Politechnika Rzeszowska - Materiały inżynierskie - I DUT / dr inż. Maciej Motyka

Wielkość: px
Rozpocząć pokaz od strony:

Download "Politechnika Rzeszowska - Materiały inżynierskie - I DUT / dr inż. Maciej Motyka"

Transkrypt

1 NADPLASTYCZNOŚĆ METALI I STOPÓW 1

2 NADPLASTYCZNOŚĆ - efinicja Naplastyczność zolność materiałów o barzo użego okształcenia plastycznego, objawiająca się w wysokiej temperaturze homologicznej po wpływem małego naprężenia, którego wartość silnie zależy oprękości okształcania. Rozróżnia się wa główne rozaje naplastyczności: strukturalną (izotermiczną) (fine-structure superplasticity) bęącą właściwością materiału związaną z jego mikrostrukturą, warunkową (po wpływem specjalnych warunków zewnętrznych) (internal-stress superplasticity) wywołaną przez specyficzne warunki zewnętrzne, powoujące generowanie przemian strukturalnych, a w ich wyniku użych naprężeń własnych, niezależnych o obciążenia zewnętrznego. 2

3 Równanie stanu = ( T p ) (,, T, p, ) t i ń k t ł i - stopień okształcenia - prękość okształcenia T - temperatura p - ciśnienie p - napięcie powierzchniowe p p T T p T 3

4 Równanie stanu p T X X X p p T T X X X METALE ODKSZTAŁCANE NA ZIMNO Małe wartości oraz wysoka T METALE ODKSZTAŁCANE PROCES IZOTERMICZNY NA GORĄCO PROCES IZOTERMICZNY 4

5 Czułość naprężenia płynięcia na prękość okształcania const n m const n m const m = 0 naprężenie płynięcia nie zależy o prękości okształcania n = 0 brak umocnienia okształceniowego W większości metali i stopów m < 0,2 W materiałach naplastycznych m > 0,33 m log log 5

6 Wyznaczanie parametru m Aspekt mechaniczny Aspekt mikrostrukturalny mm log log T, ms log log PARAMETRY T,{ S} STEREOLOGICZNE MIKROSTRUKTURY zzależności zależności = f () zzależności zależności = f () la = const la {S} = const skokowa zmiana 6

7 Naplastyczność warunkowa INTERNAL-STRESS SUPERPLASTICITY Obserwowana, gy w materiałach występują uże naprężenia wewnętrzne, ę umożliwiające przebieg procesu okształcania w warunkach małego obciążenia zewnętrznego. GŁÓWNE CECHY: uże wartości m (m 1); nie jest wymagana robnoziarnistość. Naprężenia ę wewnętrzne, ę związaneą z naplastycznością ą warunkową, mogą być w większości przypaków generowane poprzez cykliczne zmiany temperatury lub naprężenia: w zakresie przemiany fazowej wmateriałach ł wykazujących polimorfizm, w czystych metalach lub stopach jenofazowych, wykazujących anizotropię rozszerzalności cieplnej, w materiałach kompozytowych, których skłaniki mają różną rozszerzalność cieplną. 7

8 Naplastyczność przy użej prękości okształcania HIGH STRAIN-RATE RATE SUPERPLASTICITY Jest szczególnym przypakiem naplastyczności strukturalnej. GŁÓWNE CECHY: prękość okształcania ł w zakresie s -1 porównywalna z wykorzystywanymi w niektórych konwencjonalnych metoach przeróbki plastycznej (np. kucie); jest wymagana robnoziarnistość; występowanie fazy ciekłej na granicach faz. 8

9 Inne procesy umożliwiające otrzymanie użego stopnia okształcenia plastycznego pseuonaplastyczne zachowanie się materiałów gruboziarnistych - efekt ziałania mechanizmu pełzania kontrolowanego poślizgiem yslokacji (w stopach klasy I); okształcenie ł plastyczne przy małejł prękości ś okształcania ł w materiałach o umiarkowanie gruboziarnistej mikrostrukturze i wartości parametru m = 1 efekt ziałania mechanizmów pełzania kontrolowanych yfuzją wzłuż granic ziarn (pełzanie Coble a), yfuzją sieciową (pełzanie Nabarro-Herring a) orazpoślizgiem yslokacji (pełzanie Harper-Dorn a), okształcenie przy b. użej prękości okształcania ( s -1 ) (ultrahigh-strain-rate superplasticity) w aluminium lub miezi - kształtowanie wybuchowe z ynamiczną konensacją. 9

10 Naplastyczność strukturalna FINE-STRUCTURE SUPERPLASTICITY GŁÓWNE CECHY: wewnętrzna, strukturalna właściwość materiału możliwość otrzymywania barzo użych wartości okształcenia plastycznego (> 2000%) zakres występowania: temperatura T > 0,4T top i prękość okształcania. = s -1 charakteryzuje materiały robnoziarniste ( < 10 m) o równoosiowej mikrostrukturze - uża czułość naprężenia płynięcia na prękość okształcenia (parametr m > 0,3) brak umocnienia okształceniowego zachowywanie prawie równoosiowego kształtu ziarn 10

11 Naplastyczność strukturalna FINE-STRUCTURE SUPERPLASTICITY GŁÓWNE CECHY (c.): mechanizm naplastyczności strukturalnej jest zbliżony o mechanizmu pełzania (charakteryzuje się użą czułością wartości naprężenia płynięcia na prękość okształcania i pozwala otrzymywać barzo uże okształcenie plastyczne), jenak w przeciwieństwie o naprężenia pełzania, wartość naprężenia płynięcia naplastycznego jest niezwykle wrażliwa na kształt i rozmiar ziarn, co czyni naplastyczność strukturalną zjawiskiem najsilniej zależnym o mikrostruktury materiałów metalicznych 11

12 Krzywa naplastyczności Schemat zależności naprężenia ę płynięcia ę plastycznego oraz parametru m o prękości okształcania la materiału metalicznego wykazującego [ ] i nie wykazującego [---] efektu naplastyczności strukturalnej 12

13 Porównanie cech okształcania plastycznego i naplastycznego Naplastyczność Plastyczność Duża czułość naprężenia płynięcia na prękość okształcania (m > 0,33) Pomijalnie mały wpływ prękości okształcania na naprężenie płynięcia Drugorzęny wpływ umocnienia okształceniowego Dominująca rola umocnienia okształceniowego Wzglęne przemieszczanie się ziarn wywołane poślizgiem wzłuż ich granic Brak wzglęnego przemieszczania się ziarn Zmniejszenie początkowej tekstury wraz ze zwiększeniem wartości ś okształcenia ł naplastycznego (zmniejszenie i anizotropii) Tworzenie się tekstury okształcenia (zwiększenie anizotropii) Okształcanie przez poślizg wzłuż granic ziarn wraz z yfuzyjnymi i yslokacyjnymi mechanizmami akomoującymi Okształcanie w wyniku poślizgu yslokacji Zniszczenie powoowane inicjacją i rozrostem mikropustek Zniszczenie powoowane wyczerpaniem zapasu plastyczności i lokalizacją okształcenia 13

