SZTUCZNE SIECI NEURONOWE

Wielkość: px
Rozpocząć pokaz od strony:

Download "SZTUCZNE SIECI NEURONOWE"

Transkrypt

1 METODY INTELIGENCJI OBLICZENIOWEJ wykład 4 SZTUCZNE SIECI NEURONOWE HISTORIA SSN Walter Pitts, Warren McCulloch (94) opracowanie matematyczne pojęcia sztucznego neuronu.. Udowodnili też, iż ich wynalazek jest w stanie odzwierciedlić w swym działaniu dowolną funkcję logiczną. Donald Olding Hebb (949) psychologia: jakość połączenia dwóch neuronów wyznaczana jest poprzez liczbę efektywnych przepływów sygnału s pomiędzy nimi -> zasada uczenia się Hebba (Hebbian learning) ) dla sztucznych sieci neuronowych (SSN). Frank Rosenblatt (958) pierwszy funkcjonujący model SSN (perceptron) oraz pierwszy z algorytmów uczenia SSN (do nauczenia perceptronu rozpoznawania liter alfabetu łacińskiego). Określił również zasadę, iż perceptron zbudowany wg jego teorii jest w stanie rozwiązać każdy problem liniowo separowalny. HISTORIA SSN Bernard Widrow, Ted Hoff (96) - neuron typu Adaline z liniową funkcją aktywacji oraz algorytm uczenia LMS ( (Least Mean Square), ), zwany regułą delty lub regułą Widrowa-Hoffa Hoffa. John Hopfield (98) teoria pamięci asocjacyjnej,, jako istoty działania sieci rekurencyjnych (sieci Hopfielda). Paul Werbos (974); David Rumelhart,, Geoffrey Hinton, Ronald Williams (986) - wsteczna propagacja błędów (backpropagation) pozwalająca na rozwiązywanie problemów liniowo nieseparowalnych. 4 ZALETY SSN: Nie wymagają programowania (tylko uczenie). Mają zdolność uogólniania. Są wysoce odporne na szumy i zniekształcenia sygnału. KLASY ZASTOSOWAŃ: PREDYKCJA ze znajomości: f ( x nk), f( x n k+ ),..., f( x n) przewidzieć : f( x n+ ) { } Pomagają wykrywać istotne powiązania pomiędzy danymi. Stosuje się je gdy istnieje duża złożoność zagadnienia i trudno jest jednoznacznie określić formalne kryteria, dla stworzenia programu komputerowego. 5 bez jawnego definiowania związku między danymi wejściowymi a wyjściowymi 6

2 KLASYFIKACJA I ROZPOZNAWANIE WZORCÓW Zaszeregowanie danych wejściowych do jednej z klas: APROKSYMACJA (interpolacja, ekstrapolacja) ze znajomości: odtworzyć: { x, f( x )} i f ( x) i ASOCJACJA Podanie danego wzorca na wejście powinno powodować pojawienie się odpowiadającego mu wzorca na wyjściu. np. sieć pozwala na podstawie danych bilansowych stwierdzić, czy dane przedsiębiorstwo należy do zwyżkujących gospodarczo, czy przeżywa stagnację czy też grozi mu regres regres. 7 8 STEROWANIE FILTRACJA SYGNAŁÓW KOJARZENIE DANYCH automatyzacja procesów wnioskowania i wykrywanie istotnych powiązań między danymi. OPTYMALIZACJA statyczna i dynamiczna, optymalizacja kombinato- ryczna i zagadnienia bardzo trudne obliczeniowo. 9 PRZYKŁADOWE ZASTOSOWANIA: NIE NADAJĄ SIĘ DO: Przetwarzania informacji symbolicznej (np. edytory tekstu). Obliczeń o wymaganej wysokiej dokładności (sieć pracuje jakościowo, dając wyniki przybliżone). Rozwiązywania zagadnień, gdzie rozumowanie jest przeprowadzanie wieloetapowo (a musi być udokumentowane).

3 KOMÓRKA NERWOWA CZŁOWIEKA W tkance nerwowej: B. Komórki nerwowe (neurony) A. Komórki glejowe Jest ich więcej; Pełnią rolę pomocniczą (funkcje podporowe, odżywcze, odgraniczające i regenerujące) Są stosunkowo małe i mają kształt gwiazdy. nie będą nas dalej interesować... Dendryty zbierają sygnały z innych komórek nerwowych. Ciało komórki agreguje sygnały wejściowe i tworzy sygnał wyjściowy. Akson wyprowadza sygnał wyjściowy i przekazuje go dalej. 4 Synapsa - przekazuje sygnał między aksonem a dendrytem (każda komórka nerwowa posiada średnio kilka tysięcy synaps). Poszczególne synapsy różnią się wielkością oraz możli- wością gromadzenia neuroprzekaźników w pobliżu błony synaptycznej. Chemiczno-elektryczne elektryczne przekazywanie sygnałów: Pod wpływem przychodzących bodźców wydzielane są neuroprzekaźniki; Neuroprzekaźniki oddziałują na błonę komórki zmieniając jej potencjał elektryczny. 5 Dlatego taki sam impuls na wejściu komórki może po- wodować inne jej pobudzenie niż dla innego wejścia. STATYSTYKA: Liczba komórek nerwowych w mózgu ok. Połączeń nerwowych ok. 4 ; ; Częstotliwość biologicznego neuronu ok. kilkaset Hz. 6 Perceptron (Rosenblatt 958): Sprzętowo: Pojedynczy perceptron pozwala na: Układ posiadający wiele wejść i jedno wyjście: Wejście cie: n stanów wejsciowych x,...,x n Wyjście: lub Uwaga: pod pojęciem perceptronu perceptronu rozumie się też czasem siec połączonych jednostek (neuronów). 7 przetwarzanie jednostkowych informacji; podejmowanie prostych decyzji; przekazywanie wyników sąsiadom. Dopiero w połączeniu z innymi węzłami uzyskuje się zdolność podejmowania złożonych decyzji. 8

