Geometria Różniczkowa I

Wielkość: px
Rozpocząć pokaz od strony:

Download "Geometria Różniczkowa I"

Transkrypt

1 Geometria Różniczkowa I wykład drugi Powierzchnie zanurzone, o których rozmawialiśmy na poprzednim wykładzie są bardzo istotną klasą przykładów rozmaitości różniczkowych. Pod koniec dzisiejszego wykładu okaże się, że przykłady te są nie tylko bardzo istotne, ale także bardzo ogólne. Na razie zajmijmy się jednak definiowaniem bardziej abstrakcyjnego pojęcia rozmaitości nie odwołującego się do zanurzenia wprzestrzeń R n. Definicja 1. Rozmaitością M wymiaru n nazywamy przestrzeń topologiczną Hausdorffa taką, żekażdypunktp MmaotoczenieotwarteOhomeomorficznezpewnymotwartymzbiorem przestrzeni R n. Przypominamy, że w tym kontekście homeomorfizm oznacza ciągłą bijekcję, której odwrotność też jest ciągła. Powyższa definicja wyraża taką intuicję, że rozmaitość jest to zbiór, który lokalniewyglądajakkawałek R n,natomiastniewspominaostrukturzeróżniczkowej.niemawięc sensu jakiekolwiek różniczkowanie funkcji określonej na rozmaitości w powyższym sensie, można za to mówić o odwzorowaniach ciągłych. Żeby podkreślić fakt braku struktury różniczkowej o takich rozmaitościach mówi się często dodając przymiotnik topologiczne. Przypominamy również, że przestrzeń Hausdorffa jest to taka przestrzeń topologiczna w której każde dwa punkty mają rozłączne otoczenia. Większość przestrzeni topologicznych, z którymi spotyka się fizyk ma tę własność. Podanie przykładu przestrzeni, która nie jest przestrzenią Hausdorffa wymaga namysłu. Ja mam w zanadrzu następujący przykład: punktami przestrzeni są krzywe(niektóre dosyć proste) na rysunku. Te krzywe, które znajdują się w centralnej części asymptotycznie dążądoprostychx=1ix= 1. Otoczeniaskładająsięzsąsiadującychkrzywych.Wtensposóbprostex=1ix= 1niemają rozłącznych otoczeń. Przykład jest opisany w sposób nie bardzo precyzyjny, nie koncentrujemy się jednak na kwestiach hausdorffowości lub niehausdorffowości. SamastrukturatopologicznaihomeomorfizmyzR n niewystarczadonaszychcelów.my chcielibyśmy zajmować się analizą na rozmaitościach, w szczególności chcielibyśmy coś różniczkować. W tym celu potrzebujemy bogatszej struktury. Zaobserwujmy najpierw, że pojęcie 1

2 2 wymiarumasens,ponieważniemahomeomorfizmówzr n do R m dlam n(bezdowodu). Odwzorowanieϕ:M O R n będącehomeomorfizmem(występującymwdefinicjirozmaitości) nazywamy lokalną mapą na rozmaitości M, lub lokalnym układem współrzędnych. Kolekcję lokalnych map o tej własności, że każdy punkt rozmaitości należy do dziedziny przynajmniej jednej mapy nazywamy atlasem na rozmaitości M. W przypadku, kiedy dwie mapy mają dziedziny o niepustym przecięciu możemy mówić o odwzorowaniu zmiany współrzędnych: O U ψ ϕ R n ψ ϕ 1 R n Odwzorowanieψ ϕ 1 : R n R n madobrzenamznanedziedzinęiprzeciwdziedzinę.w szczególności potrafimy sprawdzać różniczkowalność takich odwzorowań. Mówimy, że atlas jestklasyc k,jeśliwszystkieodwzorowaniazmianywspółrzędnychsąklasyc k.możnamówić takżeoatlasiegładkim(c )orazanalitycznym(c ω ). Definicja2.RozmaitościąróżniczkowąklasyC k nazywamyrozmaitośćwrazzatlasemklasy C k.mówimytakżeorozmaitościachgładkich,tznklasyc orazanalitycznych,tznc ω. W trakcie naszego wykładu rozważać będziemy właściwie jedynie rozmaitości gładkie. Przy okazjiwartozaobserwować,żejeślinarozmaitościistniejestrukturac 1,toistniejetakżestruktura gładka. Dzięki temu powierzchnie zanurzone o których mówiliśmy na poprzednim wykładzie są także rozmaitościami gładkimi, choć domagaliśmy się zawsze, aby wszystkie odwzorowania byłyklasyc 1.Wszczególnościwystępującywdefinicjipowierzchnizanurzonejukładwspółrzędnych w otoczeniu punktu, taki, że przynależność do powierzchni oznacza znikanie ostatnich współrzędnych dostarcza lokalnej mapy- należy wziąć pierwsze nieznikające k współrzędnych. Formalnie oznacza to, że składamy układ współrzędnych Φ z rzutem na podprzestrzeń w R k R n zachowującklasęróżniczkowalności. Przykład1.WprzestrzeniX= C 2 \{(0,0)}wprowadzamyrelacjęrównoważności (z,w) (z,w ) ρ C : z=ρz w=ρw. RozważamyzbiórM=X/ klasabstrakcjiwzględempowyższejrelacji.jesttownaturalny sposób przestrzeń topologiczna- wyposażona jest w topologię ilorazową. Zbiór O M jest otwartywtedyitylkowtedy,gdyπ 1 (O)jestotwartywX.Symbolemπoznaczamykanoniczną projekcję π: X M na przestrzeń ilorazową. Wprowadźmy teraz w M strukturę rozmaitości gładkiej: Wyróżniamy dwa zbiory otwarte O, U M: O={[z,1]: z C}, U={[1,w]: w C}. Zauważmy,że[0,1]={(0,w)},[1,0]={(z,0)}oraz[1,0] U,[0,1] O,ponadtoU = M\{[0,1]}iO=M\{[1,0]}.Mamywięc M=O U.

