Sieci neuronowe. - wprowadzenie - Istota inteligencji. WYKŁAD Piotr Ciskowski

Wielkość: px
Rozpocząć pokaz od strony:

Download "Sieci neuronowe. - wprowadzenie - Istota inteligencji. WYKŁAD Piotr Ciskowski"

Transkrypt

1 Sieci neuronowe - wprowadzenie - Istota inteligencji WYKŁAD Piotr Ciskowski

2 na dobry początek: - championship winners of the ATC the ATC 2007 is over forex-pamm.com

3 na dobry początek: - championship winners of the ATC the ATC 2007 is over forex-pamm.com

4 program wykładu część ogólna piotr.ciskowski.staff.iiar.pwr.wroc.pl 1. Wprowadzenie, historia, istota inteligencji 2. Neuron budowa, działanie, własności 3. Sieć wielowarstwowa MLP budowa, działanie, własności 4. Uczenie neuronu uczenie sieci 5. Algorytmy uczenia sieci MLP 6. Zasady uczenia sieci Zjawiska zachodzące podczas uczenia 7. Uczenie sieci jedno- i dwuwarstwowych - omówienie - ilustracja

5 program wykładu część ogólna piotr.ciskowski.staff.iiar.pwr.wroc.pl 8. Sieci samoorganizujące SOM 9. Sieci o radialnych funkcjach bazowych RBF 10. inne rodzaje sieci neuronowych jednokierunkowych 11. Sieci rekurencyjne 12. Kontekstowe sieci neuronowe 13. Narzędzia do symulacji sieci a. MATLAB Neural Networks Toolbox b. STATISTICA Neural Networks c. inne 14. Zastosowania sieci jednokierunkowych 15. Zastosowania sieci automatyka 16. Zastosowania sieci rekurencyjnych 17. Zastosowania sieci - wdrożenia

6 program wykładu część sterownikowa piotr.ciskowski.staff.iiar.pwr.wroc.pl 18. Nieliniowe modele obiektów dynamicznych bazujące na sieciach neuronowych 19. Sterowniki neuronowe bazujące na modelu odwrotnym 20. Sterowanie użyciem modelu obiektu 21. Sterowniki bazujące na ciągłej linearyzacji obiektu

7 program wykładu część rozmyta piotr.ciskowski.staff.iiar.pwr.wroc.pl 18. Podstawowe pojęcia logiki rozmytej 19. Wnioskowanie rozmyte 20. Regulatory rozmyte 21. Systemy neuronowo-rozmyte

8 literatura piotr.ciskowski.staff.iiar.pwr.wroc.pl 1. Jeff Hawkins, Sandra Blakeslee. Istota inteligencji, Helion Ryszard Tadeusiewicz i in. Odkrywanie właściwości sieci neuronowych przy użyciu programów w języku C#, Polska Akademia Umiejętności, Kraków Stanisław Osowski. Sieci neuronowe do przetwarzania informacji Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa Jacek Żurada, M. Barski, W. Jędruch. Sztuczne sieci neuronowe Wydawnictwo Naukowe PWN, Warszawa Józef Korbicz, Andrzej Obuchowicz, Dariusz Uciński Sztuczne sieci neuronowe. Podstawy i zastosowania Akademicka Oficyna Wydawnicza PLJ, Warszawa Leszek Rutkowski. Metody i techniki sztucznej inteligencji Wydawnictwo Naukowe PWN, Warszawa 2006

9 literatura piotr.ciskowski.staff.iiar.pwr.wroc.pl 7. Jacek Łęski. Systemy neuronowo-rozmyte, Wydawnictwa Naukowo-Techniczne, Warszawa M. Norgaard i in. Neural Networks for Modelling an Control of Dynamic Systems Springer Timothy Masters. Sieci neuronowe w praktyce. Programowanie w języku C++ Wydawnictwa Naukowo-Techniczne, Warszawa Paweł Cichosz. Systemy uczące się Wydawnictwa Naukowo-Techniczne, Warszawa 2000

10 neuron biologiczny i sztuczny x 1 x 2 M x S w 1 w 2 M w S u y u = w x + w x + K S = i= 1 w x i i

11 neuron biologiczny i sztuczny x 1 x 2 M x S w 1 w 2 M w S u y y 1 gdy = f ( u) = 0 gdy u u > próg próg

12 neuron biologiczny i sztuczny x 0 = 1 x 1 x 2 M x S w k,1 w k,2 M w k, S w k,0 uk yk

13 różnice w budowie komputer jeden bardzo skomplikowany procesor sieć neuronowa bardzo dużo bardzo prostych procesorów bardzo duża prędkość pojedynczego procesora mała prędkość pojedynczego procesora niezła wydajność całości op./sek. Intel i7 wysoka wydajność całości op./sek.

14 różnice w działaniu komputer zdobywanie wiedzy: sieć neuronowa zdobywanie wiedzy: programowanie modelowanie znanego algorytmu uczenie na przykładach najlepsze zastosowania: najlepsze zastosowania: zadania o ściśle określonych, jednoznacznych algorytmach zadania słabo zdefiniowane dużo przykładów czynności, które robimy podświadomie

15 gdzie co stosować źródło: Tadeusiewicz

16 różnice w działaniu komputer dokładność obliczeń: bardzo duża sieć neuronowa dokładność obliczeń: mała odporność na uszkodzenia: mała odporność na uszkodzenia: duża wiedza zawarta w: programie, algorytmie wiedza zawarta w: wagach

17 historia: źródło: Tadeusiewicz 1904 Pawłow teoria odruchów warunkowych 1906 Colgi struktura układu nerwowego 1906 Ramon y Cajal mózg składa się z neuronów 1920 Krogh funkcje regulacyjne w organizmie 1932 Sherrington - sterowanie pracą mięśni 1936 Dale, Hallett - chemiczna transmisja impulsów nerwowych 1944 Erlanger, Gasser - procesy we włóknie nerwowym 1963 Eccless i in. - elektryczna aktywność neuronu 1969 Granit i in. - fizjologia widzenia 1977 Guillemin i in. - działanie hormonów w mózgu 1981 Sperry i in. - specjalizacja półkul móźdżku 1981 Hubel i in. - przetwarzanie informacji w systemie wzrokowym

