Sieci neuronowe. - wprowadzenie - Istota inteligencji. WYKŁAD Piotr Ciskowski

Wielkość: px
Rozpocząć pokaz od strony:

Download "Sieci neuronowe. - wprowadzenie - Istota inteligencji. WYKŁAD Piotr Ciskowski"

Transkrypt

1 Sieci neuronowe - wprowadzenie - Istota inteligencji WYKŁAD Piotr Ciskowski

2 na dobry początek: - championship winners of the ATC the ATC 2007 is over forex-pamm.com

3 na dobry początek: - championship winners of the ATC the ATC 2007 is over forex-pamm.com

4 program wykładu część ogólna piotr.ciskowski.staff.iiar.pwr.wroc.pl 1. Wprowadzenie, historia, istota inteligencji 2. Neuron budowa, działanie, własności 3. Sieć wielowarstwowa MLP budowa, działanie, własności 4. Uczenie neuronu uczenie sieci 5. Algorytmy uczenia sieci MLP 6. Zasady uczenia sieci Zjawiska zachodzące podczas uczenia 7. Uczenie sieci jedno- i dwuwarstwowych - omówienie - ilustracja

5 program wykładu część ogólna piotr.ciskowski.staff.iiar.pwr.wroc.pl 8. Sieci samoorganizujące SOM 9. Sieci o radialnych funkcjach bazowych RBF 10. inne rodzaje sieci neuronowych jednokierunkowych 11. Sieci rekurencyjne 12. Kontekstowe sieci neuronowe 13. Narzędzia do symulacji sieci a. MATLAB Neural Networks Toolbox b. STATISTICA Neural Networks c. inne 14. Zastosowania sieci jednokierunkowych 15. Zastosowania sieci automatyka 16. Zastosowania sieci rekurencyjnych 17. Zastosowania sieci - wdrożenia

6 program wykładu część sterownikowa piotr.ciskowski.staff.iiar.pwr.wroc.pl 18. Nieliniowe modele obiektów dynamicznych bazujące na sieciach neuronowych 19. Sterowniki neuronowe bazujące na modelu odwrotnym 20. Sterowanie użyciem modelu obiektu 21. Sterowniki bazujące na ciągłej linearyzacji obiektu

7 program wykładu część rozmyta piotr.ciskowski.staff.iiar.pwr.wroc.pl 18. Podstawowe pojęcia logiki rozmytej 19. Wnioskowanie rozmyte 20. Regulatory rozmyte 21. Systemy neuronowo-rozmyte

8 literatura piotr.ciskowski.staff.iiar.pwr.wroc.pl 1. Jeff Hawkins, Sandra Blakeslee. Istota inteligencji, Helion Ryszard Tadeusiewicz i in. Odkrywanie właściwości sieci neuronowych przy użyciu programów w języku C#, Polska Akademia Umiejętności, Kraków Stanisław Osowski. Sieci neuronowe do przetwarzania informacji Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa Jacek Żurada, M. Barski, W. Jędruch. Sztuczne sieci neuronowe Wydawnictwo Naukowe PWN, Warszawa Józef Korbicz, Andrzej Obuchowicz, Dariusz Uciński Sztuczne sieci neuronowe. Podstawy i zastosowania Akademicka Oficyna Wydawnicza PLJ, Warszawa Leszek Rutkowski. Metody i techniki sztucznej inteligencji Wydawnictwo Naukowe PWN, Warszawa 2006

9 literatura piotr.ciskowski.staff.iiar.pwr.wroc.pl 7. Jacek Łęski. Systemy neuronowo-rozmyte, Wydawnictwa Naukowo-Techniczne, Warszawa M. Norgaard i in. Neural Networks for Modelling an Control of Dynamic Systems Springer Timothy Masters. Sieci neuronowe w praktyce. Programowanie w języku C++ Wydawnictwa Naukowo-Techniczne, Warszawa Paweł Cichosz. Systemy uczące się Wydawnictwa Naukowo-Techniczne, Warszawa 2000

10 neuron biologiczny i sztuczny x 1 x 2 M x S w 1 w 2 M w S u y u = w x + w x + K S = i= 1 w x i i

11 neuron biologiczny i sztuczny x 1 x 2 M x S w 1 w 2 M w S u y y 1 gdy = f ( u) = 0 gdy u u > próg próg

12 neuron biologiczny i sztuczny x 0 = 1 x 1 x 2 M x S w k,1 w k,2 M w k, S w k,0 uk yk

13 różnice w budowie komputer jeden bardzo skomplikowany procesor sieć neuronowa bardzo dużo bardzo prostych procesorów bardzo duża prędkość pojedynczego procesora mała prędkość pojedynczego procesora niezła wydajność całości op./sek. Intel i7 wysoka wydajność całości op./sek.

14 różnice w działaniu komputer zdobywanie wiedzy: sieć neuronowa zdobywanie wiedzy: programowanie modelowanie znanego algorytmu uczenie na przykładach najlepsze zastosowania: najlepsze zastosowania: zadania o ściśle określonych, jednoznacznych algorytmach zadania słabo zdefiniowane dużo przykładów czynności, które robimy podświadomie

15 gdzie co stosować źródło: Tadeusiewicz

16 różnice w działaniu komputer dokładność obliczeń: bardzo duża sieć neuronowa dokładność obliczeń: mała odporność na uszkodzenia: mała odporność na uszkodzenia: duża wiedza zawarta w: programie, algorytmie wiedza zawarta w: wagach

17 historia: źródło: Tadeusiewicz 1904 Pawłow teoria odruchów warunkowych 1906 Colgi struktura układu nerwowego 1906 Ramon y Cajal mózg składa się z neuronów 1920 Krogh funkcje regulacyjne w organizmie 1932 Sherrington - sterowanie pracą mięśni 1936 Dale, Hallett - chemiczna transmisja impulsów nerwowych 1944 Erlanger, Gasser - procesy we włóknie nerwowym 1963 Eccless i in. - elektryczna aktywność neuronu 1969 Granit i in. - fizjologia widzenia 1977 Guillemin i in. - działanie hormonów w mózgu 1981 Sperry i in. - specjalizacja półkul móźdżku 1981 Hubel i in. - przetwarzanie informacji w systemie wzrokowym

18 historia: 1904 Pawłow teoria odruchów warunkowych 1906 Ramon y Cajal mózg składa się z neuronów 1943 McCulloch i Pitts matematyczny model neuronu 1949 Hebb - reguła uczenia Hebba 1958 Rosenblatt rozpoznawanie znaków 1960 Widrow neurokomputer Madaline 1969 Minsky i Pappert krytyka 1986 Rumelhart i in. metoda backpropagation 198x Hopfield sieci rekurencyjne 198x Kohonen sieci samoorganizujące

