SZTUCZNE SIECI NEURONOWE

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "SZTUCZNE SIECI NEURONOWE"

Transkrypt

1 METODY INTELIGENCJI OBLICZENIOWEJ wykład 4 SZTUCZNE SIECI NEURONOWE HISTORIA SSN Walter Pitts, Warren McCulloch (94) opracowanie matematyczne pojęcia sztucznego neuronu.. Udowodnili też, iż ich wynalazek jest w stanie odzwierciedlić w swym działaniu dowolną funkcję logiczną. Donald Olding Hebb (949) psychologia: jakość połączenia dwóch neuronów wyznaczana jest poprzez liczbę efektywnych przepływów sygnału s pomiędzy nimi -> zasada uczenia się Hebba (Hebbian learning) ) dla sztucznych sieci neuronowych (SSN). Frank Rosenblatt (958) pierwszy funkcjonujący model SSN (perceptron) oraz pierwszy z algorytmów uczenia SSN (do nauczenia perceptronu rozpoznawania liter alfabetu łacińskiego). Określił również zasadę, iż perceptron zbudowany wg jego teorii jest w stanie rozwiązać każdy problem liniowo separowalny. HISTORIA SSN Bernard Widrow, Ted Hoff (96) - neuron typu Adaline z liniową funkcją aktywacji oraz algorytm uczenia LMS ( (Least Mean Square), ), zwany regułą delty lub regułą Widrowa-Hoffa Hoffa. John Hopfield (98) teoria pamięci asocjacyjnej,, jako istoty działania sieci rekurencyjnych (sieci Hopfielda). Paul Werbos (974); David Rumelhart,, Geoffrey Hinton, Ronald Williams (986) - wsteczna propagacja błędów (backpropagation) pozwalająca na rozwiązywanie problemów liniowo nieseparowalnych. 4 ZALETY SSN: Nie wymagają programowania (tylko uczenie). Mają zdolność uogólniania. Są wysoce odporne na szumy i zniekształcenia sygnału. KLASY ZASTOSOWAŃ: PREDYKCJA ze znajomości: f ( x nk), f( x n k+ ),..., f( x n) przewidzieć : f( x n+ ) { } Pomagają wykrywać istotne powiązania pomiędzy danymi. Stosuje się je gdy istnieje duża złożoność zagadnienia i trudno jest jednoznacznie określić formalne kryteria, dla stworzenia programu komputerowego. 5 bez jawnego definiowania związku między danymi wejściowymi a wyjściowymi 6

2 KLASYFIKACJA I ROZPOZNAWANIE WZORCÓW Zaszeregowanie danych wejściowych do jednej z klas: APROKSYMACJA (interpolacja, ekstrapolacja) ze znajomości: odtworzyć: { x, f( x )} i f ( x) i ASOCJACJA Podanie danego wzorca na wejście powinno powodować pojawienie się odpowiadającego mu wzorca na wyjściu. np. sieć pozwala na podstawie danych bilansowych stwierdzić, czy dane przedsiębiorstwo należy do zwyżkujących gospodarczo, czy przeżywa stagnację czy też grozi mu regres regres. 7 8 STEROWANIE FILTRACJA SYGNAŁÓW KOJARZENIE DANYCH automatyzacja procesów wnioskowania i wykrywanie istotnych powiązań między danymi. OPTYMALIZACJA statyczna i dynamiczna, optymalizacja kombinato- ryczna i zagadnienia bardzo trudne obliczeniowo. 9 PRZYKŁADOWE ZASTOSOWANIA: NIE NADAJĄ SIĘ DO: Przetwarzania informacji symbolicznej (np. edytory tekstu). Obliczeń o wymaganej wysokiej dokładności (sieć pracuje jakościowo, dając wyniki przybliżone). Rozwiązywania zagadnień, gdzie rozumowanie jest przeprowadzanie wieloetapowo (a musi być udokumentowane).

3 KOMÓRKA NERWOWA CZŁOWIEKA W tkance nerwowej: B. Komórki nerwowe (neurony) A. Komórki glejowe Jest ich więcej; Pełnią rolę pomocniczą (funkcje podporowe, odżywcze, odgraniczające i regenerujące) Są stosunkowo małe i mają kształt gwiazdy. nie będą nas dalej interesować... Dendryty zbierają sygnały z innych komórek nerwowych. Ciało komórki agreguje sygnały wejściowe i tworzy sygnał wyjściowy. Akson wyprowadza sygnał wyjściowy i przekazuje go dalej. 4 Synapsa - przekazuje sygnał między aksonem a dendrytem (każda komórka nerwowa posiada średnio kilka tysięcy synaps). Poszczególne synapsy różnią się wielkością oraz możli- wością gromadzenia neuroprzekaźników w pobliżu błony synaptycznej. Chemiczno-elektryczne elektryczne przekazywanie sygnałów: Pod wpływem przychodzących bodźców wydzielane są neuroprzekaźniki; Neuroprzekaźniki oddziałują na błonę komórki zmieniając jej potencjał elektryczny. 5 Dlatego taki sam impuls na wejściu komórki może po- wodować inne jej pobudzenie niż dla innego wejścia. STATYSTYKA: Liczba komórek nerwowych w mózgu ok. Połączeń nerwowych ok. 4 ; ; Częstotliwość biologicznego neuronu ok. kilkaset Hz. 6 Perceptron (Rosenblatt 958): Sprzętowo: Pojedynczy perceptron pozwala na: Układ posiadający wiele wejść i jedno wyjście: Wejście cie: n stanów wejsciowych x,...,x n Wyjście: lub Uwaga: pod pojęciem perceptronu perceptronu rozumie się też czasem siec połączonych jednostek (neuronów). 7 przetwarzanie jednostkowych informacji; podejmowanie prostych decyzji; przekazywanie wyników sąsiadom. Dopiero w połączeniu z innymi węzłami uzyskuje się zdolność podejmowania złożonych decyzji. 8

