

Bardziej szczegółowo

Metody mostkowe. Mostek Wheatstone a, Maxwella, Sauty ego-wiena

Metody mostkowe. Mostek Wheatstone a, Maxwella, Sauty ego-wiena Metody mostkowe Mostek Wheatstone a, Maxwella, Sauty ego-wiena Rodzaje przewodników Do pomiaru rezystancji rezystorów, rezystancji i indukcyjności cewek, pojemności i stratności kondensatorów stosuje się

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA Wydział Elektryczny Zakład Systemów Informacyjno-Pomiarowych

POLITECHNIKA WARSZAWSKA Wydział Elektryczny Zakład Systemów Informacyjno-Pomiarowych POLITECHNIKA WARSZAWSKA Wydział Elektryczny Zakład Systemów Informacyjno-Pomiarowych Studia... Kierunek... Grupa dziekańska... Zespół... Nazwisko i Imię 1.... 2.... 3.... 4.... Laboratorium...... Ćwiczenie

Bardziej szczegółowo

ĆWICZENIE 6 POMIARY REZYSTANCJI

ĆWICZENIE 6 POMIARY REZYSTANCJI ĆWICZENIE 6 POMIAY EZYSTANCJI Opracowała: E. Dziuban I. Cel ćwiczenia Celem ćwiczenia jest wdrożenie umiejętności poprawnego wyboru metody pomiaru w zależności od wartości mierzonej rezystancji oraz postulowanej

Bardziej szczegółowo

Ćwiczenia tablicowe nr 1

Ćwiczenia tablicowe nr 1 Ćwiczenia tablicowe nr 1 Temat Pomiary mocy i energii Wymagane wiadomości teoretyczne 1. Pomiar mocy w sieciach 3 fazowych 3 przewodowych: przy obciążeniu symetrycznym i niesymetrycznym 2. Pomiar mocy

Bardziej szczegółowo

Pomiar rezystancji metodą techniczną

Pomiar rezystancji metodą techniczną Pomiar rezystancji metodą techniczną Cel ćwiczenia. Poznanie metod pomiarów rezystancji liniowych, optymalizowania warunków pomiaru oraz zasad obliczania błędów pomiarowych. Zagadnienia teoretyczne. Definicja

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PĄDU SINUSOIDLNEGO

Bardziej szczegółowo

Ćwiczenie 10. Mostki prądu przemiennego. Program ćwiczenia:

Ćwiczenie 10. Mostki prądu przemiennego. Program ćwiczenia: Ćwiczenie 0 Mostki prądu przemiennego Program ćwiczenia: Mostek zrównoważony. Pomiar pojemności, rezystancji i kąta stratności kondensatorów mostkiem Wiena. Pomiar indukcyjności, rezystancji i dobroci

Bardziej szczegółowo

ĆWICZENIE 5. POMIARY NAPIĘĆ I PRĄDÓW STAŁYCH Opracowała: E. Dziuban. I. Cel ćwiczenia

ĆWICZENIE 5. POMIARY NAPIĘĆ I PRĄDÓW STAŁYCH Opracowała: E. Dziuban. I. Cel ćwiczenia ĆWICZEIE 5 I. Cel ćwiczenia POMIAY APIĘĆ I PĄDÓW STAŁYCH Opracowała: E. Dziuban Celem ćwiczenia jest zaznajomienie z przyrządami do pomiaru napięcia i prądu stałego: poznanie budowy woltomierza i amperomierza

Bardziej szczegółowo

Ćwiczenie nr 74. Pomiary mostkami RLC. Celem ćwiczenia jest pomiar rezystancji, indukcyjności i pojemności automatycznym mostkiem RLC.

Ćwiczenie nr 74. Pomiary mostkami RLC. Celem ćwiczenia jest pomiar rezystancji, indukcyjności i pojemności automatycznym mostkiem RLC. Ćwiczenie nr 74 Pomiary mostkami RLC Cel ćwiczenia Celem ćwiczenia jest pomiar rezystancji, indukcyjności i pojemności automatycznym mostkiem RLC. Dane znamionowe Przed przystąpieniem do wykonywania ćwiczenia

Bardziej szczegółowo

SERIA II ĆWICZENIE 2_3. Temat ćwiczenia: Pomiary rezystancji metodą bezpośrednią i pośrednią. Wiadomości do powtórzenia:

SERIA II ĆWICZENIE 2_3. Temat ćwiczenia: Pomiary rezystancji metodą bezpośrednią i pośrednią. Wiadomości do powtórzenia: SE ĆWCZENE 2_3 Temat ćwiczenia: Pomiary rezystancji metodą bezpośrednią i pośrednią. Wiadomości do powtórzenia: 1. Sposoby pomiaru rezystancji. ezystancję można zmierzyć metodą bezpośrednią, za pomocą

Bardziej szczegółowo

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Mechatronika (WM) Laboratorium Elektrotechniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Bardziej szczegółowo

Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych

Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych Zakres wymaganych wiadomości do testów z przedmiotu Metrologia Ćwiczenie 1 Wprowadzenie do obsługi multimetrów analogowych i cyfrowych budowa i zasada działania przyrządów analogowych magnetoelektrycznych

Bardziej szczegółowo

LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH. Ćwiczenie nr 2. Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy

LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH. Ćwiczenie nr 2. Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH Ćwiczenie nr 2 Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy Wykonując pomiary PRZESTRZEGAJ przepisów BHP związanych z obsługą urządzeń

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH

POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH Gliwice, wrzesień 2007 Cyfrowe pomiary częstotliwości oraz parametrów RLC Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z budową,

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1) Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDLNEGO

Bardziej szczegółowo

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4) OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu

Bardziej szczegółowo

Ćw. 10: Mostki prądu przemiennego Podpis prowadzącego: Uwagi:

Ćw. 10: Mostki prądu przemiennego Podpis prowadzącego: Uwagi: Wydział: EAIiE Kierunek: Imię i nazwisko (e-mail): ok: 201 /201 Grupa: Zespół: Data wykonania: Zaliczenie: LABOATOIUM METOLOGII Ćw. 10: Mostki prądu przemiennego Podpis prowadzącego: Uwagi: Wstęp Celem

Bardziej szczegółowo

I= = E <0 /R <0 = (E/R)

I= = E <0 /R <0 = (E/R) Ćwiczenie 28 Temat: Szeregowy obwód rezonansowy. Cel ćwiczenia Zmierzenie parametrów charakterystycznych szeregowego obwodu rezonansowego. Wykreślenie krzywej rezonansowej szeregowego obwodu rezonansowego.

Bardziej szczegółowo

Ćwiczenie 9. Mostki prądu stałego. Program ćwiczenia:

Ćwiczenie 9. Mostki prądu stałego. Program ćwiczenia: Ćwiczenie 9 Mostki prądu stałego Program ćwiczenia: 1. Pomiar rezystancji laboratoryjnym mostkiem Wheatsone'a 2. Niezrównoważony mostek Wheatsone'a. Pomiar rezystancji technicznym mostkiem Wheatsone'a

Bardziej szczegółowo

Katedra Elektrotechniki Teoretycznej i Informatyki

Katedra Elektrotechniki Teoretycznej i Informatyki Katedra Elektrotechniki Teoretycznej i normatyki aboratorium Teorii Obwodów Przedmiot: Elektrotechnika teoretyczna Numer ćwiczenia: 4 Temat: Obwody rezonansowe (rezonans prądów i napięć). Wprowadzenie

Bardziej szczegółowo

Ćwiczenie 9. Mostki prądu stałego. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia:

Ćwiczenie 9. Mostki prądu stałego. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia: Ćwiczenie 9 Mostki prądu stałego Program ćwiczenia: 1. Pomiar rezystancji laboratoryjnym mostkiem Wheatsone'a 2. Pomiar rezystancji technicznym mostkiem Wheatsone'a. Pomiar rezystancji technicznym mostkiem

Bardziej szczegółowo

Ćwiczenie nr 1. Badanie obwodów jednofazowych RLC przy wymuszeniu sinusoidalnym

Ćwiczenie nr 1. Badanie obwodów jednofazowych RLC przy wymuszeniu sinusoidalnym Ćwiczenie nr Badanie obwodów jednofazowych RC przy wymuszeniu sinusoidalnym. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z rozkładem napięć prądów i mocy w obwodach złożonych z rezystorów cewek i

Bardziej szczegółowo

Ćwiczenie: "Mierniki cyfrowe"

Ćwiczenie: Mierniki cyfrowe Ćwiczenie: "Mierniki cyfrowe" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Próbkowanie

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLTECHK OPOLSK STYTT TOMTYK FOMTYK LBOTOM METOLO ELEKTOCZEJ 1. POMY EZYSTCJ METODM MOSTKOWYM 1. METODY POM EZYSTCJ 1.1. Wstęp 1.1.1 Metody techniczne 1.1.1.1.kład poprawnie mierzonego napięcia kład poprawnie

Bardziej szczegółowo

Ćwiczenie M2 POMIARY STATYSTYCZNE SERII OPORNIKÓW

Ćwiczenie M2 POMIARY STATYSTYCZNE SERII OPORNIKÓW Laboratorium Podstaw Miernictwa Wiaczesław Szamow Ćwiczenie M2 POMIARY STATYSTYCZNE SERII OPORNIKÓW opr. tech. Mirosław Maś Uniwersytet Przyrodniczo - Humanistyczny Siedlce 2011 1. Wstęp Celem ćwiczenia