19 zastosowania sieci: klasyfikacja rozpoznawanie wzorców rozpoznawanie obrazów predykcja szeregów czasowych przybliżanie funkcji identyfikacja / modelowanie systemów sterowanie optymalizacja pamięci asocjacyjne

20 zastosowania sieci: Sterowanie ramieniem robota na promach kosmicznych NASA Rozpoznawanie sygnałów sonarowych US Navy Klasyfikacja obrazów mammograficznych szpital w USA Sterowanie zaworami rakiety Atlas Cofanie wielką amerykańską ciężarówą z naczepą Prognozowanie zapotrzebowania na energię elektryczną

21 Istota inteligencji - autorzy: Jeff Hawkins przedsiębiorca z Doliny Krzemowej główny inżynier w PalmOne założyciel Palm Computing, Handspring fundator Redwood Neuroscience Institute Sandra Blakeslee dziennikarka New York Times

22 Istota inteligencji cel książki: opisać ogólną teorię funkcjonowania mózgu - prostą i przejrzystą czym jest inteligencja jak powstaje w tkance nerwowej sztuczna inteligencja - rzeczywista inteligencja przed próbą budowy inteligentnych maszyn trzeba najpierw zrozumieć, jak działa mózg dopiero wtedy można zastanawiać się, jak zbudować inteligentne maszyny

23 Istota inteligencji - pytania: Czy komputery mogą być inteligentne? Czy sieci neuronowe mogą prowadzić do powstania inteligentnych maszyn? Dlaczego tak trudno odkryć, w jaki sposób funkcjonuje mózg? Czym jest inteligencja, jeśli nie jest po prostu inteligentnym zachowaniem? Jak działa mózg? Co wynika z tej teorii? Czy można zbudować inteligentne maszyny i do czego mogą być one zdolne?

24 Istota inteligencji mózg = umysł? Scientific American (Świat Nauki) 09/79 - numer o mózgu - Francis Crick: Thinking about the brain Mimo ciągłego przyrostu szczegółowej wiedzy o mózgu, sposób jego funkcjonowania wciąż pozostaje zagadką

25 różne podejścia do sztucznej inteligencji: Badacze sztucznej inteligencji Behawioryści Systemy ekspertowe Koneksjoniści - Sieci neuronowe Funkcjonaliści

26 zadania nie rozwiązane: percepcja język naturalny zachowanie uogólnianie elastyczność intuicja wyobraźnia planowanie

27 jak odkryć inteligencję: przełamać intuicję Kopernik Darwin Einstein inteligencja inteligentne zachowanie bycie człowiekiem bycie inteligentnym człowiek = inteligencja + uczucia + popędy + emocje + biologia + mądrość?

28 jak odkryć inteligencję: przełamać intuicję proste rozwiązania kora nowa

29 prof. Ryszard Tadeusiewicz

30 prof. Włodzisław Duch

31 prof. Bernie Widrow

SIECI NEURONOWE Wprowadzenie

SIECI NEURONOWE Wprowadzenie SIECI NEURONOWE Wprowadzenie JOANNA GRABSKA-CHRZĄSTOWSKA Wykłady w dużej mierze przygotowane w oparciu o materiały i pomysły PROF. RYSZARDA TADEUSIEWICZA WYKŁADOWCA JOANNA GRABSKA CHRZĄSTOWSKA KATEDRA

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z inteligentnymi

Bardziej szczegółowo

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2)

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Ewa Wołoszko Praca pisana pod kierunkiem Pani dr hab. Małgorzaty Doman Plan tego wystąpienia Teoria Narzędzia

Bardziej szczegółowo

Sztuczne Sieci Neuronowe. Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW

Sztuczne Sieci Neuronowe. Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW Sztuczne Sieci Neuronowe Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW SN są częścią dziedziny Sztucznej Inteligencji Sztuczna Inteligencja (SI) zajmuje się

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

Nowoczesne techniki informatyczne Program: 1. Sztuczna inteligencja. a) definicja; b) podział: Systemy ekspertowe Algorytmy ewolucyjne Logika rozmyta Sztuczne sieci neuronowe c) historia; 2. Systemy eksperckie

Bardziej szczegółowo

Kierunek Informatyka stosowana Studia stacjonarne Studia pierwszego stopnia

Kierunek Informatyka stosowana Studia stacjonarne Studia pierwszego stopnia Studia pierwszego stopnia I rok Matematyka dyskretna 30 30 Egzamin 5 Analiza matematyczna 30 30 Egzamin 5 Algebra liniowa 30 30 Egzamin 5 Statystyka i rachunek prawdopodobieństwa 30 30 Egzamin 5 Opracowywanie

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z własnościami

Bardziej szczegółowo

2.2.P.07: Komputerowe narzędzia inżynierii powierzchni

2.2.P.07: Komputerowe narzędzia inżynierii powierzchni 2nd Workshop on Foresight of surface properties formation leading technologies of engineering materials and biomaterials in Białka Tatrzańska, Poland 29th-30th November 2009 2 Panel nt. Produkt oraz materiał

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: moduł specjalności obowiązkowy: Inżynieria oprogramowania, Sieci komputerowe Rodzaj zajęć: wykład, laboratorium MODELOWANIE I SYMULACJA Modelling

Bardziej szczegółowo

WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH W PROGNOZOWANIU

WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH W PROGNOZOWANIU WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH W PROGNOZOWANIU THE USE OF ARTIFICIAL NEURAL NETWORKS IN FORECASTING Konrad BAJDA, Sebastian PIRÓG Resume Artykuł opisuje wykorzystanie sztucznych sieci neuronowych

Bardziej szczegółowo

Efekty kształcenia na kierunku AiR drugiego stopnia - Wiedza Wydziału Elektrotechniki, Automatyki i Informatyki Politechniki Opolskiej

Efekty kształcenia na kierunku AiR drugiego stopnia - Wiedza Wydziału Elektrotechniki, Automatyki i Informatyki Politechniki Opolskiej Efekty na kierunku AiR drugiego stopnia - Wiedza K_W01 K_W02 K_W03 K_W04 K_W05 K_W06 K_W07 K_W08 K_W09 K_W10 K_W11 K_W12 K_W13 K_W14 Ma rozszerzoną wiedzę dotyczącą dynamicznych modeli dyskretnych stosowanych