4 Sygnał wyjściowy y i i-tego neuronu liniowego : y N = w x i ij j j= w ij waga dla j-ego ego wejścia i-tegotego neuronu; x j j-tyty sygnał wejściowy ciowy; N liczba wejść w i-tym neuronie; 9 Sygnał wyjściowy y i i-tego neuronu (ogólnie) lnie): N yi = ϕ() e = ϕ wijxj + B j= e łączne pobudzenie neuronu (net value); ϕ funkcja aktywacji; B próg (bias). W neuronie liniowym e jest sygnałem wyjściowym. Poprawka wartości wagi dla perceptronu w j-ymym kroku (reguła( delta): w =ηδ x ( j) ( j) ( j) i i x, w wagi neuronu sygnał WE Sygnał WY jest tym większy, im bardziej sygnał WE będzie przypominał wagę (dla. sygnałów znormalizowanych). γ x, w δ = z y ( j) ( j) ( j) z wymagana odpowiedź neuronu; y uzyskana odpowiedź neuronu; x i dana wejściowa dla i-tego tego wejścia; η - współczynnik uczenia (learning rate). Kąt pomiędzy wektorem em WE a wektorem wag: - mały silny sygnał pozytywny; - bliski 9 słaby sygnał neutralny (bliski ); - duży silny sygnał negatywny. Dł.. wektora WE znacząco co mniejsza od dł. d. wektora wag sygnał neutralny (niezależnie od kierunku wektora WE). Waga: - dodatnia - sygnał pobudzający; - ujemna sygnał gaszący; - - brak połączenia między neuronami. Sygnały y wyjściowe:, (funkcje unipolarne) -, (funkcje bipolarne). FUNKCJA AKTYWACJI Wartość f. aktywacji sygnał wyjściowy neuronu. liniowa f. aktywacji; nieliniowa f. aktywacji: - f. skoku jednostkowego (progowa), np.: ϕ ( e) = { gdy e gdy e< - inna, np. typu sigmoidalnego (f. logistyczna): ϕ( e) = + exp( β e) β współczynnik sterujący nachyleniem krzywej 4 4

5 Sieć liniowa: Liniowe odwzorowanie zbioru sygnałów w WE w zbiór sygnałów w WY. Ograniczone zastosowanie. Sieć nieliniowa: Nieliniowe odwzorowanie zbioru sygnałów w WE w zbiór sygnałów w WY. Odpowiednio duża - praktycznie dowolny charakter odwzorowania. WYMAGANE CECHY F. AKTYWACJI: Ciągłe e przejście pomiędzy wartości cią maksymalną a minimalną. Łatwa do obliczenia i ciągł ągła a pochodna np. dla f. sigmoidalnej: ϕ() e = + exp( β e) [ ] ϕ'( e) = β ϕ( e) ϕ( e) Możliwo liwość wprowadzenia do argumentu parametru β do ustalania kształtu tu krzywej. odwzorowania. 5 6 WSPÓŁCZYNNIK β Bipolarny odpowiednik f. sigmoidalnej:.5 beta= beta=.5 beta= exp( βe) exp( βe) ϕ() e = = tgh( βe) exp( βe) + exp( βe) [ ] [ ] ϕ'( e) = β + ϕ( e) ϕ( e) BIAS.5 bias= beta=.5.5 bias=- bias= SIEĆ NEURONOWA: - układ połą łączonych neuronów (model warstwowy) RODZAJE NEURONÓW: warstwy WE (nie liczona); warstw ukrytych: efekty działania obserwowane pośrednio poprzez WY; pośredniczenie między WE a WY; niemożność dokładnego obliczenia błędów; warstwy WY (rozwiązania stawianych zadań). Sieć jednowarstwowa Sieć wielowarstwowa Sieć wielowarstwowa min. jedna warstwa ukryta. Zwykle: kilka warstw, połą łączenia każdy z każdym (min. liczba parametrów do opisu). 9 Pamięć neuronu reprezentowana poprzez wagi. Sieć działa a jako całość ść. 5

6 KLASY SIECI: feed-forward forward (jednokierunkowe) najczęściej stosowane; rekurencyjne sprzężenia zwrotne; sieci Kohonena samoorganizujące się; sieci radialne (RBF) - uniwersalny aproksymator. STRUKTURA SIECI: - ważna, lecz nie do przesady: wystarczający cy potencjał intelektualny ; rozsądna. Struktura SSN wpływa na: szybkość uczenia; wielkość popełnianego błędu; zdolność generalizacji Projektowanie sieci - problemy: ile warstw ukrytych? ile neuronów w w warstwach? Liczba neuronów w w warstwie WE: zależy y od liczby danych podawanych na wejście. Liczba neuronów w w warstwie WY: zależy y od liczby poszukiwanych rozwiąza zań. zdolność generalizacji Dobór r optymalnej struktury SSN: główne grupy algorytmów pomocnych w utworzeniu sieci optymalnej : metody wzrostu; metody redukcji, metody optymalizacji dyskretnej. Metody wzrostu: - na początku procesu optymalizacji struktura sieci powinna być możliwie mała; - w kolejnych iteracjach są dodawane kolejne neurony ukryte (co powinno powodować zwiększenie sprawności działania sieci); - neurony są dodawane aż do osiągnięcia punktu Metody redukcji na początku procesu optymalizacji struktura sieci powinna być możliwie złożona; w kolejnych iteracjach są usuwane kolejne neurony lub połączenia między nimi (co powinno powodować zwiększenie sprawności działania sieci); postępowanie jest powtarzane aż do osiągnięcia punktu optymalnego. optymalnego. 4 Metody optymalizacji dyskretnej opierają się na założeniu, że proces nauki sieci i wyboru architektury zachodzą równocześnie; czynnikiem ocenianym jest określona funkcja, reprezentująca jakość danej sieci; w kolejnych krokach sieci dobierane są tak, by dążyć do maksymalizacji funkcji jakości; możliwe jest wykorzystanie AE jako metody optymalizacji. Żadna z tych metod nie jest idealna.. Często wybór którejś z nich zależy od rodzaju rozwiązywanego problemu. 5 Przykład: Rozpoznawanie znaków alfabetu WE - 5 (pikseli) WY -6 (liter) a co wewnątrz? Metoda wzrostu: wstępnie: Ostatecznie:

7 N = N * N u we wy Sieć z warstwą ukrytą powinna nauczyć się roz- wiązywania większo kszości postawionych problemów. Nieznane sąs problemy wymagające sieci z więcej niż warstwami ukrytymi (zwykle lub ). Liczbę neuronów w w warstwie ukrytej można próbowa bować oszacować: 7 Zwykle: : uczenie z początkowo małą liczbą neuronów i stopniowe zwiększanie ich liczby. Zbyt mało neuronów w w warstwie ukrytej sieć nie potrafi poprawnie odwzorować funkcji. Zbyt wiele elementów w warstwy ukrytej: wydłużenie procesu uczenia; uczenie się na pamięć ęć (szczególnie, gdy liczba próbek w ciągu uczącym cym jest niewielka) - sieć poprawnie rozpoznaje tylko sygnały y zgodne z tymi w ciągu uczącym cym ( brak generalizacji przy dobrej interpolacji). 8 Np Np.(L. Rutkowski, Metody i techniki sztucznej inteligencji, PWN, W-wa 6): Ciąg g uczący: cy: Wejście x Oczekiwane wyjście d=f(x) [ ] y = sin( x), x, π π 6.5 π 4 π 4 5 π π 4π 5π 5π π π 5π π 7π π Dobór próbek (ciąg uczący) wpływa na jakość nauczania: odpowiedź na ciąg uczący odpowiedź na ciąg testowy Ghaboussi, CISM Zbyt długie uczenie również może skutkować utratą zdolności uogólniania: UCZENIE SIECI NEURONOWYCH Zamiast programowania! Wymuszanie określonego reagowania sieci na zadane sygnały y wejściowe (poprzez odpowiedni dobór wag). Ta sama sieć może e służyćs do rozwiązywania zywania skrajnie różnych r zadań. Warianty uczenia: Ghaboussi, CISM 7 4 uczenie bez nauczyciela (nienadzorowane); uczenie z nauczycielem (nadzorowane); uczenie z krytykiem. 4 7