Bardziej szczegółowo

POMIARY BEZPOŚREDNIE I POŚREDNIE PODSTAWOWYCH WIELKOŚCI ELEKTRYCZNYCH

POMIARY BEZPOŚREDNIE I POŚREDNIE PODSTAWOWYCH WIELKOŚCI ELEKTRYCZNYCH ĆWICZENIE 1 POMIY BEZPOŚEDNIE I POŚEDNIE PODSTWOWYCH WIELKOŚCI ELEKTYCZNYCH 1.1. Cel ćwiczenia Celem ćwiczenia jest nauczenie posługiwania multimetrem cyfrowym i przyrządami analogowymi przy pomiarach

Bardziej szczegółowo

5. POMIARY POJEMNOŚCI I INDUKCYJNOŚCI ZA POMOCĄ WOLTOMIERZY, AMPEROMIERZY I WATOMIERZY

5. POMIARY POJEMNOŚCI I INDUKCYJNOŚCI ZA POMOCĄ WOLTOMIERZY, AMPEROMIERZY I WATOMIERZY 5. POMY POJEMNOŚC NDKCYJNOŚC POMOCĄ WOLTOMEY, MPEOMEY WTOMEY Opracował:. Czajkowski Na format elektroniczny przetworzył:. Wollek Niniejszy rozdział stanowi część skryptu: Materiały pomocnicze do laboratorium

Bardziej szczegółowo

2. Narysuj schemat zastępczy rzeczywistego źródła napięcia i oznacz jego elementy.

2. Narysuj schemat zastępczy rzeczywistego źródła napięcia i oznacz jego elementy. Ćwiczenie 2. 1. Czym się różni rzeczywiste źródło napięcia od źródła idealnego? Źródło rzeczywiste nie posiada rezystancji wewnętrznej ( wew = 0 Ω). Źródło idealne posiada pewną rezystancję własną ( wew

Bardziej szczegółowo

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie ĆWICZENIE Połączenia szeregowe oraz równoległe elementów C. CEL ĆWICZENIA Celem ćwiczenia jest praktyczno-analityczna ocena wartości

Bardziej szczegółowo

Laboratorium Podstaw Pomiarów

Laboratorium Podstaw Pomiarów Laboratorium Podstaw Pomiarów Ćwiczenie 9 Pomiary pojemności Instrukcja Opracował: dr hab. inż. Grzegorz Pankanin, prof. PW Instytut Systemów Elektronicznych Wydział Elektroniki i Technik Informacyjnych

Bardziej szczegółowo

Pomiar mocy czynnej, biernej i pozornej

Pomiar mocy czynnej, biernej i pozornej Pomiar mocy czynnej, biernej i pozornej 1. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z różnymi metodami pomiaru mocy w obwodach prądu przemiennego.. Wprowadzenie: Wykonując pomiary z wykorzystaniem

Bardziej szczegółowo

Pomiar indukcyjności.

Pomiar indukcyjności. Pomiar indukcyjności.. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z metodami pomiaru indukcyjności, ich wadami i zaletami, wynikającymi z nich błędami pomiarowymi, oraz umiejętnością ich właściwego

Bardziej szczegółowo

POMIARY REZYSTANCJI. Cel ćwiczenia. Program ćwiczenia

POMIARY REZYSTANCJI. Cel ćwiczenia. Program ćwiczenia Pomiary rezystancji 1 POMY EZYSTNCJI Cel ćwiczenia Celem ćwiczenia jest poznanie typowych metod pomiaru rezystancji elementów liniowych i nieliniowych o wartościach od pojedynczych omów do kilku megaomów,

Bardziej szczegółowo

Laboratorium Podstaw Pomiarów

Laboratorium Podstaw Pomiarów Laboratorium Podstaw Pomiarów Ćwiczenie 5 Pomiary rezystancji Instrukcja Opracował: dr hab. inż. Grzegorz Pankanin, prof. PW Instytut Systemów Elektronicznych Wydział Elektroniki i Technik Informacyjnych

Bardziej szczegółowo

Uśrednianie napięć zakłóconych

Uśrednianie napięć zakłóconych Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Miernictwa Elektronicznego Uśrednianie napięć zakłóconych Grupa Nr ćwicz. 5 1... kierownik 2... 3... 4... Data Ocena I.

Bardziej szczegółowo

Wartość średnia półokresowa prądu sinusoidalnego I śr : Analogicznie określa się wartość skuteczną i średnią napięcia sinusoidalnego:

Wartość średnia półokresowa prądu sinusoidalnego I śr : Analogicznie określa się wartość skuteczną i średnią napięcia sinusoidalnego: Ćwiczenie 27 Temat: Prąd przemienny jednofazowy Cel ćwiczenia: Rozróżnić parametry charakteryzujące przebieg prądu przemiennego, oszacować oraz obliczyć wartości wielkości elektrycznych w obwodach prądu

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W TARNOWIE INSTYTUT POLITECHNICZNY LABORATORIUM METROLOGII. Instrukcja do wykonania ćwiczenia laboratoryjnego:

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W TARNOWIE INSTYTUT POLITECHNICZNY LABORATORIUM METROLOGII. Instrukcja do wykonania ćwiczenia laboratoryjnego: PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W TARNOWIE INSTYTUT POLITECHNICZNY LABORATORIUM METROLOGII Instrukcja do wykonania ćwiczenia laboratoryjnego: "Pomiary rezystancji metody techniczne i mostkowe" Tarnów

Bardziej szczegółowo

Laboratorium Podstaw Pomiarów

Laboratorium Podstaw Pomiarów Laboratorium Podstaw Pomiarów Ćwiczenie 9 Pomiary pojemności Instrukcja Opracował: dr hab. inż. Grzegorz Pankanin, prof. PW Instytut Systemów Elektronicznych Wydział Elektroniki i Technik Informacyjnych

Bardziej szczegółowo

nazywamy mostkiem zrównoważonym w przeciwieństwie do mostka niezrównoważonego, dla którego Z 1 Z 4 Z 2 Z 3. Z 5

nazywamy mostkiem zrównoważonym w przeciwieństwie do mostka niezrównoważonego, dla którego Z 1 Z 4 Z 2 Z 3. Z 5 Ćwiczenie E- Pomiar oporności i indukcyjności metodą mostkową I. el ćwiczenia: Ocena dokładności pomiaru oporności mostkiem Wheatstone`a, pomiar nieznanej oporności i indukcyjności mostkiem ndersona. II.

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 3 Zagadnienie mocy w obwodzie RLC przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie sinusoidalnie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTRYCE I ELEKTRONICE

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTRYCE I ELEKTRONICE WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTRYCE I ELEKTRONICE Klasa: 2Tc Technik mechatronik Program: 311410 (KOWEZIU ) Wymiar: 4h tygodniowo Na ocenę dopuszczającą uczeń: Zna

Bardziej szczegółowo

Generator. R a. 2. Wyznaczenie reaktancji pojemnościowej kondensatora C. 2.1 Schemat układu pomiarowego. Rys Schemat ideowy układu pomiarowego

Generator. R a. 2. Wyznaczenie reaktancji pojemnościowej kondensatora C. 2.1 Schemat układu pomiarowego. Rys Schemat ideowy układu pomiarowego PROTOKÓŁ POMAROWY LABORATORUM OBWODÓW SYGNAŁÓW ELEKTRYCZNYCH Grupa Podgrupa Numer ćwiczenia 3 Nazwisko i imię Data wykonania ćwiczenia Prowadzący ćwiczenie Podpis Data oddania sprawozdania Temat BADANA

Bardziej szczegółowo

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ Ćwiczenie 4 WYZNCZNE NDUKCYJNOŚC WŁSNEJ WZJEMNEJ Celem ćwiczenia jest poznanie pośrednich metod wyznaczania indukcyjności własnej i wzajemnej na podstawie pomiarów parametrów elektrycznych obwodu. 4..

Bardziej szczegółowo

POMIAR NAPIĘCIA STAŁEGO PRZYRZĄDAMI ANALOGOWYMI I CYFROWYMI. Cel ćwiczenia. Program ćwiczenia

POMIAR NAPIĘCIA STAŁEGO PRZYRZĄDAMI ANALOGOWYMI I CYFROWYMI. Cel ćwiczenia. Program ćwiczenia Pomiar napięć stałych 1 POMIA NAPIĘCIA STAŁEGO PZYZĄDAMI ANALOGOWYMI I CYFOWYMI Cel ćwiczenia Celem ćwiczenia jest poznanie: - parametrów typowych woltomierzy prądu stałego oraz z warunków poprawnej ich

Bardziej szczegółowo

Laboratorium Metrologii

Laboratorium Metrologii Laboratorium Metrologii Ćwiczenie nr 3 Oddziaływanie przyrządów na badany obiekt I Zagadnienia do przygotowania na kartkówkę: 1 Zdefiniować pojęcie: prąd elektryczny Podać odpowiednią zależność fizyczną

Bardziej szczegółowo

Źródła zasilania i parametry przebiegu zmiennego

Źródła zasilania i parametry przebiegu zmiennego POLIECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGEYKI INSYU MASZYN I URZĄDZEŃ ENERGEYCZNYCH LABORAORIUM ELEKRYCZNE Źródła zasilania i parametry przebiegu zmiennego (E 1) Opracował: Dr inż. Włodzimierz

Bardziej szczegółowo

st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE

st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE Układem

Bardziej szczegółowo

Pomiar podstawowych wielkości elektrycznych

Pomiar podstawowych wielkości elektrycznych Instytut Fizyki ul. Wielkopolska 15 70-451 Szczecin 1 Pracownia Elektroniki. Pomiar podstawowych wielkości elektrycznych........ (Oprac. dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia:

Bardziej szczegółowo

PRZYRZĄDY POMIAROWE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

PRZYRZĄDY POMIAROWE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego PRZYRZĄDY POMIAROWE Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Przyrządy pomiarowe Ogólny podział: mierniki, rejestratory, detektory, charakterografy.