Bardziej szczegółowo

MATLAB Neural Network Toolbox przegląd

MATLAB Neural Network Toolbox przegląd MATLAB Neural Network Toolbox przegląd WYKŁAD Piotr Ciskowski Neural Network Toolbox: Neural Network Toolbox - zastosowania: przykłady zastosowań sieci neuronowych: The 1988 DARPA Neural Network Study

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE DIAGNOSTYKĘ MEDYCZNĄ Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj zajęć: wykład, projekt

Bardziej szczegółowo

Redakcja: Urszula Markowska-Kaczmar Halina Kwaśnicka SIECI NEURONOWE W ZASTOSOWANIACH. Praca zbiorowa

Redakcja: Urszula Markowska-Kaczmar Halina Kwaśnicka SIECI NEURONOWE W ZASTOSOWANIACH. Praca zbiorowa Redakcja: Urszula Markowska-Kaczmar Halina Kwaśnicka SIECI NEURONOWE W ZASTOSOWANIACH Praca zbiorowa Oficyna Wydawnicza Politechniki Wrocławskiej Wrocław 2005 3 Przedmowa 7 1 Sztuczne sieci neuronowe wprowadzenie

Bardziej szczegółowo

Algorytmy sztucznej inteligencji

Algorytmy sztucznej inteligencji Algorytmy sztucznej inteligencji Dynamiczne sieci neuronowe 1 Zapis macierzowy sieci neuronowych Poniżej omówione zostaną części składowe sieci neuronowych i metoda ich zapisu za pomocą macierzy. Obliczenia

Bardziej szczegółowo

Seminarium magisterskie. Dyskusja nad tematem pracy magisterskiej pisanej pod kierunkiem pani Dr hab. Małgorzaty Doman

Seminarium magisterskie. Dyskusja nad tematem pracy magisterskiej pisanej pod kierunkiem pani Dr hab. Małgorzaty Doman Seminarium magisterskie Dyskusja nad tematem pracy magisterskiej pisanej pod kierunkiem pani Dr hab. Małgorzaty Doman Plan wystąpienia Ogólnie o sztucznych sieciach neuronowych Temat pracy magisterskiej

Bardziej szczegółowo

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu.

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu. SYLLABUS na rok akademicki 01/013 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr /3 Specjalność Bez specjalności Kod katedry/zakładu

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy na specjalności: systemy sterowania Rodzaj zajęć: wykład, laboratorium UKŁADY AUTOMATYKI PRZEMYSŁOWEJ Industrial Automatics Systems

Bardziej szczegółowo

K.Pieńkosz Badania Operacyjne Wprowadzenie 1. Badania Operacyjne. dr inż. Krzysztof Pieńkosz

K.Pieńkosz Badania Operacyjne Wprowadzenie 1. Badania Operacyjne. dr inż. Krzysztof Pieńkosz K.Pieńkosz Wprowadzenie 1 dr inż. Krzysztof Pieńkosz Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej pok. 560 A tel.: 234-78-64 e-mail: K.Pienkosz@ia.pw.edu.pl K.Pieńkosz Wprowadzenie

Bardziej szczegółowo

Katedra Systemów Decyzyjnych. Kierownik: prof. dr hab. inż. Zdzisław Kowalczuk ksd@eti.pg.gda.pl

Katedra Systemów Decyzyjnych. Kierownik: prof. dr hab. inż. Zdzisław Kowalczuk ksd@eti.pg.gda.pl Katedra Systemów Decyzyjnych Kierownik: prof. dr hab. inż. Zdzisław Kowalczuk ksd@eti.pg.gda.pl 2010 Kadra KSD profesor zwyczajny 6 adiunktów, w tym 1 z habilitacją 4 asystentów 7 doktorantów Wydział Elektroniki,

Bardziej szczegółowo

Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty

Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-03 Projekt pn. Wzmocnienie potencjału

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* Zał. nr do ZW /01 WYDZIAŁ / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Identyfikacja systemów Nazwa w języku angielskim System identification Kierunek studiów (jeśli dotyczy): Inżynieria Systemów

Bardziej szczegółowo

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu Podstawy baz danych PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych

Bardziej szczegółowo

METODY INTELIGENCJI OBLICZENIOWEJ wykład 4

METODY INTELIGENCJI OBLICZENIOWEJ wykład 4 METODY INTELIGENCJI OBLICZENIOWEJ wykład 4 1 2 SZTUCZNE SIECI NEURONOWE HISTORIA SSN 3 Walter Pitts, Warren McCulloch (1943) opracowanie matematyczne pojęcia sztucznego neuronu.. Udowodnili też, iż ich

Bardziej szczegółowo

SZTUCZNE SIECI NEURONOWE

SZTUCZNE SIECI NEURONOWE METODY INTELIGENCJI OBLICZENIOWEJ wykład 4 SZTUCZNE SIECI NEURONOWE HISTORIA SSN Walter Pitts, Warren McCulloch (94) opracowanie matematyczne pojęcia sztucznego neuronu.. Udowodnili też, iż ich wynalazek

Bardziej szczegółowo

17.12.2005 Neuron biologiczny. Źród lo: Korbicz i in. [4] Synapsa to po l aczenie nerwowymi.

17.12.2005 Neuron biologiczny. Źród lo: Korbicz i in. [4] Synapsa to po l aczenie nerwowymi. Wyk lad 1. 17.12.2005 Neuron biologiczny Źród lo: Korbicz i in. [4] Synapsa to po l aczenie miedzy dwoma komórkami nerwowymi. 1 neuron biologiczny A B C D Zakoñczenia przedsynaptyczne Akson Dendryt Cia³o

Bardziej szczegółowo

Kierownik Katedry: Prof. dr hab. inż. Tadeusz BURCZYŃSKI

Kierownik Katedry: Prof. dr hab. inż. Tadeusz BURCZYŃSKI Kierownik Katedry: Prof. dr hab. inż. Tadeusz BURCZYŃSKI Zakład Inteligentnych Systemów Obliczeniowych RMT4-3 Kierownik Zakładu: Prof. dr hab. inż. Tadeusz BURCZYŃSKI Zakład Metod Numerycznych w Termomechanice

Bardziej szczegółowo

HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM

HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM ZASTOSOWANIE SIECI NEURONOWYCH W SYSTEMACH AKTYWNEJ REDUKCJI HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM WPROWADZENIE Zwalczanie hałasu przy pomocy metod aktywnych redukcji hałasu polega

