WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13

Wielkość: px
Rozpocząć pokaz od strony:

Download "WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13"

Transkrypt

1 WST P DO KRYPTOGRAFII Grzegorz Szkibiel Jesie«2012/13

2 Spis tre±ci 1 Kryptograa a steganograa Steganograa Szyfry przestawieniowe Systemy kryptograczne Klasyczne metody szyfrowania Szyfry cykliczne Monoalfabetyczny szyfr Beauforta Kody aniczne jednowymiarowe Permutacje alfabetu Analiza cz sto±ci wyst powania liter Homofony i nulle Jednostki dwuliterowe czyli digramy Szyfr Playfaira Podwójny szyfr Playfaira szyfr Delastelle'a Jednostki wieloliterowe Szyfry polialfabetyczne Ša«cuch szyfrów i DES Maszyny szyfruj ce Zasada dziaªania Jak zªamano szyfr ENIGMY Macierze szyfruj ce Algebra liniowa modulo N Szyfry Hill'a Aniczne przeksztaªcenia szyfruj ce

3 5 Pakowanie plecaka Postawienie problemu Szybko rosn ce ci gi Kryptosystem oparty na problemie pakowania plecaka Systemy z publicznym kluczem Numeryczna funkcja jednokierunkowa Funkcje skrótu poufno± i autentyczno± Wymiana kluczy funkcje jednokierunkowe System RSA Rozkªad liczb na czynniki Liczby wybrane losowo Zasada dziaªania systemu RSA Wpadka systemowa wspólny moduª Wpadka systemowa niski wykªadnik Teorio-liczbowe podstawy RSA Systemy pozycyjne Iterowane podnoszenie do kwadratu Twierdzenie Eulera i Maªe Twierdzenie Fermata liczby pseudo-pierwsze Chi«skie twierdzenie o resztach Kongruencje stopnia Gra w orªa i reszk przez telefon Zastosowania arytmetyki modulo m do rozkªadu liczb Wzory skróconego mno»enia Metoda ρ rozkªadu na czynniki Metoda faktoryzacji Fermata Bazy rozkªadu

4 10 Logarytm dyskretny Poj cie logarytm dyskretny System DiegoHellmana uzgadniania klucza System kryptograczny Masseya-Omury System ElGamala Protokoªy o zerowej wiedzy i przekazy nierozró»nialne Kolorowanie mapy Logarytm dyskretny Przekazy nierozró»nialne Dowód faktoryzacji

5 Rozdziaª 8 Teorio-liczbowe podstawy RSA 8.1 Systemy pozycyjne Stosowany powszechnie system zapisu liczb nazywamy systemem pozycyjnym, poniewa» znaczenie cyfry zale»y od pozycji, na której si owa cyfra znajduje. Poza tym, nasz system liczenia nazywamy dziesi tnym, poniewa» mamy dokªadnie 10 cyfr. Liczba cyfr w systemie pozycyjnym zale»y od podstawy. Dokªadnie, dowoln liczb caªkowit nieujemn n zapisujemy przy podstawie b 2 w postaci (d k 1 d k 2... d 1 d 0 ) b, (8.1) gdzie d k 1, d k 2,..., d 1, d 0 s liczbami caªkowitymi nieujemnymi oraz niewi kszymi od b 1 nazywanymi cyframi. Zapis (8.1) oznacza,»e n = d k 1 b k d 1 b + d 0. (8.2) Je»eli n jest liczb ujemn to wyra»enie po prawej stronie równo±ci (8.2) zacz liby±my od znaku. Je»eli d k 1 nie jest zerem, to mówimy,»e n jest liczb k-cyfrow w systemie pozycyjnym o podstawie b. Je»eli b = 10 to nawiasy w (8.1) opuszczamy, gdy» wtedy mamy do czynienia ze zwykªym dziesi tnym systemem pozycyjnym. Podobnie opu±cimy nawiasy gdy wybór podstawy jasno wynika z kontekstu. Zapis (8.2) nazywamy rozwini ciem liczby n przy podstawie b. Je»eli b > 10, to pisownia niektórych cyfr jest uci»liwa (wymaga dodatkowych nawiasów) lub niejasna: (101) b mo»na rozumie na dwa sposoby. 67

6 Dlatego dla oznaczenia cyfr 10, 11, 12,... u»ywamy liter: A, B, C,... Oczywi±cie mo»na u»ywa liter lub innych znaków dla oznaczenia wszystkich cyfr. Na przykªad dla podstawy 26, która jest u»ywana w kryptograi, cyframi s po prostu litery alfabetu ªaci«skiego. Cz sto zdarza si,»e trzeba przej± od jednej podstawy systemu pozycyjnego do drugiej. Zwykle jest to przej±cie do podstawy 10 lub od podstawy 10. Przechodzenie do podstawy 10 polega na obliczeniu wyra»enia po prawej stronie (8.2). Gorzej jest przej± od podstawy 10 do innej podstawy. Najbardziej naturalnym sposobem jest sekwencyjne dzielenie z reszt, które zademonstrujemy na przykªadzie. 8.1 Przykªad. Zapiszemy liczb 346 w systemie trójkowym, czyli przy podstawie 3. Dzielimy 346 na 3 otrzymuj c 115, reszta 1. Zatem 346 = Teraz dzielimy 115 na 3 otrzymuj c 38, reszta 1. St d 346 = Kontynuuj c ten proces otrzymamy czyli 346 = (110211) = , Je»eli przechodzimy od podstawy b 1 10 do podstawy b 2 10, to mo»na tu przechodzi po±rednio przez podstaw 10. Czasem jednak bardziej efektywne jest zapisanie b 1 i cyfr w systemie o podstawie b 2 oraz odpowiednie pogrupowanie. Je»eli dodatkowo b 1 jest pot g b 2, to sposób ten jest bardzo szybki. Przykªady 8.2. Zapiszemy (548) 16 w systemie dwójkowym. Poniewa» 16 = 2 4, 5 = , 4 = oraz 8 = 1 2 3, mamy (548) 16 = = = ( ) Zapiszemy n = (212021) 3 w systemie o podstawie 9. Grupujemy cyfry po 2 (bo 9 = 3 2 ) zaczynaj c od prawej strony: 21, 20, 21. (Je±li,,nie starcza cyfr na ostatni grup, dodajemy z przodu odpowiedni liczb zer. Poniewa» (21) 3 = = 7, a (20) 3 = 2 3 = 6, wi c n = (767) 9. Dziaªania arytmetyczne na liczbach w systemie o podstawie b wykonujemy bez anga»owania w to podstawy 10. Dodawanie, odejmowanie i mno»enie pisemne przeprowadzamy tak jak dotychczas, przy czym przy,,po»yczaniu bierzemy nie 10 lecz b. 68