Bardziej szczegółowo

PRACOWNIA ELEKTRYCZNA I ELEKTRONICZNA. Zespół Szkół Technicznych w Skarżysku-Kamiennej. Sprawozdanie z ćwiczenia nr Temat ćwiczenia: POMIARY MOCY

PRACOWNIA ELEKTRYCZNA I ELEKTRONICZNA. Zespół Szkół Technicznych w Skarżysku-Kamiennej. Sprawozdanie z ćwiczenia nr Temat ćwiczenia: POMIARY MOCY Zespół zkół Technicznych w karżysku-kamiennej prawozdanie z ćwiczenia nr Temat ćwiczenia: OWN ELEKTYZN ELEKTONZN imię i nazwisko OMY MOY rok szkolny klasa grupa data wykonania. el ćwiczenia: oznanie pośredniej

Bardziej szczegółowo

Zakład Metrologii i Systemów Pomiarowych Laboratorium Metrologii I. Grupa. Nr ćwicz.

Zakład Metrologii i Systemów Pomiarowych Laboratorium Metrologii I. Grupa. Nr ćwicz. Laboratorium Metrologii I Politechnika zeszowska akład Metrologii i Systemów Pomiarowych Laboratorium Metrologii I Mostki niezrównoważone prądu stałego I Grupa Nr ćwicz. 12 1... kierownik 2... 3... 4...

Bardziej szczegółowo

Wzmacniacz jako generator. Warunki generacji

Wzmacniacz jako generator. Warunki generacji Generatory napięcia sinusoidalnego Drgania sinusoidalne można uzyskać Poprzez utworzenie wzmacniacza, który dla jednej częstotliwości miałby wzmocnienie równe nieskończoności. Poprzez odtłumienie rzeczywistego

Bardziej szczegółowo

1 Ćwiczenia wprowadzające

1 Ćwiczenia wprowadzające 1 W celu prawidłowego wykonania ćwiczeń w tym punkcie należy posiłkować się wiadomościami umieszczonymi w instrukcji punkty 1.1.1. - 1.1.4. oraz 1.2.2. 1.1 Rezystory W tym ćwiczeniu należy odczytać wartość

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 7. Pomiar mocy czynnej, biernej i cosφ

INSTRUKCJA DO ĆWICZENIA NR 7. Pomiar mocy czynnej, biernej i cosφ INSTRUKCJA DO ĆWICZENIA NR 7 Pomiar mocy czynnej, biernej i cosφ Wstęp Układy elektryczne w postaci szeregowego połączenia RL, podczas zasilania z sieci napięcia przemiennego, pobierają moc czynną, bierną

Bardziej szczegółowo

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym Lekcja szósta poświęcona będzie analizie zjawisk rezonansowych w obwodzie RLC. Zjawiskiem rezonansu nazywamy taki stan obwodu RLC przy którym prąd i napięcie są ze sobą w fazie. W stanie rezonansu przesunięcie

Bardziej szczegółowo

I. Cel ćwiczenia: Poznanie własności obwodu szeregowego, zawierającego elementy R, L, C.

I. Cel ćwiczenia: Poznanie własności obwodu szeregowego, zawierającego elementy R, L, C. espół Szkół Technicznych w Skarżysku-Kamiennej Sprawozdanie PAOWNA EEKTYNA EEKTONNA imię i nazwisko z ćwiczenia nr Temat ćwiczenia: BADANE SEEGOWEGO OBWOD rok szkolny klasa grupa data wykonania. el ćwiczenia:

Bardziej szczegółowo

I. Cel ćwiczenia: Poznanie własności obwodu szeregowego zawierającego elementy R, L, C.

I. Cel ćwiczenia: Poznanie własności obwodu szeregowego zawierającego elementy R, L, C. espół Szkół Technicznych w Skarżysku-Kamiennej Sprawozdanie PAOWNA EEKTYNA EEKTONNA imię i nazwisko z ćwiczenia nr Temat ćwiczenia: BADANE SEEGOWEGO OBWOD rok szkolny klasa grupa data wykonania. el ćwiczenia:

Bardziej szczegółowo

METROLOGIA EZ1C

METROLOGIA EZ1C Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu METOLOGI Kod przedmiotu: EZ1C 300 016 POMI EZYSTNCJI METODĄ

Bardziej szczegółowo

Podstawy użytkowania i pomiarów za pomocą MULTIMETRU

Podstawy użytkowania i pomiarów za pomocą MULTIMETRU Podstawy użytkowania i pomiarów za pomocą MULTIMETRU Spis treści Informacje podstawowe...2 Pomiar napięcia...3 Pomiar prądu...5 Pomiar rezystancji...6 Pomiar pojemności...6 Wartość skuteczna i średnia...7

Bardziej szczegółowo

Ćwiczenie: "Pomiary rezystancji przy prądzie stałym"

Ćwiczenie: Pomiary rezystancji przy prądzie stałym Ćwiczenie: "Pomiary rezystancji przy prądzie stałym" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki.