Bardziej szczegółowo

MODELOWANIE FAZ ZNI ANIA I L DOWANIA SAMOLOTU BOEING 767-300ER PRZY U YCIU SZTUCZNYCH SIECI NEURONOWYCH

MODELOWANIE FAZ ZNI ANIA I L DOWANIA SAMOLOTU BOEING 767-300ER PRZY U YCIU SZTUCZNYCH SIECI NEURONOWYCH P R A C E N A U K O W E P O L I T E C H N I K I W A R S Z A W S K I E J z. 102 Transport 2014 Aleksandra Stycunów, Jerzy Manerowski Politechnika Warszawska, Wydzia Transportu MODELOWANIE FAZ ZNI ANIA I

Bardziej szczegółowo

SI w procesach przepływu i porządkowania informacji. Paweł Buchwald Wyższa Szkoła Biznesu

SI w procesach przepływu i porządkowania informacji. Paweł Buchwald Wyższa Szkoła Biznesu SI w procesach przepływu i porządkowania informacji Paweł Buchwald Wyższa Szkoła Biznesu Początki SI John MC Carthy prekursor SI Alan Thuring pomysłodawca testu na określenie inteligencji maszyn Powolny

Bardziej szczegółowo

INFORMATYKA Pytania ogólne na egzamin dyplomowy

INFORMATYKA Pytania ogólne na egzamin dyplomowy INFORMATYKA Pytania ogólne na egzamin dyplomowy 1. Wyjaśnić pojęcia problem, algorytm. 2. Podać definicję złożoności czasowej. 3. Podać definicję złożoności pamięciowej. 4. Typy danych w języku C. 5. Instrukcja

Bardziej szczegółowo

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74 3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: KINEMATYKA I DYNAMIKA MANIPULATORÓW I ROBOTÓW Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy na specjalności: Systemy sterowania Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU

Bardziej szczegółowo

Rozwiązywanie równań liniowych. Transmitancja. Charakterystyki częstotliwościowe

Rozwiązywanie równań liniowych. Transmitancja. Charakterystyki częstotliwościowe Zał. nr do ZW 33/01 WYDZIAŁ Informatyki i Zarządzania / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Modele systemów dynamicznych Nazwa w języku angielskim Dynamic Systems Models. Kierunek studiów (jeśli

Bardziej szczegółowo

Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym

Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym POLITECHNIKA WARSZAWSKA Instytut Technik Wytwarzania Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym Marcin Perzyk Dlaczego eksploracja danych?

Bardziej szczegółowo

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia II stopnia (magisterskie)

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia II stopnia (magisterskie) Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia II stopnia (magisterskie) Temat: Analiza właściwości pilotażowych samolotu Specjalność: Pilotaż lub Awionika 1. Analiza stosowanych kryteriów

Bardziej szczegółowo

Zeszyty Naukowe nr 740 Akademii Ekonomicznej w Krakowie. Joanna Palczewska. 1. Wprowadzenie

Zeszyty Naukowe nr 740 Akademii Ekonomicznej w Krakowie. Joanna Palczewska. 1. Wprowadzenie Zeszyty Naukowe nr 740 Akademii Ekonomicznej w Krakowie 2007 Studium Doktoranckie Wydzia u Zarzàdzania Mo liwoêci zastosowania modelu jednokierunkowej sieci neuronowej do prognozowania sygna ów kupna i

Bardziej szczegółowo

Katowice GPW 2013. Zintegrowany system informatyczny do kompleksowego zarządzania siecią wodociągową. Jan Studziński

Katowice GPW 2013. Zintegrowany system informatyczny do kompleksowego zarządzania siecią wodociągową. Jan Studziński Katowice GPW 2013 Zintegrowany system informatyczny do kompleksowego zarządzania siecią wodociągową Jan Studziński 1 1. Wstęp Cel pracy Usprawnienie zarządzania siecią wodociągową za pomocą nowoczesnych

Bardziej szczegółowo

w ekonomii, finansach i towaroznawstwie

w ekonomii, finansach i towaroznawstwie w ekonomii, finansach i towaroznawstwie spotykane określenia: zgłębianie danych, eksploracyjna analiza danych, przekopywanie danych, męczenie danych proces wykrywania zależności w zbiorach danych poprzez

Bardziej szczegółowo

DiaSter - system zaawansowanej diagnostyki aparatury technologicznej, urządzeń pomiarowych i wykonawczych. Politechnika Warszawska

DiaSter - system zaawansowanej diagnostyki aparatury technologicznej, urządzeń pomiarowych i wykonawczych. Politechnika Warszawska Jan Maciej Kościelny, Michał Syfert DiaSter - system zaawansowanej diagnostyki aparatury technologicznej, urządzeń pomiarowych i wykonawczych Instytut Automatyki i Robotyki Plan wystąpienia 2 Wprowadzenie

Bardziej szczegółowo

Sieci neuronowe - wprowadzenie. Agnieszka Nowak - Brzezińska

Sieci neuronowe - wprowadzenie. Agnieszka Nowak - Brzezińska The brain - that's my second most favourite organ! - Woody Allen Sieci neuronowe - wprowadzenie Agnieszka Nowak - Brzezińska Klasyfikacja danych Klasyfikacja danych to jedno z podstawowych zadań wykonywanych

Bardziej szczegółowo

Informatyka w medycynie Punkt widzenia kardiologa

Informatyka w medycynie Punkt widzenia kardiologa Informatyka w medycynie Punkt widzenia kardiologa Lech Poloński Mariusz Gąsior Informatyka medyczna Dział informatyki zajmujący się jej zastosowaniem w ochronie zdrowia (medycynie) Stymulacja rozwoju informatyki

Bardziej szczegółowo

Zastosowanie sztucznej inteligencji w testowaniu oprogramowania

Zastosowanie sztucznej inteligencji w testowaniu oprogramowania Zastosowanie sztucznej inteligencji w testowaniu oprogramowania Problem NP Problem NP (niedeterministycznie wielomianowy, ang. nondeterministic polynomial) to problem decyzyjny, dla którego rozwiązanie

Bardziej szczegółowo

Lista zagadnień kierunkowych pomocniczych w przygotowaniu do egzaminu dyplomowego magisterskiego Kierunek: Mechatronika

Lista zagadnień kierunkowych pomocniczych w przygotowaniu do egzaminu dyplomowego magisterskiego Kierunek: Mechatronika Lista zagadnień kierunkowych pomocniczych w przygotowaniu do Kierunek: Mechatronika 1. Materiały używane w budowie urządzeń precyzyjnych. 2. Rodzaje stali węglowych i stopowych, 3. Granica sprężystości

Bardziej szczegółowo

Zastosowanie sieci neuronowej do oceny klienta banku pod względem ryzyka kredytowego Streszczenie