7 Tak»e uªamki mo»na rozwija przy dowolnej podstawie. Maj one (sko«- czon lub niesko«czon posta (d k 1 d k 2... d 1 d 0, d 1 d 2... ) b. Warto tu zauwa»y,»e przy zmianie podstawy, mog te» zmieni si uªamki okresowe. Na przykªad 0, = (0, 1) 3, a 0, 5 = (0, ) Iterowane podnoszenie do kwadratu Podnoszenie du»ych liczb do pot g o jeszcze wi kszych wykªadnikach nie jest obliczeniowo trudne, ale gromadzenie du»ych liczb zabiera du»o pami ci. W przypadku zastosowa«w systemach kryptogracznych, mamy zawsze do czynienia z dziaªaniami w sko«czonych strukturach algebraicznych. To znacznie zmniejsza rz d liczb, którymi operujemy. Dla przykªadu obliczymy poteg ( mod 1019). W tym celu zapisujemy = (((348 = ( ) ) ) ) Nasze pot gowanie sprowadza si zatem do podnoszenia do kwadratu lub mno»enia przez 348, przy czym za ka»dym razem wynik redukujemy modulo Po wykonaniu oblicze«otrzymujemy Twierdzenie Eulera i Maªe Twierdzenie Fermata Twierdzenia te mog znacznie uªatwi pot gowanie liczb w arytmetyce modularnej. Uzasadniaj te», dlaczego zaszyfrowany za pomoc RSA szyfr mo»na te» rozszyfrowa. 8.4 Twierdzenie. (Eulera) Je»eli NWD(a, m) = 1, to a ϕ(m) 1 (mod m). Twierdzenie to mo»e by udowodnione za pomoc elementarnych metod, my jednak u»yjemy tu nieco,,ci»szej broni, a mianowicie znanego z teorii grup faktu,»e dowolny element grupy podniesiony do pot gi, której wykªadnikiem jest rz d grupy daje element neutralny. 69

8 Dowód. W grupie elementów odwracalnych pier±cienia Z m mamy dokªadnie ϕ(m) elementów. Jest to wi c grupa sko«czona rz du ϕ(m). Zatem dowolny jej element podniesiony do pot gi ϕ(m) daje element neutralny, czyli 1. Šatwym wnioskiem z twierdzenia Eulera jest nast puj ce twierdzenie. 8.5 Twierdzenie. (Maªe twierdzenie Fermata) Je»eli p jest liczb pierwsz oraz p a, to a p 1 1 (mod p). Dla dowolnej liczby caªkowitej b zachodzi kongruencja b p b (mod p). Nieco trudniejszy jest dowód poni»szego wniosku. 8.6 Wniosek. Je±li p a i n m (mod p 1), to a n a m (mod p). Dowód. Przypu± my,»e n > m. Poniewa» p 1 n m, wi c mo»emy napisa n = m + c(p 1) dla pewnej liczby naturalnej c. Mno»ymy przez siebie c razy kongruencj a p 1 1 (mod p) aby otrzyma a c(p 1) 1 (mod p). eby otrzyma tez wystarczy pomno»y stronami ostatni kongruencj przez oczywiste przystawanie a m a m (mod p). Podobnie uzasadniamy nast pny wniosek. 8.7 Wniosek. Je»eli liczby a oraz m s wzgl dnie pierwsze oraz zachodzi kongruencja r s (mod ϕ(m)), to a r a s (mod m). Podamy teraz dwa przykªady zastosowa«powy»szych wniosków. Przykªady Znajdziemy ostatni cyfr liczby w systemie o podstawie 7. Wykªadnik daje reszt 4 przy dzieleniu przez 7 1 = 6. St d (mod 7). Poniewa» 2 4 = 16, a 16 2 (mod 7), wi c szukan ostatni cyfr jest Znajdziemy ostatni cyfr w ukªadzie szestnastkowym. Mamy tu ϕ(16) = 7, a (mod 7). Zatem (mod 16) i ostatni cyfr jest 9. Okazuje si,»e najni»sza pot ga a w Twierdzeniu Eulera jest cz sto mniejsza ni» ϕ(m). Wynika to z faktu,»e rz d grupy nie jest, ogólnie rzecz bior c, rz dem elementu, ani nawet wykªadnikiem grupy. Na przykªad ϕ(105) = 48, ale dla a wzgl dnie pierwszych ze 105 mamy a 12 1 (mod 105). Poni»sze twierdzenie pokazuje jak ulepszy pot g a. 70