Bardziej szczegółowo

Zaznacz właściwą odpowiedź

Zaznacz właściwą odpowiedź EUOEEKTA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej ok szkolny 200/20 Zadania dla grupy elektrycznej na zawody I stopnia Zaznacz właściwą odpowiedź Zadanie Kondensator o pojemności C =

Bardziej szczegółowo

2.Rezonans w obwodach elektrycznych

2.Rezonans w obwodach elektrycznych 2.Rezonans w obwodach elektrycznych Celem ćwiczenia jest doświadczalne sprawdzenie podstawowych właściwości szeregowych i równoległych rezonansowych obwodów elektrycznych. 2.1. Wiadomości ogólne 2.1.1

Bardziej szczegółowo

ELEMENTY RLC W OBWODACH PRĄDU SINUSOIDALNIE ZMIENNEGO

ELEMENTY RLC W OBWODACH PRĄDU SINUSOIDALNIE ZMIENNEGO Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii nstrukcja do zajęć laboratoryjnych ELEMENTY RLC W OBWODACH PRĄD SNSODALNE ZMENNEGO Numer ćwiczenia E0 Opracowanie:

Bardziej szczegółowo

Badanie obwodów rozgałęzionych prądu stałego z jednym źródłem. Pomiar mocy w obwodach prądu stałego

Badanie obwodów rozgałęzionych prądu stałego z jednym źródłem. Pomiar mocy w obwodach prądu stałego Badanie obwodów rozgałęzionych prądu stałego z jednym źródłem. Pomiar mocy w obwodach prądu stałego I. Prawa Kirchoffa Celem ćwiczenia jest zapoznanie się z rozpływami prądów w obwodach rozgałęzionych

Bardziej szczegółowo

Ćwiczenie 14 Temat: Pomiary rezystancji metodami pośrednimi, porównawczą napięć i prądów.

Ćwiczenie 14 Temat: Pomiary rezystancji metodami pośrednimi, porównawczą napięć i prądów. Ćwiczenie 14 Temat: Pomiary rezystancji metodami pośrednimi, porównawczą napięć i prądów. Cel ćwiczenia; Zaplanować pomiary w obwodach prądu stałego, dobrać metodę pomiarową do zadanej sytuacji, narysować

Bardziej szczegółowo

Miernictwo - W10 - dr Adam Polak Notatki: Marcin Chwedziak. Miernictwo I. dr Adam Polak WYKŁAD 10

Miernictwo - W10 - dr Adam Polak Notatki: Marcin Chwedziak. Miernictwo I. dr Adam Polak WYKŁAD 10 Miernictwo I dr Adam Polak WYKŁAD 10 Pomiary wielkości elektrycznych stałych w czasie Pomiary prądu stałego: Technika pomiaru prądu: Zakresy od pa do setek A Czynniki wpływające na wynik pomiaru (jest

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się

Bardziej szczegółowo

Katedra Energetyki. Laboratorium Podstaw Elektrotechniki i Elektroniki

Katedra Energetyki. Laboratorium Podstaw Elektrotechniki i Elektroniki 1 Katedra Energetyki Laboratorium Podstaw Elektrotechniki i Elektroniki Temat ćwiczenia: POMIARY PODSTAWOWYCH WIELKOŚCI ELEKTRYCZNYCH W OBWODACH PRĄDU STAŁEGO (obwód 3 oczkowy) 2 1. POMIARY PRĄDÓW I NAPIĘĆ

Bardziej szczegółowo

LABORATORYJNY MIERNIK RLC ELC 3133A DANE TECHNICZNE

LABORATORYJNY MIERNIK RLC ELC 3133A DANE TECHNICZNE LABORATORYJNY MIERNIK RLC ELC 3133A DANE TECHNICZNE 1 OGÓLNE DANE TECHNICZNE Mierzone parametry Typ układu pomiarowego L/C/R/D/Q/θ Indukcyjność (L) Tryb domyślny układ szeregowy Pojemność / rezystancja

Bardziej szczegółowo

Laboratorium Podstaw Pomiarów

Laboratorium Podstaw Pomiarów Laboratorium Podstaw Pomiarów Ćwiczenie 5 Pomiary rezystancji Instrukcja Opracował: dr hab. inż. Grzegorz Pankanin, prof. PW Instytut Systemów Elektronicznych Wydział Elektroniki i Technik Informacyjnych