4 Sygnał wyjściowy y i i-tego neuronu liniowego : y N = w x i ij j j= w ij waga dla j-ego ego wejścia i-tegotego neuronu; x j j-tyty sygnał wejściowy ciowy; N liczba wejść w i-tym neuronie; 9 Sygnał wyjściowy y i i-tego neuronu (ogólnie) lnie): N yi = ϕ() e = ϕ wijxj + B j= e łączne pobudzenie neuronu (net value); ϕ funkcja aktywacji; B próg (bias). W neuronie liniowym e jest sygnałem wyjściowym. Poprawka wartości wagi dla perceptronu w j-ymym kroku (reguła( delta): w =ηδ x ( j) ( j) ( j) i i x, w wagi neuronu sygnał WE Sygnał WY jest tym większy, im bardziej sygnał WE będzie przypominał wagę (dla. sygnałów znormalizowanych). γ x, w δ = z y ( j) ( j) ( j) z wymagana odpowiedź neuronu; y uzyskana odpowiedź neuronu; x i dana wejściowa dla i-tego tego wejścia; η - współczynnik uczenia (learning rate). Kąt pomiędzy wektorem em WE a wektorem wag: - mały silny sygnał pozytywny; - bliski 9 słaby sygnał neutralny (bliski ); - duży silny sygnał negatywny. Dł.. wektora WE znacząco co mniejsza od dł. d. wektora wag sygnał neutralny (niezależnie od kierunku wektora WE). Waga: - dodatnia - sygnał pobudzający; - ujemna sygnał gaszący; - - brak połączenia między neuronami. Sygnały y wyjściowe:, (funkcje unipolarne) -, (funkcje bipolarne). FUNKCJA AKTYWACJI Wartość f. aktywacji sygnał wyjściowy neuronu. liniowa f. aktywacji; nieliniowa f. aktywacji: - f. skoku jednostkowego (progowa), np.: ϕ ( e) = { gdy e gdy e< - inna, np. typu sigmoidalnego (f. logistyczna): ϕ( e) = + exp( β e) β współczynnik sterujący nachyleniem krzywej 4 4

5 Sieć liniowa: Liniowe odwzorowanie zbioru sygnałów w WE w zbiór sygnałów w WY. Ograniczone zastosowanie. Sieć nieliniowa: Nieliniowe odwzorowanie zbioru sygnałów w WE w zbiór sygnałów w WY. Odpowiednio duża - praktycznie dowolny charakter odwzorowania. WYMAGANE CECHY F. AKTYWACJI: Ciągłe e przejście pomiędzy wartości cią maksymalną a minimalną. Łatwa do obliczenia i ciągł ągła a pochodna np. dla f. sigmoidalnej: ϕ() e = + exp( β e) [ ] ϕ'( e) = β ϕ( e) ϕ( e) Możliwo liwość wprowadzenia do argumentu parametru β do ustalania kształtu tu krzywej. odwzorowania. 5 6 WSPÓŁCZYNNIK β Bipolarny odpowiednik f. sigmoidalnej:.5 beta= beta=.5 beta= exp( βe) exp( βe) ϕ() e = = tgh( βe) exp( βe) + exp( βe) [ ] [ ] ϕ'( e) = β + ϕ( e) ϕ( e) BIAS.5 bias= beta=.5.5 bias=- bias= SIEĆ NEURONOWA: - układ połą łączonych neuronów (model warstwowy) RODZAJE NEURONÓW: warstwy WE (nie liczona); warstw ukrytych: efekty działania obserwowane pośrednio poprzez WY; pośredniczenie między WE a WY; niemożność dokładnego obliczenia błędów; warstwy WY (rozwiązania stawianych zadań). Sieć jednowarstwowa Sieć wielowarstwowa Sieć wielowarstwowa min. jedna warstwa ukryta. Zwykle: kilka warstw, połą łączenia każdy z każdym (min. liczba parametrów do opisu). 9 Pamięć neuronu reprezentowana poprzez wagi. Sieć działa a jako całość ść. 5

6 KLASY SIECI: feed-forward forward (jednokierunkowe) najczęściej stosowane; rekurencyjne sprzężenia zwrotne; sieci Kohonena samoorganizujące się; sieci radialne (RBF) - uniwersalny aproksymator. STRUKTURA SIECI: - ważna, lecz nie do przesady: wystarczający cy potencjał intelektualny ; rozsądna. Struktura SSN wpływa na: szybkość uczenia; wielkość popełnianego błędu; zdolność generalizacji Projektowanie sieci - problemy: ile warstw ukrytych? ile neuronów w w warstwach? Liczba neuronów w w warstwie WE: zależy y od liczby danych podawanych na wejście. Liczba neuronów w w warstwie WY: zależy y od liczby poszukiwanych rozwiąza zań. zdolność generalizacji Dobór r optymalnej struktury SSN: główne grupy algorytmów pomocnych w utworzeniu sieci optymalnej : metody wzrostu; metody redukcji, metody optymalizacji dyskretnej. Metody wzrostu: - na początku procesu optymalizacji struktura sieci powinna być możliwie mała; - w kolejnych iteracjach są dodawane kolejne neurony ukryte (co powinno powodować zwiększenie sprawności działania sieci); - neurony są dodawane aż do osiągnięcia punktu Metody redukcji na początku procesu optymalizacji struktura sieci powinna być możliwie złożona; w kolejnych iteracjach są usuwane kolejne neurony lub połączenia między nimi (co powinno powodować zwiększenie sprawności działania sieci); postępowanie jest powtarzane aż do osiągnięcia punktu optymalnego. optymalnego. 4 Metody optymalizacji dyskretnej opierają się na założeniu, że proces nauki sieci i wyboru architektury zachodzą równocześnie; czynnikiem ocenianym jest określona funkcja, reprezentująca jakość danej sieci; w kolejnych krokach sieci dobierane są tak, by dążyć do maksymalizacji funkcji jakości; możliwe jest wykorzystanie AE jako metody optymalizacji. Żadna z tych metod nie jest idealna.. Często wybór którejś z nich zależy od rodzaju rozwiązywanego problemu. 5 Przykład: Rozpoznawanie znaków alfabetu WE - 5 (pikseli) WY -6 (liter) a co wewnątrz? Metoda wzrostu: wstępnie: Ostatecznie:

7 N = N * N u we wy Sieć z warstwą ukrytą powinna nauczyć się roz- wiązywania większo kszości postawionych problemów. Nieznane sąs problemy wymagające sieci z więcej niż warstwami ukrytymi (zwykle lub ). Liczbę neuronów w w warstwie ukrytej można próbowa bować oszacować: 7 Zwykle: : uczenie z początkowo małą liczbą neuronów i stopniowe zwiększanie ich liczby. Zbyt mało neuronów w w warstwie ukrytej sieć nie potrafi poprawnie odwzorować funkcji. Zbyt wiele elementów w warstwy ukrytej: wydłużenie procesu uczenia; uczenie się na pamięć ęć (szczególnie, gdy liczba próbek w ciągu uczącym cym jest niewielka) - sieć poprawnie rozpoznaje tylko sygnały y zgodne z tymi w ciągu uczącym cym ( brak generalizacji przy dobrej interpolacji). 8 Np Np.(L. Rutkowski, Metody i techniki sztucznej inteligencji, PWN, W-wa 6): Ciąg g uczący: cy: Wejście x Oczekiwane wyjście d=f(x) [ ] y = sin( x), x, π π 6.5 π 4 π 4 5 π π 4π 5π 5π π π 5π π 7π π Dobór próbek (ciąg uczący) wpływa na jakość nauczania: odpowiedź na ciąg uczący odpowiedź na ciąg testowy Ghaboussi, CISM Zbyt długie uczenie również może skutkować utratą zdolności uogólniania: UCZENIE SIECI NEURONOWYCH Zamiast programowania! Wymuszanie określonego reagowania sieci na zadane sygnały y wejściowe (poprzez odpowiedni dobór wag). Ta sama sieć może e służyćs do rozwiązywania zywania skrajnie różnych r zadań. Warianty uczenia: Ghaboussi, CISM 7 4 uczenie bez nauczyciela (nienadzorowane); uczenie z nauczycielem (nadzorowane); uczenie z krytykiem. 4 7