9 8.8 Twierdzenie. Przypu± my,»e m = p α 1 1 p α p α k ró»ne i p α i i m. Niech n = NWW(ϕ (p α 1 1 ), ϕ (p α 2 2 ),..., ϕ (p α k k, gdzie wszystkie p i s k )). Wtedy mamy a n 1 (mod m) dla ka»dego a wzgl dnie pierwszego z m. Dowód. Z twierdzenia Eulera wynika a ϕ(pα i i ) 1 (mod p α i i ) dla ka»dego i {1, 2,..., k}. Mno» c t kongruencj stronami przez siebie n/p α i i razy otrzymujemy a n 1 (mod p α i i ) dla ka»dego i. St d bezpo±rednio wynika,»e dla dowolnego i mamy p α i i a n 1. Zatem i m a n 1, a to nam daje tez. Wracaj c do uwagi przed powy»szym twierdzeniem, zauwa»my,»e 105 = i 12 = NWW(ϕ(3), ϕ(5), ϕ(7)) = NWW(2, 4, 6). 8.9 Przykªad. Obliczymy modulo 77. Mamy tu 77 = 7 11, ϕ(7) = 6, ϕ(11) = 10, NWW(6, 10) = 30. St d (mod 77). Nast pnie mamy = , wi c (mod 77). 8.4 liczby pseudo-pierwsze Potrzebne s du»e liczb pierwsze i to takie, których generalnie nikt nie zna. Pojawia si zatem potrzeba szybkich algorytmów szukaj cych liczb pierwszych lub testuj cych liczby na pierwszo±. Wi kszo±, a w zasadzie prawie wszystkie takie algorytmy s algorytmami probabilistycznymi, w których prawdopodobie«stwo,»e otrzymamy liczb pierwsz nie jest równe 1. Mo»e si wi c zdarzy,»e otrzymana liczba jest zªo»ona. Warunki równowa»ne pierwszo±ci liczby, jak np. Twierdzenie Wilsona, które mówi,»e liczba n jest pierwsza wtedy i tylko wtedy, gdy (n 1)! 1 (mod n), nie s dobrym kryterium ªatwiej sprawdzi czy n jest liczb pierwsz dziel c j przez kolejne liczby nieparzyste ni» oblicza (n 1)! (nawet modulo n). Dobrym testem pierwszo±ci jest Maªe Twierdzenie Fermata (8.5). Problem w tym, i» nie jest to warunek równowa»ny pierwszo±ci. Na przykªad, (mod 341), chocia» 341 nie jest liczb pierwsz. Nasze rozwa»ania oprzemy jednak na tym twierdzeniu, badaj c które liczby zªo»one speªniaj tez Maªego Twierdzenia Fermata. Liczb zªo»on n nazywamy pseudopierwsz przy podstawie a (lub a- pseudopierwsz ), je±li a n 1 1 (mod n). (8.3) 71

10 Piszemy wówczas w skrócie: n jest psp(a). Zauwa»my,»e je»eli NWD(a, n) = 1, to warunek 8.3 jest równowa»ny kongruencji a n 1 1 (mod n). Zauwa»my,»e liczba 341 jest 2-pseudopierwsza. Jak pokazaª Sarrus w 1819 roku, jest to najmniejsza liczba pseudopierwsza przy podstawie 2. Kolejne odkrywane liczby psp(2) byªy nieparzyste. Dopiero w 1950, D.H. Lehmer odkryª pierwsz parzyst liczb 2-pseudopierwsz. Najmniejsz liczb 3-pseudopierwsz jest natomiast 91. Okazuje si, ze liczb pseudopierwszych (o dowolnej podstawie) jest niesko«czenie wiele, ale s one rozmieszczone do±»zadko". Na przykªad mamy tylko 5597 liczb psp(2) mniejszych od miliarda. Tymczasem liczb pierwszych w tym przedziale jest ponad 50 milionów. Zatem, je»eli pewna liczba n mniejsza od miliarda speªnia warunek 8.3 dla a = 2, to prawdopodobie«stwo,»e n jest pierwsza jest wi ksze od 0, Liczba, która jest psp(2) nie musi by jednocze±nie psp(3). Okazuje si,»e liczb mniejszych od miliarda, które s pseudopierwsze jednocze±nie przy podstawie 2, 3 i 5 jest tylko 685. Mo»na wi c zrobi caªkiem por czn tablic tych liczb, która pozwoli nam odrzuca liczby zªo»one speªniaj ce tez Maªego Twierdzenia Fermata. Wydaje si wi c,»e bior c odpowiednio du»o pocz tkowych liczb pierwszych jako podstawy dojdziemy w ko«cu do sytuacji, w której nie znajdziemy liczb pseudopierwszych mniejszych od okre±lonej liczby. Jak odkryª w 1912 roku R.D. Carmichael, jest to sytuacja niemo»liwa. Liczb zªo»on n nazywamy liczb Carmichaela, je±li n jest psp(a) dla ka»dej liczby a wzgl dnie pierwszej z n. Jak pokazaª w roku 1992 A. Granville, liczb Carmichaela jest niesko«czenie wiele. Podamy przykªad jednej z nich Przykªad. Mamy 561 = Niech a b dzie liczb wzgl dnie pierwsz z 561. Korzystaj c z Maªego Twierdzenia Fermata, otrzymujemy: a 2 1 (mod 3) a 560 (a 2 ) (mod 3) a 10 1 (mod 11) a 560 (a 10 ) 56 1 (mod 11) a 16 1 (mod 17) a 560 (a 16 ) 35 1 (mod 17). Dalej, z chi«skiego twierdzenia o resztach, dostajemy a (mod 561), co oznacza,»e 561 jest liczb Carmichaela. Do± du»y post p w skuteczno±ci testów opartych na liczbach pseudopierwszych daje nast puj ca obserwacja. Je±li liczba p jest pierwsza, to kongruencja x 2 1 (mod p) ma dokªadnie 2 rozwi zania: 1 i 1 (twierdzenie Lagrange'a). Z tego samego twierdzenia wynika,»e je»eli x 2 1 (mod n) 72

11 ma wi cej ni» dwa rozwi zania, to n musi by liczb zªo»on. Zatem problem testowania liczby n na pierwszo± sprowadza si do szukania nietrywialnych pierwiastków stopnia 2 z jedynki modulo n. Z oczywistych wzgl dów, b dziemy dalej rozwa»a tylko liczby nieparzyste n. Skoro n jest nieparzysta, to n 1 mo»na zapisa w postaci 2 r s, gdzie s jest liczb nieparzyst oraz r > 0. Przypu± my,»e liczba n jest pierwsza lub pseudopierwsza przy podstawie a. Wówczas a n 1 1 (mod n). Rozwa»amy po kolei liczby x 0 = a s mod n, x 1 = a 2s mod n,... x r = a 2rs mod n. Zauwa»my,»e aby obliczy warto±ci wszystkich wyrazów ci gu X = (x 0, x 1,..., x r ), wystarczy obliczy x 0, a nast pnie podnosi j sukcesywnie do kwadratu i redukowa modulo n otrzymuj c kolejne wyrazy. Zauwa»my,»e mamy tu 3 mo»liwo±ci: 1. istnieje 0 < t r, takie»e x t = 1 oraz x t 1 = 1, 2. istnieje 0 < t r, takie»e x t = 1, x t 1 ±1, 3. x 0 = 1. Oczywi±cie, je±li x t = 1, to dla i > t mamy x i = 1. Zatem je±li w pewnym momencie konstrukcji ci gu X pojawi si 1, to wszystkie nast pne wyrazy te» s równe 1. Poniewa» x r = a n 1, wi c x r = 1. Je±li speªniony jest warunek 2, to oznacza to,»e kongruencja x 2 1 (mod n) ma wi cej ni» dwa pierwiastki (bo 1, 1 oraz x t 1 ), czyli n na pewno nie jest liczb pierwsz. Pozostaªe przypadki daj nast puj c denicj. Przypu± my,»e n jest nieparzyst psp(a). Mówimy,»e n jest liczb silnie pseudopierwsz, przy podstawie a lub spsp(a), je»eli a s 1 (mod n) lub istnieje 0 < t < r, takie»e a 2ts 1 (mod n), gdzie n 1 = 2 r s, s jest liczb nieparzyst oraz r > 0. W terminologii ci gu X mamy,»e n jest spsp(a), je±li jest speªniony warunek 1 lub Przykªad. Rozwa»my najmniejsz psp(2), czyli 341. Mamy 340 = oraz x 0 = 32, x 1 =1. Oznacza to,»e 341 nie jest spsp(2). Co wi cej, poniewa» x 0 jest nietrywialnym pierwiastkiem kwadratowym z 1 modulo 341, wi c mo»emy znale¹ rozkªad 341 obliczaj c NWD(32 1, 341) = 31 oraz NWD(32 + 1, 341) =