3 Otwartośćobuzbiorówtakżeniepodlegadyskusji.PotrzebujemyterazodwzorowaniawR n ze stosownym n. Definiujemy zatem ϕ:o R 2, ϕ([z,1])=(r(z),i(z)) ψ:u R 2, ϕ([1,w])=(r(w), I(w)). Obrazyobydwumaptocałaprzestrzeń R 2,ϕ,ψsąhomeomorfizmami.Sprawdźmyterazczy zadają strukturę rozmaitości różniczkowej. Dla ułatwienia rachunków oznaczamy z=x+iy ϕ([z,1])=(x,y) w=a+bi ψ([1,w])=(a, b). PrzecięcieO Uskładasięzklasabstrakcjipartakich,żeżadnawspółrzędnaniejestrówna zero. Możemy w każdej takiej klasie znaleźć reprezentantów obu typów(z, 1) i(1, w). Warunek równoważności[z,1]=[1,w]oznacza,że z= 1 1, czyli x+iy= w a+ib = a ib a b a 2 +b 2= a 2 +b 2 i a 2 +b 2. Odwzorowanie zamiany współrzędnych, które parze(a, b) przypisuje parę(x, y) jest postaci ϕ ψ 1 R 2 a b \{(0,0} (a,b) ( a 2 +b 2, \{(0,0} a 2 +b 2) R2 3 R 2 \{(0,0)} ϕ O U φ ψ ψ 1 R 2 \{(0,0)} Widać, że odwzorowanie zamiany współrzędnych jest odwzorowaniem gładkim. Jest to inwersja względem okręgu jednostkowego Jak Państwo sądzą, którą z dobrze znanych dwuwymiarowych powierzchni właśnie opisaliśmy? Odgadnąć to można przyglądając się wzorom dotyczącym zamiany zmiennych. Wzory te

4 4 wyglądają zupełnie tak samo jak wzory związane z zamianą zmiennych stereograficznych na sferzes 2 związanychzbiegunamipółnocnymipołudniowym.istotnie,weźmys 2 ={(x,y,z) R 3 : x 2 +y 2 +z 2 =1}izapiszmywspółrzędnestereograficznewzględemobubiegunów: X= x 1 z Y= y 1 z A= x 1+z B= y 1+z (x,y,z) (X,Y) (A,B) A B X= Y= A 2 +B 2 A 2 +B 2. Spodziewamysięwięc,żenaszarozmaitośćMtosferaS 2.BezpośrednieodwzorowanieF : M R 3,któregoobrazemjestS 2 możnazdefiniowaćnastępująco: ( 2x 2y y 2 ) F([x+iy,1])= 1+x 2 +y 2,, F([0,1]=(0,0,1). 1+x 2 +y 2,1 x2 1+x 2 +y 2 Należałobyoczywiściesprawdzić,czyjesttoodwzorowanieklasyprzynajmniejC 1,odwracalne poobcięciudoobrazuiczyjegoodwrotnośćjesttakżeklasyc 1.Rachunkitejednakpominiemy.StandardoworozmaitośćMoznaczanajest CP 1 inazywanazespolonąprzestrzenią projektywnąwymiaru(zespolonego)1.startujączc n+1 konstruujemywidentycznysposób CP n.właśniepokazaliśmy,że CP 1 jestdyfeomorficznazs 2.Pozostałezespoloneprzestrzenie przestrzenie projektywne nie mają takich prostych reprezentacji. Można także konstruować rzeczywisteprzestrzenieprojektywne RP n dzieląc R n+1 bezzeraprzezstosownąrelacjęrównoważności.nietrudnostwierdzić,że RP 1 S 1. Inne przykłady znanych(lub nie) dwuwymiarowych powierzchni tworzyć można wprowadzijącstosownerelacjerównoważnościwr 2 : Przykład 2. Pierwsza relacja to: (x,y) (x,y ) y=y,x x Z Jestoczywiste,że R 2 / jestdyfeomorficznezwalcem.każdaklasarównoważnościmareprezentantawpasku[0,1[ R,prostex=0ix=1utożsamiamy.

5 5 Przykład 3. Druga relacja(dla wygody zmniejszymy trochę rozmiar w pionie) jest relacją w R ] 1,1[ (x,y) (x,y ) x x=k Z, y =( 1) k y. Znowu obserwujemy, że każda klasa równoważności ma reprezentanta w pasku[0, 1[ ] 1, 1[ orazżeodcinkix=0ix=1utożsamiamyzmieniającjednakichorientację.wynikiemjest wstęga Moebiusa. DoopisaniawstęgiMoebiusapotrzebnesądwiemapy:zdziedzinąU={[(x,y)]:x/ Z} orazo={[(x,y)]:x ]k 1 2,k+1 2 [}: U O O DlakażdejklasyleżącejwUistniejereprezentant(α,y)taki,żeα ]0,1[.Definiujemyodwzorowanie ϕ:u R 2, ϕ([α,y])=(α,y). DlakażdejklasyleżącejwOistniejereprezentant(β,y)taki,żeβ ] 1 2,2 3 [.Definiujemyodwzorowanie ψ:o R 2, ϕ([β,y])=(β,y). Przyjrzyjmy się jeszcze zamianie współrzędnych. Zbiór O U składa się z dwóch składowych spójnychaib A B WobszarzeAzamianazmiennychmapostaćψ ϕ 1 (α,y) (1+α, y),zaśwobszarzeb zamiana ta jest identycznością.