8 Uczenie bez nauczyciela (unsupervisedupervised learning) Pożą żądana odpowiedź nie jest znana. Sieć uczy się poprzez analizę reakcji na pobudzenia; samoorganizacja struktury wszelkie regularności ci, linie podziału i inne charakterystyki danych wejściowych sieć musi wykryć sama. Donald Hebb (fizjolog i psycholog) w umyśle za- chodzą procesy wzmacniania połą łączeń między neuro- nami,, jeśl śli i zostały y one pobudzone jednocześnie. nie. Zdolności do wykrywania skupisk obrazów wejścio cio- wych są wykorzystywane do ich klasyfikacji,, gdy klasy nie sąs z góry g ustalone. 4 Sieci pokazuje się kolejne przykłady bez określenia, co trzeba z nimi zrobić. Różne pobudzenie różnych neuronów - połączenia między źródłami silnych sygnałów a neuronami, które na nie reagują są wzmacniane. Uczenie bez nauczyciela (unsupervisedupervised learning) W sieci stopniowo powstają wzorce poszczególnych typów sygnałów rozpoznawane przez pewną część neuronów. Uczenie spontaniczne, odkrywanie ciekawych struktur w przestrzeni danych, korelacja zachowań systemu ze zmianą tych struktur dominuje w okresie niemowlęcym. 44 Uczenie bez nauczyciela - wady Uczenie z nauczycielem (supervised learning) Zwykle powolniejsze. Nie wiadomo, który neuron będzie b rozpoznawał jaki sygnał. Część sygnałów w może e być rozpoznawana przez więcej niż jeden neuron. Podawanie sieci zestawów w sygnałów w WE wraz z prawidłowym sygnałem WY. Naśladowanie nauczyciela,, jakim jest ciąg (podejście szkolne ). uczący cy Część sygnałów w może nie być rozpoznawana przez ża- den neuron (sieć musi być większa niż przy nauczycielu zwykle przynajmniej razy). Zestawy sygnałów w (zwykle) powtarza się wielokrotnie, zaś sieć modyfikuje wagi na wejściach tak, by zmini- malizować błąd. Zmiana wagi na i-tym wejściu neuronu po pokazaniu j-ego obiektu uczącego cego jest proporcjonalna do popełnianego na tym etapie błęb łędu δ ( j ) Uczenie z krytykiem (reinforcement learning): Uczenie z krytykiem (reinforcement learning): Odmiana uczenia nadzorowanego. Nauczyciel nie dysponuje pełną wiedzą na temat wszystkich prawidłowych odpowiedzi. Zamiast informacji o pożą żądanym WY, sieć dysponuje jedynie oceną efektu swego działania ania w ramach dwóch prostych kategorii. Ocena wzmocnienie (pozytywne lub negatywne) odpowiednie zmiany wag. Optymalizacja zysków w na dłuższą metę. Np.: gry z przeciwnikiem, krytyką jest przegrana lub wygrana na końcu partii. Uczenie z krytykiem lub z wzmocnieniem pożądanych zachowań po dłuższym d okresie. Uczenie dojrzałe (nabieranie mądrości ). Bardziej uniwersalne w zastosowaniu podejśc ście do problemu. Praktyczna realizacja jest bardziej skomplikowana

METODY INTELIGENCJI OBLICZENIOWEJ wykład 4

METODY INTELIGENCJI OBLICZENIOWEJ wykład 4 METODY INTELIGENCJI OBLICZENIOWEJ wykład 4 1 2 SZTUCZNE SIECI NEURONOWE HISTORIA SSN 3 Walter Pitts, Warren McCulloch (1943) opracowanie matematyczne pojęcia sztucznego neuronu.. Udowodnili też, iż ich

Bardziej szczegółowo

Sztuczne sieci neuronowe (SNN)

Sztuczne sieci neuronowe (SNN) Sztuczne sieci neuronowe (SNN) Pozyskanie informacji (danych) Wstępne przetwarzanie danych przygotowanie ich do dalszej analizy Selekcja informacji Ostateczny model decyzyjny SSN - podstawy Sieci neuronowe

Bardziej szczegółowo

Metody Sztucznej Inteligencji II

Metody Sztucznej Inteligencji II 17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału

Bardziej szczegółowo

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI

Bardziej szczegółowo

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe wykład 1. Właściwości sieci neuronowych Model matematyczny sztucznego neuronu Rodzaje sieci neuronowych Przegląd d głównych g

Bardziej szczegółowo

Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga;

Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Sieci Hopfielda Najprostsze modele sieci z rekurencją sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Modele bardziej złoŝone: RTRN (Real Time Recurrent Network), przetwarzająca sygnały w czasie

Bardziej szczegółowo

Inteligentne systemy informacyjne

Inteligentne systemy informacyjne Inteligentne systemy informacyjne Moduł 10 Mieczysław Muraszkiewicz www.icie.com.pl/lect_pw.htm M. Muraszkiewicz strona 1 Sieci neuronowe szkic Moduł 10 M. Muraszkiewicz strona 2 Dwa nurty M. Muraszkiewicz

Bardziej szczegółowo

Temat: Sieci neuronowe oraz technologia CUDA

Temat: Sieci neuronowe oraz technologia CUDA Elbląg, 27.03.2010 Temat: Sieci neuronowe oraz technologia CUDA Przygotował: Mateusz Górny VIII semestr ASiSK Wstęp Sieci neuronowe są to specyficzne struktury danych odzwierciedlające sieć neuronów w

Bardziej szczegółowo

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa

Bardziej szczegółowo

Podstawy sztucznej inteligencji

Podstawy sztucznej inteligencji wykład 5 Sztuczne sieci neuronowe (SSN) 8 grudnia 2011 Plan wykładu 1 Biologiczne wzorce sztucznej sieci neuronowej 2 3 4 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką,