12 8.12 Przykªad. We¹my n = 561. Jest to liczba Carmichaela, czyli jest ona pseudopierwsza przy ka»dej podstawie. Mamy 560 = i niech a = 2. Wówczas x 0 = 263, x 1 = 166, x 2 = 67, x 3 = 1. Zatem 561 nie jest spsp(2) Przykªad. Najmniejsz liczb silnie pseudopierwsz przy podstawie 2 jest 2047 = Poka»emy,»e jest to istotnie liczba silnie pseudopierwsza. Mamy 2046 = oraz x 0 = 1. Wszystkich liczb psp(2) mniejszych od dziesi ciu miliardów jest 14884, ale liczb spsp(2) jest ju» tylko Najmniejsz liczb b d c jednocze±nie spsp(2) oraz spsp(3) jest = Nie ma liczby mniejszej od dziesi ciu miliardów, która by byªa jednocze±nie spsp(a) dla 2 a 13. Mimo to liczb silnie pseudopierwszych przy dowolnej podstawie jest niesko«czenie wiele, co udowodnili C. Pomerance, J.L. Selfridge i S.S. Wagsta w 1980 roku. 8.5 Chi«skie twierdzenie o resztach Twierdzenie, które tu przedstawimy zostaªo odkryte i wykorzystywane w ±redniowiecznych Chinach. Przyczyn tego odkrycia byªy trudno±ci z mno»eniem i dodawaniem du»ych liczb ªatwiej jest nauczy si na pami kilku kombinacji, ni» wykonywa dziaªania arytmetyczne w pami ci. A dokªadnie, kiedy dowódca chciaª zliczy swoje wojsko, kazaª ustawi si»oªnierzom w dwu-szeregu, nast pnie w trzy-szeregu, potem w pi cio-szeregu itd. Liczba,,niesparowanych»oªnierzy w ka»dym z tych ustawie«(czyli reszty z dzielenia ogólnej liczby»oªnierzy przez 2, 3, 5,... ) dawaªy liczb wszystkich»oªnierzy. eby skonkretyzowa nasze my±lenie, rozwa»my nast puj cy przykªad Przykªad. Po ustawieniu caªego wojska w 3-, 5- i 7-szeregu dostali±my, odpowiednio 2, 1 oraz 6 niesparowanych»oªnierzy. Jaka jest liczebno± oddziaªu, je»eli wiadomo,»e»oªnierzy jest mniej ni» 100? Formalizuj c zadanie, niech x b dzie liczb»oªnierzy. Zatem reszty z dzielenia x przez 3, 5 oraz 7, to 2, 1 i 6. St d x 2 (mod 3) (8.4) x 1 (mod 5) (8.5) x 6 (mod 7) (8.6) 74

13 Powy»szy system trzech kongruencji rozwi»emy korzystaj c z dowodu nast pnego twierdzenia Twierdzenie (Chi«skie twierdzenie o resztach). Przypu± my,»e m 1, m 2,..., m r s parami wzgl dnie pierwsze. Wówczas ukªad kongruencji x a 1 (mod m 1 ) x a 2 (mod m 2 ). x a r (mod m r ) (8.7) ma jednoznaczne rozwi zanie modulo m 1 m 2... m r. Dowód. Wprowad¹my nast puj ce oznaczenia: M = m 1 m 2... m r, M i = M m i, x i = M 1 i mod m i dla 1 i r. Rozwa»my teraz liczb x = a 1 M 1 x 1 + a 2 M 2 x a r M r x r. Poniewa» dla j i zachodzi M j 0 (mod x i ), wi c x a i M i x i (mod m i ) dla ka»dego i. Ale M i x i 1 (mod m i ), wi c x a i (mod m i ) dla 1 i r. Pozostaje jeszcze udowodni jednoznaczno±. Niech x 1 oraz x 2 b d dwoma rozwi zaniami ukªadu (8.7). Zatem x 1 x 2 (mod m i ) dla 1 i r. St d m i x 1 x 2, a poniewa» m 1, m 2,... m r s wzgl dnie pierwsze, wi c M x 1 x 2. Zatem dwa rozwi zania (8.7) ró»ni si o wielokrotno± M i ukªad ten ma jednoznaczne modulo M rozwi zanie. W odró»nieniu od dowodów wielu innych podobnych twierdze«, dowód chi«skiego twierdzenia o resztach daje wzór na rozwi zanie ukªadu kongruencji Przykªad. Rozwa»my ukªad kongruencji z przykªadu Stosuj c oznaczenia dowodu twierdzenia 8.15, mamy M = 105 oraz i m i a i M i x i