14 Rola parametrów mikrostruktury ROZMIAR ZIARNA Zależność parametru m o prękości okształcania stopie Zn-Al la różnych rozmiarów ziarn w eutektoialnym 14

15 Rola parametrów mikrostruktury SKŁAD FAZOWY (skła chemiczny) Próbka eutektycznego stopu Bi-Sn okształconego naplastycznie nie (1950%) przez Pearson a w 1934 r. 15

16 Rola parametrów mikrostruktury GRANICE ZIARN I MIĘDZYFAZOWE Zależność prękości poślizgu wzłuż granic mięzyfazowych o naprężenia stycznego w brązie aluminiowym, stali i mosiązu 16

17 Rola parametrów mikrostruktury TEKSTURA I KSZTAŁT ZIARN Mikrostruktura stopu tytanu Ti-6Al-4V okształconego naplastycznie 17

18 Mechanizmy okształcania naplastycznego MECHANIZMY PEŁZANIA Krzywe pełzania: a) stopy metali, b) czyste metale A' D S Gb kt b p G Równanie Dorna (Mukherjee-Bir-Dorna) n 18

19 Pełzanie yfuzyjne (n =1) T 09T 0,9 T t PEŁZANIE NABARRO-HERRING A PEŁZANIE COBLE A 19

20 Pełzanie yslokacyjne (n =3 6) Schemat pełzania yslokacyjnego 20

21 Poślizg wzłuż granic ziarn (PWGZ) (n =2) Schemat poślizgu wzłuż granic ziarn. S - wektor poślizgu 21

22 Współczynnik umocnienia n la różnych materiałów polikrystalicznych Współczynnik umocnienia n Ceramika robnoziarnista Materiał Materiały wykazujące zjawisko naplastyczności warunkowej (U, Zn, Fe, Ti, kompozyty na osnowie Al lub Zn) Materiały robnoziarniste, w których PWGZ jest akomoowany poślizgiem yslokacji (niektóre stopy o buowie roztworu stałego - klasy I) Konwencjonalne materiały robnoziarniste wykazujące naplastyczność strukturalną (stopy metali, stopy na osnowie faz mięzymetalicznych, materiały ceramiczne) Stopy o buowie roztworu stałego ł - klasy I Niektóre kompozyty przy większych prękościach okształcania Niektóre stopy gruboziarniste na osnowie faz mięzymetalicznych Stopy o buowie roztworu stałego - klasy II Czyste metale Stopy zawierające yspersyjne cząsteczki twarej fazy 22

23 Mechanizmy okształcania naplastycznego Pełzanie yfuzyjne (pełzanie Coble a) PWGZ akomoowany pełzaniem yfuzyjnym PWGZ akomoowany poślizgiem yslokacyjnym Trójwymiarowa mapa mechanizmów okształcania stopu Zn-Al 23

24 Moele mechanizmów okształcania naplastycznego Schemat teorii płaszcza i rzenia ziarna w Schemat mechanizmu okształcania materiałach naplastycznych (Gifkinsa) naplastycznego wg moelu Fukuyo 24

25 Skoorynowany poślizg wzłuż granic ziarn COOPERATIVE GRAIN-BOUNDARY SLIDING 25

26 Prękość okształcania naplastycznego Zależność naprężenia o prękości okształcania la poślizgu wzłuż granic ziarn i poślizgu yslokacji materiału okształcanego 26

27 Specjalistyczne metoy otrzymywania mikrostruktury robnoziarnistej SPD Severe Plastic Deformation PRASOWANIE ZE SKRĘCANIEM (HPT high pressure torsion) 27

28 Specjalistyczne metoy otrzymywania mikrostruktury robnoziarnistej SPD Severe Plastic Deformation PRZECISKANIE PRZEZ KANAŁ KĄTOWY (ECAP (lub ECAE) equal-channel angular pressing) 28

29 Specjalistyczne metoy otrzymywania mikrostruktury robnoziarnistej SPD Severe Plastic Deformation ŚCISKANIE WIELOKIERUNKOWE (MaxStrain multi-axis restrain eformation) Mikrostruktura stopu aluminium 5083 okształconego metoą MaxStrain 29

30 Specjalistyczne metoy otrzymywania mikrostruktury robnoziarnistej SPD Severe Plastic Deformation ŚCISKANIE WIELOKIERUNKOWE (MaxStrain multi-axis restrain eformation) 30

31 Specjalistyczne metoy otrzymywania mikrostruktury robnoziarnistej SPD Severe Plastic Deformation KUCIE WIELOKIERUNKOWE (Multiple forging) 31

32 Specjalistyczne metoy otrzymywania mikrostruktury robnoziarnistej SPD Severe Plastic Deformation CYKLICZNE WALCOWANIE MATERIAŁU WIELOWARSTWOWEGO (ARB accumulative roll boning) 32

33 Specjalistyczne metoy otrzymywania mikrostruktury robnoziarnistej SPD Severe Plastic Deformation CYKLICZNE WYCISKANIE-ŚCISKAJĄCE (CWS) 33

34 Materiały naplastyczne STOPY ALUMINIUM STOPY MAGNEZU STOPY ŻELAZA STOPY NIKLU STOPY TYTANU 34

35 Naplastyczne stopy tytanu Stop Skła fazowy Wyłużenie A Śrenia śrenica ziarna Temperatura T Prękość okształcania % m m ºC s Stopy wufazowe + s -1 Ti-4Al-4Mo-2Sn-0,5Si Ti-4,5Al-3V-2Mo-2Fe Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe 4Mo 2Cr Ti-6Al-4V Ti-6Al-2Sn-4Zr-2Mo Ti-6Al-2Sn-4Zr-6Mo Ti-6Al-7Nb Ti-6,5Al-3,7Mo-1,5Zr Ti-6Al-2Sn-2Zr-2Mo-2Cr-0,15Si Ti-24Al-11Nb Ti-46Al-1Cr-0,2Si Ti-48Al-2Nb-2Cr 2 (Ti 3 Al) + (TiAl) + 2 (Ti 3 Al) (TiAl) + 2 (Ti 3 Al) Stopy na osnowie faz mięzymetalicznych , , Ti-50Al (TiAl) + 2 (Ti 3 Al) 250 < , Ti-10Co-4Al + Ti 2 Co , Kompozyty na osnowie stopów tytanu Ti-6Al-4V + 10%TiC + TiC , Ti-6Al-4V + 10%TiN + TiN ,