6 6 Przykład4.OstatniegoprzykładudostarczanastępującarelacjawR 2 : (x,y) (x,y ) x x=k Z, y ( 1) k y Z. Obserwujemy, że każda klasa równoważności ma reprezentanta w kwadracie[0, 1[ [0, 1[, przy czym brzegi kwadratu są utożsamione jak na rysunku PowstałarozmaitośćnosinazwębutelkiKleina.Niedasięonazanurzyćwprzestrzeń R 3, potrzebujemydotegowymiaru4.wprzestrzeni R 3 możemyjązwizualizowaćjedyniedopuszczając samoprzecięcie: Mając dwie rozmaitości różniczkowe M i N możemy wypowiadać się o różniczkowalności odwzorowań między nimi. Definicja3.Mówimy,żeodwzorowanief:M NjestklasyC k jeślidlakażdejparylokalnych map(o,ϕ)nami(u,ψ)nanodwzorowanieϕ 1 f ψ:r m R n jestklasyc k.rozmaitości MiNmusząbyćklasyprzynajmniejC k. Łatwo stwierdzić, że różniczkowalność wystarczy sprawdzać w wybranych mapach dbając aby ichdziedzinypokrywałymizbiórf(m) N. Na sam koniec zanotujmy twierdzenie Twierdzenie 1(Whitney). Każda parazwarta różniczkowalna i spójna powierzchnia wymiaru nmożezostaćzanurzonawprzestrzeni R 2n+1. Powyższe twierdzenie pokazuje, że szczególne przykłady powierzchni zanurzonych są w istocie bardzo ogólne.

Rys. 11: Pomocne wykresy.

Rys. 11: Pomocne wykresy. 3 2 1 0-1 -2-3 -10-8 -6-4 -2 0 Rys. 11: Pomocne wykresy. wszystkim πe t = πe s +2πl dla l Z, tzn e s = e t +2l. Potrzeba ponadto także aby (e t 1) 2 = (e s 1) 2. Wstawiając do drugiego warunku konsekwencję

Bardziej szczegółowo

Geometria Różniczkowa I

Geometria Różniczkowa I Geometria Różniczkowa I wykład ósmy Orientacja przestrzeni wektorowej. Mówimy, że dwie bazy e i f w skończenie-wymiarowej przestrzeniwektorowejv mająjednakowąorientacjęjeślimacierzprzejścia[id] f e madodatni

Bardziej szczegółowo

Topologia I Wykład 4.

Topologia I Wykład 4. Topologia I Wykład 4. Stefan Jackowski 24 października 2012 Przeciąganie topologii przez rodzinę przekształceń X zbiór. f = {f i : X Y i } i I rodziną przekształceń o wartościach w przestrzeniach topologicznych

Bardziej szczegółowo

Notatki do wykładu Geometria Różniczkowa I

Notatki do wykładu Geometria Różniczkowa I Notatki do wykładu Geometria Różniczkowa I 7 października 23 Powierzchnie zanurzone Tegoroczna wersja wykładu z geometrii różniczkowej będzie różniła się od poprzedniej kolejnością materiału. Zgodnie z

Bardziej szczegółowo

Topologia - Zadanie do opracowania. Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski

Topologia - Zadanie do opracowania. Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski Topologia - Zadanie do opracowania Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski 5 grudnia 2013 Zadanie 1. (Topologie na płaszczyźnie) Na płaszczyźnie R 2 rozważmy następujące topologie: a) Euklidesową

Bardziej szczegółowo

Notatki do wykładu Geometria Różniczkowa II

Notatki do wykładu Geometria Różniczkowa II Notatki do wykładu Geometria Różniczkowa II Katarzyna Grabowska 9 października 28 Powierzchnie zanurzone Wykład z geometrii różniczkowej zaczniemy od definicji powierzchni zanurzonej, czyli specjalnego

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 12: Krzywe eliptyczne Gniewomir Sarbicki Rozważać będziemy przestrzeń K n Definicja: x y λ K x = λy. Relację nazywamy różnieniem się o skalar Przykład: [4, 10, 6, 14] [6, 15,

Bardziej szczegółowo

Podstawy teoretyczne na egzamin z MMFiA II.