Zastosowanie sieci neuronowej do oceny klienta banku pod względem ryzyka kredytowego Streszczenie Adam Stawowy Paweł Jastrzębski Wydział Zarządzania AGH Zastosowanie sieci neuronowej do oceny klienta banku pod względem ryzyka kredytowego Streszczenie Jedną z najczęściej podejmowanych decyzji w działalności

Bardziej szczegółowo

PROGRAM SEMINARIUM ZAKOPANE 2011. czwartek, 1 grudnia 2011 r. Sesja przedpołudniowa

PROGRAM SEMINARIUM ZAKOPANE 2011. czwartek, 1 grudnia 2011 r. Sesja przedpołudniowa czwartek, 1 grudnia 2011 r. Sesja przedpołudniowa 9.30 9.40: 9.40 10.10: 10.10 10.40: 10.40 11.00: Otwarcie seminarium Prof. dr hab. inż. Tadeusz Czachórski prof. dr hab. inż. Robert Schaeffer, prezentacja:

Bardziej szczegółowo

PROGRAM SEMINARIUM ZAKOPANE 2010. czwartek, 2 grudnia 2010 r. Sesja przedpołudniowa. Otwarcie seminarium Prof. dr hab. inż. Tadeusz Czachórski

PROGRAM SEMINARIUM ZAKOPANE 2010. czwartek, 2 grudnia 2010 r. Sesja przedpołudniowa. Otwarcie seminarium Prof. dr hab. inż. Tadeusz Czachórski czwartek, 2 grudnia 2010 r. Sesja przedpołudniowa 9.30 9.40: Otwarcie seminarium Prof. dr hab. inż. Tadeusz Czachórski 9.40 10.10: 10.10 10.40: 10.40 11.10: prof. dr hab. inż. Zbigniew Janusz Czech Zaawansowane

Bardziej szczegółowo

Z-ZIP2-303z Zagadnienia optymalizacji Problems of optimization

Z-ZIP2-303z Zagadnienia optymalizacji Problems of optimization KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 0/03 Z-ZIP-303z Zagadnienia optymalizacji Problems of optimization A. USYTUOWANIE

Bardziej szczegółowo

INTERAKTYWNY SYSTEM EDUKACYJNY WSPOMAGAJĄCY PROCES PROJEKTOWANIA ORAZ EKSPLOATACJI SZTUCZNYCH SIECI NEURONOWYCH W ROLNICTWIE

INTERAKTYWNY SYSTEM EDUKACYJNY WSPOMAGAJĄCY PROCES PROJEKTOWANIA ORAZ EKSPLOATACJI SZTUCZNYCH SIECI NEURONOWYCH W ROLNICTWIE Inżynieria Rolnicza 13/2006 Piotr Boniecki, Jerzy Weres, Wojciech Mueller Instytut Inżynierii Rolniczej Akademia Rolnicza w Poznaniu INTERAKTYWNY SYSTEM EDUKACYJNY WSPOMAGAJĄCY PROCES PROJEKTOWANIA ORAZ

Bardziej szczegółowo

Sieci neuronowe - wprowadzenie. Agnieszka Nowak - Brzezińska

Sieci neuronowe - wprowadzenie. Agnieszka Nowak - Brzezińska The brain - that's my second most favourite organ! - Woody Allen Sieci neuronowe - wprowadzenie Agnieszka Nowak - Brzezińska Klasyfikacja danych Klasyfikacja danych to jedno z podstawowych zadań wykonywanych

Bardziej szczegółowo

ANALIZA PROCESÓW TRIBOLOGICZNYCH Z WYKORZYSTANIEM SZTUCZNYCH SIECI NEURONOWYCH

ANALIZA PROCESÓW TRIBOLOGICZNYCH Z WYKORZYSTANIEM SZTUCZNYCH SIECI NEURONOWYCH Dr hab. inż. Henryk CZARNECKI, prof. PCz Instytut Marketingu Politechnika Częstochowska DOI: 10.17814/mechanik.2015.7.223 ANALIZA PROCESÓW TRIBOLOGICZNYCH Z WYKORZYSTANIEM SZTUCZNYCH SIECI NEURONOWYCH

Bardziej szczegółowo

prof. dr hab. inż. Maciej Niedźwiecki dr hab. inż. Piotr Suchomski mgr inż. Stanisław Iszora mgr inż. Włodzimierz Sakwiński dr inż.

prof. dr hab. inż. Maciej Niedźwiecki dr hab. inż. Piotr Suchomski mgr inż. Stanisław Iszora mgr inż. Włodzimierz Sakwiński dr inż. Katedra Systemów Automatyki Katedra Systemów Automatyki prof. dr hab. inż. Maciej Niedźwiecki dr hab. inż. Piotr Suchomski dr inż. Paweł Raczyński dr inż. Stefan Sieklicki dr inż. Krzysztof Cisowski mgr

Bardziej szczegółowo

SCENARIUSZ LEKCJI BIOLOGII Z WYKORZYSTANIEM FILMU DOBRZE MIEĆ O(G)LEJ W GŁOWIE. O KOMÓRKACH UKŁADU NERWOWEGO.

SCENARIUSZ LEKCJI BIOLOGII Z WYKORZYSTANIEM FILMU DOBRZE MIEĆ O(G)LEJ W GŁOWIE. O KOMÓRKACH UKŁADU NERWOWEGO. SCENARIUSZ LEKCJI BIOLOGII Z WYKORZYSTANIEM FILMU DOBRZE MIEĆ O(G)LEJ W GŁOWIE. O KOMÓRKACH UKŁADU NERWOWEGO. SPIS TREŚCI: I. Wprowadzenie. II. Części lekcji. 1. Część wstępna. 2. Część realizacji. 3.