8 Uczenie bez nauczyciela (unsupervisedupervised learning) Pożą żądana odpowiedź nie jest znana. Sieć uczy się poprzez analizę reakcji na pobudzenia; samoorganizacja struktury wszelkie regularności ci, linie podziału i inne charakterystyki danych wejściowych sieć musi wykryć sama. Donald Hebb (fizjolog i psycholog) w umyśle za- chodzą procesy wzmacniania połą łączeń między neuro- nami,, jeśl śli i zostały y one pobudzone jednocześnie. nie. Zdolności do wykrywania skupisk obrazów wejścio cio- wych są wykorzystywane do ich klasyfikacji,, gdy klasy nie sąs z góry g ustalone. 4 Sieci pokazuje się kolejne przykłady bez określenia, co trzeba z nimi zrobić. Różne pobudzenie różnych neuronów - połączenia między źródłami silnych sygnałów a neuronami, które na nie reagują są wzmacniane. Uczenie bez nauczyciela (unsupervisedupervised learning) W sieci stopniowo powstają wzorce poszczególnych typów sygnałów rozpoznawane przez pewną część neuronów. Uczenie spontaniczne, odkrywanie ciekawych struktur w przestrzeni danych, korelacja zachowań systemu ze zmianą tych struktur dominuje w okresie niemowlęcym. 44 Uczenie bez nauczyciela - wady Uczenie z nauczycielem (supervised learning) Zwykle powolniejsze. Nie wiadomo, który neuron będzie b rozpoznawał jaki sygnał. Część sygnałów w może e być rozpoznawana przez więcej niż jeden neuron. Podawanie sieci zestawów w sygnałów w WE wraz z prawidłowym sygnałem WY. Naśladowanie nauczyciela,, jakim jest ciąg (podejście szkolne ). uczący cy Część sygnałów w może nie być rozpoznawana przez ża- den neuron (sieć musi być większa niż przy nauczycielu zwykle przynajmniej razy). Zestawy sygnałów w (zwykle) powtarza się wielokrotnie, zaś sieć modyfikuje wagi na wejściach tak, by zmini- malizować błąd. Zmiana wagi na i-tym wejściu neuronu po pokazaniu j-ego obiektu uczącego cego jest proporcjonalna do popełnianego na tym etapie błęb łędu δ ( j ) Uczenie z krytykiem (reinforcement learning): Uczenie z krytykiem (reinforcement learning): Odmiana uczenia nadzorowanego. Nauczyciel nie dysponuje pełną wiedzą na temat wszystkich prawidłowych odpowiedzi. Zamiast informacji o pożą żądanym WY, sieć dysponuje jedynie oceną efektu swego działania ania w ramach dwóch prostych kategorii. Ocena wzmocnienie (pozytywne lub negatywne) odpowiednie zmiany wag. Optymalizacja zysków w na dłuższą metę. Np.: gry z przeciwnikiem, krytyką jest przegrana lub wygrana na końcu partii. Uczenie z krytykiem lub z wzmocnieniem pożądanych zachowań po dłuższym d okresie. Uczenie dojrzałe (nabieranie mądrości ). Bardziej uniwersalne w zastosowaniu podejśc ście do problemu. Praktyczna realizacja jest bardziej skomplikowana

METODY INTELIGENCJI OBLICZENIOWEJ wykład 4

METODY INTELIGENCJI OBLICZENIOWEJ wykład 4 METODY INTELIGENCJI OBLICZENIOWEJ wykład 4 1 2 SZTUCZNE SIECI NEURONOWE HISTORIA SSN 3 Walter Pitts, Warren McCulloch (1943) opracowanie matematyczne pojęcia sztucznego neuronu.. Udowodnili też, iż ich

Bardziej szczegółowo

Metody Sztucznej Inteligencji II

Metody Sztucznej Inteligencji II 17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału

Bardziej szczegółowo

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI

Bardziej szczegółowo

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe wykład 1. Właściwości sieci neuronowych Model matematyczny sztucznego neuronu Rodzaje sieci neuronowych Przegląd d głównych g

Bardziej szczegółowo

Inteligentne systemy informacyjne

Inteligentne systemy informacyjne Inteligentne systemy informacyjne Moduł 10 Mieczysław Muraszkiewicz www.icie.com.pl/lect_pw.htm M. Muraszkiewicz strona 1 Sieci neuronowe szkic Moduł 10 M. Muraszkiewicz strona 2 Dwa nurty M. Muraszkiewicz

Bardziej szczegółowo

Podstawy sztucznej inteligencji

Podstawy sztucznej inteligencji wykład 5 Sztuczne sieci neuronowe (SSN) 8 grudnia 2011 Plan wykładu 1 Biologiczne wzorce sztucznej sieci neuronowej 2 3 4 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką,

Bardziej szczegółowo

Elementy Sztucznej Inteligencji. Sztuczne sieci neuronowe cz. 2

Elementy Sztucznej Inteligencji. Sztuczne sieci neuronowe cz. 2 Elementy Sztucznej Inteligencji Sztuczne sieci neuronowe cz. 2 1 Plan wykładu Uczenie bez nauczyciela (nienadzorowane). Sieci Kohonena (konkurencyjna) Sieć ze sprzężeniem zwrotnym Hopfielda. 2 Cechy uczenia

Bardziej szczegółowo

8. Neuron z ciągłą funkcją aktywacji.

8. Neuron z ciągłą funkcją aktywacji. 8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i

Bardziej szczegółowo

HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM

HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM ZASTOSOWANIE SIECI NEURONOWYCH W SYSTEMACH AKTYWNEJ REDUKCJI HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM WPROWADZENIE Zwalczanie hałasu przy pomocy metod aktywnych redukcji hałasu polega

Bardziej szczegółowo

Automatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010

Automatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010 Materiały/konsultacje Automatyczna predykcja http://www.ibp.pwr.wroc.pl/kotulskalab Konsultacje wtorek, piątek 9-11 (uprzedzić) D1-115 malgorzata.kotulska@pwr.wroc.pl Co to jest uczenie maszynowe? Uczenie

Bardziej szczegółowo

Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD XI: Sztuczne sieci neuronowe

Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD XI: Sztuczne sieci neuronowe Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD XI: Sztuczne sieci neuronowe [pattern associator], PA struktura: Sieci kojarzące wzorce programowanie: wyjście jednostki = aktywacji sieciowej (N)

Bardziej szczegółowo

Metody sztucznej inteligencji

Metody sztucznej inteligencji Metody sztucznej inteligencji sztuczne sieci neuronowe - wstęp dr hab. inż. Andrzej Obuchowicz, prof. UZ Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski A. Obuchowicz Metody sztucznej

Bardziej szczegółowo

SIECI NEURONOWE Wprowadzenie

SIECI NEURONOWE Wprowadzenie SIECI NEURONOWE Wprowadzenie JOANNA GRABSKA-CHRZĄSTOWSKA Wykłady w dużej mierze przygotowane w oparciu o materiały i pomysły PROF. RYSZARDA TADEUSIEWICZA WYKŁADOWCA JOANNA GRABSKA CHRZĄSTOWSKA KATEDRA

Bardziej szczegółowo

Seminarium magisterskie. Dyskusja nad tematem pracy magisterskiej pisanej pod kierunkiem pani Dr hab. Małgorzaty Doman

Seminarium magisterskie. Dyskusja nad tematem pracy magisterskiej pisanej pod kierunkiem pani Dr hab. Małgorzaty Doman Seminarium magisterskie Dyskusja nad tematem pracy magisterskiej pisanej pod kierunkiem pani Dr hab. Małgorzaty Doman Plan wystąpienia Ogólnie o sztucznych sieciach neuronowych Temat pracy magisterskiej

Bardziej szczegółowo

BIOCYBERNETYKA SIECI NEURONOWE. Akademia Górniczo-Hutnicza. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej.

BIOCYBERNETYKA SIECI NEURONOWE. Akademia Górniczo-Hutnicza. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej. Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej BIOCYBERNETYKA Adrian Horzyk SIECI NEURONOWE www.agh.edu.pl Mózg inspiruje nas od wieków Co takiego

Bardziej szczegółowo

Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych.

Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Metody Sztucznej Inteligencji 2 Projekt Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Autorzy: Robert Wojciechowski Michał Denkiewicz Mateusz Gągol Wstęp Celem projektu

Bardziej szczegółowo

Sztuczne Sieci Neuronowe. Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW

Sztuczne Sieci Neuronowe. Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW Sztuczne Sieci Neuronowe Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW SN są częścią dziedziny Sztucznej Inteligencji Sztuczna Inteligencja (SI) zajmuje się

Bardziej szczegółowo

Sieci neuronowe i ich ciekawe zastosowania. Autor: Wojciech Jamrozy III rok SMP / Informatyka

Sieci neuronowe i ich ciekawe zastosowania. Autor: Wojciech Jamrozy III rok SMP / Informatyka Sieci neuronowe i ich ciekawe zastosowania Autor: Wojciech Jamrozy III rok SMP / Informatyka Klasyczna algorytmika Sortowanie ciągu liczb Czy i ile razy dane słowo wystąpiło w tekście Najkrótsza droga

Bardziej szczegółowo

Sztuczne siei neuronowe - wprowadzenie

Sztuczne siei neuronowe - wprowadzenie Metody Sztucznej Inteligencji w Sterowaniu Ćwiczenie 2 Sztuczne siei neuronowe - wprowadzenie Przygotował: mgr inż. Marcin Pelic Instytut Technologii Mechanicznej Politechnika Poznańska Poznań, 2 Wstęp

Bardziej szczegółowo

Badacze zbudowali wiele systemów technicznych, naśladujących w komputerze ludzki mózg. Najbardziej pożyteczne okazały się sieci neuronowe.

Badacze zbudowali wiele systemów technicznych, naśladujących w komputerze ludzki mózg. Najbardziej pożyteczne okazały się sieci neuronowe. Naśladując w komputerze ludzki mózg staramy się połączyć zalety komputera (dostępność i szybkość działania) z zaletami mózgu (zdolność do uczenia się) informatyka + 2 Badacze zbudowali wiele systemów technicznych,

Bardziej szczegółowo

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z inteligentnymi

Bardziej szczegółowo

Wstęp do teorii sztucznej inteligencji

Wstęp do teorii sztucznej inteligencji Wstęp do teorii sztucznej inteligencji Wykład V Algorytmy uczenia SSN Modele sieci neuronowych. SSN = Architektura + Algorytm Wagi i wejścia dla sieci neuronuowej: reprezentacja macierzowa δ i = z i y

Bardziej szczegółowo

Elementy kognitywistyki III: Modele i architektury poznawcze

Elementy kognitywistyki III: Modele i architektury poznawcze Elementy kognitywistyki III: Modele i architektury poznawcze Wykład III: Psychologiczne modele umysłu Gwoli przypomnienia: Kroki w modelowaniu kognitywnym: teoretyczne ramy pojęciowe (modele pojęciowe)

Bardziej szczegółowo

Sieci neuronowe. - wprowadzenie - Istota inteligencji. WYKŁAD Piotr Ciskowski

Sieci neuronowe. - wprowadzenie - Istota inteligencji. WYKŁAD Piotr Ciskowski Sieci neuronowe - wprowadzenie - Istota inteligencji WYKŁAD Piotr Ciskowski na dobry początek: www.mql4.com - championship 2007 - winners of the ATC 2007 - the ATC 2007 is over forex-pamm.com na dobry

Bardziej szczegółowo

SIECI RBF (RADIAL BASIS FUNCTIONS)

SIECI RBF (RADIAL BASIS FUNCTIONS) SIECI RBF (RADIAL BASIS FUNCTIONS) Wybrane slajdy z prezentacji prof. Tadeusiewicza Wykład Andrzeja Burdy S. Osowski, Sieci Neuronowe w ujęciu algorytmicznym, Rozdz. 5, PWNT, Warszawa 1996. opr. P.Lula,

Bardziej szczegółowo

Praktyczne informacje o sieciach neuronowych. Elżbieta Dłubis. Państwowa Wyższa Szkoła Zawodowa w Chełmie

Praktyczne informacje o sieciach neuronowych. Elżbieta Dłubis. Państwowa Wyższa Szkoła Zawodowa w Chełmie Praktyczne informacje o sieciach neuronowych Elżbieta Dłubis Państwowa Wyższa Szkoła Zawodowa w Chełmie Wiedza o sieciach neuronowych zaczęła się od fascynacji mózgiem narządem (..), którego możliwości

Bardziej szczegółowo

Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty

Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-03 Projekt pn. Wzmocnienie potencjału

Bardziej szczegółowo

1. Architektury, algorytmy uczenia i projektowanie sieci neuronowych

1. Architektury, algorytmy uczenia i projektowanie sieci neuronowych Sztuczne sieci neuronowe i algorytmy genetyczne Artykuł pobrano ze strony eioba.pl SPIS TREŚCI 1. ARCHITEKTURY, ALGORYTMY UCZENIA I PROJEKTOWANIE SIECI NEURONOWYCH 1.1. HISTORIA ROZWOJU SZTUCZNYCH SIECI

Bardziej szczegółowo

Sieci neuronowe w Statistica

Sieci neuronowe w Statistica http://usnet.us.edu.pl/uslugi-sieciowe/oprogramowanie-w-usk-usnet/oprogramowaniestatystyczne/ Sieci neuronowe w Statistica Agnieszka Nowak - Brzezińska Podstawowym elementem składowym sztucznej sieci neuronowej

Bardziej szczegółowo

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu.