18 historia: 1904 Pawłow teoria odruchów warunkowych 1906 Ramon y Cajal mózg składa się z neuronów 1943 McCulloch i Pitts matematyczny model neuronu 1949 Hebb - reguła uczenia Hebba 1958 Rosenblatt rozpoznawanie znaków 1960 Widrow neurokomputer Madaline 1969 Minsky i Pappert krytyka 1986 Rumelhart i in. metoda backpropagation 198x Hopfield sieci rekurencyjne 198x Kohonen sieci samoorganizujące

19 zastosowania sieci: klasyfikacja rozpoznawanie wzorców rozpoznawanie obrazów predykcja szeregów czasowych przybliżanie funkcji identyfikacja / modelowanie systemów sterowanie optymalizacja pamięci asocjacyjne

20 zastosowania sieci: Sterowanie ramieniem robota na promach kosmicznych NASA Rozpoznawanie sygnałów sonarowych US Navy Klasyfikacja obrazów mammograficznych szpital w USA Sterowanie zaworami rakiety Atlas Cofanie wielką amerykańską ciężarówą z naczepą Prognozowanie zapotrzebowania na energię elektryczną

21 Istota inteligencji - autorzy: Jeff Hawkins przedsiębiorca z Doliny Krzemowej główny inżynier w PalmOne założyciel Palm Computing, Handspring fundator Redwood Neuroscience Institute Sandra Blakeslee dziennikarka New York Times

22 Istota inteligencji cel książki: opisać ogólną teorię funkcjonowania mózgu - prostą i przejrzystą czym jest inteligencja jak powstaje w tkance nerwowej sztuczna inteligencja - rzeczywista inteligencja przed próbą budowy inteligentnych maszyn trzeba najpierw zrozumieć, jak działa mózg dopiero wtedy można zastanawiać się, jak zbudować inteligentne maszyny

23 Istota inteligencji - pytania: Czy komputery mogą być inteligentne? Czy sieci neuronowe mogą prowadzić do powstania inteligentnych maszyn? Dlaczego tak trudno odkryć, w jaki sposób funkcjonuje mózg? Czym jest inteligencja, jeśli nie jest po prostu inteligentnym zachowaniem? Jak działa mózg? Co wynika z tej teorii? Czy można zbudować inteligentne maszyny i do czego mogą być one zdolne?

24 Istota inteligencji mózg = umysł? Scientific American (Świat Nauki) 09/79 - numer o mózgu - Francis Crick: Thinking about the brain Mimo ciągłego przyrostu szczegółowej wiedzy o mózgu, sposób jego funkcjonowania wciąż pozostaje zagadką

25 różne podejścia do sztucznej inteligencji: Badacze sztucznej inteligencji Behawioryści Systemy ekspertowe Koneksjoniści - Sieci neuronowe Funkcjonaliści

26 zadania nie rozwiązane: percepcja język naturalny zachowanie uogólnianie elastyczność intuicja wyobraźnia planowanie

27 jak odkryć inteligencję: przełamać intuicję Kopernik Darwin Einstein inteligencja inteligentne zachowanie bycie człowiekiem bycie inteligentnym człowiek = inteligencja + uczucia + popędy + emocje + biologia + mądrość?

28 jak odkryć inteligencję: przełamać intuicję proste rozwiązania kora nowa

29 prof. Ryszard Tadeusiewicz

30 prof. Włodzisław Duch

31 prof. Bernie Widrow

SIECI NEURONOWE Wprowadzenie

SIECI NEURONOWE Wprowadzenie SIECI NEURONOWE Wprowadzenie JOANNA GRABSKA-CHRZĄSTOWSKA Wykłady w dużej mierze przygotowane w oparciu o materiały i pomysły PROF. RYSZARDA TADEUSIEWICZA WYKŁADOWCA JOANNA GRABSKA CHRZĄSTOWSKA KATEDRA

Bardziej szczegółowo

Metody sztucznej inteligencji

Metody sztucznej inteligencji Metody sztucznej inteligencji sztuczne sieci neuronowe - wstęp dr hab. inż. Andrzej Obuchowicz, prof. UZ Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski A. Obuchowicz Metody sztucznej

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z inteligentnymi

Bardziej szczegółowo

Inteligentne systemy informacyjne

Inteligentne systemy informacyjne Inteligentne systemy informacyjne Moduł 10 Mieczysław Muraszkiewicz www.icie.com.pl/lect_pw.htm M. Muraszkiewicz strona 1 Sieci neuronowe szkic Moduł 10 M. Muraszkiewicz strona 2 Dwa nurty M. Muraszkiewicz

Bardziej szczegółowo

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2)

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Ewa Wołoszko Praca pisana pod kierunkiem Pani dr hab. Małgorzaty Doman Plan tego wystąpienia Teoria Narzędzia

Bardziej szczegółowo

Sztuczne Sieci Neuronowe. Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW

Sztuczne Sieci Neuronowe. Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW Sztuczne Sieci Neuronowe Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW SN są częścią dziedziny Sztucznej Inteligencji Sztuczna Inteligencja (SI) zajmuje się

Bardziej szczegółowo

O badaniach nad SZTUCZNĄ INTELIGENCJĄ

O badaniach nad SZTUCZNĄ INTELIGENCJĄ O badaniach nad SZTUCZNĄ INTELIGENCJĄ Jak określa się inteligencję naturalną? Jak określa się inteligencję naturalną? Inteligencja wg psychologów to: Przyrodzona, choć rozwijana w toku dojrzewania i uczenia

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

Sieci neuronowe (wprowadzenie)

Sieci neuronowe (wprowadzenie) Sieci neuronowe (wprowadzenie) Ryszard Tadeusiewicz Laboratorium Biocybernetyki Katedra Automatyki i Inż. Biom. AGH Wykład będzie pokrywał najważniejsze kwestie w całości. Gdyby jednak zaszła potrzeba