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy ogólny Rodzaj zajęć: wykład, ćwiczenia I KARTA

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy na specjalności Inżynieria Oprogramowania Rodzaj zajęć: wykład, laboratorium SYSTEMY MULTIMEDIALNE Multimedia Systems Forma studiów:

Bardziej szczegółowo

Praktyczne informacje o sieciach neuronowych. Elżbieta Dłubis. Państwowa Wyższa Szkoła Zawodowa w Chełmie

Praktyczne informacje o sieciach neuronowych. Elżbieta Dłubis. Państwowa Wyższa Szkoła Zawodowa w Chełmie Praktyczne informacje o sieciach neuronowych Elżbieta Dłubis Państwowa Wyższa Szkoła Zawodowa w Chełmie Wiedza o sieciach neuronowych zaczęła się od fascynacji mózgiem narządem (..), którego możliwości

Bardziej szczegółowo

Narzędzia AI. Jakub Wróblewski jakubw@pjwstk.edu.pl Pokój 312. http://zajecia.jakubw.pl SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE)

Narzędzia AI. Jakub Wróblewski jakubw@pjwstk.edu.pl Pokój 312. http://zajecia.jakubw.pl SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE) Narzędzia AI Jakub Wróblewski jakubw@pjwstk.edu.pl Pokój 312 http://zajecia.jakubw.pl SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE) Nauka o maszynach realizujących zadania, które wymagają inteligencji

Bardziej szczegółowo

Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej. Adam Meissner. Elementy uczenia maszynowego

Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej. Adam Meissner. Elementy uczenia maszynowego Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis Elementy uczenia maszynowego Literatura [1] Bolc L., Zaremba

Bardziej szczegółowo

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: TECHNOLOGIA INFORMACYJNA 2. Kod przedmiotu: Ot 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Automatyka i Robotyka 5. Specjalność: Informatyka

Bardziej szczegółowo

Tytuł referatu (Times New Roman 22,wycentrowany, pogrubiony)

Tytuł referatu (Times New Roman 22,wycentrowany, pogrubiony) Wyższa Szkoła Informatyki w Łodzi Wydział... (Times New Roman 16, wycentrowany) Tytuł referatu (Times New Roman 22,wycentrowany, pogrubiony) Adam Abacki, Bartosz Babacki,... (Times New Roman 12, wycentrowany)

Bardziej szczegółowo

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania. Studia: I stopnia (inżynierskie)

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania. Studia: I stopnia (inżynierskie) Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia I stopnia (inżynierskie) Temat: Skalowanie czujników prędkości kątowej i orientacji przestrzennej 1. Analiza właściwości czujników i układów

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Badania operacyjne Operational research Zarządzanie i Inżynieria Produkcji Management and Engineering of Production Rodzaj przedmiotu: obowiązkowy Poziom studiów: studia I stopnia

Bardziej szczegółowo

ZAGADNIENIA SPECJALNOŚCIOWE

ZAGADNIENIA SPECJALNOŚCIOWE (ARK) Komputerowe sieci sterowania 1.Zaawansowane metody wyznaczania parametrów regulatorów 2.Mechanizmy innowacyjne. 3.Sieci neuronowe w modelowaniu obiektów dynamicznych. 4.Zasady projektowania i zastosowania

Bardziej szczegółowo

Bibliografia...210. xiii

Bibliografia...210. xiii Spis treści 1. Wprowadzenie J. M. Kościelny.... 1 1.1. Struktury systemów sterowania........1 1.2. Kierunki rozwoju współczesnych systemów automatyki...5 1.3. Nowe funkcje zaawansowanych systemów automatyki...

Bardziej szczegółowo

SIECI RBF (RADIAL BASIS FUNCTIONS)

SIECI RBF (RADIAL BASIS FUNCTIONS) SIECI RBF (RADIAL BASIS FUNCTIONS) Wybrane slajdy z prezentacji prof. Tadeusiewicza Wykład Andrzeja Burdy S. Osowski, Sieci Neuronowe w ujęciu algorytmicznym, Rozdz. 5, PWNT, Warszawa 1996. opr. P.Lula,

Bardziej szczegółowo

KARTA PRZEDMIOTU. Egzamin / zaliczenie na ocenę*

KARTA PRZEDMIOTU. Egzamin / zaliczenie na ocenę* WYDZIAŁ PPT Zał. nr 4 do ZW 33/0 KARTA PRZEDMIOTU Nazwa w języku polskim Przetwarzanie informacji wzrokowej - procesy wzrokowe Nazwa w języku angielskim Processing of visual information vision process

Bardziej szczegółowo

Dr hab. inż. Jan Duda. Wykład dla studentów kierunku Zarządzanie i Inżynieria Produkcji

Dr hab. inż. Jan Duda. Wykład dla studentów kierunku Zarządzanie i Inżynieria Produkcji Automatyzacja i Robotyzacja Procesów Produkcyjnych Dr hab. inż. Jan Duda Wykład dla studentów kierunku Zarządzanie i Inżynieria Produkcji Podstawowe pojęcia Automatyka Nauka o metodach i układach sterowania

Bardziej szczegółowo

I rok. semestr 1 semestr 2 15 tyg. 15 tyg. Razem ECTS. laborat. semin. ECTS. konwer. wykł. I rok. w tym. Razem ECTS. laborat. semin. ECTS. konwer.

I rok. semestr 1 semestr 2 15 tyg. 15 tyg. Razem ECTS. laborat. semin. ECTS. konwer. wykł. I rok. w tym. Razem ECTS. laborat. semin. ECTS. konwer. Wydział Informatyki i Nauki o Materiałach Kierunek Informatyka studia I stopnia inżynierskie studia stacjonarne 08- IO1S-13 od roku akademickiego 2015/2016 A Lp GRUPA TREŚCI PODSTAWOWYCH kod Nazwa modułu

Bardziej szczegółowo

studia na WETI PG na kierunku automatyka i robotyka Wydział Elektroniki, Telekomunikacji i Informatyki Politechniki Gdańskiej 1

studia na WETI PG na kierunku automatyka i robotyka Wydział Elektroniki, Telekomunikacji i Informatyki Politechniki Gdańskiej 1 Dlaczego warto podjąć studia na WETI PG na kierunku automatyka i robotyka Wydział Elektroniki, Telekomunikacji i Informatyki Politechniki Gdańskiej 1 Automatyka i robotyka Konkurs punktów: język polski

Bardziej szczegółowo

Sztuczna inteligencja wprowadzenie

Sztuczna inteligencja wprowadzenie Sztuczna inteligencja wprowadzenie Sławomir Samolej Slajdy zostały przygotowane na podstawie materiałów opublikowanych na (http://wazniak.mimuw.edu.pl/ Literatura Leszek Rutkowski Metody i techniki sztucznej

Bardziej szczegółowo

Edukacja przez badania. Internet dla Szkół 20 lat! Wolność, prywatność, bezpieczeństwo

Edukacja przez badania. Internet dla Szkół 20 lat! Wolność, prywatność, bezpieczeństwo Wolność, prywatność i bezpieczeństwo o polskiej szlachcie, Internecie, komputerach kwantowych i teleportacji Edukacja przez badania Hoża 69: 1921 2014 r. Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW Wydział