Podstawy teoretyczne na egzamin z MMFiA II. Podstawy teoretyczne na egzamin z MMFiA II. Bartłomiej Dębski 14 lutego 2010 Streszczenie Oddaję w ręce Czytelników krótki przegląd zagadnień omawianych w ramach egzaminu z MMFiA II. Znajdują się tutaj

Bardziej szczegółowo

Geometria Różniczkowa II wykład piąty

Geometria Różniczkowa II wykład piąty Geometria Różniczkowa II wykład piąty Wykład piąty poświęcony będzie pojęciu całkowalności dystrybucji oraz fundamentalnemu dal tego zagadnienia twierdzeniu Frobeniusa. Przy okazji postanowiłam sprawdzić

Bardziej szczegółowo

Rachunek różniczkowy i całkowy w przestrzeniach R n

Rachunek różniczkowy i całkowy w przestrzeniach R n Rachunek różniczkowy i całkowy w przestrzeniach R n Na dzisiejszym wykładzie rozważać będziemy funkcje f : R m R n Każda taka funkcję f można przedstawić jako wektor funkcji (f 1, f 2,, f n ), gdzie każda

Bardziej szczegółowo

Zad.3. Jakub Trojgo i Jakub Wieczorek. 14 grudnia 2013

Zad.3. Jakub Trojgo i Jakub Wieczorek. 14 grudnia 2013 Zad.3 Jakub Trojgo i Jakub Wieczorek 14 grudnia 2013 W pierwszej części naszej pracy będziemy chcieli zbadać ciągłość funkcji f(x, y) w przypadku gdy płaszczyzna wyposażona jest w jedną z topologii: a)

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Geometria Różniczkowa I

Geometria Różniczkowa I Geometria Różniczkowa I wykład trzeci NiechC (M)oznaczazbiórwszystkichgładkichfunkcjinarozmaitościM.C (M)jestrzeczywistą, przemienną algebrą z jedynką. Istotną rolę w geometrii różniczkowej odgrywają homomorfizmy

Bardziej szczegółowo

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych

Bardziej szczegółowo

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych

Bardziej szczegółowo

Wykład 15. Matematyka 3, semestr zimowy 2011/ listopada 2011

Wykład 15. Matematyka 3, semestr zimowy 2011/ listopada 2011 Wykład 5 Matematyka 3, semestr zimowy / 9 listopada W trakcie tego i następnych kilku wykładów zajmować się będziemy analizą zespoloną, czyli różniczkowaniem i całkowaniem funkcji argumentu zespolonego

Bardziej szczegółowo

FUNKCJE. (odwzorowania) Funkcje 1

FUNKCJE. (odwzorowania) Funkcje 1 FUNKCJE (odwzorowania) Funkcje 1 W matematyce funkcja ze zbioru X w zbiór Y nazywa się odwzorowanie (przyporządkowanie), które każdemu elementowi zbioru X przypisuje jeden, i tylko jeden element zbioru

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.

Bardziej szczegółowo

3 Abstrakcyjne kompleksy symplicjalne.

3 Abstrakcyjne kompleksy symplicjalne. 3 Abstrakcyjne kompleksy symplicjalne. Uwaga 3.1. Niech J będzie dowolnym zbiorem indeksów, niech R J = {(x α ) α J J α x α R} będzie produktem kartezjańskim J kopii R, niech E J = {(x α ) α J R J x α

Bardziej szczegółowo

R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} },

R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, nazywa- Definicja 1. Przestrzenią liniową R n my zbiór wektorów R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, z określonymi działaniami dodawania wektorów i mnożenia wektorów przez liczby rzeczywiste.

Bardziej szczegółowo

Wykład 9. Matematyka 3, semestr zimowy 2011/ listopada 2011

Wykład 9. Matematyka 3, semestr zimowy 2011/ listopada 2011 Wykład 9. Matematyka 3, semestr zimowy 2011/2012 4 listopada 2011 W trakcie poprzedniego wykładu zdefiniowaliśmy pojęcie k-kowektora na przestrzeni wektorowej. Wprowadziliśmy także iloczyn zewnętrzny wielokowektorów

Bardziej szczegółowo

Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A

Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A Funkcje analityczne Wykład 3. Funkcje holomorficzne Paweł Mleczko Funkcje analityczne (rok akademicki 206/207) Funkcje zespolone zmiennej zespolonej Funkcje zespolone zmiennej zespolonej Niech A C. Funkcja

Bardziej szczegółowo

Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)

Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018) Funkcje analityczne Wykład 2. Płaszczyzna zespolona Paweł Mleczko Funkcje analityczne (rok akademicki 2017/2018) Plan wykładu W czasie wykładu omawiać będziemy różne reprezentacje płaszczyzny zespolonej

Bardziej szczegółowo

Wykłady ostatnie. Rodzinę P podzbiorów przestrzeni X nazywamy σ - algebrą, jeżeli dla A, B P (2) A B P, (3) A \ B P,

Wykłady ostatnie. Rodzinę P podzbiorów przestrzeni X nazywamy σ - algebrą, jeżeli dla A, B P (2) A B P, (3) A \ B P, Wykłady ostatnie CAŁKA LBSGU A Zasadnicza różnica koncepcyjna między całką Riemanna i całką Lebesgue a polega na zamianie ról przestrzeni wartości i przestrzeni argumentów przy konstrukcji sum górnych

Bardziej szczegółowo

Grupa klas odwzorowań powierzchni

Grupa klas odwzorowań powierzchni Grupa klas odwzorowań powierzchni Błażej Szepietowski Uniwersytet Gdański Horyzonty matematyki 2014 Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki 2014 1 / 36 Grupa klas odwzorowań

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

11. Pochodna funkcji

11. Pochodna funkcji 11. Pochodna funkcji Definicja pochodnej funkcji w punkcie. Niech X R będzie zbiorem niepustym, f:x >R oraz niech x 0 X. Funkcję określoną wzorem, nazywamy ilorazem różnicowym funkcji f w punkcie Mówimy,