Bardziej szczegółowo

Nowoczesne techniki informatyczne Program: 1. Sztuczna inteligencja. a) definicja; b) podział: Systemy ekspertowe Algorytmy ewolucyjne Logika rozmyta Sztuczne sieci neuronowe c) historia; 2. Systemy eksperckie

Bardziej szczegółowo

Sieci neuronowe (wprowadzenie) Ryszard Tadeusiewicz Laboratorium Biocybernetyki Katedra Automatyki AGH

Sieci neuronowe (wprowadzenie) Ryszard Tadeusiewicz Laboratorium Biocybernetyki Katedra Automatyki AGH Sieci neuronowe (wprowadzenie) Ryszard Tadeusiewicz Laboratorium Biocybernetyki Katedra Automatyki AGH Wykład będzie pokrywał najważniejsze kwestie w całości. Gdyby jednak zaszła potrzeba uzupełnienia

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: INTELIGENTNE SYSTEMY OBLICZENIOWE Systems Based on Computational Intelligence Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj

Bardziej szczegółowo

Sylabus modułu kształcenia na studiach wyższych. Nazwa Wydziału. Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia

Sylabus modułu kształcenia na studiach wyższych. Nazwa Wydziału. Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Załącznik nr 4 do zarządzenia nr 12 Rektora UJ z 15 lutego 2012 r. Sylabus modułu kształcenia na studiach wyższych Nazwa Wydziału Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Wydział Matematyki

Bardziej szczegółowo

Sieci neuronowe (wprowadzenie)

Sieci neuronowe (wprowadzenie) Sieci neuronowe (wprowadzenie) Ryszard Tadeusiewicz Laboratorium Biocybernetyki Katedra Automatyki AGH Zacznijmy od formalnej definicji: sieć neuronowa to urządzenie techniczne lub algorytm, którego działanie

Bardziej szczegółowo

Diagnostyka procesów przemysłowych Kod przedmiotu

Diagnostyka procesów przemysłowych Kod przedmiotu Diagnostyka procesów przemysłowych - opis przedmiotu Informacje ogólne Nazwa przedmiotu Diagnostyka procesów przemysłowych Kod przedmiotu 06.0-WE-AiRP-DPP Wydział Kierunek Wydział Informatyki, Elektrotechniki

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z własnościami

Bardziej szczegółowo

Sieci neuronowe jako przykład współczesnej technologii informatycznej

Sieci neuronowe jako przykład współczesnej technologii informatycznej Maciej Roszkowski Sieci neuronowe jako przykład współczesnej technologii informatycznej Sieci neuronowe są technologią sztucznej inteligencji, trochę zapomnianą we współczesnym świecie. Współczesny ogólnie

Bardziej szczegółowo

Historia sztucznej inteligencji. Przygotował: Konrad Słoniewski

Historia sztucznej inteligencji. Przygotował: Konrad Słoniewski Historia sztucznej inteligencji Przygotował: Konrad Słoniewski Prahistoria Mit o Pigmalionie Pandora ulepiona z gliny Talos olbrzym z brązu Starożytna Grecja System sylogizmów Arystotelesa (VI w. p.n.e.)

Bardziej szczegółowo

Stefan Sokołowski SZTUCZNAINTELIGENCJA. Inst. Informatyki UG, Gdańsk, 2009/2010

Stefan Sokołowski SZTUCZNAINTELIGENCJA. Inst. Informatyki UG, Gdańsk, 2009/2010 Stefan Sokołowski SZTUCZNAINTELIGENCJA Inst. Informatyki UG, Gdańsk, 2009/2010 Wykład1,17II2010,str.1 SZTUCZNA INTELIGENCJA reguły gry Zasadnicze informacje: http://inf.ug.edu.pl/ stefan/dydaktyka/sztintel/

Bardziej szczegółowo

Sieci neuronowe i ich ciekawe zastosowania. Autor: Wojciech Jamrozy III rok SMP / Informatyka

Sieci neuronowe i ich ciekawe zastosowania. Autor: Wojciech Jamrozy III rok SMP / Informatyka Sieci neuronowe i ich ciekawe zastosowania Autor: Wojciech Jamrozy III rok SMP / Informatyka Klasyczna algorytmika Sortowanie ciągu liczb Czy i ile razy dane słowo wystąpiło w tekście Najkrótsza droga

Bardziej szczegółowo

Kierunek Informatyka stosowana Studia stacjonarne Studia pierwszego stopnia

Kierunek Informatyka stosowana Studia stacjonarne Studia pierwszego stopnia Studia pierwszego stopnia I rok Matematyka dyskretna 30 30 Egzamin 5 Analiza matematyczna 30 30 Egzamin 5 Algebra liniowa 30 30 Egzamin 5 Statystyka i rachunek prawdopodobieństwa 30 30 Egzamin 5 Opracowywanie

Bardziej szczegółowo

2.2.P.07: Komputerowe narzędzia inżynierii powierzchni

2.2.P.07: Komputerowe narzędzia inżynierii powierzchni 2nd Workshop on Foresight of surface properties formation leading technologies of engineering materials and biomaterials in Białka Tatrzańska, Poland 29th-30th November 2009 2 Panel nt. Produkt oraz materiał

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: moduł specjalności obowiązkowy: Inżynieria oprogramowania, Sieci komputerowe Rodzaj zajęć: wykład, laboratorium MODELOWANIE I SYMULACJA Modelling

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium Automatyka Automatics Forma studiów: studia stacjonarne Poziom kwalifikacji: I stopnia Liczba

Bardziej szczegółowo

Przetwarzanie danych i rozwiązywanie problemów

Przetwarzanie danych i rozwiązywanie problemów Przetwarzanie danych i rozwiązywanie problemów Jak to robi komputer? 1. pobierz instrukcję z pamięci 2. pobierz z pamięci konieczne dane 3. wykonaj instrukcję 4. zapamiętaj wynik 5. Przejdź do 1. Instrukcje