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu. SYLLABUS na rok akademicki 01/013 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr /3 Specjalność Bez specjalności Kod katedry/zakładu

Bardziej szczegółowo

Sztuczne Sieci Neuronowe

Sztuczne Sieci Neuronowe Sztuczne Sieci Neuronowe Wykład 1 Wprowadzenie do tematyki Sztucznych Sieci Neuronowych (SSN) wykład przygotowany wg. W. Duch, J. Korbicz, L. Rutkowski, R. Tadeusiewicz, Sieci Neuronowe, Rozdz. 1. Biocybernetyka

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona

Bardziej szczegółowo

Sieci neuronowe - wprowadzenie. Agnieszka Nowak - Brzezińska

Sieci neuronowe - wprowadzenie. Agnieszka Nowak - Brzezińska The brain - that's my second most favourite organ! - Woody Allen Sieci neuronowe - wprowadzenie Agnieszka Nowak - Brzezińska Klasyfikacja danych Klasyfikacja danych to jedno z podstawowych zadań wykonywanych

Bardziej szczegółowo

O badaniach nad SZTUCZNĄ INTELIGENCJĄ

O badaniach nad SZTUCZNĄ INTELIGENCJĄ O badaniach nad SZTUCZNĄ INTELIGENCJĄ Jak określa się inteligencję naturalną? Jak określa się inteligencję naturalną? Inteligencja wg psychologów to: Przyrodzona, choć rozwijana w toku dojrzewania i uczenia

Bardziej szczegółowo

Uniwersytet Mikołaja Kopernika. Wydział Matematyki i Informatyki. Jarosław Piersa piersaj(at)mat.uni.torun.pl

Uniwersytet Mikołaja Kopernika. Wydział Matematyki i Informatyki. Jarosław Piersa piersaj(at)mat.uni.torun.pl Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Jarosław Piersa piersaj(at)mat.uni.torun.pl Abstrakt Poniższy referat dotyczy zagadnień uczenia w sieciach neuronowych i bayesowskich(sieciach

Bardziej szczegółowo

Algorytmy sztucznej inteligencji

Algorytmy sztucznej inteligencji Algorytmy sztucznej inteligencji Dynamiczne sieci neuronowe 1 Zapis macierzowy sieci neuronowych Poniżej omówione zostaną części składowe sieci neuronowych i metoda ich zapisu za pomocą macierzy. Obliczenia

Bardziej szczegółowo

Podstawy sztucznej inteligencji

Podstawy sztucznej inteligencji wykład 5 Sztuczne sieci neuronowe (SSN) 28 listopad 2012 Plan wykładu 1 Biologiczne wzorce sztucznej sieci neuronowej 2 3 4 5 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest

Bardziej szczegółowo

Prof. Stanisław Jankowski

Prof. Stanisław Jankowski Prof. Stanisław Jankowski Zakład Sztucznej Inteligencji Zespół Statystycznych Systemów Uczących się p. 228 sjank@ise.pw.edu.pl Zakres badań: Sztuczne sieci neuronowe Maszyny wektorów nośnych SVM Maszyny

Bardziej szczegółowo

Sieci neuronowe - wprowadzenie. Agnieszka Nowak - Brzezińska

Sieci neuronowe - wprowadzenie. Agnieszka Nowak - Brzezińska The brain - that's my second most favourite organ! - Woody Allen Sieci neuronowe - wprowadzenie Agnieszka Nowak - Brzezińska Klasyfikacja danych Klasyfikacja danych to jedno z podstawowych zadań wykonywanych

Bardziej szczegółowo

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2)

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Ewa Wołoszko Praca pisana pod kierunkiem Pani dr hab. Małgorzaty Doman Plan tego wystąpienia Teoria Narzędzia

Bardziej szczegółowo

ZASTOSOWANIE SIECI NEURONOWYCH

ZASTOSOWANIE SIECI NEURONOWYCH Państwowa Wyższa Szkoła Zawodowa w Tarnobrzegu ZASTOSOWANIE SIECI NEURONOWYCH OPRACOWANIE: Małgorzata Skulska Monika Skulska Łukasz Makowski TARNOBRZEG 2003 STRESZCZENIE Myślą przewodnią tego opracowania

Bardziej szczegółowo

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016 Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład I dr inż. Bogumil.Konopka@pwr.edu.pl 2015/2016 1 Wykład I - plan Sprawy organizacyjne Uczenie maszynowe podstawowe pojęcia Proces modelowania

Bardziej szczegółowo

Przykładowe funkcje przejścia używane przy budowie sztucznych neuronów

Przykładowe funkcje przejścia używane przy budowie sztucznych neuronów Przykładowe funkcje przejścia używane przy budowie sztucznych neuronów Funkcja Wzór funkcji Wzór pochodnej Sigmoida f(s)=1/(1+e -(β*s) ) f (s)=β*(1- f(s))* f(s) Funkcje przejścia neuronu powinno się rozpatrywać

Bardziej szczegółowo

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

MATLAB Neural Network Toolbox przegląd

MATLAB Neural Network Toolbox przegląd MATLAB Neural Network Toolbox przegląd WYKŁAD Piotr Ciskowski Neural Network Toolbox: Neural Network Toolbox - zastosowania: przykłady zastosowań sieci neuronowych: The 1988 DARPA Neural Network Study

Bardziej szczegółowo

Pattern Classification

Pattern Classification Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors

Bardziej szczegółowo

Redakcja: Urszula Markowska-Kaczmar Halina Kwaśnicka SIECI NEURONOWE W ZASTOSOWANIACH. Praca zbiorowa

Redakcja: Urszula Markowska-Kaczmar Halina Kwaśnicka SIECI NEURONOWE W ZASTOSOWANIACH. Praca zbiorowa Redakcja: Urszula Markowska-Kaczmar Halina Kwaśnicka SIECI NEURONOWE W ZASTOSOWANIACH Praca zbiorowa Oficyna Wydawnicza Politechniki Wrocławskiej Wrocław 2005 3 Przedmowa 7 1 Sztuczne sieci neuronowe wprowadzenie