14 St d x (mod 105) (mod 105) 251 (mod 105) 41 (mod 105). Zaªo»enie o kopierwszo±ci moduªów jest do± istotnym ograniczeniem. Na przykªad, ukªadu kongruencji x 3 (mod 8) x 7 (mod 12) (8.8) nie mo»na rozwi za stosuj c twierdzenia 8.15, poniewa» 8 oraz 12 nie s wzgl dnie pierwsze. Nie oznacza to jednak,»e ukªad ten nie ma rozwi zania. Rozwi»emy go w nast pnym przykªadzie Przykªad. Aby rozwi za ukªad kongruencji 8.8 zapiszmy najpierw 12 = 4 3 i rozbijmy drug kongruencj ukªadu na dwie kongruencje x 7 (mod 4) i x 7 (mod 3). Mamy zatem ukªad trzech kongruencji x 3 (mod 8) x 3 (mod 4) x 1 (mod 3). (8.9) Ale rozwi zanie pierwszej kongruencji ukªadu (8.9) speªnia te» drug kongruencj, wi c druga kongruencja jest niepotrzebna. Otrzymujemy wi c równowa»ny (8.8) ukªad kongruencji x 3 (mod 8) x 1 (mod 3). Ostatni ukªad rozwi zujemy stosuj c chi«skie twierdzenie o resztach (8.15), otrzymuj c x 19 (mod 24). 76

15 8.6 Kongruencje stopnia 2 Rozwa»my nast puj cy przykªad 8.18 Przykªad. Chcemy znale¹ wszystkie liczby n, których ostatnie trzy cyfry s takie same jak w n 2. Od razu zauwa»amy,»e takimi liczbami s 0 oraz 1. Po chwili zauwa»amy te»,»e 1000, 1001 i wszystkie liczby ko«- cz ce si na 000 lub 001 maj wymagan wªasno±. Dochodzimy wi c do kongruencji n n 2 (mod 1000), (8.10) której rozwi zanie da nam wszystkie szukane liczby. Jest to kongruencja drugiego stopnia (f(n) = n n 2 ). Jej rozwi zaniami (modulo 1000) s 0, 1, 376, 625. Gdyby w przykªadzie 8.18 moduª byª maªy, to kongruencj (8.10) rozwi - zaliby±my podstawiaj c za n wszystkie nieujemne liczby caªkowite mniejsze od m. Metoda ta nie pracuje, je±li m jest du» liczb. W rozdziale tym poka»emy,»e kongruencje o moduªach zªo»onych mo»na zredukowa do kongruencji o moduªach pierwszych. To pozwoli nam rozwi za niektóre kongruencje. Nie b dziemy tu wprowadza skomplikowanej teorii pozwalaj cej nam rozwi za ka»d kongruencj. Pierwiastkiem modulo m wielomianu f(x) o wspóªczynnikach caªkowitych nazywamy tak liczb r,»e f(r) 0 (mod m). Je±li r jest pierwiastkiem wielomianu f(x) modulo m oraz r r (mod m), to f(r) f(r ) (mod m), czyli r te» jest pierwiastkiem wielomianu f(x) modulo m. Nasze rozwa»ania na temat pierwiastków b dziemy ogranicza do Z m i mówi c,,rozwi zanie mamy na my±li rozwi zanie modulo m. Przykªady Wielomian x nie ma pierwiastków modulo 7. Sprawdzamy to podstawiaj c za x kolejne liczby 0, 1, 2, 3, 4, 5, Wielomian x 2 2 ma w Z 7 dokªadnie dwa pierwiastki: 3 i 4. Zauwa»my,»e wielomian f(x) z przykªadu 8.18 byª stopnia drugiego i miaª dokªadnie 4 pierwiastki modulo Jak wiadomo, w ciaªach liczbowych, wielomian nie mo»e mie wi cej pierwiastków ni» jego stopie«. W szczególno±ci, wielomian stopnia 2 nie mo»e mie trzech pierwiastków. 77

16 8.21. Wielomian x 2 1 ma w Z 12 cztery pierwiastki: 1, 5, 7 oraz 11. Rozwa»ymy teraz metod redukcji moduªu zªo»onego m na moduªy b d ce pot gami liczb pierwszych z rozkªadu m. Je±li m = p α 1 1 p α p α k k, to kongruencja f(x) 0 (mod m) implikuje k kongruencji f(x) 0 (mod p α i i ), gdzie 1 i k. Odwrotna implikacja tak»e zachodzi, poniewa» pot gi ró»nych liczb pierwszych s kopierwsze Przykªad. Rozwa»my kongruencj x 2 1 (mod 105). Poniewa» 105 = 3 5 7, wi c nasza kongruencja jest równowa»na ukªadowi trzech kongruencji x 2 1 (mod 3) x 2 1 (mod 5) x 2 1 (mod 7). Ka»d z powy»szych kongruencji rozwi zujemy podstawiaj c kolejne liczby i otrzymujemy w trzech przypadkach po dwa rozwi zania: 1 i 2 modulo 3, 1 i 4 modulo 5 oraz 1 i 6 modulo 7. Dowolna kombinacja tych rozwi za«daje rozwi zanie modulo 105. Oznaczmy przez r pierwiastek wielomianu x 2 1 modulo 105. r jest jednym z rozwi za«o±miu poni»szych ukªadów kongruencji. r 1 (mod 3) r 2 (mod 3) r 1 (mod 3) r 1 (mod 5) r 1 (mod 5) r 4 (mod 5) r 1 (mod 7), r 1 (mod 7), r 1 (mod 7), r 2 (mod 3) r 1 (mod 3) r 4 (mod 5) r 1 (mod 5) r 1 (mod 7), r 6 (mod 7), r 2 (mod 3) r 1 (mod 3) r 2 (mod 3) r 1 (mod 5) r 4 (mod 5) r 4 (mod 5) r 6 (mod 7), r 6 (mod 7), r 6 (mod 7). Rozwi zaniami (modulo 105) tych ukªadów kongruencji s, kolejno, 1, 71, 64, 29, 76, 41, 34 i