Bardziej szczegółowo

SIECI NEURONOWE Liniowe i nieliniowe sieci neuronowe

SIECI NEURONOWE Liniowe i nieliniowe sieci neuronowe SIECI NEURONOWE Liniowe i nieliniowe sieci neuronowe JOANNA GRABSKA-CHRZĄSTOWSKA Wykłady w dużej mierze przygotowane w oparciu o materiały i pomysły PROF. RYSZARDA TADEUSIEWICZA BUDOWA RZECZYWISTEGO NEURONU

Bardziej szczegółowo

Uczenie sieci neuronowych i bayesowskich

Uczenie sieci neuronowych i bayesowskich Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10

Bardziej szczegółowo

Obliczenia Naturalne - Sztuczne sieci neuronowe

Obliczenia Naturalne - Sztuczne sieci neuronowe Literatura Wprowadzenie Obliczenia Naturalne - Sztuczne sieci neuronowe Paweł Paduch Politechnika Świętokrzyska 13 marca 2014 Paweł Paduch Obliczenia Naturalne - Sztuczne sieci neuronowe 1 z 43 Plan wykładu

Bardziej szczegółowo

Metody Prognozowania: Sztuczne sieci neuronowe

Metody Prognozowania: Sztuczne sieci neuronowe Metody prognozowania: Sztuczne sieci Cechy mózgu ODPORNY NA USZKODZENIA; ELASTYCZNY ŁATWO DOSTOSOWUJE SIĘ DO ZMIENNEGO OTOCZENIA; UCZY SIĘ -NIE MUSI BYĆ PROGRAMOWANY; POTRAFI RADZIĆ SOBIE Z INFORMACJĄ

Bardziej szczegółowo

Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD X: Sztuczny neuron

Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD X: Sztuczny neuron Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD X: Sztuczny neuron Koneksjonizm: wprowadzenie 1943: Warren McCulloch, Walter Pitts: ogólna teoria przetwarzania informacji oparta na sieciach binarnych

Bardziej szczegółowo

8. Neuron z ciągłą funkcją aktywacji.

8. Neuron z ciągłą funkcją aktywacji. 8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i

Bardziej szczegółowo

Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści

Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, 2012 Spis treści Przedmowa do wydania drugiego Przedmowa IX X 1. Wstęp 1 2. Wybrane zagadnienia sztucznej inteligencji

Bardziej szczegółowo

Elementy Sztucznej Inteligencji. Sztuczne sieci neuronowe cz. 2

Elementy Sztucznej Inteligencji. Sztuczne sieci neuronowe cz. 2 Elementy Sztucznej Inteligencji Sztuczne sieci neuronowe cz. 2 1 Plan wykładu Uczenie bez nauczyciela (nienadzorowane). Sieci Kohonena (konkurencyjna) Sieć ze sprzężeniem zwrotnym Hopfielda. 2 Cechy uczenia

Bardziej szczegółowo

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska

Bardziej szczegółowo

HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM

HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM ZASTOSOWANIE SIECI NEURONOWYCH W SYSTEMACH AKTYWNEJ REDUKCJI HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM WPROWADZENIE Zwalczanie hałasu przy pomocy metod aktywnych redukcji hałasu polega

Bardziej szczegółowo

Sieci neuronowe jako sposób na optymalizacje podejmowanych decyzji. Tomasz Karczyoski Wydział W-08 IZ

Sieci neuronowe jako sposób na optymalizacje podejmowanych decyzji. Tomasz Karczyoski Wydział W-08 IZ optymalizacje podejmowanych decyzji Tomasz Karczyoski Wydział W-08 IZ Czym są sieci neuronowe Struktura matematycznych oraz programowy lub sprzętowy model, realizujących obliczenia lub przetwarzanie sygnałów

Bardziej szczegółowo

Oprogramowanie Systemów Obrazowania SIECI NEURONOWE

Oprogramowanie Systemów Obrazowania SIECI NEURONOWE SIECI NEURONOWE Przedmiotem laboratorium jest stworzenie algorytmu rozpoznawania zwierząt z zastosowaniem sieci neuronowych w oparciu o 5 kryteriów: ile zwierzę ma nóg, czy żyje w wodzie, czy umie latać,

Bardziej szczegółowo

Automatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010

Automatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010 Materiały/konsultacje Automatyczna predykcja http://www.ibp.pwr.wroc.pl/kotulskalab Konsultacje wtorek, piątek 9-11 (uprzedzić) D1-115 malgorzata.kotulska@pwr.wroc.pl Co to jest uczenie maszynowe? Uczenie

Bardziej szczegółowo

Sieć przesyłająca żetony CP (counter propagation)

Sieć przesyłająca żetony CP (counter propagation) Sieci neuropodobne IX, specyficzne architektury 1 Sieć przesyłająca żetony CP (counter propagation) warstwa Kohonena: wektory wejściowe są unormowane jednostki mają unormowane wektory wag jednostki są

Bardziej szczegółowo

Metody sztucznej inteligencji

Metody sztucznej inteligencji Metody sztucznej inteligencji sztuczne sieci neuronowe - wstęp dr hab. inż. Andrzej Obuchowicz, prof. UZ Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski A. Obuchowicz Metody sztucznej

Bardziej szczegółowo

Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD XI: Sztuczne sieci neuronowe

Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD XI: Sztuczne sieci neuronowe Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD XI: Sztuczne sieci neuronowe [pattern associator], PA struktura: Sieci kojarzące wzorce programowanie: wyjście jednostki = aktywacji sieciowej (N)

Bardziej szczegółowo

Zastosowania sieci neuronowych

Zastosowania sieci neuronowych Zastosowania sieci neuronowych klasyfikacja LABORKA Piotr Ciskowski zadanie 1. klasyfikacja zwierząt sieć jednowarstwowa żródło: Tadeusiewicz. Odkrywanie własności sieci neuronowych, str. 159 Przykład

Bardziej szczegółowo

SIECI NEURONOWE Wprowadzenie

SIECI NEURONOWE Wprowadzenie SIECI NEURONOWE Wprowadzenie JOANNA GRABSKA-CHRZĄSTOWSKA Wykłady w dużej mierze przygotowane w oparciu o materiały i pomysły PROF. RYSZARDA TADEUSIEWICZA WYKŁADOWCA JOANNA GRABSKA CHRZĄSTOWSKA KATEDRA

Bardziej szczegółowo

Uczenie sieci typu MLP

Uczenie sieci typu MLP Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik

Bardziej szczegółowo

Sieci M. I. Jordana. Sieci rekurencyjne z parametrycznym biasem. Leszek Rybicki. 30 listopada Leszek Rybicki Sieci M. I.