Bardziej szczegółowo

Wstęp do kognitywistyki. Wykład 3: Logiczny neuron. Rachunek sieci neuronowych

Wstęp do kognitywistyki. Wykład 3: Logiczny neuron. Rachunek sieci neuronowych Wstęp do kognitywistyki Wykład 3: Logiczny neuron. Rachunek sieci neuronowych Epistemologia eksperymentalna W. McCulloch: Wszystko, czego dowiadujemy się o organizmach wiedzie nas do wniosku, iż nie są

Bardziej szczegółowo

Efekty kształcenia na kierunku AiR drugiego stopnia - Wiedza Wydziału Elektrotechniki, Automatyki i Informatyki Politechniki Opolskiej

Efekty kształcenia na kierunku AiR drugiego stopnia - Wiedza Wydziału Elektrotechniki, Automatyki i Informatyki Politechniki Opolskiej Efekty na kierunku AiR drugiego stopnia - Wiedza K_W01 K_W02 K_W03 K_W04 K_W05 K_W06 K_W07 K_W08 K_W09 K_W10 K_W11 K_W12 K_W13 K_W14 Ma rozszerzoną wiedzę dotyczącą dynamicznych modeli dyskretnych stosowanych

Bardziej szczegółowo

WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH W PROGNOZOWANIU

WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH W PROGNOZOWANIU WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH W PROGNOZOWANIU THE USE OF ARTIFICIAL NEURAL NETWORKS IN FORECASTING Konrad BAJDA, Sebastian PIRÓG Resume Artykuł opisuje wykorzystanie sztucznych sieci neuronowych

Bardziej szczegółowo

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE DIAGNOSTYKĘ MEDYCZNĄ Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj zajęć: wykład, projekt

Bardziej szczegółowo

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu.

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu. SYLLABUS na rok akademicki 01/013 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr /3 Specjalność Bez specjalności Kod katedry/zakładu

Bardziej szczegółowo

Seminarium magisterskie. Dyskusja nad tematem pracy magisterskiej pisanej pod kierunkiem pani Dr hab. Małgorzaty Doman

Seminarium magisterskie. Dyskusja nad tematem pracy magisterskiej pisanej pod kierunkiem pani Dr hab. Małgorzaty Doman Seminarium magisterskie Dyskusja nad tematem pracy magisterskiej pisanej pod kierunkiem pani Dr hab. Małgorzaty Doman Plan wystąpienia Ogólnie o sztucznych sieciach neuronowych Temat pracy magisterskiej

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy na specjalności: systemy sterowania Rodzaj zajęć: wykład, laboratorium UKŁADY AUTOMATYKI PRZEMYSŁOWEJ Industrial Automatics Systems

Bardziej szczegółowo

Sztuczna inteligencja - wprowadzenie

Sztuczna inteligencja - wprowadzenie Sztuczna inteligencja - wprowadzenie Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Sztuczna inteligencja komputerów - wprowadzenie Kontakt: dr inż. Dariusz Banasiak, pok.

Bardziej szczegółowo

MATLAB Neural Network Toolbox przegląd

MATLAB Neural Network Toolbox przegląd MATLAB Neural Network Toolbox przegląd WYKŁAD Piotr Ciskowski Neural Network Toolbox: Neural Network Toolbox - zastosowania: przykłady zastosowań sieci neuronowych: The 1988 DARPA Neural Network Study

Bardziej szczegółowo

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe wykład 1. Właściwości sieci neuronowych Model matematyczny sztucznego neuronu Rodzaje sieci neuronowych Przegląd d głównych g

Bardziej szczegółowo

K.Pieńkosz Badania Operacyjne Wprowadzenie 1. Badania Operacyjne. dr inż. Krzysztof Pieńkosz

K.Pieńkosz Badania Operacyjne Wprowadzenie 1. Badania Operacyjne. dr inż. Krzysztof Pieńkosz K.Pieńkosz Wprowadzenie 1 dr inż. Krzysztof Pieńkosz Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej pok. 560 A tel.: 234-78-64 e-mail: K.Pienkosz@ia.pw.edu.pl K.Pieńkosz Wprowadzenie

Bardziej szczegółowo

WYKŁAD. Jednostka prowadząca: Wydział Techniczny. Kierunek studiów: Edukacja techniczno-informatyczna

WYKŁAD. Jednostka prowadząca: Wydział Techniczny. Kierunek studiów: Edukacja techniczno-informatyczna Jednostka prowadząca: Wydział Techniczny Kierunek studiów: Edukacja techniczno-informatyczna Nazwa przedmiotu: Metody numeryczne i elementy sztucznej inteligencji Charakter przedmiotu: kierunkowy, obowiązkowy

Bardziej szczegółowo

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu Podstawy baz danych PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych

Bardziej szczegółowo

Redakcja: Urszula Markowska-Kaczmar Halina Kwaśnicka SIECI NEURONOWE W ZASTOSOWANIACH. Praca zbiorowa

Redakcja: Urszula Markowska-Kaczmar Halina Kwaśnicka SIECI NEURONOWE W ZASTOSOWANIACH. Praca zbiorowa Redakcja: Urszula Markowska-Kaczmar Halina Kwaśnicka SIECI NEURONOWE W ZASTOSOWANIACH Praca zbiorowa Oficyna Wydawnicza Politechniki Wrocławskiej Wrocław 2005 3 Przedmowa 7 1 Sztuczne sieci neuronowe wprowadzenie

Bardziej szczegółowo

Algorytmy sztucznej inteligencji

Algorytmy sztucznej inteligencji Algorytmy sztucznej inteligencji Dynamiczne sieci neuronowe 1 Zapis macierzowy sieci neuronowych Poniżej omówione zostaną części składowe sieci neuronowych i metoda ich zapisu za pomocą macierzy. Obliczenia

Bardziej szczegółowo

KONCEPCJA WYKORZYSTANIA SZTUCZNYCH SIECI NEURONOWYCH W DIAGNOSTYCE PRZEKŁADNI ZĘBATYCH

KONCEPCJA WYKORZYSTANIA SZTUCZNYCH SIECI NEURONOWYCH W DIAGNOSTYCE PRZEKŁADNI ZĘBATYCH ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2009 Seria: TRANSPORT z. 65 Nr kol. 1807 Piotr CZECH, Bogusław ŁAZARZ KONCEPCJA WYKORZYSTANIA SZTUCZNYCH SIECI NEURONOWYCH W DIAGNOSTYCE PRZEKŁADNI ZĘBATYCH Streszczenie.