Bardziej szczegółowo

Przetworniki A/C. Ryszard J. Barczyński, 2010 2015 Materiały dydaktyczne do użytku wewnętrznego

Przetworniki A/C. Ryszard J. Barczyński, 2010 2015 Materiały dydaktyczne do użytku wewnętrznego Przetworniki A/C Ryszard J. Barczyński, 2010 2015 Materiały dydaktyczne do użytku wewnętrznego Parametry przetworników analogowo cyfrowych Podstawowe parametry przetworników wpływające na ich dokładność

Bardziej szczegółowo

Metody klasyfikacji i rozpoznawania wzorców. Najważniejsze rodzaje klasyfikatorów

Metody klasyfikacji i rozpoznawania wzorców.  Najważniejsze rodzaje klasyfikatorów Metody klasyfikacji i rozpoznawania wzorców www.michalbereta.pl Najważniejsze rodzaje klasyfikatorów Dla określonego problemu klasyfikacyjnego (tzn. dla danego zestawu danych) należy przetestować jak najwięcej

Bardziej szczegółowo

Sieci neuronowe jako przykład współczesnej technologii informatycznej

Sieci neuronowe jako przykład współczesnej technologii informatycznej Maciej Roszkowski Sieci neuronowe jako przykład współczesnej technologii informatycznej Sieci neuronowe są technologią sztucznej inteligencji, trochę zapomnianą we współczesnym świecie. Współczesny ogólnie

Bardziej szczegółowo

Sztuczne sieci neuronowe

Sztuczne sieci neuronowe Sztuczne sieci neuronowe Paweł Bęczkowski ETI 9.1 1 Czym określamy sztuczną sieć neuronową Sieć neuronowa (sztuczna sieć neuronowa) to ogólna nazwa struktur matematycznych i ich programowych lub sprzętowych

Bardziej szczegółowo

Sieci neuronowe (wprowadzenie)

Sieci neuronowe (wprowadzenie) Sieci neuronowe (wprowadzenie) Ryszard Tadeusiewicz Laboratorium Biocybernetyki Katedra Automatyki AGH Zacznijmy od formalnej definicji: sieć neuronowa to urządzenie techniczne lub algorytm, którego działanie

Bardziej szczegółowo

Deep Learning na przykładzie Deep Belief Networks

Deep Learning na przykładzie Deep Belief Networks Deep Learning na przykładzie Deep Belief Networks Jan Karwowski Zakład Sztucznej Inteligencji i Metod Obliczeniowych Wydział Matematyki i Nauk Informacyjnych PW 20 V 2014 Jan Karwowski (MiNI) Deep Learning

Bardziej szczegółowo

Liniowe układy scalone w technice cyfrowej

Liniowe układy scalone w technice cyfrowej Liniowe układy scalone w technice cyfrowej Wykład 6 Zastosowania wzmacniaczy operacyjnych: konwertery prąd-napięcie i napięcie-prąd, źródła prądowe i napięciowe, przesuwnik fazowy Konwerter prąd-napięcie

Bardziej szczegółowo

WSTĘP DO INFORMATYKI SIECI NEURONOWE I SZTUCZNA INTELIGENCJA wykład

WSTĘP DO INFORMATYKI SIECI NEURONOWE I SZTUCZNA INTELIGENCJA wykład WSTĘP DO INFORMATYKI SIECI NEURONOWE I SZTUCZNA INTELIGENCJA wykład Adrian Horzyk Web: http://home.agh.edu.pl/~horzyk/ E-mail: horzyk@agh.edu.pl Google: Adrian Horzyk, Gabinet: paw. C3p. 205 Akademia Górniczo-Hutniacza

Bardziej szczegółowo

Zeszyty Naukowe nr 740 Akademii Ekonomicznej w Krakowie. Joanna Palczewska. 1. Wprowadzenie

Zeszyty Naukowe nr 740 Akademii Ekonomicznej w Krakowie. Joanna Palczewska. 1. Wprowadzenie Zeszyty Naukowe nr 740 Akademii Ekonomicznej w Krakowie 2007 Studium Doktoranckie Wydzia u Zarzàdzania Mo liwoêci zastosowania modelu jednokierunkowej sieci neuronowej do prognozowania sygna ów kupna i

Bardziej szczegółowo

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Dorota Witkowska Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wprowadzenie Sztuczne

Bardziej szczegółowo

WAI Wykłady 3 i 4. Sieci neuronowe. Uczenie i zastosowania. Wstęp do logiki rozmytej.

WAI Wykłady 3 i 4. Sieci neuronowe. Uczenie i zastosowania. Wstęp do logiki rozmytej. WAI Wykłady 3 i 4. Sieci neuronowe. Uczenie i zastosowania. Wstęp do logiki rozmytej. Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. D. Rutkowska, M. Piliński i L.

Bardziej szczegółowo

Rozprawa doktorska ZASTOSOWANIE SIECI NEURONOWYCH DO PROGNOZOWANIA DEFORMACJI GÓRNICZYCH. Wojciech Gruszczyński

Rozprawa doktorska ZASTOSOWANIE SIECI NEURONOWYCH DO PROGNOZOWANIA DEFORMACJI GÓRNICZYCH. Wojciech Gruszczyński Akademia Górniczo-Hutnicza im. Stanisława Staszica Wydział Geodezji Górniczej i Inżynierii Środowiska Katedra Ochrony Terenów Górniczych, Geoinformatyki i Geodezji Górniczej Rozprawa doktorska ZASTOSOWANIE

Bardziej szczegółowo

Transformacja wiedzy w budowie i eksploatacji maszyn

Transformacja wiedzy w budowie i eksploatacji maszyn Uniwersytet Technologiczno Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy Wydział Mechaniczny Transformacja wiedzy w budowie i eksploatacji maszyn Bogdan ŻÓŁTOWSKI W pracy przedstawiono proces

Bardziej szczegółowo

Sieci neuronowe - wprowadzenie

Sieci neuronowe - wprowadzenie The brain - that's my second most favourite organ! - Woody Allen Sieci neuronowe - wprowadzenie Agnieszka Nowak - Brzezioska Wykład V Klasyfikacja danych Klasyfikacja danych to jedno z podstawowych zadao

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych lista zadań 1

Wprowadzenie do Sieci Neuronowych lista zadań 1 Wprowadzenie do Sieci Neuronowych lista zadań 1 Maja Czoków, Jarosław Piersa 2010-10-04 1 Zasadyzaliczania 1.1 Oceny Zaliczenie laboratoriów na podstawie implementowania omawianych algorytmów. Każde zadanie

Bardziej szczegółowo

Sylabus modułu kształcenia na studiach wyższych. Nazwa Wydziału. Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia

Sylabus modułu kształcenia na studiach wyższych. Nazwa Wydziału. Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Załącznik nr 4 do zarządzenia nr 12 Rektora UJ z 15 lutego 2012 r. Sylabus modułu kształcenia na studiach wyższych Nazwa Wydziału Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Wydział Matematyki

Bardziej szczegółowo

Przetwarzanie danych i rozwiązywanie problemów

Przetwarzanie danych i rozwiązywanie problemów Przetwarzanie danych i rozwiązywanie problemów Jak to robi komputer? 1. pobierz instrukcję z pamięci 2. pobierz z pamięci konieczne dane 3. wykonaj instrukcję 4. zapamiętaj wynik 5. Przejdź do 1. Instrukcje

Bardziej szczegółowo

ZASTOSOWANIA SIECI NEURONOWYCH

ZASTOSOWANIA SIECI NEURONOWYCH SN... 1 DZIEJE BADA¼ NAD SIECIAMI NEURONOWYMI - równoleg»y sposób przetwarzania informacji - 1957 : Perceptron, Cornell Aeronautical Laboratory (uk»ad elektromechaniczny do rozpoznawania znaków) 8 komórek,

Bardziej szczegółowo

Wstęp do kognitywistyki. Wykład 3: Logiczny neuron. Rachunek sieci neuronowych

Wstęp do kognitywistyki. Wykład 3: Logiczny neuron. Rachunek sieci neuronowych Wstęp do kognitywistyki Wykład 3: Logiczny neuron. Rachunek sieci neuronowych Epistemologia eksperymentalna W. McCulloch: Wszystko, czego dowiadujemy się o organizmach wiedzie nas do wniosku, iż nie są

Bardziej szczegółowo

Sieci neuronowe krótki kurs. Agnieszka Nowak - Brzezińska

Sieci neuronowe krótki kurs. Agnieszka Nowak - Brzezińska The brain - that's my second most favourite organ! - Woody Allen Sieci neuronowe krótki kurs Agnieszka Nowak - Brzezińska Klasyfikacja danych Klasyfikacja danych to jedno z podstawowych zadań wykonywanych

Bardziej szczegółowo

Technologia informacyjna Sztuczna Inteligencja Janusz Uriasz

Technologia informacyjna Sztuczna Inteligencja Janusz Uriasz Technologia informacyjna Sztuczna Inteligencja Janusz Uriasz 4. Sztuczna inteligencja Sztuczna inteligencja (SI) - dziedzina informatyki związana z koncepcjami i metodami wnioskowania symbolicznego, wykonywanego

Bardziej szczegółowo

Klasyfikacja metod przetwarzania analogowo cyfrowego (A/C, A/D)

Klasyfikacja metod przetwarzania analogowo cyfrowego (A/C, A/D) Klasyfikacja metod przetwarzania analogowo cyfrowego (A/C, A/D) Metody pośrednie Metody bezpośrednie czasowa częstotliwościowa kompensacyjna bezpośredniego porównania prosta z podwójnym całkowaniem z potrójnym

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11,

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 1 Kwantyzacja skalarna Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 10.05.005 Kwantyzacja polega na reprezentowaniu dużego zbioru wartości (być może nieskończonego) za pomocą wartości

Bardziej szczegółowo

Przetworniki cyfrowo analogowe oraz analogowo - cyfrowe

Przetworniki cyfrowo analogowe oraz analogowo - cyfrowe Przetworniki cyfrowo analogowe oraz analogowo - cyfrowe Przetworniki cyfrowo / analogowe W cyfrowych systemach pomiarowych często zachodzi konieczność zmiany sygnału cyfrowego na analogowy, np. w celu

Bardziej szczegółowo

Praca dyplomowa magisterska

Praca dyplomowa magisterska Praca dyplomowa magisterska Implementacja algorytmów filtracji adaptacyjnej o strukturze transwersalnej na platformie CUDA Dyplomant: Jakub Kołakowski Opiekun pracy: dr inż. Michał Meller Plan prezentacji

Bardziej szczegółowo

CZYM SĄ OBLICZENIA NAT A URALNE?

CZYM SĄ OBLICZENIA NAT A URALNE? CZYM SĄ OBLICZENIA NATURALNE? Co to znaczy obliczać (to compute)? Co to znaczy obliczać (to compute)? wykonywać operacje na liczbach? (komputer = maszyna licząca) wyznaczać wartości pewnych funkcji? (program

Bardziej szczegółowo

RAPORT Z PRAKTYKI. Zastosowanie Sztucznych Sieci Neuronowych do wspomagania podejmowania decyzji kupna/sprzedaży na rynku Forex.

RAPORT Z PRAKTYKI. Zastosowanie Sztucznych Sieci Neuronowych do wspomagania podejmowania decyzji kupna/sprzedaży na rynku Forex. Projekt współfinansowane przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach projektu Wiedza Techniczna Wzmocnienie znaczenia Politechniki Krakowskiej w kształceniu przedmiotów

Bardziej szczegółowo

Rys. 1 Otwarty układ regulacji

Rys. 1 Otwarty układ regulacji Automatyka zajmuje się sterowaniem, czyli celowym oddziaływaniem na obiekt, w taki sposób, aby uzyskać jego pożądane właściwości. Sterowanie często nazywa się regulacją. y zd wartość zadana u sygnał sterujący

Bardziej szczegółowo

Sieci Neuronowe - Rok III - kierunek IS w IFAiIS UJ 2008/2009. Sieci Neuronowe. Wykład 11 Algorytmy genetyczne; Systemy rozmyte

Sieci Neuronowe - Rok III - kierunek IS w IFAiIS UJ 2008/2009. Sieci Neuronowe. Wykład 11 Algorytmy genetyczne; Systemy rozmyte Sieci Neuronowe Wykład 11 Algorytmy genetyczne; Systemy rozmyte wykład przygotowany na podstawie. S. Osowski, Sieci Neuronowe w ujęciu algorytmicznym, Rozdz. 4, PWNT, Warszawa 1996. W. Duch, J. Korbicz,

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

Syste t m e y m ek e s k per pe to t w o e w Wykład 8 1

Syste t m e y m ek e s k per pe to t w o e w Wykład 8 1 Systemy ekspertowe Wykład 8 1 SYSTEMY HYBRYDOWE 2 Definicja (przykładowa) Przez (inteligentny) system hybrydowy rozumiemy system ze sztuczną inteligencją zdolny do rozwiązywania złożonych problemów, który

Bardziej szczegółowo

Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa

Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa Jacek Skorupski pok. 251 tel. 234-7339 jsk@wt.pw.edu.pl http://skorupski.waw.pl/mmt prezentacje ogłoszenia konsultacje: poniedziałek 16 15-18, sobota zjazdowa 9 40-10 25 Udział w zajęciach Kontrola wyników