36 Naplastyczne stopy tytanu Rozmiar ziarna Skła fazowy 36

37 Schemat procesu kształtowania naplastycznego Sztywną matrycą Sztywnym stemplem 37

38 Proces kształtowania naplastycznego 38

39 Proces kształtowania naplastycznego 39

40 Przykłay kształtowania naplastycznego Drzwi awaryjne samolotu BAe 125 wykonane ze stopu tytanu metoą kształtowania napla-stycznego i zgrzewania yfuzyj-nego (superplastic forming / iffusion boning SPF/DB) 80 ok części elementów łączących 4 SPF/DB 90 40

41 Przykłay kształtowania naplastycznego Elementy konstrukcji nośnej kałuba samolotu F-15E wykonane ze stopu Ti-6Al-4V metoą SPF/DB Reukcja: części elementów łączących SPF/DB 41

Metody dużego odkształcenia plastycznego

Metody dużego odkształcenia plastycznego Metody dużego odkształcenia plastycznego Metody dużego odkształcenia plastycznego SPD (ang. severe plastic deformation) to grupa technik polegających na przekształcaniu struktury mikrometrycznej materiałów,

Bardziej szczegółowo

WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ. Zmiany makroskopowe. Zmiany makroskopowe

WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ. Zmiany makroskopowe. Zmiany makroskopowe WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ Zmiany makroskopowe Zmiany makroskopowe R e = R 0.2 - umowna granica plastyczności (0.2% odkształcenia trwałego); R m - wytrzymałość na rozciąganie (plastyczne); 1

Bardziej szczegółowo

TEMAT PRACY DOKTORSKIEJ

TEMAT PRACY DOKTORSKIEJ Krynica, 12.04.2013 Wpływ cyrkonu i skandu na zmiany mikrostruktury i tekstury w silnie odkształconych stopach aluminium ---------------------------------------------------------------------------- TEMAT

Bardziej szczegółowo

STRUKTURA STOPÓW CHARAKTERYSTYKA FAZ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

STRUKTURA STOPÓW CHARAKTERYSTYKA FAZ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego STRUKTURA STOPÓW CHARAKTERYSTYKA FAZ Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Stop tworzywo składające się z metalu stanowiącego osnowę, do którego

Bardziej szczegółowo

Stopy tytanu. Stopy tytanu i niklu 1

Stopy tytanu. Stopy tytanu i niklu 1 Stopy tytanu Stopy tytanu i niklu 1 Tytan i jego stopy Al Ti Cu Ni liczba at. 13 22 29 28 struktura kryst. A1 αa3/βa2 A1 A1 ρ, kg m -3 2700 4500 8930 8900 T t, C 660 1668 1085 1453 α, 10-6 K -1 18 8,4

Bardziej szczegółowo

BUDOWA STOPÓW METALI

BUDOWA STOPÓW METALI BUDOWA STOPÓW METALI Stopy metali Substancje wieloskładnikowe, w których co najmniej jeden składnik jest metalem, wykazujące charakter metaliczny. Składnikami stopów mogą być pierwiastki lub substancje

Bardziej szczegółowo

Nauka o Materiałach. Wykład IX. Odkształcenie materiałów właściwości plastyczne. Jerzy Lis

Nauka o Materiałach. Wykład IX. Odkształcenie materiałów właściwości plastyczne. Jerzy Lis Nauka o Materiałach Wykład IX Odkształcenie materiałów właściwości plastyczne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Odkształcenie plastyczne 2. Parametry makroskopowe 3. Granica plastyczności

Bardziej szczegółowo

WPŁYW DODATKÓW STOPOWYCH NA WŁASNOŚCI STOPU ALUMINIUM KRZEM O NADEUTEKTYCZNYM SKŁADZIE

WPŁYW DODATKÓW STOPOWYCH NA WŁASNOŚCI STOPU ALUMINIUM KRZEM O NADEUTEKTYCZNYM SKŁADZIE WYDZIAŁ ODLEWNICTWA AGH Oddział Krakowski STOP XXXIV KONFERENCJA NAUKOWA Kraków - 19 listopada 2010 r. Marcin PIĘKOŚ 1, Stanisław RZADKOSZ 2, Janusz KOZANA 3,Witold CIEŚLAK 4 WPŁYW DODATKÓW STOPOWYCH NA

Bardziej szczegółowo

STRUKTURA STOPÓW UKŁADY RÓWNOWAGI FAZOWEJ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

STRUKTURA STOPÓW UKŁADY RÓWNOWAGI FAZOWEJ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego STRUKTURA STOPÓW UKŁADY RÓWNOWAGI FAZOWEJ Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Wykresy układów równowagi faz stopowych Ilustrują skład fazowy

Bardziej szczegółowo

Charakterystyka mechaniczna cynku po dużych deformacjach plastycznych i jej interpretacja strukturalna

Charakterystyka mechaniczna cynku po dużych deformacjach plastycznych i jej interpretacja strukturalna AKADEMIA GÓRNICZO HUTNICZA im. Stanisława Staszica w Krakowie WYDZIAŁ METALI NIEŻELAZNYCH ROZPRAWA DOKTORSKA Charakterystyka mechaniczna cynku po dużych deformacjach plastycznych i jej interpretacja strukturalna

Bardziej szczegółowo

Ę ś Ł ń ś ś ć ć ś ś ś ń ń ń ść ń ść ś Ł ć ź ć Ę Ą ś ś ś ś ś ś ń ń źń ś ń ń ś ń ń ś ź ń Ę ń Ą Ę ś ś ć ń ś ń ń Ł ś ś ń ś ź ś ś ń ć ść ść ść ń ś ź ś ń ś ś ść ś ń ń ń ś Ę Ł ń Ą ś Ś Ę ń Ś Ę ść ś ś ń Ę ń ś ź

Bardziej szczegółowo

Kształtowanie mikrostruktury i właściwości dwufazowych stopów tytanu α+β w procesie cieplno-plastycznym

Kształtowanie mikrostruktury i właściwości dwufazowych stopów tytanu α+β w procesie cieplno-plastycznym MACIEJ MOTYKA Kształtowanie mikrostruktury i właściwości dwufazowych stopów tytanu α+β w procesie cieplno-plastycznym WPROWADZENIE Kształtowanie plastyczne wyrobów z dwufazowych stopów tytanu realizowane

Bardziej szczegółowo

Rok akademicki: 2016/2017 Kod: MIM SM-n Punkty ECTS: 5. Poziom studiów: Studia II stopnia Forma i tryb studiów: Niestacjonarne

Rok akademicki: 2016/2017 Kod: MIM SM-n Punkty ECTS: 5. Poziom studiów: Studia II stopnia Forma i tryb studiów: Niestacjonarne Nazwa modułu: Przetwórstwo stopów i materiałów spiekanych Rok akademicki: 2016/2017 Kod: MIM-2-206-SM-n Punkty ECTS: 5 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Inżynieria Materiałowa