Bardziej szczegółowo

Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty

Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-03 Projekt pn. Wzmocnienie potencjału

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/

Bardziej szczegółowo

Katedra Systemów Decyzyjnych. Kierownik: prof. dr hab. inż. Zdzisław Kowalczuk ksd@eti.pg.gda.pl

Katedra Systemów Decyzyjnych. Kierownik: prof. dr hab. inż. Zdzisław Kowalczuk ksd@eti.pg.gda.pl Katedra Systemów Decyzyjnych Kierownik: prof. dr hab. inż. Zdzisław Kowalczuk ksd@eti.pg.gda.pl 2010 Kadra KSD profesor zwyczajny 6 adiunktów, w tym 1 z habilitacją 4 asystentów 7 doktorantów Wydział Elektroniki,

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* Zał. nr do ZW /01 WYDZIAŁ / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Identyfikacja systemów Nazwa w języku angielskim System identification Kierunek studiów (jeśli dotyczy): Inżynieria Systemów

Bardziej szczegółowo

SI w procesach przepływu i porządkowania informacji. Paweł Buchwald Wyższa Szkoła Biznesu

SI w procesach przepływu i porządkowania informacji. Paweł Buchwald Wyższa Szkoła Biznesu SI w procesach przepływu i porządkowania informacji Paweł Buchwald Wyższa Szkoła Biznesu Początki SI John MC Carthy prekursor SI Alan Thuring pomysłodawca testu na określenie inteligencji maszyn Powolny

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* Zał. nr 4 do ZW /01 WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : AUTOMATYKA I ROBOTYKA Nazwa w języku angielskim: AUTOMATION AND ROBOTICS Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

METODY INTELIGENCJI OBLICZENIOWEJ wykład 4

METODY INTELIGENCJI OBLICZENIOWEJ wykład 4 METODY INTELIGENCJI OBLICZENIOWEJ wykład 4 1 2 SZTUCZNE SIECI NEURONOWE HISTORIA SSN 3 Walter Pitts, Warren McCulloch (1943) opracowanie matematyczne pojęcia sztucznego neuronu.. Udowodnili też, iż ich

Bardziej szczegółowo

SZTUCZNE SIECI NEURONOWE

SZTUCZNE SIECI NEURONOWE METODY INTELIGENCJI OBLICZENIOWEJ wykład 4 SZTUCZNE SIECI NEURONOWE HISTORIA SSN Walter Pitts, Warren McCulloch (94) opracowanie matematyczne pojęcia sztucznego neuronu.. Udowodnili też, iż ich wynalazek

Bardziej szczegółowo

INFORMATYKA Pytania ogólne na egzamin dyplomowy

INFORMATYKA Pytania ogólne na egzamin dyplomowy INFORMATYKA Pytania ogólne na egzamin dyplomowy 1. Wyjaśnić pojęcia problem, algorytm. 2. Podać definicję złożoności czasowej. 3. Podać definicję złożoności pamięciowej. 4. Typy danych w języku C. 5. Instrukcja

Bardziej szczegółowo

17.12.2005 Neuron biologiczny. Źród lo: Korbicz i in. [4] Synapsa to po l aczenie nerwowymi.

17.12.2005 Neuron biologiczny. Źród lo: Korbicz i in. [4] Synapsa to po l aczenie nerwowymi. Wyk lad 1. 17.12.2005 Neuron biologiczny Źród lo: Korbicz i in. [4] Synapsa to po l aczenie miedzy dwoma komórkami nerwowymi. 1 neuron biologiczny A B C D Zakoñczenia przedsynaptyczne Akson Dendryt Cia³o

Bardziej szczegółowo

Kierownik Katedry: Prof. dr hab. inż. Tadeusz BURCZYŃSKI

Kierownik Katedry: Prof. dr hab. inż. Tadeusz BURCZYŃSKI Kierownik Katedry: Prof. dr hab. inż. Tadeusz BURCZYŃSKI Zakład Inteligentnych Systemów Obliczeniowych RMT4-3 Kierownik Zakładu: Prof. dr hab. inż. Tadeusz BURCZYŃSKI Zakład Metod Numerycznych w Termomechanice

Bardziej szczegółowo

HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM

HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM ZASTOSOWANIE SIECI NEURONOWYCH W SYSTEMACH AKTYWNEJ REDUKCJI HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM WPROWADZENIE Zwalczanie hałasu przy pomocy metod aktywnych redukcji hałasu polega

Bardziej szczegółowo

Diagnostyka procesów

Diagnostyka procesów Diagnostyka procesów Bartosz Jabłoński Omówienie semestr zimowy 2013/2014 10/5/2013 1 Kontakt dr inż. Bartosz Jabłoński bartosz.jablonski@pwr.wroc.pl s. 911, D-20 www.jablonski.wroclaw.pl 10/5/2013 Footer

Bardziej szczegółowo

SYLABUS/KARTA PRZEDMIOTU

SYLABUS/KARTA PRZEDMIOTU . NAZWA PRZEDMIOTU SYLABUS/KARTA PRZEDMIOTU Systemy wizyjne w automatyce przemysłowej. NAZWA JEDNOSTKI PROWADZĄCEJ PRZEDMIOT Instytut Politechniczny. STUDIA kierunek stopień tryb język status przedmiotu

Bardziej szczegółowo

Prof. Stanisław Jankowski

Prof. Stanisław Jankowski Prof. Stanisław Jankowski Zakład Sztucznej Inteligencji Zespół Statystycznych Systemów Uczących się p. 228 sjank@ise.pw.edu.pl Zakres badań: Sztuczne sieci neuronowe Maszyny wektorów nośnych SVM Maszyny

Bardziej szczegółowo

Badacze zbudowali wiele systemów technicznych, naśladujących w komputerze ludzki mózg. Najbardziej pożyteczne okazały się sieci neuronowe.