Bardziej szczegółowo

ZASTOSOWANIE SZTUCZNYCH SIECI NEURONOWYCH DO ROZPOZNAWANIA OBRAZÓW

ZASTOSOWANIE SZTUCZNYCH SIECI NEURONOWYCH DO ROZPOZNAWANIA OBRAZÓW Studia i Materiały Informatyki Stosowanej, Tom 2, Nr 3, 2010 ZASTOSOWANIE SZTUCZNYCH SIECI NEURONOWYCH DO ROZPOZNAWANIA OBRAZÓW Wojciech Dobrosielski Uniwersytet Kazimierza Wielkiego Instytut Techniki

Bardziej szczegółowo

Sieci neuronowe model konekcjonistyczny

Sieci neuronowe model konekcjonistyczny Sieci neurnwe mdel knekcjnistyczny Plan wykładu Mózg ludzki a kmputer Mdele knekcjnistycze Perceptrn Sieć neurnwa Sieci Hpfielda Mózg ludzki a kmputer Twój mózg t kmórek, 3 2 kilmetrów przewdów i (biliard)

Bardziej szczegółowo

Jakość uczenia i generalizacja

Jakość uczenia i generalizacja Jakość uczenia i generalizacja Dokładność uczenia Jest koncepcją miary w jakim stopniu nasza sieć nauczyła się rozwiązywać określone zadanie Dokładność mówi na ile nauczyliśmy się rozwiązywać zadania które

Bardziej szczegółowo

STEROWANIE PROCESEM PRODUKCJI PRZY UŻYCIU SIECI NEURONOWYCH

STEROWANIE PROCESEM PRODUKCJI PRZY UŻYCIU SIECI NEURONOWYCH STEROWANIE PROCESEM PRODUKCJI PRZY UŻYCIU SIECI NEURONOWYCH Izabela ROJEK, Przemysław STASZYŃSKI Streszczenie: W pracy przedstawiono aplikację wspomagającą sterowanie procesem produkcji sody kalcynowanej

Bardziej szczegółowo

Elektroniczne materiały dydaktyczne do przedmiotu Wstęp do Sieci Neuronowych

Elektroniczne materiały dydaktyczne do przedmiotu Wstęp do Sieci Neuronowych Elektroniczne materiały dydaktyczne do przedmiotu Wstęp do Sieci Neuronowych Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-21 Koncepcja kursu Koncepcja

Bardziej szczegółowo

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

1. W jaki sposób radzimy sobie z problemem zatrzymywania się w lokalnym minimum błędu podczas procesu uczenia?

1. W jaki sposób radzimy sobie z problemem zatrzymywania się w lokalnym minimum błędu podczas procesu uczenia? . W jaki sposób radzimy sobie z problemem zatrzymywania się w lokalnym minimum błędu podczas procesu uczenia? Stosujemy technikę momentum. w(k = η*δ*f (φ*u + α* w(k-, α współczynnik momentum [0;] Kiedy

Bardziej szczegółowo

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie minimalizacji bez ograniczeń f(ˆx) = min x R nf(x) f : R n R funkcja ograniczona z dołu Algorytm rozwiazywania Rekurencyjny

Bardziej szczegółowo

Algorytmiczne sieci neuronowe idea działania, słabe i mocne strony

Algorytmiczne sieci neuronowe idea działania, słabe i mocne strony Patryk DUŃSKI Wydział Informatyki, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie E mail: pdunski@wi.zut.edu.pl Algorytmiczne sieci neuronowe idea działania, słabe i mocne strony Streszczenie:

Bardziej szczegółowo

Nie istnieje ogólna recepta, każdy przypadek musi być rozważany indywidualnie!

Nie istnieje ogólna recepta, każdy przypadek musi być rozważany indywidualnie! Preprocesing Postprocesing 2013-06-12 Kwestia wyboru struktury modelu neuronowego Nie istnieje ogólna recepta, każdy przypadek musi być rozważany indywidualnie! Schematyczne przedstawienie etapów przetwarzania

Bardziej szczegółowo

Spis treści I. Systemy Eksperckie

Spis treści I. Systemy Eksperckie Spis treści I. Systemy Eksperckie 1.Podstawy 1.1 Ogólna budowa 1.2 Struktura 1.2.1 Rodzaje systemów eksperckich 1.2.2 Zastosowanie systemów eksperckich 1.3 Własności I. Systemy Eksperckie 1.Podstawy System

Bardziej szczegółowo

Wykład z Technologii Informacyjnych. Piotr Mika

Wykład z Technologii Informacyjnych. Piotr Mika Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły

Bardziej szczegółowo

Przykładowa analiza danych

Przykładowa analiza danych Przykładowa analiza danych W analizie wykorzystano dane pochodzące z publicznego repozytorium ArrayExpress udostępnionego na stronach Europejskiego Instytutu Bioinformatyki (http://www.ebi.ac.uk/). Zbiór

Bardziej szczegółowo

Testowanie modeli predykcyjnych

Testowanie modeli predykcyjnych Testowanie modeli predykcyjnych Wstęp Podczas budowy modelu, którego celem jest przewidywanie pewnych wartości na podstawie zbioru danych uczących poważnym problemem jest ocena jakości uczenia i zdolności

Bardziej szczegółowo

Technologie informacyjne - wykład 12 -

Technologie informacyjne - wykład 12 - Zakład Fizyki Budowli i Komputerowych Metod Projektowania Instytut Budownictwa Wydział Budownictwa Lądowego i Wodnego Politechnika Wrocławska Technologie informacyjne - wykład 12 - Prowadzący: Dmochowski

Bardziej szczegółowo

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74 3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15

Bardziej szczegółowo

METODY SZTUCZNEJ INTELIGENCJI 2 Opis projektu

METODY SZTUCZNEJ INTELIGENCJI 2 Opis projektu Kamil Figura Krzysztof Kaliński Bartek Kutera METODY SZTUCZNEJ INTELIGENCJI 2 Opis projektu Porównanie metod uczenia z rodziny TD z algorytmem Layered Learning na przykładzie gry w warcaby i gry w anty-warcaby

Bardziej szczegółowo

Definicje. Algorytm to:

Definicje. Algorytm to: Algorytmy Definicje Algorytm to: skończony ciąg operacji na obiektach, ze ściśle ustalonym porządkiem wykonania, dający możliwość realizacji zadania określonej klasy pewien ciąg czynności, który prowadzi

Bardziej szczegółowo

Technologia informacyjna Algorytm Janusz Uriasz

Technologia informacyjna Algorytm Janusz Uriasz Technologia informacyjna Algorytm Janusz Uriasz Algorytm Algorytm - (łac. algorithmus); ścisły przepis realizacji działań w określonym porządku, system operacji, reguła komponowania operacji, sposób postępowania.

Bardziej szczegółowo