Bardziej szczegółowo

Wykład IX: Odkształcenie materiałów - właściwości plastyczne

Wykład IX: Odkształcenie materiałów - właściwości plastyczne Wykład IX: Odkształcenie materiałów - właściwości plastyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Treść wykładu: 1. Odkształcenie

Bardziej szczegółowo

Pytania do egzaminu inżynierskiego, PWSZ Głogów, Przeróbka Plastyczna

Pytania do egzaminu inżynierskiego, PWSZ Głogów, Przeróbka Plastyczna Pytania do egzaminu inżynierskiego, PWSZ Głogów, Przeróbka Plastyczna 1. Badania własności materiałów i próby technologiczne 2. Stany naprężenia, kierunki, składowe stanu naprężenia 3. Porównywanie stanów

Bardziej szczegółowo

Ł ź ś ń ść ść ś ć ć ś ć ź ź ć ć ń ć ść ć ć ś

Ł ź ś ń ść ść ś ć ć ś ć ź ź ć ć ń ć ść ć ć ś Ł ń ść ś Ż ś ś ć ś ś Ż ż ś ś ść ś śń ż Ż ć ś ń Ś ż ć ż ść Ł ź ś ń ść ść ś ć ć ś ć ź ź ć ć ń ć ść ć ć ś Ą Ż Ą ś ż ż ż ż ż ż ż ż ć ż ż ś ć ż ż ź ź ń ś ć ż ć ć ż ż ć ż ż ż ś ć ż ż źć ż ż ż ż Ż ż ń ż ż

Bardziej szczegółowo

Termodynamiczne warunki krystalizacji

Termodynamiczne warunki krystalizacji KRYSTALIZACJA METALI ISTOPÓW Zakres tematyczny y 1 Termodynamiczne warunki krystalizacji hiq.linde-gas.fr Krystalizacja szczególny rodzaj krzepnięcia, w którym ciecz ulega przemianie w stan stały o budowie

Bardziej szczegółowo

OBRÓBKA PLASTYCZNA CZ 2

OBRÓBKA PLASTYCZNA CZ 2 OBRÓBKA LASTYCZNA CZ Obróbka plastyczna jest metoą kształtowania wyrobów metalowych po wpływem obciążeń wywołujących uże okształcenia trwałe bez naruszenia lub z naruszeniem ciągłości materiału, w wyniku

Bardziej szczegółowo

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis Nauka o Materiałach Wykład XI Właściwości cieplne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Stabilność termiczna materiałów 2. Pełzanie wysokotemperaturowe 3. Przewodnictwo cieplne 4. Rozszerzalność

Bardziej szczegółowo

OBRÓBKA PLASTYCZNA METALI

OBRÓBKA PLASTYCZNA METALI OBRÓBKA PLASTYCZNA METALI Plastyczność: zdolność metali i stopów do trwałego odkształcania się bez naruszenia spójności Obróbka plastyczna: walcowanie, kucie, prasowanie, ciągnienie Produkty i półprodukty

Bardziej szczegółowo

σ c wytrzymałość mechaniczna, tzn. krytyczna wartość naprężenia, zapoczątkowująca pękanie

σ c wytrzymałość mechaniczna, tzn. krytyczna wartość naprężenia, zapoczątkowująca pękanie Materiały pomocnicze do ćwiczenia laboratoryjnego Właściwości mechaniczne ceramicznych kompozytów ziarnistych z przedmiotu Współczesne materiały inżynierskie dla studentów IV roku Wydziału Inżynierii Mechanicznej

Bardziej szczegółowo

Kompozyty Ceramiczne. Materiały Kompozytowe. kompozyty. ziarniste. strukturalne. z włóknami

Kompozyty Ceramiczne. Materiały Kompozytowe. kompozyty. ziarniste. strukturalne. z włóknami Kompozyty Ceramiczne Materiały Kompozytowe intencjonalnie wytworzone materiały składające się, z co najmniej dwóch faz, które posiadają co najmniej jedną cechę lepszą niż tworzące je fazy. Pozostałe właściwości

Bardziej szczegółowo

LABORATORIUM NAUKI O MATERIAŁACH

LABORATORIUM NAUKI O MATERIAŁACH Imię i Nazwisko Grupa dziekańska Indeks Ocena (kol.wejściowe) Ocena (sprawozdanie)........................................................... Ćwiczenie: MISW1 Podpis prowadzącego Politechnika Łódzka Wydział

Bardziej szczegółowo

MATERIAŁY SPIEKANE (SPIEKI)

MATERIAŁY SPIEKANE (SPIEKI) MATERIAŁY SPIEKANE (SPIEKI) Metalurgia proszków jest dziedziną techniki, obejmującą metody wytwarzania proszków metali lub ich mieszanin z proszkami niemetali oraz otrzymywania wyrobów z tych proszków

Bardziej szczegółowo

Stale niestopowe jakościowe Stale niestopowe specjalne

Stale niestopowe jakościowe Stale niestopowe specjalne Ćwiczenie 5 1. Wstęp. Do stali specjalnych zaliczane są m.in. stale o szczególnych własnościach fizycznych i chemicznych. Są to stale odporne na różne typy korozji: chemiczną, elektrochemiczną, gazową

Bardziej szczegółowo

ć Ą Ą Ł Ą

ć Ą Ą Ł Ą ź ź ź ć ć Ą Ą Ł Ą ź ź Ę Ą ź Ą ć Ł Ł Ą Ś Ę ź ź Ą Ą ź ć ć Ł Ę ć ź ć ć Ą Ć ź ź ź ć ć ć ć ć ź ź ć ć ź ć Ś Ę ć ć ć ć Ł ź ź ź ź ć Ę Ż ć ć ć ć Ę Ę ć Ę Ę ć ć Ę ć ć Ł ć Ć ć Ł Ł Ę Ę ć Ę ć ź ć Ń Ł Ł Ł Ś ć ć ć Ę Ś

Bardziej szczegółowo

PIERWIASTKI STOPOWE W STALACH. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

PIERWIASTKI STOPOWE W STALACH. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego PIERWIASTKI STOPOWE W STALACH Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Stal stopowa stop żelaza z węglem, zawierający do ok. 2% węgla i pierwiastki

Bardziej szczegółowo

ż ń Ł ń ń ż ż ż ż ż

ż ń Ł ń ń ż ż ż ż ż Ą ń ż ż ż Ś ż ń Ł ń ń ż ż ż ż ż ż Ś ń Ł ń ż ć ż ż ż ż Ł Ł ż ż ć ż ń Ź ć ż Ę ż ń ć Ź ż Ł ż Ł ż ż ć Ś ż ć ż Ą ż ń ż Ź ż Ź Ą ż ń ż ż ń ć ż ć ć ż ż ż ż ć ż ć Ś ż ń ż ż Ź ż ć ż Ę ż ć ż Ę Ą ń ż Ę Ź ż ć ć ć ć