Badacze zbudowali wiele systemów technicznych, naśladujących w komputerze ludzki mózg. Najbardziej pożyteczne okazały się sieci neuronowe. Naśladując w komputerze ludzki mózg staramy się połączyć zalety komputera (dostępność i szybkość działania) z zaletami mózgu (zdolność do uczenia się) informatyka + 2 Badacze zbudowali wiele systemów technicznych,

Bardziej szczegółowo

Podstawy sztucznej inteligencji

Podstawy sztucznej inteligencji wykład 5 Sztuczne sieci neuronowe (SSN) 8 grudnia 2011 Plan wykładu 1 Biologiczne wzorce sztucznej sieci neuronowej 2 3 4 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką,

Bardziej szczegółowo

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74 3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15

Bardziej szczegółowo

Umysł Komputer Świat TEX output: :17 strona: 1

Umysł Komputer Świat TEX output: :17 strona: 1 Umysł Komputer Świat INFORMATYKA I FILOZOFIA Witold Marciszewski Paweł Stacewicz Umysł Komputer Świat O zagadce umysłu z informatycznego punktu widzenia E Warszawa Akademicka Oficyna Wydawnicza EXIT 2011

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: KINEMATYKA I DYNAMIKA MANIPULATORÓW I ROBOTÓW Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy na specjalności: Systemy sterowania Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU

Bardziej szczegółowo

MODELOWANIE FAZ ZNI ANIA I L DOWANIA SAMOLOTU BOEING 767-300ER PRZY U YCIU SZTUCZNYCH SIECI NEURONOWYCH

MODELOWANIE FAZ ZNI ANIA I L DOWANIA SAMOLOTU BOEING 767-300ER PRZY U YCIU SZTUCZNYCH SIECI NEURONOWYCH P R A C E N A U K O W E P O L I T E C H N I K I W A R S Z A W S K I E J z. 102 Transport 2014 Aleksandra Stycunów, Jerzy Manerowski Politechnika Warszawska, Wydzia Transportu MODELOWANIE FAZ ZNI ANIA I

Bardziej szczegółowo

Plan studiów dla kierunku:

Plan studiów dla kierunku: Plan studiów dla kierunku: INFORMATYKA Specjalności: Bezpieczeństwo sieciowych systemów informatycznych, Informatyka techniczna, Technologie internetowe i techniki multimedialne Ogółem Semestr 1 Semestr

Bardziej szczegółowo

Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym

Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym POLITECHNIKA WARSZAWSKA Instytut Technik Wytwarzania Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym Marcin Perzyk Dlaczego eksploracja danych?

Bardziej szczegółowo

JAKIEGO RODZAJU NAUKĄ JEST

JAKIEGO RODZAJU NAUKĄ JEST JAKIEGO RODZAJU NAUKĄ JEST INFORMATYKA? Computer Science czy Informatyka? Computer Science czy Informatyka? RACZEJ COMPUTER SCIENCE bo: dziedzina ta zaistniała na dobre wraz z wynalezieniem komputerów

Bardziej szczegółowo

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia II stopnia (magisterskie)

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia II stopnia (magisterskie) Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia II stopnia (magisterskie) Temat: Analiza właściwości pilotażowych samolotu Specjalność: Pilotaż lub Awionika 1. Analiza stosowanych kryteriów

Bardziej szczegółowo

Specjalność: Komputerowe systemy sterowania i diagnostyki

Specjalność: Komputerowe systemy sterowania i diagnostyki Specjalność: Komputerowe systemy sterowania i diagnostyki Rozkład zajęć w sem. (godz. w tygodniu) Lp Nazwa przedmiotu ECTS sem. 1 sem. 2 sem. 3 sem. 4 sem. 5 sem. 6 sem. 7 w c l p w c l p w c l p w c l

Bardziej szczegółowo

Sieci neuronowe - wprowadzenie. Agnieszka Nowak - Brzezińska

Sieci neuronowe - wprowadzenie. Agnieszka Nowak - Brzezińska The brain - that's my second most favourite organ! - Woody Allen Sieci neuronowe - wprowadzenie Agnieszka Nowak - Brzezińska Klasyfikacja danych Klasyfikacja danych to jedno z podstawowych zadań wykonywanych

Bardziej szczegółowo

w ekonomii, finansach i towaroznawstwie

w ekonomii, finansach i towaroznawstwie w ekonomii, finansach i towaroznawstwie spotykane określenia: zgłębianie danych, eksploracyjna analiza danych, przekopywanie danych, męczenie danych proces wykrywania zależności w zbiorach danych poprzez

Bardziej szczegółowo

Katowice GPW 2013. Zintegrowany system informatyczny do kompleksowego zarządzania siecią wodociągową. Jan Studziński

Katowice GPW 2013. Zintegrowany system informatyczny do kompleksowego zarządzania siecią wodociągową. Jan Studziński Katowice GPW 2013 Zintegrowany system informatyczny do kompleksowego zarządzania siecią wodociągową Jan Studziński 1 1. Wstęp Cel pracy Usprawnienie zarządzania siecią wodociągową za pomocą nowoczesnych

Bardziej szczegółowo

8. Neuron z ciągłą funkcją aktywacji.

8. Neuron z ciągłą funkcją aktywacji. 8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i

Bardziej szczegółowo

DiaSter - system zaawansowanej diagnostyki aparatury technologicznej, urządzeń pomiarowych i wykonawczych. Politechnika Warszawska