Bardziej szczegółowo

Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych

Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych ĆWICZENIE 1 Badanie obwodów jednofazowych rozgałęzionych przy wymuszeniu sinusoidalnym Cel ćwiczenia Celem ćwiczenia jest Poznanie podstawowych elementów pasywnych R, L, C, wyznaczenie ich wartości na

Bardziej szczegółowo

LABORATORIUM OBWODÓW I SYGNAŁÓW

LABORATORIUM OBWODÓW I SYGNAŁÓW POLITECHNIKA WARSZAWSKA Instytut Radioelektroniki Zakład Radiokomunikacji WIECZOROWE STUDIA ZAWODOWE LABORATORIUM OBWODÓW I SYGNAŁÓW Ćwiczenie Temat: OBWODY PRĄDU SINUSOIDALNIE ZMIENNEGO Opracował: mgr

Bardziej szczegółowo

Temat: Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

Temat: Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych INSTYTUT SYSTEMÓW INŻYNIERII ELEKTRYCZNEJ POLITECHNIKI ŁÓDZKIEJ WYDZIAŁ: KIERUNEK: ROK AKADEMICKI: SEMESTR: NR. GRUPY LAB: SPRAWOZDANIE Z ĆWICZEŃ W LABORATORIUM METROLOGII ELEKTRYCZNEJ I ELEKTRONICZNEJ

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2 Ćwiczenie nr 10. Dwójniki RLC, rezonans elektryczny

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2 Ćwiczenie nr 10. Dwójniki RLC, rezonans elektryczny POTEHNKA WOŁAWSKA, WYDZAŁ PPT - ABOATOM Z PODSTAW EEKTOTEHNK EEKTONK Ćwiczenie nr. Dwójniki, rezonans elektryczny el ćwiczenia: Podstawowym celem ćwiczenia jest zapoznanie studentów właściwościami elementów

Bardziej szczegółowo

Ćwiczenie 2 Mostek pojemnościowy Ćwiczenie wraz z instrukcją i konspektem opracowali P.Wisniowski, M.Dąbek

Ćwiczenie 2 Mostek pojemnościowy Ćwiczenie wraz z instrukcją i konspektem opracowali P.Wisniowski, M.Dąbek Ćwiczenie 2 Mostek pojemnościowy Ćwiczenie wraz z instrukcją i konspektem opracowali P.Wisniowski, M.Dąbek el ćwiczenia elem ćwiczenia jest zapoznanie się z metodą mostkową pomiaru pojemności kondensatora

Bardziej szczegółowo

Seminarium Elektrycznych Metod i Przyrządów Pomiarowych

Seminarium Elektrycznych Metod i Przyrządów Pomiarowych Seminarium Elektrycznych Metod i Przyrządów Pomiarowych Mostki dwuprądowe Część pierwsza Mostki dwuprądowe Program seminarium:. Część pierwsza: Wstęp kład mostka dwuprądowego zrównoważonego Zasada działania

Bardziej szczegółowo

Ćwiczenie: "Obwody ze sprzężeniami magnetycznymi"

Ćwiczenie: Obwody ze sprzężeniami magnetycznymi Ćwiczenie: "Obwody ze sprzężeniami magnetycznymi" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia:

Bardziej szczegółowo

ĆWICZENIE T2 PRACA RÓWNOLEGŁA TRANSFORMATORÓW

ĆWICZENIE T2 PRACA RÓWNOLEGŁA TRANSFORMATORÓW ĆWICZENIE T2 PRACA RÓWNOLEGŁA TRANSFORMATORÓW I. Program ćwiczenia 1. Pomiar napięć i impedancji zwarciowych transformatorów 2. Pomiar przekładni napięciowych transformatorów 3. Wyznaczenie pomiarowe charakterystyk

Bardziej szczegółowo

Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą.

Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą. Ćwiczenie nr 9 Pomiar rezystancji metodą porównawczą. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne poznanie różnych metod pomiaru rezystancji, a konkretnie zapoznanie się z metodą porównawczą. 2. Dane

Bardziej szczegółowo

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC Ćwiczenie 45 BADANE EEKTYZNEGO OBWOD EZONANSOWEGO 45.. Wiadomości ogólne Szeregowy obwód rezonansowy składa się z oporu, indukcyjności i pojemności połączonych szeregowo i dołączonych do źródła napięcia

Bardziej szczegółowo

Podstawy elektroniki i metrologii

Podstawy elektroniki i metrologii Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Metrologii i Optoelektroniki Podstawy elektroniki i metrologii Studia I stopnia kier. Informatyka semestr 2 Ilustracje do

Bardziej szczegółowo

Realizacja zadań pomiarowych. Dr inż. Janusz MIKOŁAJCZYK

Realizacja zadań pomiarowych. Dr inż. Janusz MIKOŁAJCZYK Realizacja zadań pomiarowych Dr inż. Janusz MIKOŁAJCZYK Tematyka wykładu: - pomiary napięć i prądów stałych, - pomiary parametrów energetycznych sygnałów zmiennych, - pomiary parametrów czasowych sygnałów