Bardziej szczegółowo

ż

ż ż ż ż ń Ł Ń Ś Ę ż Ą ż ż ż Ż ż Ę ń ż ż ż Ą Ą ż Ą ń ż ń ć ż ć ć Ę Ą ż Ń Ę Ę Ę ż ź ż ż ć ż ż ć ć Ę Ą ż Ę ż ć ż ć ż Ę Ą ż Ę Ę Ę ż Ę ż ż ż Ż ż ć ż ń ć ń ż ż ż Ą Ę Ą ń ń ń ń ń ż Ą ć ż Ź ż ć Ą Ż ż Ś Ą ż Ą Ą ż

Bardziej szczegółowo

Ę Ż Ż Ż ś ż Ż

Ę Ż Ż Ż ś ż Ż Ż ż ż ś ś ż ż ż ś ż Ż Ź ś Ź Ź ś ś ż ż ś ś ś ś Ż ś Ż Ę Ż Ż Ż ś ż Ż ś ś ś Ż Ą ż ś ś ź Ż ż ż ś ś ż Ł Ż ź ż ż ś ś Ę ż ż ż ż Ę ś ż ć ś Ę ż ś ż ś Ż ż ś ż ś ść ść Ę ż ż ż ś ż Ą Ż Ś ś Ą Ż ż ż ś Ę ś Ż ś Ń ś ż Ą

Bardziej szczegółowo

ń ń ń ń ń Ż ć Ż Ł Ż Ł Ś ć ń Ś Ę Ż ć ń Ż Ż Ż Ą Ż Ż Ł Ż Ś

ń ń ń ń ń Ż ć Ż Ł Ż Ł Ś ć ń Ś Ę Ż ć ń Ż Ż Ż Ą Ż Ż Ł Ż Ś ź Ł ń Ż Ż ń Ą ć ń ń ń Ż Ł ń ń ń ń ń ń ń Ż ć Ż Ł Ż Ł Ś ć ń Ś Ę Ż ć ń Ż Ż Ż Ą Ż Ż Ł Ż Ś ń Ę Ę ń ń ć Ż Ż Ą Ą Ż ć ć ń ć ć ń ć ń ń Ż Ż ń Ż Ż Ż ń Ź Ż Ż Ę ń Ł ń Ś Ł Ż ń ń Ś ń ć Ż Ż Ż Ę Ł Ż ń ń Ż ń Ą Ż ń Ż Ż ń

Bardziej szczegółowo

Ś Ę Ą Ł Ś Ł Ł Ł Ł Ł Ś Ś Ł Ł Ł Ą Ł Ł Ł Ł Ł Ą Ą Ł

Ś Ę Ą Ł Ś Ł Ł Ł Ł Ł Ś Ś Ł Ł Ł Ą Ł Ł Ł Ł Ł Ą Ą Ł ę Ą Ł Ł Ś Ę Ą Ł Ś Ł Ł Ł Ł Ł Ś Ś Ł Ł Ł Ą Ł Ł Ł Ł Ł Ą Ą Ł Ł ś ś ś ś ę ś ę ę ś ść ść ść ę ę ę ść ę ś Ą Ą ś Ż ść Ź Ś Ą ę ść ść ść Ą ś Ż ę Ż Ń Ą Ł ś ę ś ę ś ś ę ś ś ść Ę Ś ś Ś ś Ś ś Ś ź ę ź ę ść ś ę Ę ś Ł ść

Bardziej szczegółowo

ż Ę Ł Ą ż ż ż ź Ł ć Ł ż ć ć Ść ć ź ż ż Ź ć ć ć ć ć ć ć ż ż Ś Ś ż Ś ć ż ć ć Ł Ść ż Ś ż Ś ż ć ż ć ć ć ż ć ż ć ż ż ż ż ć ż ż Ł ć ż ć Ł ż Ź Ę ż ż Ś ć ż ż ć Ź Ś ż Ą ż ć Ś ć ć ż ć ć Ś ż Ź Ł ć ć ć Ć ć ć Ś ć ż

Bardziej szczegółowo

Ę Ę ć ć Ę Ą Ę Ą Ę Ę Ę Ę Ę Ę ź Ę Ż Ę Ę Ę Ę ć Ę Ę ć Ę ć

Ę Ę ć ć Ę Ą Ę Ą Ę Ę Ę Ę Ę Ę ź Ę Ż Ę Ę Ę Ę ć Ę Ę ć Ę ć Ł ź Ą Ł Ę Ż Ę Ą ź ź Ę Ę Ę Ę ć ć Ę Ą Ę Ą Ę Ę Ę Ę Ę Ę ź Ę Ż Ę Ę Ę Ę ć Ę Ę ć Ę ć ź Ę Ę Ę ź Ę ć ź Ę ć Ę ź ć Ę ć Ę Ł ź Ę Ę Ę Ę Ę Ę Ę Ę Ę Ę ź Ę ć ź Ę ć Ę Ę Ę Ę ź Ę Ę ź ź ź ź ź Ę ź ź ź Ę ć ć Ń ź ź ź ź ź Ą ć ź

Bardziej szczegółowo

Ż Ź Ż ż Ś Ś Ź Ż Ż Ż Ż Ż ć ć Ż

Ż Ź Ż ż Ś Ś Ź Ż Ż Ż Ż Ż ć ć Ż ż Ż Ź Ż ż Ś Ś Ź Ż Ż Ż Ż Ż ć ć Ż ć Ż Ę ż Ż Ź Ź ż Ż Ż ć Ż ż ć ż ć Ż Ż Ż ż Ż Ń ż Ż Ż ż ż ż ć ć Ż ć Ź ż ż Ź ż ć ż ć Ę ć ż Ł Ż ż ż ć ć Ż Ż ż Ż ż Ż ć Ż Ż ć Ż ż Ż Ż ć ć ć ć Ę ż ż ż Ę ź ż Ź Ź ż Ż Ń ć Ż Ź Ż Ż

Bardziej szczegółowo

ś ć ś ś ś ć Ź ń ś ś ń ść ń ś ś

ś ć ś ś ś ć Ź ń ś ś ń ść ń ś ś ń ść ś Ź ć ź ś Ę ń ś Ę ś ń ś ś ź ś ć ś ś ś ć Ź ń ś ś ń ść ń ś ś ń ń ń ń ś ć ń ć Ą Ó Ó ń Ś ń ś Ę ć ś ś ć ś ć ń ń ś ś ń Ó ń ć ć ć Ź ś ć ć Ś ś ć ć ć ść ś ń ś ś ń ć ź ń ć Ó ś ś ś ś ń ś ść ść ć ś śó ść ć ń