DiaSter - system zaawansowanej diagnostyki aparatury technologicznej, urządzeń pomiarowych i wykonawczych. Politechnika Warszawska Jan Maciej Kościelny, Michał Syfert DiaSter - system zaawansowanej diagnostyki aparatury technologicznej, urządzeń pomiarowych i wykonawczych Instytut Automatyki i Robotyki Plan wystąpienia 2 Wprowadzenie

Bardziej szczegółowo

Liczba godzin w semestrze Ogółem Semestr 1 Semestr 2 Semestr 3 E Z Sh W C L S P W C L S P ECTS W C L S P ECTS W C L S P ECTS W C L S P ECTS

Liczba godzin w semestrze Ogółem Semestr 1 Semestr 2 Semestr 3 E Z Sh W C L S P W C L S P ECTS W C L S P ECTS W C L S P ECTS W C L S P ECTS Specjalność: Bezpieczeństwo sieciowych systemów informatycznych, Informatyka techniczna, Technologie internetowe i techniki multimedialne Ogółem Semestr 1 Semestr 2 Semestr Semestr 4 E Z Sh W C L S P W

Bardziej szczegółowo

Rozwiązywanie równań liniowych. Transmitancja. Charakterystyki częstotliwościowe

Rozwiązywanie równań liniowych. Transmitancja. Charakterystyki częstotliwościowe Zał. nr do ZW 33/01 WYDZIAŁ Informatyki i Zarządzania / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Modele systemów dynamicznych Nazwa w języku angielskim Dynamic Systems Models. Kierunek studiów (jeśli

Bardziej szczegółowo

Zeszyty Naukowe nr 740 Akademii Ekonomicznej w Krakowie. Joanna Palczewska. 1. Wprowadzenie

Zeszyty Naukowe nr 740 Akademii Ekonomicznej w Krakowie. Joanna Palczewska. 1. Wprowadzenie Zeszyty Naukowe nr 740 Akademii Ekonomicznej w Krakowie 2007 Studium Doktoranckie Wydzia u Zarzàdzania Mo liwoêci zastosowania modelu jednokierunkowej sieci neuronowej do prognozowania sygna ów kupna i

Bardziej szczegółowo

Metody Sztucznej Inteligencji II

Metody Sztucznej Inteligencji II 17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału

Bardziej szczegółowo

Percepcja, język, myślenie

Percepcja, język, myślenie Psychologia procesów poznawczych Plan wykładu Percepcja, język, myślenie Historia psychologii poznawczej W 2 Wstęp do psychologii poznawczej Historia psychologii poznawczej dawniej Psychologia poznawcza

Bardziej szczegółowo

2.1.M.06: Modelowanie i wspomaganie komputerowe w inżynierii powierzchni

2.1.M.06: Modelowanie i wspomaganie komputerowe w inżynierii powierzchni 2nd Workshop on Foresight of surface properties formation leading technologies of engineering materials and biomaterials in Białka Tatrzańska, Poland 29th-30th November 2009 1 Panel nt. Procesy wytwarzania

Bardziej szczegółowo

Modelowanie przetworników pomiarowych Kod przedmiotu

Modelowanie przetworników pomiarowych Kod przedmiotu Modelowanie przetworników pomiarowych - opis przedmiotu Informacje ogólne Nazwa przedmiotu Modelowanie przetworników pomiarowych Kod przedmiotu 06.0-WE-ED-MPP Wydział Kierunek Wydział Informatyki, Elektrotechniki

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy ogólny Rodzaj zajęć: wykład, ćwiczenia I KARTA

Bardziej szczegółowo

Cyfrowe algorytmy sterowania AR S1 semestr 4 Projekt 4

Cyfrowe algorytmy sterowania AR S1 semestr 4 Projekt 4 Cyfrowe algorytmy sterowania AR S1 semestr 4 Projekt 4 MPC Sterowanie predykcyjne Cel: Poznanie podstaw regulacji predykcyjnej i narzędzi do badań symulacyjnych Wykonali: Konrad Słodowicz Patryk Frankowski

Bardziej szczegółowo

Zastosowanie sztucznej inteligencji w testowaniu oprogramowania

Zastosowanie sztucznej inteligencji w testowaniu oprogramowania Zastosowanie sztucznej inteligencji w testowaniu oprogramowania Problem NP Problem NP (niedeterministycznie wielomianowy, ang. nondeterministic polynomial) to problem decyzyjny, dla którego rozwiązanie

Bardziej szczegółowo

Informatyka w medycynie Punkt widzenia kardiologa

Informatyka w medycynie Punkt widzenia kardiologa Informatyka w medycynie Punkt widzenia kardiologa Lech Poloński Mariusz Gąsior Informatyka medyczna Dział informatyki zajmujący się jej zastosowaniem w ochronie zdrowia (medycynie) Stymulacja rozwoju informatyki

Bardziej szczegółowo

Sieci neuronowe w Statistica

Sieci neuronowe w Statistica http://usnet.us.edu.pl/uslugi-sieciowe/oprogramowanie-w-usk-usnet/oprogramowaniestatystyczne/ Sieci neuronowe w Statistica Agnieszka Nowak - Brzezińska Podstawowym elementem składowym sztucznej sieci neuronowej

Bardziej szczegółowo

ZAGADNIENIA SPECJALNOŚCIOWE

ZAGADNIENIA SPECJALNOŚCIOWE (ARK) Komputerowe sieci sterowania 1.Zaawansowane metody wyznaczania parametrów regulatorów 2.Mechanizmy innowacyjne. 3.Sieci neuronowe w modelowaniu obiektów dynamicznych. 4.Zasady projektowania i zastosowania

Bardziej szczegółowo

SCENARIUSZ LEKCJI BIOLOGII Z WYKORZYSTANIEM FILMU DOBRZE MIEĆ O(G)LEJ W GŁOWIE. O KOMÓRKACH UKŁADU NERWOWEGO.