Sieci M. I. Jordana. Sieci rekurencyjne z parametrycznym biasem. Leszek Rybicki. 30 listopada Leszek Rybicki Sieci M. I. Sieci M. I. Jordana Sieci rekurencyjne z parametrycznym biasem Leszek Rybicki 30 listopada 2007 Leszek Rybicki Sieci M. I. Jordana 1/21 Plan O czym będzie 1 Wstęp do sieci neuronowych Neurony i perceptrony

Bardziej szczegółowo

Seminarium magisterskie. Dyskusja nad tematem pracy magisterskiej pisanej pod kierunkiem pani Dr hab. Małgorzaty Doman

Seminarium magisterskie. Dyskusja nad tematem pracy magisterskiej pisanej pod kierunkiem pani Dr hab. Małgorzaty Doman Seminarium magisterskie Dyskusja nad tematem pracy magisterskiej pisanej pod kierunkiem pani Dr hab. Małgorzaty Doman Plan wystąpienia Ogólnie o sztucznych sieciach neuronowych Temat pracy magisterskiej

Bardziej szczegółowo

Elementy kognitywistyki III: Modele i architektury poznawcze

Elementy kognitywistyki III: Modele i architektury poznawcze Elementy kognitywistyki III: Modele i architektury poznawcze Wykład VII: Modelowanie uczenia się w sieciach neuronowych Uczenie się sieci i trening nienaruszona struktura sieci (z pewnym ale ) nienaruszone

Bardziej szczegółowo

Sztuczne sieci neuronowe

Sztuczne sieci neuronowe Sztuczne sieci neuronowe Bartłomiej Goral ETI 9.1 INTELIGENCJA Inteligencja naturalna i sztuczna. Czy istnieje potrzeba poznania inteligencji naturalnej przed przystąpieniem do projektowania układów sztucznej

Bardziej szczegółowo

BIOCYBERNETYKA SIECI NEURONOWE. Akademia Górniczo-Hutnicza. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej.

BIOCYBERNETYKA SIECI NEURONOWE. Akademia Górniczo-Hutnicza. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej. Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej BIOCYBERNETYKA Adrian Horzyk SIECI NEURONOWE www.agh.edu.pl Mózg inspiruje nas od wieków Co takiego

Bardziej szczegółowo

Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych.

Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Metody Sztucznej Inteligencji 2 Projekt Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Autorzy: Robert Wojciechowski Michał Denkiewicz Mateusz Gągol Wstęp Celem projektu

Bardziej szczegółowo

ĆWICZENIE 5: Sztuczne sieci neuronowe

ĆWICZENIE 5: Sztuczne sieci neuronowe Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE ĆWICZENIE 5: Sztuczne sieci neuronowe opracował: dr inż. Witold

Bardziej szczegółowo

Sztuczne Sieci Neuronowe. Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW

Sztuczne Sieci Neuronowe. Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW Sztuczne Sieci Neuronowe Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW SN są częścią dziedziny Sztucznej Inteligencji Sztuczna Inteligencja (SI) zajmuje się

Bardziej szczegółowo

Sieci neuronowe i algorytmy uczenia Czyli co i jak andrzej.rusiecki.staff.iiar.pwr.wroc.pl s.

Sieci neuronowe i algorytmy uczenia Czyli co i jak andrzej.rusiecki.staff.iiar.pwr.wroc.pl s. Sieci neuronowe i algorytmy uczenia Czyli co i jak 2016 andrzej.rusiecki@pwr.edu.pl andrzej.rusiecki.staff.iiar.pwr.wroc.pl s. 230/C-3 O co chodzi? Celem przedmiotu jest ogólne zapoznanie się z podstawowymi

Bardziej szczegółowo

1. Logika, funkcje logiczne, preceptron.

1. Logika, funkcje logiczne, preceptron. Sieci neuronowe 1. Logika, funkcje logiczne, preceptron. 1. (Logika) Udowodnij prawa de Morgana, prawo pochłaniania p (p q), prawo wyłączonego środka p p oraz prawo sprzeczności (p p). 2. Wyraź funkcję

Bardziej szczegółowo

SIEĆ NEURONOWA JAKO NARZĘDZIE APROKSYMACJI I KLASYFIKACJI DANYCH. Jakub Karbowski Gimnazjum nr 17 w Krakowie

SIEĆ NEURONOWA JAKO NARZĘDZIE APROKSYMACJI I KLASYFIKACJI DANYCH. Jakub Karbowski Gimnazjum nr 17 w Krakowie SIEĆ NEURONOWA JAKO NARZĘDZIE APROKSYMACJI I KLASYFIKACJI DANYCH Jakub Karbowski Gimnazjum nr 17 w Krakowie KRAKÓW 2017 1. Spis treści 2. WSTĘP 2 3. SIECI NEURONOWE 2 3.1. Co to są sieci neuronowe... 2

Bardziej szczegółowo

Sztuczne siei neuronowe - wprowadzenie

Sztuczne siei neuronowe - wprowadzenie Metody Sztucznej Inteligencji w Sterowaniu Ćwiczenie 2 Sztuczne siei neuronowe - wprowadzenie Przygotował: mgr inż. Marcin Pelic Instytut Technologii Mechanicznej Politechnika Poznańska Poznań, 2 Wstęp

Bardziej szczegółowo

Sztuczne sieci neuronowe Ćwiczenia. Piotr Fulmański, Marta Grzanek

Sztuczne sieci neuronowe Ćwiczenia. Piotr Fulmański, Marta Grzanek Sztuczne sieci neuronowe Ćwiczenia Piotr Fulmański, Marta Grzanek Piotr Fulmański 1 Wydział Matematyki i Informatyki, Marta Grzanek 2 Uniwersytet Łódzki Banacha 22, 90-232, Łódź Polska e-mail 1: fulmanp@math.uni.lodz.pl,

Bardziej szczegółowo

Badacze zbudowali wiele systemów technicznych, naśladujących w komputerze ludzki mózg. Najbardziej pożyteczne okazały się sieci neuronowe.