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/

Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro

Bardziej szczegółowo

2. Definicja pochodnej w R n

2. Definicja pochodnej w R n 2. Definicja pochodnej w R n Niech będzie dana funkcja f : U R określona na zbiorze otwartym U R n. Pochodną kierunkową w punkcie a U w kierunku wektora u R n nazywamy granicę u f(a) = lim t 0 f(a + tu)

Bardziej szczegółowo

II. FUNKCJE WIELU ZMIENNYCH

II. FUNKCJE WIELU ZMIENNYCH II. FUNKCJE WIELU ZMIENNYCH 1. Zbiory w przestrzeni R n Ustalmy dowolne n N. Definicja 1.1. Zbiór wszystkich uporzadkowanych układów (x 1,..., x n ) n liczb rzeczywistych, nazywamy przestrzenią n-wymiarową

Bardziej szczegółowo

Wprowadzenie do struktur o-minimalnych

Wprowadzenie do struktur o-minimalnych Wprowadzenie do struktur o-minimalnych Piotr Pokora 22.02.2009 1 Wprowadzenie do struktur o-minimalnych i pojęcia wstępne Na początku lat 80-tych Pillay i Steinhorn wprowadzili pojęcie o-minimalności bazując

Bardziej szczegółowo

Notatki do wykładu Geometria Różniczkowa I

Notatki do wykładu Geometria Różniczkowa I Notatki do wykładu Geometria Różniczkowa I Katarzyna Grabowska, KMMF 22 października 2013 1 Przestrzeń styczna i kostyczna c.d. Pora na podsumowanie: Zdefiniowaliśmy przestrzeń styczną do przestrzeni afinicznej

Bardziej szczegółowo

Wykład 11 i 12. Matematyka 3, semestr zimowy 2011/ i 18 listopada 2011

Wykład 11 i 12. Matematyka 3, semestr zimowy 2011/ i 18 listopada 2011 Wykład 11 i 12 Matematyka 3, semestr zimowy 2011/2012 15 i 18 listopada 2011 Zanim przejdziemy do formułowaniu lematu Poincaré musimy zdefiniować pojęcie transportu formy. Dyskutowaliśmy już wcześniej

Bardziej szczegółowo

Przestrzenie wektorowe

Przestrzenie wektorowe Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:

Bardziej szczegółowo

Geometria różniczkowa 2 Wersja wstępna. Paweł Grzegorz Walczak

Geometria różniczkowa 2 Wersja wstępna. Paweł Grzegorz Walczak Geometria różniczkowa 2 Wersja wstępna Paweł Grzegorz Walczak 2 Spis treści 1 Scena 5 1.1 Przegląd pojęć topologicznych...................... 5 1.1.1 Pojęcia podstawowe........................ 5 1.1.2

Bardziej szczegółowo

II. Równania autonomiczne. 1. Podstawowe pojęcia.

II. Równania autonomiczne. 1. Podstawowe pojęcia. II. Równania autonomiczne. 1. Podstawowe pojęcia. Definicja 1.1. Niech Q R n, n 1, będzie danym zbiorem i niech f : Q R n będzie daną funkcją określoną na Q. Równanie różniczkowe postaci (1.1) x = f(x),

Bardziej szczegółowo

13. Równania różniczkowe - portrety fazowe

13. Równania różniczkowe - portrety fazowe 13. Równania różniczkowe - portrety fazowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 13. wrównania Krakowie) różniczkowe - portrety fazowe 1 /

Bardziej szczegółowo

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja) Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Rozdział 1 Podstawowe struktury algebraiczne 1.1. Działania wewnętrzne Niech X będzie zbiorem niepustym. Dowolną funkcję h : X X X nazywamy działaniem wewnętrznym w zbiorze X. Działanie wewnętrzne, jak

Bardziej szczegółowo

Topologia Algebraiczna - Pomocnik studenta. 7. Klasyfikacja homotopijna odwzorowań

Topologia Algebraiczna - Pomocnik studenta. 7. Klasyfikacja homotopijna odwzorowań Topologia Algebraiczna - Pomocnik studenta. 7. Klasyfikacja homotopijna odwzorowań Agnieszka Bojanowska Stefan Jackowski 31 stycznia 2011 1 Odwzorowania w sfery Wykażemy, że klasa homotopii odwzorowania

Bardziej szczegółowo

Zasada indukcji matematycznej

Zasada indukcji matematycznej Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

Rachunek całkowy funkcji wielu zmiennych

Rachunek całkowy funkcji wielu zmiennych Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1

Bardziej szczegółowo

Wprowadzenie Podstawy Fundamentalne twierdzenie Kolorowanie. Grafy planarne. Przemysław Gordinowicz. Instytut Matematyki, Politechnika Łódzka

Wprowadzenie Podstawy Fundamentalne twierdzenie Kolorowanie. Grafy planarne. Przemysław Gordinowicz. Instytut Matematyki, Politechnika Łódzka Grafy planarne Przemysław Gordinowicz Instytut Matematyki, Politechnika Łódzka Grafy i ich zastosowania Wykład 12 Plan prezentacji 1 Wprowadzenie 2 Podstawy 3 Fundamentalne twierdzenie 4 Kolorowanie grafów

Bardziej szczegółowo

Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011).

Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011). Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011). Poprzedniczka tej notatki zawierała błędy! Ta pewnie zresztą też ; ). Ćwiczenie 3 zostało zmienione, bo żądałem, byście dowodzili czegoś,

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 2 marca 2017 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod m)),

Bardziej szczegółowo

Pochodna funkcji a styczna do wykresu funkcji. Autorzy: Tomasz Zabawa

Pochodna funkcji a styczna do wykresu funkcji. Autorzy: Tomasz Zabawa Pochodna funkcji a do wykresu funkcji Autorzy: Tomasz Zabawa 2018 Pochodna funkcji a do wykresu funkcji Autor: Tomasz Zabawa Pojęcie stycznej do wykresu funkcji f w danym punkcie wykresu P( x 0, f( x 0

Bardziej szczegółowo

Definicje i przykłady

Definicje i przykłady Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )

Bardziej szczegółowo

Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 2013

Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 2013 Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 013 3.4.1 Inwersja względem okręgu. Inwersja względem okręgu jest przekształceniem płaszczyzny

Bardziej szczegółowo

VI. Równania różniczkowe liniowe wyższych rzędów

VI. Równania różniczkowe liniowe wyższych rzędów VI. 1. Równanie różniczkowe liniowe n-tego rzędu o zmiennych współczynnikach Niech podobnie jak w poprzednim paragrafie K = C lub K = R. Podobnie jak w dziedzinie rzeczywistej wprowadzamy pochodne wyższych

Bardziej szczegółowo

Pochodna funkcji. Niech f : A R, a A i załóżmy, że istnieje α > 0 taka, że

Pochodna funkcji. Niech f : A R, a A i załóżmy, że istnieje α > 0 taka, że Niec f : A R, a A i załóżmy, że istnieje α > 0 taka, że (a α, a + α) A. Niec f : A R, a A i załóżmy, że istnieje α > 0 taka, że (a α, a + α) A. Definicja Ilorazem różnicowym funkcji f w punkcie a nazywamy

Bardziej szczegółowo

Krzywa uniwersalna Sierpińskiego

Krzywa uniwersalna Sierpińskiego Krzywa uniwersalna Sierpińskiego Małgorzata Blaszke Karol Grzyb Streszczenie W niniejszej pracy omówimy krzywą uniwersalną Sierpińskiego, zwaną również dywanem Sierpińskiego. Pokażemy klasyczną metodę

Bardziej szczegółowo

1 Określenie pierścienia

1 Określenie pierścienia 1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące

Bardziej szczegółowo

Topologia I*, jesień 2012 Zadania omawiane na ćwiczeniach lub zadanych jako prace domowe, grupa 1 (prowadzący H. Toruńczyk).

Topologia I*, jesień 2012 Zadania omawiane na ćwiczeniach lub zadanych jako prace domowe, grupa 1 (prowadzący H. Toruńczyk). Topologia I*, jesień 2012 Zadania omawiane na ćwiczeniach lub zadanych jako prace domowe, grupa 1 (prowadzący H. Toruńczyk). Zadania w dużej mierze pochodzą z zestawu zadań w rozdziale 8 skryptu autorów

Bardziej szczegółowo

Ciągłość i topologia. Rozdział Ciągłość funkcji wg. Cauchy

Ciągłość i topologia. Rozdział Ciągłość funkcji wg. Cauchy Rozdział 1 Ciągłość i topologia Nadanie precyzyjnego sensu intiucyjnemu pojęciu ciągłości jest jednym z głównych tematów dziedziny matematyki, zwanej topologią. Definicja funkcji ciągłej znana z podstawowego

Bardziej szczegółowo

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 2. CAŁKA PODWÓJNA Całka podwójna po prostokącie

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 2. CAŁKA PODWÓJNA Całka podwójna po prostokącie Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem..1. Całka podwójna po prostokącie.. CAŁKA POWÓJNA.. Całka podwójna po obszarach normalnych..3. Całka podwójna po obszarach regularnych..4.

Bardziej szczegółowo

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi

Bardziej szczegółowo

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 3. CAŁKA POTRÓJNA

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 3. CAŁKA POTRÓJNA Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem 1 Całka potrójna po prostopadłościanie CAŁKA POTRÓJNA 2 Całka potrójna po obszarach normalnych Współrzędne walcowe 4 Współrzędne sferyczne

Bardziej szczegółowo

Algebry skończonego typu i formy kwadratowe

Algebry skończonego typu i formy kwadratowe Algebry skończonego typu i formy kwadratowe na podstawie referatu Justyny Kosakowskiej 26 kwietnia oraz 10 i 17 maja 2001 Referat został opracowany w oparciu o prace Klausa Bongartza Criterion for finite

Bardziej szczegółowo

Zbiory, relacje i funkcje

Zbiory, relacje i funkcje Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację

Bardziej szczegółowo

8. Funkcje wielu zmiennych - pochodne cząstkowe

8. Funkcje wielu zmiennych - pochodne cząstkowe 8. Funkcje wielu zmiennych - pochodne cząstkowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie lato 2015/2016 rzegorz Kosiorowski (Uniwersytet Ekonomiczny 8. Funkcje w Krakowie) wielu zmiennych

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych Wykresy i warstwice funkcji wielu zmiennych. Granice i ciagłość funkcji wielu zmiennych. Pochodne czastkowe funkcji wielu zmiennych. Gradient. Pochodna kierunkowa. Różniczka zupełna.