Bardziej szczegółowo

ZASTOSOWANIE SIECI NEURONOWYCH

ZASTOSOWANIE SIECI NEURONOWYCH Państwowa Wyższa Szkoła Zawodowa w Tarnobrzegu ZASTOSOWANIE SIECI NEURONOWYCH OPRACOWANIE: Małgorzata Skulska Monika Skulska Łukasz Makowski TARNOBRZEG 2003 STRESZCZENIE Myślą przewodnią tego opracowania

Bardziej szczegółowo

Wprowadzenie. Jacek Bartman. Zakład Elektrotechniki i Informatyki Instytut Techniki Uniwersytet Rzeszowski

Wprowadzenie. Jacek Bartman. Zakład Elektrotechniki i Informatyki Instytut Techniki Uniwersytet Rzeszowski Sztuczna inteligencja Wprowadzenie Jacek Bartman Zakład Elektrotechniki i Informatyki Instytut Techniki Uniwersytet Rzeszowski INFORMACJE ORGANIZACYJNE Forma zajęć: Studia stacjonarne Wykłady 30h Laboratorium

Bardziej szczegółowo

Gospodarcze zastosowania algorytmów genetycznych

Gospodarcze zastosowania algorytmów genetycznych Marta Woźniak Gospodarcze zastosowania algorytmów genetycznych 1. Wstęp Ekonometria jako nauka zajmująca się ustalaniem za pomocą metod statystycznych ilościowych prawidłowości zachodzących w życiu gospodarczym

Bardziej szczegółowo

Matematyka Montessori + Aktualne badania mózgu Tanya Ryskind, J.D. tanyaryskind@gmail.com

Matematyka Montessori + Aktualne badania mózgu Tanya Ryskind, J.D. tanyaryskind@gmail.com Matematyka Montessori + Aktualne badania mózgu Tanya Ryskind, J.D. tanyaryskind@gmail.com Podróż Montessori Z Włoch do Indii Maria miała 70 lat Mario, jej syn, Wpływ Indii, NAMTA Journal, vol.23, 1969

Bardziej szczegółowo

WSTĘP DO INFORMATYKI SIECI NEURONOWE I SZTUCZNA INTELIGENCJA wykład

WSTĘP DO INFORMATYKI SIECI NEURONOWE I SZTUCZNA INTELIGENCJA wykład WSTĘP DO INFORMATYKI SIECI NEURONOWE I SZTUCZNA INTELIGENCJA wykład Adrian Horzyk Web: http://home.agh.edu.pl/~horzyk/ E-mail: horzyk@agh.edu.pl Google: Adrian Horzyk, Gabinet: paw. C3p. 205 Akademia Górniczo-Hutniacza

Bardziej szczegółowo

Elementy kognitywistyki III: Modele i architektury poznawcze

Elementy kognitywistyki III: Modele i architektury poznawcze Elementy kognitywistyki III: Modele i architektury poznawcze Wykład III: Psychologiczne modele umysłu Gwoli przypomnienia: Kroki w modelowaniu kognitywnym: teoretyczne ramy pojęciowe (modele pojęciowe)

Bardziej szczegółowo

Plan prezentacji W P R O W A D Z E N I E. II FILAR WYTWARZANIA - Generacja Rozproszona (OZE/URE) wybrane kryteria klasyfikacji

Plan prezentacji W P R O W A D Z E N I E. II FILAR WYTWARZANIA - Generacja Rozproszona (OZE/URE) wybrane kryteria klasyfikacji Plan prezentacji 2 W P R O W A D Z E N I E 1. II FILAR WYTWARZANIA - Generacja Rozproszona (OZE/URE) wybrane kryteria klasyfikacji 2. Poziomy wirtualizacji generacji rozproszonej 3. Struktura i funkcjonalność

Bardziej szczegółowo

Katedra Systemów Automatyki. Specjalność: Systemy automatyki (studia II stopnia)

Katedra Systemów Automatyki. Specjalność: Systemy automatyki (studia II stopnia) Katedra Systemów Automatyki 1 Profil absolwenta (wiedza) Studenci naszej specjalności posiądą niezbędną wiedzę z zakresu: opracowywania algorytmów sterowania procesami w oparciu o najnowsze metody teorii

Bardziej szczegółowo

Wolność, prywatność i bezpieczeństwo o polskiej szlachcie, Internecie, komputerach kwantowych i teleportacji

Wolność, prywatność i bezpieczeństwo o polskiej szlachcie, Internecie, komputerach kwantowych i teleportacji Wolność, prywatność i bezpieczeństwo o polskiej szlachcie, Internecie, komputerach kwantowych i teleportacji Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW Edukacja przez badania Hoża 69: 1921-2014 r. 2014-09-25

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne page.1 Technologie Informacyjne Wersja: 4 z drobnymi modyfikacjami! Wojciech Myszka 2013-10-14 20:04:01 +0200 page.2 Cel zajęć Cele zajęć: Uaktualnienie i ujednolicenie wiedzy/terminologii oraz zdobycie

Bardziej szczegółowo

Spis treści. Przedmowa... 11

Spis treści. Przedmowa... 11 Spis treści Przedmowa.... 11 Nowe trendy badawcze w ruchu lotniczym. Zagadnienia wstępne... 13 I. Ruch lotniczy jako efekt potrzeby komunikacyjnej pasażera.... 13 II. Nowe środki transportowe w ruchu lotniczym....

Bardziej szczegółowo

WAI Wykłady 3 i 4. Sieci neuronowe. Uczenie i zastosowania. Wstęp do logiki rozmytej.

WAI Wykłady 3 i 4. Sieci neuronowe. Uczenie i zastosowania. Wstęp do logiki rozmytej. WAI Wykłady 3 i 4. Sieci neuronowe. Uczenie i zastosowania. Wstęp do logiki rozmytej. Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. D. Rutkowska, M. Piliński i L.