17 Wracaj c do przykªadu 8.18, kongruencja 8.10 jest równowa»na ukªadowi kongruencji n n 2 (mod 2 3 ) n n 2 (mod 5 3 (8.11) ). Pierwsz kongruencj z (8.11) mo»emy jeszcze rozwi za podstawiaj c kolejne liczby od 0 do 7. Przy drugiej kongruencji metoda ta zawodzi ze wzgl du na zbyt wiele liczb. Zastosujemy wi c inn metod. Poniewa» kongruencj n n 2 (mod 5) speªniaj dwie liczby (modulo 5) 0 oraz 1, wi c kongruencj n n 2 (mod 5 2 ) (8.12) speªniaj liczby postaci 0 + 5k 1 oraz 1 + 5l 1. Podstawiamy te liczby do (8.12) otrzymuj c 5k 1 0 (mod 5 2 ) oraz 5l 1 10l 1 (mod 5 2 ). St d kongruencje k 1 0 (mod 5) i l 1 2l 1 (mod 5), które daj k 1 = 0 oraz l 1 = 0. Mamy zatem 2 rozwi zania modulo 25: 0 oraz 1. Rozwi zaniami modulo 125 drugiej kongruencji z (8.12) s liczby postaci 5 2 k 2 oraz l 2. Wykonuj c podobne obliczenia jak powy»ej dostajemy dwa rozwi zania: 0 i 1. Aby rozwi za zadanie postawione w przykªadzie 8.18, wystarczy rozwi za cztery ukªady kongruencji r e 1 (mod 2 3 ) r e 2 (mod 5 3 ), gdzie za e 1 oraz e 2 podstawiamy 0 lub 1. Cztery szukane rozwi zania to 0, 1, 376 i Przykªad. Rozwi»emy kongruencj x 2 + 4x (mod 49). (8.13) Mamy tutaj f(x) = x 2 +4x+2 oraz 49 = 7 2. Zaczynamy wi c od kongruencji x 2 + 4x (mod 7), dla której znajdujemy rozwi zanie podstawiaj c po kolei wszystkie liczby od 0 do 6. Znajdujemy dwa pierwiastki x 1 = 1 oraz x 2 = 2. Zatem pierwiastki kongruencji (8.13), to 1 + 7k oraz 2 + 7l. Podstawiajac je do (8.13) otrzymujemy co redukuje si do 42k 7 (mod 49) oraz 7l 14 (mod 49), 6k 1 (mod 7) oraz l 2 (mod 7) i ostatecznie daje rozwi zania x 1 = 8 oraz x 2 =

18 8.24 Przykªad. Rozwi»emy kongruencj x 2 + x (mod 9). (8.14) Jedynym pierwiastkiem kongruencji x 2 + x (mod 3) jest x 0 = 1. Ale zapisuj c x = 1 + 3k i podstawiaj c do (8.14), otrzymujemy 0 0 (mod 9), wi c x 1 = = 1, x 2 = = 4 oraz x 3 = = 7 s pierwiastkami (8.14) Przykªad. Poszukamy pierwiastków kwadratowych z 1 modulo 16. Rozwa»ymy wi c wielomian f(x) = x 2 1. Modulo 8, ma on 4 pierwiastki: x 01 = 1, x 02 = 3, x 03 = 5 i x 04 = 7. Dalej szukamy k i, gdzie x i = x 0i + 8k i oraz f(x i ) 0 (mod 16) dla i {1, 2, 3, 4}. Otrzymujemy sprzeczno± dla k 2 i k 3 oraz 0 0 (mod 16) dla k 1 i k 2. Zatem pierwiastkami kwadratowymi z jedynki modulo 16 s 1, 9, 7 i 15. Zako«czymy ten podrozdziaª jeszcze jednym przykªadem, który ma du»e znaczenie w kryptograi Przykªad. Przypu± my,»e p i q s ró»nymi liczbami pierwszymi oraz n = pq. Wówczas kongruencja x 2 1 (mod n) ma dokªadnie 4 rozwi zania, poniewa» ka»da z kongruencji x 2 1 (mod p) oraz x 2 1 (mod q) ma dokªadnie dwa rozwi zania. Rozwi zania ±1 nazywamy trywialnymi. Je±li x jest nietrywialnym rozwi zaniem, to NWD(x 1, n) oraz NWD(x + 1, n) s liczbami p i q. Zatem je±li znamy nietrywialne rozwi zanie kongruencji x 2 1 (mod n), to znamy te» rozkªad liczby n. Odwrotnie, je±li znamy rozkªad liczby n, czyli p oraz q, to rozwi zania kongruencji x 2 1 (mod n) mo»emy otrzyma korzystaj c z chi«skiego twierdzenia o resztach dla czterech ukªadów kongruencji: dla e 1, e 2 {0, 1}. x e 1 (mod p), x e 2 (mod q) 8.7 Gra w orªa i reszk przez telefon Wykorzystamy tu stosunkowo maªe liczby,»eby caªy czas kontrolowa przebieg gry. Niech wi c n = 341 = Powró my do Alicji i Stefana, którzy si ju» pojawili na tym wykªadzie. Liczby 11 oraz 31 s znane Alicji, a Stefan zna tylko ich iloczyn, tj

19 1. Stefan wybiera losowo liczb 0 < x 340 i oblicza warto± x 2. Zaªó»my,»e x = 134, wi c x 2 = 224. Alicja otrzymuje tylko liczb Alicja po otrzymaniu y = 224 oraz wiedz c,»e 341 = 11 31, oblicza cztery pierwiastki równania x 2 = 224 modulo 341. Robi to w nast puj cy sposób. Poniewa» x (mod 341), wi c x (mod 11) x (mod 31) st d mamy jedn z czterech mo»liwo±ci x ± 2 (mod 11) x ± 10 (mod 31) Stosuj c oznaczenia z dowodu chi«skiego twierdzenia o resztach rozwi zujemy powy»szy ukªad nast puj co: a 1 = 2, m 1 = 11, a 2 = 10, m 2 = 31, M = 341. Obliczamy teraz M 1 = 31 oraz M 2 = 11. Stosuj c algorytm Euklidesa lub w inny sposób obliczamy N 1 = 6 i N 2 = 17. Teraz ju» bez trudu otrzymujemy x = = 2242, co modulo 341 daje 196. Alicja mo»e t liczb potraktowa jako swoj szcz ±liw i wysªa j Stefanowi, lub te» obliczy trzy pozostaªe liczby rozwi zuj c nast puj ce ukªady kongruencji x 2 (mod 11); x 2 (mod 11); x 2 (mod 11); x 10 (mod 31); x 10 (mod 31); x 10 (mod 31). Wówczas do dyspozycji b dzie miaªa liczby 196 oraz 134 (tak»e 196 i 134, ale to si nie liczy) i b dzie w prawdziwej rozterce decyduj c, czy ma wysªa x 2 = 196, czy te» x 1 = Je±li wysªaªa x 1 = 134 Stefan ma pecha, poniewa» nie zna on liczby 196, której Alicja natychmiast za» da. 4. Je»eli jednak Alicja wysªaªa x 2 = 196, wygrywa Stefan i na dowód wygranej przesyªa Alicji liczb 134. Zauwa»my,»e mo»emy tu zastosowa ka»d liczb n, która jest iloczynem dwóch liczb pierwszych p i q, przy czym je±li gramy faktycznie o samochód 81