Bardziej szczegółowo

Materiały Reaktorowe. Właściwości mechaniczne

Materiały Reaktorowe. Właściwości mechaniczne Materiały Reaktorowe Właściwości mechaniczne Naprężenie i odkształcenie F A 0 l i l 0 l 0 l l 0 a. naprężenie rozciągające b. naprężenie ściskające c. naprężenie ścinające d. Naprężenie torsyjne Naprężenie

Bardziej szczegółowo

Ę Ć Ś Ż ź Ż ć ć ć ć Ś ć ć ż ż Ź ć Ż ć

Ę Ć Ś Ż ź Ż ć ć ć ć Ś ć ć ż ż Ź ć Ż ć Ł Ę Ć Ś Ż ź Ż ć ć ć ć Ś ć ć ż ż Ź ć Ż ć Ś ć ż ć Ś ć ż ż ć Ść ć ć ć ć Ś Ś ż Ę Ś Ń ć ć Ś ć ć Ż ż ź ź ć ć ź Ż Ą Ś ź ż ż Ż Ż ż Ż ż Ż Ż ć ż Ż Ż ż ć ć Ż ć ć Ż Ą ć ć ż ź Ł Ł Ś Ą Ń Ż Ż Ż ć ć ż Ż ć Ż Ę ć Ż Ż ć

Bardziej szczegółowo

PL B1. POLITECHNIKA ŁÓDZKA, Łódź, PL

PL B1. POLITECHNIKA ŁÓDZKA, Łódź, PL PL 221932 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 221932 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 398270 (22) Data zgłoszenia: 29.02.2012 (51) Int.Cl.

Bardziej szczegółowo

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa ul. Szczotkarska 42 Wydanie nr 13, Data wydania: 22 kwietnia 2015 r. Nazwa i adres INSTYTUT

Bardziej szczegółowo

ĆWICZENIE Nr 8. Laboratorium InŜynierii Materiałowej. Opracowali: dr inŝ. Krzysztof Pałka dr Hanna Stupnicka

ĆWICZENIE Nr 8. Laboratorium InŜynierii Materiałowej. Opracowali: dr inŝ. Krzysztof Pałka dr Hanna Stupnicka Akceptował: Kierownik Katedry prof. dr hab. inŝ. A. Weroński POLITECHNIKA LUBELSKA WYDZIAŁ MECHANICZNY KATEDRA INśYNIERII MATERIAŁOWEJ Laboratorium InŜynierii Materiałowej ĆWICZENIE Nr 8 Opracowali: dr

Bardziej szczegółowo

ATLAS STRUKTUR. Ćwiczenie nr 25 Struktura i właściwości materiałów kompozytowych

ATLAS STRUKTUR. Ćwiczenie nr 25 Struktura i właściwości materiałów kompozytowych ATLAS STRUKTUR Ćwiczenie nr 25 Struktura i właściwości materiałów kompozytowych Rys. 1. Mikrostruktura podeutektycznego stopu aluminium-krzem AK7. Pomiędzy dendrytami roztworu stałego krzemu w aluminium

Bardziej szczegółowo

Technologie Materiałowe II Wykład 2 Technologia wyżarzania stali

Technologie Materiałowe II Wykład 2 Technologia wyżarzania stali KATEDRA INŻYNIERII MATERIAŁOWEJ I SPAJANIA ZAKŁAD INŻYNIERII SPAJANIA Technologie Materiałowe II Wykład 2 Technologia wyżarzania stali dr hab. inż. Jerzy Łabanowski, prof.nadzw. PG Kierunek studiów: Inżynieria

Bardziej szczegółowo

Instrukcja do laboratorium Materiały budowlane Ćwiczenie 12 IIBZ ĆWICZENIE 12 METALE POMIAR TWARDOŚCI METALI SPOSOBEM BRINELLA

Instrukcja do laboratorium Materiały budowlane Ćwiczenie 12 IIBZ ĆWICZENIE 12 METALE POMIAR TWARDOŚCI METALI SPOSOBEM BRINELLA Instrukcja o laboratorium Materiały buowlane Ćwiczenie 1 ĆWICZENIE 1 METALE 1.1. POMIAR TWAROŚCI METALI SPOSOBEM BRINELLA Pomiar twarości sposobem Brinella polega na wciskaniu przez określony czas twarej

Bardziej szczegółowo

PIERWIASTKI STOPOWE W STALACH

PIERWIASTKI STOPOWE W STALACH PIERWIASTKI STOPOWE W STALACH Stal stopowa - stop żelaza z węglem, zawierający do ok. 2 % węgla i pierwiastki (dodatki stopowe) wprowadzone celowo dla nadania stali wymaganych właściwości, otrzymany w

Bardziej szczegółowo

30/01/2018. Wykład X: Właściwości cieplne. Treść wykładu: Stabilność termiczna materiałów

30/01/2018. Wykład X: Właściwości cieplne. Treść wykładu: Stabilność termiczna materiałów Wykład X: Właściwości cieplne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu:. Stabilność termiczna materiałów 2. 3. 4. Rozszerzalność cieplna

Bardziej szczegółowo

Ń Ń Ń

Ń Ń Ń ź Ń ń ń ń ź ń Ń ń Ń Ń Ń ć ć ń ź ć ń ć ć ć ń Ń źń ń ń ć ń ć ć Ł Ą Ń ź ń ń ń ć ć ń ć Ą ć ć Ń ć ć Ń ć ć Ę ć ć ć ć ć ć ź ć ć ć Ń ć ć ć ć ć ń Ń Ń ć ć ć Ń Ń Ń ń Ń ź ź Ń Ń Ń Ę ń ć ń ń Ę Ń ć ć ń ń ź Ń ź ć ć Ę

Bardziej szczegółowo

CHARAKTERYSTYKA ZMIAN STRUKTURALNYCH W WARSTWIE POŁĄCZENIA SPAJANYCH WYBUCHOWO BIMETALI

CHARAKTERYSTYKA ZMIAN STRUKTURALNYCH W WARSTWIE POŁĄCZENIA SPAJANYCH WYBUCHOWO BIMETALI Mariusz Prażmowski 1, Henryk Paul 1,2, Fabian Żok 1,3, Aleksander Gałka 3, Zygmunt Szulc 3 1 Politechnika Opolska, ul. Mikołajczyka 5, Opole. 2 Instytut Metalurgii i Inżynierii Materiałowej PAN, ul. Reymonta