Bardziej szczegółowo

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory

Bardziej szczegółowo

4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że

4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że 4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze taka że K(x 0, δ) (y 0 η, y 0 + η) R n R, f(x 0, y 0 ) = 0, y f(x 0, y 0 ) 0. Wówczas dla odpowiednio

Bardziej szczegółowo

domykanie relacji, relacja równoważności, rozkłady zbiorów

domykanie relacji, relacja równoważności, rozkłady zbiorów 1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i

Bardziej szczegółowo

Wykład 5. = f. Okazujesięwięc,że f. minimum. Otrzymaliśmy następujące twierdzenie:

Wykład 5. = f. Okazujesięwięc,że f. minimum. Otrzymaliśmy następujące twierdzenie: Wykład 5 Matematyka 2, semestr letni 2010/2011 Rachunek różniczkowy funkcji jednej zmiennej służy, między innymi, do badania przebiegu zmienności funkcji Potrafimy znajdować punkty krytyczne, określać

Bardziej szczegółowo

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza

Bardziej szczegółowo

Baza w jądrze i baza obrazu ( )

Baza w jądrze i baza obrazu ( ) Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem

Bardziej szczegółowo

Wykłady z matematyki Liczby zespolone

Wykłady z matematyki Liczby zespolone Wykłady z matematyki Liczby zespolone Rok akademicki 015/16 UTP Bydgoszcz Liczby zespolone Wstęp Formalnie rzecz biorąc liczby zespolone to punkty na płaszczyźnie z działaniami zdefiniowanymi następująco:

Bardziej szczegółowo

Definicja punktu wewnętrznego zbioru Punkt p jest punktem wewnętrznym zbioru, gdy należy do niego wraz z pewnym swoim otoczeniem

Definicja punktu wewnętrznego zbioru Punkt p jest punktem wewnętrznym zbioru, gdy należy do niego wraz z pewnym swoim otoczeniem Definicja kuli w R n ulą o promieniu r>0 r R i o środku w punkcie p R n nazywamy zbiór {x R n : ρ(xp)

Bardziej szczegółowo

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami: 9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym

Bardziej szczegółowo

Lokalna odwracalność odwzorowań, odwzorowania uwikłane

Lokalna odwracalność odwzorowań, odwzorowania uwikłane Lokalna odwracalność odwzorowań, odwzorowania uwikłane Katedra Matematyki i Ekonomii Matematycznej Szkoła Główna Handlowa 17 maja 2012 Definicja Mówimy, że odwzorowanie F : X R n, gdzie X R n, jest lokalnie

Bardziej szczegółowo

1 Pochodne wyższych rzędów

1 Pochodne wyższych rzędów 1 Pochodne wyższych rzędów Definicja 1.1 (Pochodne cząstkowe drugiego rzędu) Niech f będzie odwzorowaniem o wartościach w R m, określonym na zbiorze G R k. Załóżmy, że zbiór tych x G, dla których istnieje

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod

Bardziej szczegółowo

4. Równania Cauchy ego Riemanna. lim. = c.. dz z=a Zauważmy, że warunkiem równoważnym istnieniu pochodnej jest istnienie liczby c C, takiej że

4. Równania Cauchy ego Riemanna. lim. = c.. dz z=a Zauważmy, że warunkiem równoważnym istnieniu pochodnej jest istnienie liczby c C, takiej że 4. Równania Caucy ego Riemanna Niec Ω C będzie zbiorem otwartym i niec f : Ω C. Mówimy, że f ma w punkcie a Ω pocodną w sensie zespolonym (jest olomorficzna w a równą c C, jeśli f(z f(a lim = c. z a Piszemy

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

1 Przestrzeń liniowa. α 1 x α k x k = 0

1 Przestrzeń liniowa. α 1 x α k x k = 0 Z43: Algebra liniowa Zagadnienie: przekształcenie liniowe, macierze, wyznaczniki Zadanie: przekształcenie liniowe, jądro i obraz, interpretacja geometryczna. Przestrzeń liniowa Już w starożytności człowiek

Bardziej szczegółowo

TEST A. A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty

TEST A. A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty TEST A A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty T 1 przestrzeni. Czym ta aksjomatyka różni się od aksjomatyki zbiorów otwartych? A-2. Ile różnych zbiorów otwartych

Bardziej szczegółowo

R n jako przestrzeń afiniczna

R n jako przestrzeń afiniczna R n jako przestrzeń afiniczna Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 11. wykład z algebry liniowej Warszawa, grudzień 2014 Mirosław Sobolewski (UW) Warszawa, grudzień 2014 1

Bardziej szczegółowo

Całka podwójna po prostokącie

Całka podwójna po prostokącie Całka podwójna po prostokącie Rozważmy prostokąt = {(x, y) R : a x b, c y d}, gdzie a, b, c, d R, oraz funkcję dwóch zmiennych f : R ograniczoną w tym prostokącie. rostokąt dzielimy na n prostokątów i

Bardziej szczegółowo

Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych

Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych Marcin Michalski 14.11.014 1 Wprowadzenie Jedną z intuicji na temat liczb rzeczywistych jest myślenie o nich jako liczbach,

Bardziej szczegółowo

Analiza funkcjonalna 1.

Analiza funkcjonalna 1. Analiza funkcjonalna 1. Wioletta Karpińska Semestr letni 2015/2016 0 Bibliografia [1] Banaszczyk W., Analiza matematyczna 3. Wykłady. (http://math.uni.lodz.pl/ wbanasz/am3/) [2] Birkholc A., Analiza matematyczna.

Bardziej szczegółowo

Zajęcia nr. 3 notatki

Zajęcia nr. 3 notatki Zajęcia nr. 3 notatki 22 kwietnia 2005 1 Funkcje liczbowe wprowadzenie Istnieje nieskończenie wiele funkcji w matematyce. W dodaktu nie wszystkie są liczbowe. Rozpatruje się funkcje które pobierają argumenty

Bardziej szczegółowo

Liczba obrotu i twierdzenie Poincare go o klasyfikacji homeomorfizmów okręgu.