Bardziej szczegółowo

Oferta badawcza Politechniki Gdańskiej dla przedsiębiorstw

Oferta badawcza Politechniki Gdańskiej dla przedsiębiorstw KATEDRA AUTOMATYKI kierownik katedry: dr hab. inż. Kazimierz Kosmowski, prof. nadzw. PG tel.: 058 347-24-39 e-mail: kazkos@ely.pg.gda.pl adres www: http://www.ely.pg.gda.pl/kaut/ Systemy sterowania w obiektach

Bardziej szczegółowo

Sieci neuronowe - wprowadzenie

Sieci neuronowe - wprowadzenie The brain - that's my second most favourite organ! - Woody Allen Sieci neuronowe - wprowadzenie Agnieszka Nowak - Brzezioska Wykład V Klasyfikacja danych Klasyfikacja danych to jedno z podstawowych zadao

Bardziej szczegółowo

SYLABUS/KARTA PRZEDMIOTU

SYLABUS/KARTA PRZEDMIOTU PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W GŁOGOWIE SYLABUS/KARTA PRZEDMIOTU. NAZWA PRZEDMIOTU Systemy czasu rzeczywistego w automatyce i robotyce. NAZWA JEDNOSTKI PROWADZĄCEJ PRZEDMIOT Instytut Politechniczny

Bardziej szczegółowo

PROGRAM NAUCZANIA. 1. Opis Czas trwania (w semestrach): 3 Tytuł zawodowy: Magister inżynier

PROGRAM NAUCZANIA. 1. Opis Czas trwania (w semestrach): 3 Tytuł zawodowy: Magister inżynier PROGRAM NAUCZANIA Załącznik nr 1 do ZW 1/2007 KIERUNEK: AUTOMATYKA I ROBOTYKA WYDZIAŁ: ELEKTRYCZNY STUDIA: II-STOPNIA (stopień) STACJONARNY (system) SPECJALNOŚĆ: AUTOMATYKA I STEROWANIE W ENERGETYCE (ASE)

Bardziej szczegółowo

Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów

Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów Eksploracja danych Piotr Lipiński Informacje ogólne Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów UWAGA: prezentacja to nie

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA: ROZWÓJ, SZANSE I ZAGROŻENIA

SZTUCZNA INTELIGENCJA: ROZWÓJ, SZANSE I ZAGROŻENIA ZESZYTY NAUKOWE 109-135 Krzysztof RÓŻANOWSKI 1 SZTUCZNA INTELIGENCJA: ROZWÓJ, SZANSE I ZAGROŻENIA Streszczenie Pojęcie sztucznej inteligencji, mimo powszechności używania tego terminu, nie jest łatwe do

Bardziej szczegółowo

ZASTOSOWANIE SZTUCZNYCH SIECI NEURONOWYCH W ANALIZIE SYGNAŁÓW ELEKTROKARDIOGRAFICZNYCH

ZASTOSOWANIE SZTUCZNYCH SIECI NEURONOWYCH W ANALIZIE SYGNAŁÓW ELEKTROKARDIOGRAFICZNYCH ZASTOSOWANIE SZTUCZNYCH SIECI NEURONOWYCH W ANALIZIE SYGNAŁÓW ELEKTROKARDIOGRAFICZNYCH USING ARTIFICIAL NEURAL NETWORKS FOR ANALYSIS OF ELECTROCARDIOGRAPHIC SIGNALS Monika Litwińska * Politechnika Gdańska,

Bardziej szczegółowo

RAPORT Z PRAKTYKI. Zastosowanie Sztucznych Sieci Neuronowych do wspomagania podejmowania decyzji kupna/sprzedaży na rynku Forex.

RAPORT Z PRAKTYKI. Zastosowanie Sztucznych Sieci Neuronowych do wspomagania podejmowania decyzji kupna/sprzedaży na rynku Forex. Projekt współfinansowane przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach projektu Wiedza Techniczna Wzmocnienie znaczenia Politechniki Krakowskiej w kształceniu przedmiotów

Bardziej szczegółowo

AKADEMIA MORSKA w GDYNI

AKADEMIA MORSKA w GDYNI AKADEMIA MORSKA w GDYNI WYDZIAŁ MECHANICZNY Nr 32 Przedmiot: Automatyka przemysłowa Kierunek/Poziom kształcenia: Forma studiów: Profil kształcenia: Specjalność: MiBM/ studia pierwszego stopnia stacjonarne

Bardziej szczegółowo

PRZYRODA W SZKOLE PONADGIMNAZJALNEJ. Podstawa programowa w szkole ponadgimnazjalnej przyroda.

PRZYRODA W SZKOLE PONADGIMNAZJALNEJ. Podstawa programowa w szkole ponadgimnazjalnej przyroda. Podstawa programowa w szkole ponadgimnazjalnej przyroda. Podstawa prawna Rozporządzenie Ministra edukacji Narodowej z dnia 23 grudnia 2008 r. w sprawie podstawy programowej wychowania przedszkolnego oraz

Bardziej szczegółowo

Zagadnienia na egzamin dyplomowy. Studia jednolite magisterskie WFMiI rok akad. 2010/11

Zagadnienia na egzamin dyplomowy. Studia jednolite magisterskie WFMiI rok akad. 2010/11 Zagadnienia na egzamin dyplomowy Studia jednolite magisterskie WFMiI rok akad. 2010/11 Lp PRZEDMIOT PYTANIE 1 2 3 4 Jakie jest główne zastosowanie mechanizmu Samba? Proszę omówić możliwości ochrony serwerów

Bardziej szczegółowo

STUDIA I MONOGRAFIE NR

STUDIA I MONOGRAFIE NR STUDIA I MONOGRAFIE NR 21 WYBRANE ZAGADNIENIA INŻYNIERII WIEDZY Redakcja naukowa: Andrzej Cader Jacek M. Żurada Krzysztof Przybyszewski Łódź 2008 3 SPIS TREŚCI WPROWADZENIE 7 SYSTEMY AGENTOWE W E-LEARNINGU

Bardziej szczegółowo

Neurokognitywistyka. Mózg jako obiekt zainteresowania w

Neurokognitywistyka. Mózg jako obiekt zainteresowania w Neurokognitywistyka. Mózg jako obiekt zainteresowania w psychologii poznawczej Małgorzata Gut Katedra Psychologii Poznawczej WyŜsza Szkoła Finansów i Zarządzania w Warszawie http://cogn.vizja.pl Wykład

Bardziej szczegółowo

Biblioteka Wydziału Elektrycznego Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie NOWOŚCI WYDAWNICZE Maj 2015

Biblioteka Wydziału Elektrycznego Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie NOWOŚCI WYDAWNICZE Maj 2015 Biblioteka Wydziału Elektrycznego Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie NOWOŚCI WYDAWNICZE Maj 2015 Kontakt: tel.: (91) 449-52-20 e-mail: bibliotekawe@zut.edu.pl Autor: LAZAR

Bardziej szczegółowo

Rozmyte systemy doradcze

Rozmyte systemy doradcze Systemy ekspertowe Rozmyte systemy doradcze Plan. Co to jest myślenie rozmyte? 2. Teoria zbiorów rozmytych. 3. Zmienne lingwistyczne. 4. Reguły rozmyte. 5. Wnioskowanie rozmyte (systemy doradcze). typu

Bardziej szczegółowo