Badacze zbudowali wiele systemów technicznych, naśladujących w komputerze ludzki mózg. Najbardziej pożyteczne okazały się sieci neuronowe. Naśladując w komputerze ludzki mózg staramy się połączyć zalety komputera (dostępność i szybkość działania) z zaletami mózgu (zdolność do uczenia się) informatyka + 2 Badacze zbudowali wiele systemów technicznych,

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z inteligentnymi

Bardziej szczegółowo

Sieci neuronowe i ich ciekawe zastosowania. Autor: Wojciech Jamrozy III rok SMP / Informatyka

Sieci neuronowe i ich ciekawe zastosowania. Autor: Wojciech Jamrozy III rok SMP / Informatyka Sieci neuronowe i ich ciekawe zastosowania Autor: Wojciech Jamrozy III rok SMP / Informatyka Klasyczna algorytmika Sortowanie ciągu liczb Czy i ile razy dane słowo wystąpiło w tekście Najkrótsza droga

Bardziej szczegółowo

Wstęp do teorii sztucznej inteligencji

Wstęp do teorii sztucznej inteligencji Wstęp do teorii sztucznej inteligencji Wykład V Algorytmy uczenia SSN Modele sieci neuronowych. SSN = Architektura + Algorytm Wagi i wejścia dla sieci neuronuowej: reprezentacja macierzowa δ i = z i y

Bardziej szczegółowo

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny

Bardziej szczegółowo

SIECI KOHONENA UCZENIE BEZ NAUCZYCIELA JOANNA GRABSKA-CHRZĄSTOWSKA

SIECI KOHONENA UCZENIE BEZ NAUCZYCIELA JOANNA GRABSKA-CHRZĄSTOWSKA SIECI KOHONENA UCZENIE BEZ NAUCZYCIELA JOANNA GRABSKA-CHRZĄSTOWSKA Wykłady w dużej mierze przygotowane w oparciu o materiały i pomysły PROF. RYSZARDA TADEUSIEWICZA SAMOUCZENIE SIECI metoda Hebba W mózgu

Bardziej szczegółowo

Elementy kognitywistyki III: Modele i architektury poznawcze

Elementy kognitywistyki III: Modele i architektury poznawcze Elementy kognitywistyki III: Modele i architektury poznawcze Wykład III: Psychologiczne modele umysłu Gwoli przypomnienia: Kroki w modelowaniu kognitywnym: teoretyczne ramy pojęciowe (modele pojęciowe)

Bardziej szczegółowo

WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO. Stanisław Kowalik (Poland, Gliwice)

WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO. Stanisław Kowalik (Poland, Gliwice) WYKORZYSTANIE SIECI NEURONOWEJ DO BADANIA WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO Stanisław Kowalik (Poland, Gliwice) 1. Wprowadzenie Wstrząsy podziemne i tąpania występujące w kopalniach

Bardziej szczegółowo

Praktyczne informacje o sieciach neuronowych. Elżbieta Dłubis. Państwowa Wyższa Szkoła Zawodowa w Chełmie

Praktyczne informacje o sieciach neuronowych. Elżbieta Dłubis. Państwowa Wyższa Szkoła Zawodowa w Chełmie Praktyczne informacje o sieciach neuronowych Elżbieta Dłubis Państwowa Wyższa Szkoła Zawodowa w Chełmie Wiedza o sieciach neuronowych zaczęła się od fascynacji mózgiem narządem (..), którego możliwości

Bardziej szczegółowo

Sieci neuronowe. - wprowadzenie - Istota inteligencji. WYKŁAD Piotr Ciskowski

Sieci neuronowe. - wprowadzenie - Istota inteligencji. WYKŁAD Piotr Ciskowski Sieci neuronowe - wprowadzenie - Istota inteligencji WYKŁAD Piotr Ciskowski na dobry początek: www.mql4.com - championship 2007 - winners of the ATC 2007 - the ATC 2007 is over forex-pamm.com na dobry

Bardziej szczegółowo

Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie

Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie LABORKA Piotr Ciskowski ZASTOSOWANIA SIECI NEURONOWYCH IDENTYFIKACJA zastosowania przegląd zastosowania sieci neuronowych: o identyfikacja

Bardziej szczegółowo

SIECI RBF (RADIAL BASIS FUNCTIONS)

SIECI RBF (RADIAL BASIS FUNCTIONS) SIECI RBF (RADIAL BASIS FUNCTIONS) Wybrane slajdy z prezentacji prof. Tadeusiewicza Wykład Andrzeja Burdy S. Osowski, Sieci Neuronowe w ujęciu algorytmicznym, Rozdz. 5, PWNT, Warszawa 1996. opr. P.Lula,

Bardziej szczegółowo

Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty

Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-03 Projekt pn. Wzmocnienie potencjału

Bardziej szczegółowo

Sieci neuronowe w Statistica

Sieci neuronowe w Statistica http://usnet.us.edu.pl/uslugi-sieciowe/oprogramowanie-w-usk-usnet/oprogramowaniestatystyczne/ Sieci neuronowe w Statistica Agnieszka Nowak - Brzezińska Podstawowym elementem składowym sztucznej sieci neuronowej

Bardziej szczegółowo

Podstawy Sztucznej Inteligencji

Podstawy Sztucznej Inteligencji Politechnika Łódzka Katedra Informatyki Stosowanej Podstawy Sztucznej Inteligencji Laboratorium Ćwiczenie 2 Wykorzystanie środowiska Matlab do modelowania sztucznych sieci neuronowych Opracowali: Dr hab

Bardziej szczegółowo

1. Architektury, algorytmy uczenia i projektowanie sieci neuronowych

1. Architektury, algorytmy uczenia i projektowanie sieci neuronowych Sztuczne sieci neuronowe i algorytmy genetyczne Artykuł pobrano ze strony eioba.pl SPIS TREŚCI 1. ARCHITEKTURY, ALGORYTMY UCZENIA I PROJEKTOWANIE SIECI NEURONOWYCH 1.1. HISTORIA ROZWOJU SZTUCZNYCH SIECI

Bardziej szczegółowo

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu.

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu. SYLLABUS na rok akademicki 01/013 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr /3 Specjalność Bez specjalności Kod katedry/zakładu

Bardziej szczegółowo

ID1SII4. Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)

ID1SII4. Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu ID1SII4 Nazwa modułu Systemy inteligentne 1 Nazwa modułu w języku angielskim Intelligent

Bardziej szczegółowo

Sztuczne Sieci Neuronowe

Sztuczne Sieci Neuronowe Sztuczne Sieci Neuronowe Wykład 1 Wprowadzenie do tematyki Sztucznych Sieci Neuronowych (SSN) wykład przygotowany wg. W. Duch, J. Korbicz, L. Rutkowski, R. Tadeusiewicz, Sieci Neuronowe, Rozdz. 1. Biocybernetyka

Bardziej szczegółowo

S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor

S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor S O M SELF-ORGANIZING MAPS Przemysław Szczepańczyk Łukasz Myszor Podstawy teoretyczne Map Samoorganizujących się stworzył prof. Teuvo Kohonen (1982 r.). SOM wywodzi się ze sztucznych sieci neuronowych.