SCENARIUSZ LEKCJI BIOLOGII Z WYKORZYSTANIEM FILMU DOBRZE MIEĆ O(G)LEJ W GŁOWIE. O KOMÓRKACH UKŁADU NERWOWEGO. SCENARIUSZ LEKCJI BIOLOGII Z WYKORZYSTANIEM FILMU DOBRZE MIEĆ O(G)LEJ W GŁOWIE. O KOMÓRKACH UKŁADU NERWOWEGO. SPIS TREŚCI: I. Wprowadzenie. II. Części lekcji. 1. Część wstępna. 2. Część realizacji. 3.

Bardziej szczegółowo

Plan studiów dla kierunku:

Plan studiów dla kierunku: Plan studiów dla kierunku: INFORMATYKA Specjalność: Bezpieczeństwo sieciowych systemów informatycznych, Informatyka techniczna, Technologie internetowe i techniki multimedialne Ogółem Semestr 1 Semestr

Bardziej szczegółowo

Narzędzia AI. Jakub Wróblewski jakubw@pjwstk.edu.pl Pokój 312. http://zajecia.jakubw.pl SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE)

Narzędzia AI. Jakub Wróblewski jakubw@pjwstk.edu.pl Pokój 312. http://zajecia.jakubw.pl SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE) Narzędzia AI Jakub Wróblewski jakubw@pjwstk.edu.pl Pokój 312 http://zajecia.jakubw.pl SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE) Nauka o maszynach realizujących zadania, które wymagają inteligencji

Bardziej szczegółowo

PODSTAWY INŻYNIERI WIEDZY

PODSTAWY INŻYNIERI WIEDZY Z1-PU7 WYDANIE N1 Strona 1 z 4 (pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: PODSTAWY INŻYNIERI WIEDZY 2. Kod przedmiotu: PIW 3. Karta przedmiotu ważna od roku akademickiego: 2012/2013 4. Forma

Bardziej szczegółowo

Lista zagadnień kierunkowych pomocniczych w przygotowaniu do egzaminu dyplomowego magisterskiego Kierunek: Mechatronika

Lista zagadnień kierunkowych pomocniczych w przygotowaniu do egzaminu dyplomowego magisterskiego Kierunek: Mechatronika Lista zagadnień kierunkowych pomocniczych w przygotowaniu do Kierunek: Mechatronika 1. Materiały używane w budowie urządzeń precyzyjnych. 2. Rodzaje stali węglowych i stopowych, 3. Granica sprężystości

Bardziej szczegółowo

Z-ZIP2-303z Zagadnienia optymalizacji Problems of optimization

Z-ZIP2-303z Zagadnienia optymalizacji Problems of optimization KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 0/03 Z-ZIP-303z Zagadnienia optymalizacji Problems of optimization A. USYTUOWANIE

Bardziej szczegółowo

PROGRAM SEMINARIUM ZAKOPANE 2011. czwartek, 1 grudnia 2011 r. Sesja przedpołudniowa

PROGRAM SEMINARIUM ZAKOPANE 2011. czwartek, 1 grudnia 2011 r. Sesja przedpołudniowa czwartek, 1 grudnia 2011 r. Sesja przedpołudniowa 9.30 9.40: 9.40 10.10: 10.10 10.40: 10.40 11.00: Otwarcie seminarium Prof. dr hab. inż. Tadeusz Czachórski prof. dr hab. inż. Robert Schaeffer, prezentacja:

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Badania operacyjne Operational research Zarządzanie i Inżynieria Produkcji Management and Engineering of Production Rodzaj przedmiotu: obowiązkowy Poziom studiów: studia I stopnia

Bardziej szczegółowo

Sztuczne Sieci Neuronowe

Sztuczne Sieci Neuronowe Sztuczne Sieci Neuronowe Wykład 1 Wprowadzenie do tematyki Sztucznych Sieci Neuronowych (SSN) wykład przygotowany wg. W. Duch, J. Korbicz, L. Rutkowski, R. Tadeusiewicz, Sieci Neuronowe, Rozdz. 1. Biocybernetyka

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy na specjalności Inżynieria Oprogramowania Rodzaj zajęć: wykład, laboratorium SYSTEMY MULTIMEDIALNE Multimedia Systems Forma studiów:

Bardziej szczegółowo

W Y Ż S Z A S Z K O Ł A IN F O R M A T Y K I W Y D Z I A Ł...

W Y Ż S Z A S Z K O Ł A IN F O R M A T Y K I W Y D Z I A Ł... W Y Ż S Z A S Z K O Ł A IN F O R M A T Y K I W Y D Z I A Ł... PRACA PRZEJŚCIOWA Tytuł pracy: Imię i Nazwisko: Studia: Nr albumu: Opiekun: Rok akademicki Spis treści (Times New Roman 12, wycentrowany, pogubiony)

Bardziej szczegółowo

CZYM SĄ OBLICZENIA NAT A URALNE?

CZYM SĄ OBLICZENIA NAT A URALNE? CZYM SĄ OBLICZENIA NATURALNE? Co to znaczy obliczać (to compute)? Co to znaczy obliczać (to compute)? wykonywać operacje na liczbach? (komputer = maszyna licząca) wyznaczać wartości pewnych funkcji? (program

Bardziej szczegółowo

prof. dr hab. inż. Maciej Niedźwiecki dr hab. inż. Piotr Suchomski mgr inż. Stanisław Iszora mgr inż. Włodzimierz Sakwiński dr inż.

prof. dr hab. inż. Maciej Niedźwiecki dr hab. inż. Piotr Suchomski mgr inż. Stanisław Iszora mgr inż. Włodzimierz Sakwiński dr inż. Katedra Systemów Automatyki Katedra Systemów Automatyki prof. dr hab. inż. Maciej Niedźwiecki dr hab. inż. Piotr Suchomski dr inż. Paweł Raczyński dr inż. Stefan Sieklicki dr inż. Krzysztof Cisowski mgr

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Systemy Decision suport systems Zarządzanie i Inżynieria Produkcji Management and Engineering of Production Rodzaj przedmiotu: obowiązkowy Poziom studiów: studia II stopnia

Bardziej szczegółowo