Bardziej szczegółowo

ż ż ż ż ż ż ż Ś ż ń ż ż Ę ż ż ż ż ń ż ż Ś ż ż ż ż ń Ł

ż ż ż ż ż ż ż Ś ż ń ż ż Ę ż ż ż ż ń ż ż Ś ż ż ż ż ń Ł Ś ż Ś Ą ż ż Ą ńż ń ż ż ż ż ż ż Ą ż żń ź Ś ż Ę ż ń ź ń ż Ę ź ń ż ż Ś ż ń ż ż ż ż ż ż ż Ś ż ń ż ż Ę ż ż ż ż ń ż ż Ś ż ż ż ż ń Ł Ś ż ż ż ż ż ż ż ń ń żń ż ż Ę ż Ś ż ż ż ż ć ń Ą ż ż ń ż ż ż ń ż ż ż ż ć Ł ż

Bardziej szczegółowo

5. Wyniki badań i ich omówienie

5. Wyniki badań i ich omówienie Strukturalne i mechaniczne czynniki umocnienia i rekrystalizacji stali z mikrododatkami odkształcanych plastycznie na gorąco 5. Wyniki badań i ich omówienie 5.1. Wyniki badań procesu wysokotemperaturowego

Bardziej szczegółowo

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa ul. Szczotkarska 42 Wydanie nr 8, Data wydania: 17 września 2009 r. Nazwa i adres organizacji

Bardziej szczegółowo

Ę Ę Ó ć ź Ż Ż Ą Ł Ę ć Ę Ą ź ć ź ć Ę

Ę Ę Ó ć ź Ż Ż Ą Ł Ę ć Ę Ą ź ć ź ć Ę Ę Ń Ł ź ź Ż Ą Ł ć Ę Ę Ó ć ź Ż Ż Ą Ł Ę ć Ę Ą ź ć ź ć Ę ć Ż ć Ą ź Ę Ż Ę Ż Ą Ń ć ź Ł ć Ń ć ź ć ć Ń ć Ż Ę Ę ć ć ć Ą Ę Ę ź ć ć Ż Ż Ę ĘĘ Ż ć Ą Ę ć ć ć Ę ć ź ć Ś ź Ę ć Ź ć Ę ć Ę ź ć Ż Ż Ż ć Ś Ę ć Ż Ż ź Ł Ę ć

Bardziej szczegółowo

ć Ę ć Ę ć Ę ż ź ż Ą ć Ą ż Ę Ę ć ż ź ż Ę ż ż Ą ż

ć Ę ć Ę ć Ę ż ź ż Ą ć Ą ż Ę Ę ć ż ź ż Ę ż ż Ą ż Ń Ę Ę ć Ę ć Ę ć Ę ż ź ż Ą ć Ą ż Ę Ę ć ż ź ż Ę ż ż Ą ż Ę ż Ę ż ć ż Ę ż Ł ż ć ź Ę Ą ź ż Ź Ę ż Ę ź Ę ż ż ż ć ż ż ź ć Ę ż ż ż ż ź ć ż ż ć ź ż ć ź Ę ż Ę ć ź Ę ź ć Ę ź Ę Ą Ę ź ż ć ź ź ź Ę ż ć ć Ę Ę ż Ł ż ż ż

Bardziej szczegółowo

Tematyka badań. Analiza tekstur krystalograficznych i związane z nimi zagadnienia (A. Morawiec, K. Kudłacz)

Tematyka badań. Analiza tekstur krystalograficznych i związane z nimi zagadnienia (A. Morawiec, K. Kudłacz) Tematyka badań Rozwój metodyki diagnozowania degradacji warstw przypowierzchniowych z wykorzystaniem tekstury krystalograficznej i naprężeń własnych (J. Bonarski, L. Tarkowski). Analiza profilu głębokościowego

Bardziej szczegółowo

ortofan.pl Thinking ahead. Focused on life.

ortofan.pl Thinking ahead. Focused on life. drut ortodontyczny jak żaden inny Wyłączny dystrybutor w Polsce ortofan.pl Thinking ahead. Focused on life. JM Ortho Corporation od zawsze jest zaangażowana we wprowadzanie innowacji do leczenia ortodontycznego.

Bardziej szczegółowo

ć Ż ż ć ż ć Ż ć ć ć ć Ż źń ż ć ć Ż ż Ż Ę ć ź Ż

ć Ż ż ć ż ć Ż ć ć ć ć Ż źń ż ć ć Ż ż Ż Ę ć ź Ż Ż Ż ć ż ć ż Ż ć ż ć Ż ż ć ż ć Ż ć ć ć ć Ż źń ż ć ć Ż ż Ż Ę ć ź Ż Ż ż ń Ź ÓŻ ń ż ź Ą ń ż ć Ź ć ż ż ż ż ń ż ż ż ż ż Ż ż ń Ó ż ń ć ć ż Ć Ż ć ź Ż Ż ć Ż ż Ż Ę ż Ó Ć ć Ł Ę Ą Ł ĘŚ ż Ż Ż ć ć ć Ć Ą Ć ć ć ć ć ż

Bardziej szczegółowo

Ę ś ś ń ź ź Ę ć Ę Ł ń ś ń ś Ż ń Ę ś ń Ę ś Ę ń ś ń ś ś Ż ś Ę ń ś ś ś Ę Ę ś ś ś Ę ś ść ś ść

Ę ś ś ń ź ź Ę ć Ę Ł ń ś ń ś Ż ń Ę ś ń Ę ś Ę ń ś ń ś ś Ż ś Ę ń ś ś ś Ę Ę ś ś ś Ę ś ść ś ść Ś Ś ś ś ś ś Ą Ą ź ź ć ź Ę ś ń ś ś Ę ś ś ń ź ź Ę ć Ę Ł ń ś ń ś Ż ń Ę ś ń Ę ś Ę ń ś ń ś ś Ż ś Ę ń ś ś ś Ę Ę ś ś ś Ę ś ść ś ść ć Ę ć Ą ś ś ń ń ć ś ś ń Ń ś ś ć ć ń ś ź ś ść ń Ź ń ść ś ń ń ść ś ś ń ść ń ść

Bardziej szczegółowo

ź Ż Ż Ś ć ć Ł ż Ż Ż Ż Ż Ł Ż Ł Ż Ż Ż ż ż ż ż ż ż Ż ć Ż Ś Ś Ń Ść

ź Ż Ż Ś ć ć Ł ż Ż Ż Ż Ż Ł Ż Ł Ż Ż Ż ż ż ż ż ż ż Ż ć Ż Ś Ś Ń Ść Ż Ż ć Ę Ę Ę ż ć ż Ś Ż Ż Ś Ż Ó ź Ż Ż Ś ć ć Ł ż Ż Ż Ż Ż Ł Ż Ł Ż Ż Ż ż ż ż ż ż ż Ż ć Ż Ś Ś Ń Ść Ś Ś Ż ż Ż Ż Ł Ż ć ż Ś Ś Ż Ż Ś Ś Ż Ż ż Ż Ż Ść Ż Ż ż Ż Ż Ś Ą ć Ż ż Ł Ą ż Ś ż ż Ę Ż Ż Ś Ż Ę ć ż ż Ę ć ż ż Ż Ś Ż

Bardziej szczegółowo

ż ć Ę ż ż ż Ń Ł ż ż ż ż ż ż ż ż

ż ć Ę ż ż ż Ń Ł ż ż ż ż ż ż ż ż ż ć Ę ż ż ż Ń Ł ż ż ż ż ż ż ż ż ż ż Ń ż ż Ń Ń Ń ż ć ż ż ć ż ż ż ć Ą Ń ż ć ć ż ż ż ż ć ćż ż Ń Ń Ł ż Ń Ń Ń ć Ń ć ć Ń ż Ń Ń ż ż ż ć Ń ć ż ć ć ć ć Ń ż Ń Ń ć Ń Ę ż Ń ż ż ż Ł ż ć ż ć ż ż ż ż ć ć ż ż ć ź ż ż

Bardziej szczegółowo

Zjawisko to umożliwia kształtowanie metali na drodze przeróbki plastycznej.