Bardziej szczegółowo

Podstawy sztucznej inteligencji

Podstawy sztucznej inteligencji wykład 6 Sztuczne sieci neuronowe (SSN) 04 stycznia 2012 Plan wykładu 1 Uczenie sieci neuronowej wielowarstwowej 2 3 Uczenie nadzorowanie sieci wielowarstwowej Wagi Inteligencja sztucznej sieci neuronowe

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych

Bardziej szczegółowo

O badaniach nad SZTUCZNĄ INTELIGENCJĄ

O badaniach nad SZTUCZNĄ INTELIGENCJĄ O badaniach nad SZTUCZNĄ INTELIGENCJĄ Jak określa się inteligencję naturalną? Jak określa się inteligencję naturalną? Inteligencja wg psychologów to: Przyrodzona, choć rozwijana w toku dojrzewania i uczenia

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona

Bardziej szczegółowo

WYKŁAD 4 PLAN WYKŁADU. Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania. Metody uczenia sieci: Zastosowania

WYKŁAD 4 PLAN WYKŁADU. Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania. Metody uczenia sieci: Zastosowania WYKŁAD 4 Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania PLAN WYKŁADU Metody uczenia sieci: Uczenie perceptronu Propagacja wsteczna Zastosowania Sterowanie (powtórzenie) Kompresja obrazu Rozpoznawanie

Bardziej szczegółowo

Uczenie Wielowarstwowych Sieci Neuronów o

Uczenie Wielowarstwowych Sieci Neuronów o Plan uczenie neuronu o ci gªej funkcji aktywacji uczenie jednowarstwowej sieci neuronów o ci gªej funkcji aktywacji uczenie sieci wielowarstwowej - metoda propagacji wstecznej neuronu o ci gªej funkcji

Bardziej szczegółowo

Podstawy sztucznej inteligencji

Podstawy sztucznej inteligencji wykład 5 Sztuczne sieci neuronowe (SSN) 28 listopad 2012 Plan wykładu 1 Biologiczne wzorce sztucznej sieci neuronowej 2 3 4 5 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest

Bardziej szczegółowo

Wykład 1: Wprowadzenie do sieci neuronowych

Wykład 1: Wprowadzenie do sieci neuronowych Wykład 1: Wprowadzenie do sieci neuronowych Historia badań nad sieciami neuronowymi. początki: badanie komórek ośrodkowego układu nerwowego zwierząt i człowieka, czyli neuronów; próby wyjaśnienia i matematycznego

Bardziej szczegółowo

Prof. Stanisław Jankowski

Prof. Stanisław Jankowski Prof. Stanisław Jankowski Zakład Sztucznej Inteligencji Zespół Statystycznych Systemów Uczących się p. 228 sjank@ise.pw.edu.pl Zakres badań: Sztuczne sieci neuronowe Maszyny wektorów nośnych SVM Maszyny

Bardziej szczegółowo

Sztuczne sieci neuronowe i sztuczna immunologia jako klasyfikatory danych. Dariusz Badura Letnia Szkoła Instytutu Matematyki 2010

Sztuczne sieci neuronowe i sztuczna immunologia jako klasyfikatory danych. Dariusz Badura Letnia Szkoła Instytutu Matematyki 2010 Sztuczne sieci neuronowe i sztuczna immunologia jako klasyfikatory danych Dariusz Badura Letnia Szkoła Instytutu Matematyki 2010 Sieci neuronowe jednokierunkowa wielowarstwowa sieć neuronowa sieci Kohonena

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline. Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 211-1-18 1 Pomysł Przykłady Zastosowanie 2

Bardziej szczegółowo

Modelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka

Modelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka Modelowanie jako sposób opisu rzeczywistości Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka 2015 Wprowadzenie: Modelowanie i symulacja PROBLEM: Podstawowy problem z opisem otaczającej

Bardziej szczegółowo

Sieci neuronowe - wprowadzenie. Agnieszka Nowak - Brzezińska

Sieci neuronowe - wprowadzenie. Agnieszka Nowak - Brzezińska The brain - that's my second most favourite organ! - Woody Allen Sieci neuronowe - wprowadzenie Agnieszka Nowak - Brzezińska Klasyfikacja danych Klasyfikacja danych to jedno z podstawowych zadań wykonywanych

Bardziej szczegółowo

Algorytmy sztucznej inteligencji

Algorytmy sztucznej inteligencji Algorytmy sztucznej inteligencji Dynamiczne sieci neuronowe 1 Zapis macierzowy sieci neuronowych Poniżej omówione zostaną części składowe sieci neuronowych i metoda ich zapisu za pomocą macierzy. Obliczenia

Bardziej szczegółowo

Uniwersytet Mikołaja Kopernika. Wydział Matematyki i Informatyki. Jarosław Piersa piersaj(at)mat.uni.torun.pl

Uniwersytet Mikołaja Kopernika. Wydział Matematyki i Informatyki. Jarosław Piersa piersaj(at)mat.uni.torun.pl Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Jarosław Piersa piersaj(at)mat.uni.torun.pl Abstrakt Poniższy referat dotyczy zagadnień uczenia w sieciach neuronowych i bayesowskich(sieciach

Bardziej szczegółowo

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-10 Projekt pn. Wzmocnienie

Bardziej szczegółowo

Projekt Sieci neuronowe

Projekt Sieci neuronowe Projekt Sieci neuronowe Chmielecka Katarzyna Gr. 9 IiE 1. Problem i dane Sieć neuronowa miała za zadanie nauczyć się klasyfikować wnioski kredytowe. W projekcie wykorzystano dane pochodzące z 110 wniosków

Bardziej szczegółowo

Sieci neuronowe w Statistica. Agnieszka Nowak - Brzezioska

Sieci neuronowe w Statistica. Agnieszka Nowak - Brzezioska Sieci neuronowe w Statistica Agnieszka Nowak - Brzezioska Podstawowym elementem składowym sztucznej sieci neuronowej jest element przetwarzający neuron. Schemat działania neuronu: x1 x2 w1 w2 Dendrites

Bardziej szczegółowo

2.4. Algorytmy uczenia sieci neuronowych

2.4. Algorytmy uczenia sieci neuronowych 2.4. Algorytmy uczenia sieci neuronowych Prosta struktura sieci jednokierunkowych sprawia, że są najchętniej stosowane. Ponadto metody uczenia ich należą również do popularnych i łatwych w realizacji.