Bardziej szczegółowo

BADANIE SZEREGOWEGO OBWODU REZONANSOWEGO RLC

BADANIE SZEREGOWEGO OBWODU REZONANSOWEGO RLC BADANIE SZEREGOWEGO OBWOD REZONANSOWEGO RLC Marek Górski Celem pomiarów było zbadanie krzywej rezonansowej oraz wyznaczenie częstotliwości rezonansowej. Parametry odu R=00Ω, L=9,8mH, C = 470 nf R=00Ω,

Bardziej szczegółowo

WZMACNIACZ NAPIĘCIOWY RC

WZMACNIACZ NAPIĘCIOWY RC WZMACNIACZ NAPIĘCIOWY RC 1. WSTĘP Tematem ćwiczenia są podstawowe właściwości jednostopniowego wzmacniacza pasmowego z tranzystorem bipolarnym. Zadaniem ćwiczących jest dokonanie pomiaru częstotliwości

Bardziej szczegółowo

Ćwiczenie 1. Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym

Ćwiczenie 1. Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym Ćwiczenie 1 Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym Wprowadzenie Celem ćwiczenia jest sprawdzenie podstawowych praw elektrotechniki w obwodach prądu stałego. Badaniu

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI. Katedra Metrologii i Optoelektroniki. Metrologia. Ilustracje do wykładu

Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI. Katedra Metrologii i Optoelektroniki. Metrologia. Ilustracje do wykładu Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Metrologii i Optoelektroniki Metrologia Studia I stopnia, kier Elektronika i Telekomunikacja, sem. 2 Ilustracje do wykładu

Bardziej szczegółowo

POMIARY MOCY (OBWODY JEDNO- I TRÓJFAZOWE). POMIARY PRĄDÓW I NAPIĘĆ W OBWODACH TRÓJFAZOWYCH

POMIARY MOCY (OBWODY JEDNO- I TRÓJFAZOWE). POMIARY PRĄDÓW I NAPIĘĆ W OBWODACH TRÓJFAZOWYCH POMIRY MOCY (OBWODY JEDNO- I TRÓJFZOWE). POMIRY PRĄDÓW I NPIĘĆ W OBWODCH TRÓJFZOWYCH. Pomiary mocy w obwodach jednofazowych W obwodach prądu stałego moc określamy jako iloczyn napięcia i prądu stałego,

Bardziej szczegółowo

Miernictwo elektryczne i elektroniczne

Miernictwo elektryczne i elektroniczne Miernictwo elektryczne i elektroniczne Metrologia jest specjalnością obejmującą teorię mierzenia i problemy technicznej realizacji procesu pomiarowego. Wielkości aktywne można mierzyć bez dodatkowego źródła

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTROTECHNICE I ELEKTRONICE

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTROTECHNICE I ELEKTRONICE WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTROTECHNICE I ELEKTRONICE Klasa: 1 i 2 ZSZ Program: elektryk 741103 Wymiar: kl. 1-3 godz. tygodniowo, kl. 2-4 godz. tygodniowo Klasa

Bardziej szczegółowo

R 1. Układy regulacji napięcia. Pomiar napięcia stałego.

R 1. Układy regulacji napięcia. Pomiar napięcia stałego. kłady regulacji napięcia. Pomiar napięcia stałego.. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z metodami regulacji napięcia stałego, stosowanymi w tym celu układami elektrycznymi, oraz metodami

Bardziej szczegółowo

Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych"

Ćwiczenie: Właściwości wybranych elementów układów elektronicznych Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki.

Bardziej szczegółowo

Ćwiczenie nr.14. Pomiar mocy biernej prądu trójfazowego. Q=UIsinϕ (1)

Ćwiczenie nr.14. Pomiar mocy biernej prądu trójfazowego. Q=UIsinϕ (1) 1 Ćwiczenie nr.14 Pomiar mocy biernej prądu trójfazowego 1. Zasada pomiaru Przy prądzie jednofazowym moc bierna wyraża się wzorem: Q=UIsinϕ (1) Do pomiaru tej mocy stosuje się waromierze jednofazowe typu

Bardziej szczegółowo

Układy regulacji i pomiaru napięcia zmiennego.

Układy regulacji i pomiaru napięcia zmiennego. Układy regulacji i pomiaru napięcia zmiennego. 1. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z metodami regulacji napięcia zmiennego, stosowanymi w tym celu układami elektrycznymi, oraz metodami

Bardziej szczegółowo

13 K A T E D R A F I ZYKI S T O S O W AN E J

13 K A T E D R A F I ZYKI S T O S O W AN E J 3 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 3. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015 EROELEKTR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 014/015 Zadania z elektrotechniki na zawody II stopnia (grupa elektryczna) Zadanie 1 W układzie jak na rysunku 1 dane są:,

Bardziej szczegółowo