Zjawisko to umożliwia kształtowanie metali na drodze przeróbki plastycznej. ODKSZTAŁCENIE PLASTYCZNE, ZGNIOT I REKRYSTALIZACJA Zakres tematyczny 1 Odkształcenie materiałów metalicznych Materiały metaliczne są ciałami plastycznymi pod wpływem obciążenia, którego wartość przekracza

Bardziej szczegółowo

Ć ć ń Ć ń ć ć Ć

Ć ć ń Ć ń ć ć Ć ć Ł ś ś Ć ć ć ń Ć ć ń Ć ń ć ć Ć Ć Ć ń ć Ł ś ć ń ć Ć ś Ć ń ć ć ź ś ś ść Ł ść ś ć ź ć ś ć ś ć ć ć ć Ć ś ś ć Ć ń ś ź ć ź ć ś ń ń ń ś Ą źć Ć Ć Ć ć ź ć ź ś ć Ę Ć ś ć ś ć ć ś Ć ć ś Ę Ć Ć ć ź ć ć Ć ń Ę ć ć ń

Bardziej szczegółowo

ń ż ń ń Ą ń ż ż ń ż ż ż Ż ń Ą ń

ń ż ń ń Ą ń ż ż ń ż ż ż Ż ń Ą ń Ł Ą Ę ż ż ż ż Ó ż Ż Ż Ę Ż Ą Ż Ż ż Ś Ż Ś ń ż ń ń Ą ń ż ż ń ż ż ż Ż ń Ą ń Ę Ó Ł Ś ż ż Ę Ę ż Ó ż Ś Ę ń ń ń ż ń ń Ę Ę ń ż Ą ń Ś Ś Ę ń Ż Ę Ę ż ń ń ń ń ż Ę ń ń ń ń Ł Ę ń ń ń ń ż Ę ż ż ż Ź ż Ż ż Ż ż ż Ę ń Ę ż

Bardziej szczegółowo

ć ę ę ć ę Ś ę Ń ę ź ę ę ę Ś ę ę ę Ó Ł Ł Ę Ą ę

ć ę ę ć ę Ś ę Ń ę ź ę ę ę Ś ę ę ę Ó Ł Ł Ę Ą ę ć ę ę Ł Ą Ś Ś ę Ś ę ę ć ć ę ę ę ę ć Ś ć ę ę ć ę Ś ę Ń ę ź ę ę ę Ś ę ę ę Ó Ł Ł Ę Ą ę Ą ę Ą ę ć ę ć Ą ć ę ć ć ę Ę ę Ś Ą Ł Ó ę ć ę ę ę ę Ą ć ęć ę ć ę ę ę ę ę ę ę ę ę ę ę ę ę ę ę ę ę ę ę ę Ą ę ę ę ę Ń ę Ó

Bardziej szczegółowo

Właściwości cieplne Stabilność termiczna materiałów. Stabilność termiczna materiałów

Właściwości cieplne Stabilność termiczna materiałów. Stabilność termiczna materiałów Właściwości cieplne Stabilność termiczna materiałów Temperatury topnienia lub mięknięcia (M) różnych materiałów Materiał T [ O K] Materiał T [ O K] Materiał T [ O K] diament, grafit 4000 żelazo 809 poliestry

Bardziej szczegółowo

PYTANIA NA EGZAMIN DYPLOMOWY MAGISTERSKI

PYTANIA NA EGZAMIN DYPLOMOWY MAGISTERSKI PYTANIA NA EGZAMIN DYPLOMOWY MAGISTERSKI KIERUNEK STUDIÓW: INŻYNIERIA MATERIAŁOWA Inżynieria Materiałowa: SPECJALNOŚĆ: INŻYNIERIA SPAJANIA 1. Klasyfikacja, podział i charakterystyka materiałów konstrukcyjnych.

Bardziej szczegółowo

ń ż ś

ń ż ś Ł ń ń ś ś ń ń ń ś ż Ń ż ż ć Ą ń ż ż ń ż ś ś Ł ń ń ść Ł ż Ł Ń ź ść ń ż ż ż ś ś ś ż ś ż ż ś ń ń ż ź ż ż ż ń ź ń ś ń ń Ą ć Ę Ł ń Ń ż ść Ń ż Ę ż ż ż ż ż ż ż ść ż ś ń ż ż ż ż ś ś ś ś ż ś ż ś ć ś ż ż ć ś ż ć

Bardziej szczegółowo

Ż Ż Ł

Ż Ż Ł Ż Ż Ł ć Ż Ł Ń Ń Ż Ś ć Ę ć ć ź ć ć Ź Ę ź Ń Ł ć ć Ę ć Ć Ę ć ć ć Ą Ń ć Ą Ą Ś Ę Ć Ę ć ź Ę Ł Ś ć Ą ź Ą Ń ć Ż Ę ć Ó ć ć ć Ę ć ć Ń ć ć ć ć ć Ę ć Ą ć Ę Ż Ć ć Ć ź Ą ź Ś Ę ź Ę Ą ć Ę Ę Ś Ń ź ć ć ć ź Ż ć ŚĆ Ę Ń Ń

Bardziej szczegółowo

ć ć

ć ć Ł Ź Ź Ś ć ć ć Ś ź Ę Ł ć ć ź ć Ś Ź Ź ź ź Ź ź ź Ś ć ć ć ć ź ć Ę Ś Ą Ń Ś Ł ź Ś Ś Ź Ś ź Ł Ź Ź ź Ś ć Ń Ś Ł ć Ś Ł Ę Ś ź Ź Ś Ą Ę Ś Ę ć ć Ś Ź Ł Ź Ś Ć Ść ć Ś Ś ź Ź ć Ź ć Ł ź ć Ś Ą ć Ść ć ć Ś Ś Ś Ą Ś Ś ć Ś Ś ć ć

Bardziej szczegółowo