Bardziej szczegółowo

Sztuczna inteligencja

Sztuczna inteligencja Sztuczna inteligencja Wykład 6. Sieci biologiczne. Wstęp do sztucznych sieci neuronowych. źródła informacji: G. Fischbach Mind and Brain, Scientific American 1994 S. Silbernagl, A. Despopoulos Atlas fizjologii,

Bardziej szczegółowo

Optymalizacja optymalizacji

Optymalizacja optymalizacji 7 maja 2008 Wstęp Optymalizacja lokalna Optymalizacja globalna Algorytmy genetyczne Badane czasteczki Wykorzystane oprogramowanie (Algorytm genetyczny) 2 Sieć neuronowa Pochodne met-enkefaliny Optymalizacja

Bardziej szczegółowo

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2)

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Ewa Wołoszko Praca pisana pod kierunkiem Pani dr hab. Małgorzaty Doman Plan tego wystąpienia Teoria Narzędzia

Bardziej szczegółowo

Sieci Neuronowe. Wykład 1 Wstęp do Sieci Neuronowych

Sieci Neuronowe. Wykład 1 Wstęp do Sieci Neuronowych 8.10.08 Sieci Neuronowe Wykład 1 Wstęp do Sieci Neuronowych wykład przygotowany wg. W. Duch, J. Korbicz, L. Rutkowski, R. Tadeusiewicz, Sieci Neuronowe, Rozdz. 1. Biocybernetyka i Inżynieria Medyczna,

Bardziej szczegółowo

ZASTOSOWANIE SIECI NEURONOWYCH

ZASTOSOWANIE SIECI NEURONOWYCH Państwowa Wyższa Szkoła Zawodowa w Tarnobrzegu ZASTOSOWANIE SIECI NEURONOWYCH OPRACOWANIE: Małgorzata Skulska Monika Skulska Łukasz Makowski TARNOBRZEG 2003 STRESZCZENIE Myślą przewodnią tego opracowania

Bardziej szczegółowo

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016 Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład I dr inż. Bogumil.Konopka@pwr.edu.pl 2015/2016 1 Wykład I - plan Sprawy organizacyjne Uczenie maszynowe podstawowe pojęcia Proces modelowania

Bardziej szczegółowo

Przykładowe funkcje przejścia używane przy budowie sztucznych neuronów

Przykładowe funkcje przejścia używane przy budowie sztucznych neuronów Przykładowe funkcje przejścia używane przy budowie sztucznych neuronów Funkcja Wzór funkcji Wzór pochodnej Sigmoida f(s)=1/(1+e -(β*s) ) f (s)=β*(1- f(s))* f(s) Funkcje przejścia neuronu powinno się rozpatrywać

Bardziej szczegółowo

Sieci neuronowe - wprowadzenie. Agnieszka Nowak - Brzezińska

Sieci neuronowe - wprowadzenie. Agnieszka Nowak - Brzezińska The brain - that's my second most favourite organ! - Woody Allen Sieci neuronowe - wprowadzenie Agnieszka Nowak - Brzezińska Klasyfikacja danych Klasyfikacja danych to jedno z podstawowych zadań wykonywanych

Bardziej szczegółowo

ALGORYTMY SZTUCZNEJ INTELIGENCJI

ALGORYTMY SZTUCZNEJ INTELIGENCJI ALGORYTMY SZTUCZNEJ INTELIGENCJI Sieci neuronowe 06.12.2014 Krzysztof Salamon 1 Wstęp Sprawozdanie to dotyczy ćwiczeń z zakresu sieci neuronowych realizowanym na przedmiocie: Algorytmy Sztucznej Inteligencji.

Bardziej szczegółowo

Pattern Classification

Pattern Classification Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors

Bardziej szczegółowo

Wykład 2. Model Neuronu McCulocha-Pittsa Perceptron Liniowe Sieci Neuronowe

Wykład 2. Model Neuronu McCulocha-Pittsa Perceptron Liniowe Sieci Neuronowe Sztuczne Sieci Neuronowe Wykład 2 Model Neuronu McCulocha-Pittsa Perceptron Liniowe Sieci Neuronowe wykład przygotowany na podstawie. R. Tadeusiewicz, Sieci Neuronowe, Rozdz. 3. Akademicka Oficyna Wydawnicza

Bardziej szczegółowo

MATLAB Neural Network Toolbox przegląd

MATLAB Neural Network Toolbox przegląd MATLAB Neural Network Toolbox przegląd WYKŁAD Piotr Ciskowski Neural Network Toolbox: Neural Network Toolbox - zastosowania: przykłady zastosowań sieci neuronowych: The 1988 DARPA Neural Network Study

Bardziej szczegółowo

Przetworniki A/C. Ryszard J. Barczyński, 2010 2015 Materiały dydaktyczne do użytku wewnętrznego

Przetworniki A/C. Ryszard J. Barczyński, 2010 2015 Materiały dydaktyczne do użytku wewnętrznego Przetworniki A/C Ryszard J. Barczyński, 2010 2015 Materiały dydaktyczne do użytku wewnętrznego Parametry przetworników analogowo cyfrowych Podstawowe parametry przetworników wpływające na ich dokładność

Bardziej szczegółowo

Sieci Neuronowe - Rok III - kierunek IS w IFAiIS UJ 2008/2009. Sieci Neuronowe. Wykład 8 Sieci rezonansowe

Sieci Neuronowe - Rok III - kierunek IS w IFAiIS UJ 2008/2009. Sieci Neuronowe. Wykład 8 Sieci rezonansowe Sieci Neuronowe Wykład 8 Sieci rezonansowe wykład przygotowany na podstawie. R. Tadeusiewicz, Sieci Neuronowe, Rozdz. 6. Akademicka Oficyna Wydawnicza RM, Warszawa 1993. Wprowadzenie Sieci wielowarstwowe

Bardziej szczegółowo

Sieci neuronowe jako przykład współczesnej technologii informatycznej

Sieci neuronowe jako przykład współczesnej technologii informatycznej Maciej Roszkowski Sieci neuronowe jako przykład współczesnej technologii informatycznej Sieci neuronowe są technologią sztucznej inteligencji, trochę zapomnianą we współczesnym świecie. Współczesny ogólnie

Bardziej szczegółowo

Sieci neuronowe - wprowadzenie. Agnieszka Nowak - Brzezińska

Sieci neuronowe - wprowadzenie. Agnieszka Nowak - Brzezińska The brain - that's my second most favourite organ! - Woody Allen Sieci neuronowe - wprowadzenie Agnieszka Nowak - Brzezińska Klasyfikacja danych Klasyfikacja danych to jedno z podstawowych zadań wykonywanych

Bardziej szczegółowo

Wprowadzenie do teorii systemów ekspertowych

Wprowadzenie do teorii systemów ekspertowych Myślące komputery przyszłość czy utopia? Wprowadzenie do teorii systemów ekspertowych Roman Simiński siminski@us.edu.pl Wizja inteligentnych maszyn jest od wielu lat obecna w literaturze oraz filmach z

Bardziej szczegółowo

Sztuczne sieci neuronowe

Sztuczne sieci neuronowe Sztuczne sieci neuronowe Paweł Bęczkowski ETI 9.1 1 Czym określamy sztuczną sieć neuronową Sieć neuronowa (sztuczna sieć neuronowa) to ogólna nazwa struktur matematycznych i ich programowych lub sprzętowych

Bardziej szczegółowo