Liczba obrotu i twierdzenie Poincare go o klasyfikacji homeomorfizmów okręgu. II Interdyscyplinarne Warsztaty Matematyczne p. 1/1 Liczba obrotu i twierdzenie Poincare go o klasyfikacji homeomorfizmów okręgu. Justyna Signerska jussig@wp.pl Wydział Fizyki Technicznej i Matematyki

Bardziej szczegółowo

Kurs wyrównawczy - teoria funkcji holomorficznych

Kurs wyrównawczy - teoria funkcji holomorficznych Kurs wyrównawczy - teoria funkcji holomorficznych wykład 1 Gniewomir Sarbicki 15 lutego 2011 Struktura ciała Zbiór par liczb rzeczywistych wyposażamy w działania: { + : (a, b) + (c, d) = (a + c, b + d)

Bardziej szczegółowo

A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty

A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty T 1 przestrzeni. Czym ta aksjomatyka różni się od aksjomatyki zbiorów otwartych? A-2. Wyprowadź z aksjomatów topologii

Bardziej szczegółowo

Ciała skończone. 1. Ciała: podstawy

Ciała skończone. 1. Ciała: podstawy Ciała skończone 1. Ciała: podstawy Definicja 1. Każdy zbiór liczb, w którym są wykonalne wszystkie cztery działania z wyjątkiem dzielenia przez 0 i który zawiera więcej niż jedną liczbę, nazywamy ciałem

Bardziej szczegółowo

z pokryciem (O i ) i I rozkładu jedności (α i ) i I. Zauważmy najpierw, że ( i I α i )ω dω = d(1 ω) = d d(α i ω). Z drugiej jednak strony

z pokryciem (O i ) i I rozkładu jedności (α i ) i I. Zauważmy najpierw, że ( i I α i )ω dω = d(1 ω) = d d(α i ω). Z drugiej jednak strony Dowód: Niech M będzie jak w założeniach twierdzenia. Weźmy skończony atlas O i, ϕ i ) na M zgodny z orientacją. Zbiór indeksów I może być skończony, gdyż rozmaitość M jest zwarta. Õi, ϕ i ) oznaczać będzie

Bardziej szczegółowo

Wstęp do równań różniczkowych

Wstęp do równań różniczkowych Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych

Bardziej szczegółowo

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com

Bardziej szczegółowo

Relacje binarne. Def. Relację ϱ w zbiorze X nazywamy. antysymetryczną, gdy x, y X (xϱy yϱx x = y) spójną, gdy x, y X (xϱy yϱx x = y)

Relacje binarne. Def. Relację ϱ w zbiorze X nazywamy. antysymetryczną, gdy x, y X (xϱy yϱx x = y) spójną, gdy x, y X (xϱy yϱx x = y) Relacje binarne Niech X będzie niepustym zbiorem. Jeśli ϱ X X to mówimy, że ϱ jest relacją w zbiorze X. Zamiast pisać (x, y) ϱ będziemy stosować zapis xϱy. Def. Relację ϱ w zbiorze X nazywamy zwrotną,

Bardziej szczegółowo

1. Pochodna funkcji. 1.1 Pierwsza pochodna - definicja i własności Definicja pochodnej

1. Pochodna funkcji. 1.1 Pierwsza pochodna - definicja i własności Definicja pochodnej . Pierwsza pochodna - definicja i własności.. Definicja pochodnej Definicja Niech f : a, b) R oraz niech 0 a, b). Mówimy, że funkcja f ma pochodna w punkcie 0, którą oznaczamy f 0 ), jeśli istnieje granica

Bardziej szczegółowo

Kombinacje liniowe wektorów.

Kombinacje liniowe wektorów. Kombinacje liniowe wektorów Definicja: Niech V będzie przestrzenią liniową nad ciałem F, niech A V Zbiór wektorów A nazywamy liniowo niezależnym, jeżeli m N v,, v m A a,, a m F [a v + + a m v m = θ a =

Bardziej szczegółowo

Analiza II.2*, lato komentarze do ćwiczeń

Analiza II.2*, lato komentarze do ćwiczeń Analiza.2*, lato 2018 - komentarze do ćwiczeń Marcin Kotowski 5 czerwca 2019 1 11 2019, zadanie 2 z serii domowej 1 Pokażemy, że jeśli f nie jest stała, to całka: f(x f(y B B x y dx dy jest nieskończona.

Bardziej szczegółowo

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. 5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań

Bardziej szczegółowo

Liczby zespolone. Katarzyna Grabowska. Uniwersytet Warszawski, Wydział Fizyki, Katedra Metod Matematycznych Fizyki. Letnia Szkoła Fizyki, Płock 2008

Liczby zespolone. Katarzyna Grabowska. Uniwersytet Warszawski, Wydział Fizyki, Katedra Metod Matematycznych Fizyki. Letnia Szkoła Fizyki, Płock 2008 Liczby zespolone Katarzyna Grabowska Uniwersytet Warszawski, Wydział Fizyki, Katedra Metod Matematycznych Fizyki Letnia Szkoła Fizyki, Płock 2008 Katarzyna Grabowska (KMMF) Liczby zespolone LSF2008 1 /

Bardziej szczegółowo