20 to liczby te musz by na tyle du»e i tak dobrane,»eby nie mo»na byªo zbyt szybko znale¹ rozkªadu liczby n. Liczby p = 11 oraz q = 31 z powy»- szego przykªadu mog co najwy»ej sªu»y do gry o rozbite lusterko boczne. Zauwa»my te»,»e w punkcie 4, Stefan mo»e udowodni swoj wygran znajduj c bez problemu rozkªad liczby n, poniewa» NWD(x 1 x 2, n) jest wi kszy od 1, czyli stanowi nietrywialny dzielnik liczby n. 82

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13 WST P DO KRYPTOGRAFII Grzegorz Szkibiel Jesie«2012/13 Spis tre±ci 1 Kryptograa a steganograa 5 1.1 Steganograa........................... 6 1.2 Szyfry przestawieniowe...................... 8 1.3 Systemy

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13 WST P DO KRYPTOGRAFII Grzegorz Szkibiel Jesie«2012/13 Spis tre±ci 1 Kryptograa a steganograa 5 1.1 Steganograa........................... 6 1.2 Szyfry przestawieniowe...................... 8 1.3 Systemy

Bardziej szczegółowo

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13 WST P DO KRYPTOGRAFII Grzegorz Szkibiel Jesie«2012/13 Spis tre±ci 1 Kryptograa a steganograa 5 1.1 Steganograa........................... 6 1.2 Szyfry przestawieniowe...................... 8 1.3 Systemy

Bardziej szczegółowo

Semestr letni 2014/15

Semestr letni 2014/15 Wst p do arytmetyki modularnej zadania 1. Jaki dzie«tygodnia byª 17 stycznia 2003 roku, a jaki b dzie 23 sierpnia 2178 roku? 2. Jaki dzie«tygodnia byª 21 kwietnia 1952 roku? 3. W jaki dzie«odbyªa si bitwa

Bardziej szczegółowo

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb Wybrane poj cia i twierdzenia z wykªadu z teorii liczb 1. Podzielno± Przedmiotem bada«teorii liczb s wªasno±ci liczb caªkowitych. Zbiór liczb caªkowitych oznacza b dziemy symbolem Z. Zbiór liczb naturalnych

Bardziej szczegółowo

ELEMENTARNA TEORIA LICZB. 1. Podzielno±

ELEMENTARNA TEORIA LICZB. 1. Podzielno± ELEMENTARNA TEORIA LICZB IZABELA AGATA MALINOWSKA N = {1, 2,...} 1. Podzielno± Denicja 1.1. Niepusty podzbiór A zbioru liczb naturalnych jest ograniczony, je»eli istnieje taka liczba naturalna n 0,»e m

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2015/16

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2015/16 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2015/16 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1

Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Denicja ciaªa Niech F b dzie zbiorem, i niech + (dodawanie) oraz (mno»enie) b d dziaªaniami na zbiorze F. Denicja. Zbiór F wraz z dziaªaniami + i nazywamy ciaªem,

Bardziej szczegółowo

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13 WST P DO KRYPTOGRAFII Grzegorz Szkibiel Jesie«2012/13 Spis tre±ci 1 Kryptograa a steganograa 5 1.1 Steganograa........................... 6 1.2 Szyfry przestawieniowe...................... 8 1.3 Systemy

Bardziej szczegółowo

Ukªady równa«liniowych

Ukªady równa«liniowych dr Krzysztof yjewski Mechatronika; S-I 0 in» 7 listopada 206 Ukªady równa«liniowych Informacje pomocnicze Denicja Ogólna posta ukªadu m równa«liniowych z n niewiadomymi x, x, x n, gdzie m, n N jest nast

Bardziej szczegółowo

XVII Warmi«sko-Mazurskie Zawody Matematyczne

XVII Warmi«sko-Mazurskie Zawody Matematyczne 1 XVII Warmi«sko-Mazurskie Zawody Matematyczne Kategoria: klasa VIII szkoªy podstawowej i III gimnazjum Olsztyn, 16 maja 2019r. Zad. 1. Udowodnij,»e dla dowolnych liczb rzeczywistych x, y, z speªniaj cych

Bardziej szczegółowo

Metody dowodzenia twierdze«

Metody dowodzenia twierdze« Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku

Bardziej szczegółowo

1 Bª dy i arytmetyka zmiennopozycyjna

1 Bª dy i arytmetyka zmiennopozycyjna 1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy

Bardziej szczegółowo

Algebra Liniowa 2. Zadania do samodzielnych wicze«wydziaª Elektroniki, I rok Karina Olszak i Zbigniew Olszak

Algebra Liniowa 2. Zadania do samodzielnych wicze«wydziaª Elektroniki, I rok Karina Olszak i Zbigniew Olszak Algebra Liniowa 2 Zadania do samodzielnych wicze«wydziaª Elektroniki, I rok Karina Olszak i Zbigniew Olszak Podobie«stwo macierzy, diagonalizacja macierzy 1. Znale¹ macierze przeksztaªcenia liniowego T

Bardziej szczegółowo

X WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne)

X WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne) X WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne) Zadanie 1 Obecnie u»ywane tablice rejestracyjne wydawane s od 1 maja 2000r. Numery rejestracyjne aut s tworzone ze zbioru

Bardziej szczegółowo

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15 ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku

Bardziej szczegółowo

Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu

Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu Rozdział 6 Pakowanie plecaka 6.1 Postawienie problemu Jak zauważyliśmy, szyfry oparte na rachunku macierzowym nie są przerażająco trudne do złamania. Zdecydowanie trudniejszy jest kryptosystem oparty na

Bardziej szczegółowo

x y x y x y x + y x y

x y x y x y x + y x y Algebra logiki 1 W zbiorze {0, 1} okre±lamy dziaªania dwuargumentowe,, +, oraz dziaªanie jednoargumentowe ( ). Dziaªanie x + y nazywamy dodawaniem modulo 2, a dziaªanie x y nazywamy kresk Sheera. x x 0

Bardziej szczegółowo

Metodydowodzenia twierdzeń

Metodydowodzenia twierdzeń 1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych

Bardziej szczegółowo

Wielomiany o wspóªczynnikach rzeczywistych

Wielomiany o wspóªczynnikach rzeczywistych Wielomiany o wspóªczynnikach rzeczywistych Wielomian: W (x) = a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0 wspóªczynniki wielomianu: a 0, a 1, a 2,..., a n 1, a n ; wyraz wolny: a 0

Bardziej szczegółowo

Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska

Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik

Bardziej szczegółowo

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy. Logika i teoria mnogo±ci, konspekt wykªad 12 Teoria mocy, cz ± II Def. 12.1 Ka»demu zbiorowi X przyporz dkowujemy oznaczany symbolem X obiekt zwany liczb kardynaln (lub moc zbioru X) w taki sposób,»e ta

Bardziej szczegółowo

Materiaªy do Repetytorium z matematyki

Materiaªy do Repetytorium z matematyki Materiaªy do Repetytorium z matematyki 0/0 Dziaªania na liczbach wymiernych i niewymiernych wiczenie Obliczy + 4 + 4 5. ( + ) ( 4 + 4 5). ( : ) ( : 4) 4 5 6. 7. { [ 7 4 ( 0 7) ] ( } : 5) : 0 75 ( 8) (

Bardziej szczegółowo

PRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych:

PRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych: Plan Spis tre±ci 1 Homomorzm 1 1.1 Macierz homomorzmu....................... 2 1.2 Dziaªania............................... 3 2 Ukªady równa«6 3 Zadania 8 1 Homomorzm PRZYPOMNIENIE Ka»d przestrze«wektorow

Bardziej szczegółowo

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1 J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)

Bardziej szczegółowo

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14 WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 203/4 Spis tre±ci Kodowanie i dekodowanie 4. Kodowanie a szyfrowanie..................... 4.2 Podstawowe poj cia........................

Bardziej szczegółowo

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X. Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór

Bardziej szczegółowo

Bash i algorytmy. Elwira Wachowicz. 20 lutego

Bash i algorytmy. Elwira Wachowicz. 20 lutego Bash i algorytmy Elwira Wachowicz elwira@ifd.uni.wroc.pl 20 lutego 2012 Elwira Wachowicz (elwira@ifd.uni.wroc.pl) Bash i algorytmy 20 lutego 2012 1 / 16 Inne przydatne polecenia Polecenie Dziaªanie Przykªad

Bardziej szczegółowo

Interpolacja funkcjami sklejanymi

Interpolacja funkcjami sklejanymi Interpolacja funkcjami sklejanymi Funkcje sklejane: Zaªó»my,»e mamy n + 1 w zªów t 0, t 1,, t n takich,»e t 0 < t 1 < < t n Dla danej liczby caªkowitej, nieujemnej k funkcj sklejan stopnia k nazywamy tak

Bardziej szczegółowo

Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach

Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Teoria obowi zuje z wykªadu, dlatego te» zostan tutaj przedstawione tylko podstawowe denicje, twierdzenia i wzory. Denicja 1. Równanie

Bardziej szczegółowo

ELEMENTY TEORII LICZB. Grzegorz Szkibiel. Jesie«2004/05

ELEMENTY TEORII LICZB. Grzegorz Szkibiel. Jesie«2004/05 ELEMENTY TEORII LICZB Grzegorz Szkibiel Jesie«2004/05 Spis tre±ci 1 Liczby i wielomiany 5 1.1 Wielomiany............................ 5 1.2 Podzielno± liczb......................... 8 1.3 Podzielno± wielomianów.....................

Bardziej szczegółowo

Podstawy matematyki dla informatyków

Podstawy matematyki dla informatyków Podstawy matematyki dla informatyków Wykªad 6 10 listopada 2011 W poprzednim odcinku... Zbiory A i B s równoliczne (tej samej mocy ), gdy istnieje bijekcja f : A 1 1 B. Piszemy A B lub A = B. na Moc zbioru

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

ZADANIA. Maciej Zakarczemny

ZADANIA. Maciej Zakarczemny ZADANIA Maciej Zakarczemny 2 Spis tre±ci 1 Algebra 5 2 Analiza 7 2.1 Granice iterowane, granica podwójna funkcji dwóch zmiennych....... 7 2.2 Caªki powierzchniowe zorientowane...................... 8 2.2.1

Bardziej szczegółowo

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13 WST P DO KRYPTOGRAFII Grzegorz Szkibiel Jesie«2012/13 Spis tre±ci 1 Protokoªy o zerowej wiedzy i przekazy nierozró»nialne 3 1.1 Kolorowanie mapy........................ 3 1.2 Logarytm dyskretny.......................

Bardziej szczegółowo

det A := a 11, ( 1) 1+j a 1j det A 1j, a 11 a 12 a 21 a 22 Wn. 1 (Wyznacznik macierzy stopnia 2:). = a 11a 22 a 33 +a 12 a 23 a 31 +a 13 a 21 a 32

det A := a 11, ( 1) 1+j a 1j det A 1j, a 11 a 12 a 21 a 22 Wn. 1 (Wyznacznik macierzy stopnia 2:). = a 11a 22 a 33 +a 12 a 23 a 31 +a 13 a 21 a 32 Wyznacznik Def Wyznacznikiem macierzy kwadratowej nazywamy funkcj, która ka»dej macierzy A = (a ij ) przyporz dkowuje liczb det A zgodnie z nast puj cym schematem indukcyjnym: Dla macierzy A = (a ) stopnia

Bardziej szczegółowo

Listy Inne przykªady Rozwi zywanie problemów. Listy w Mathematice. Marcin Karcz. Wydziaª Matematyki, Fizyki i Informatyki.

Listy Inne przykªady Rozwi zywanie problemów. Listy w Mathematice. Marcin Karcz. Wydziaª Matematyki, Fizyki i Informatyki. Wydziaª Matematyki, Fizyki i Informatyki 10 marca 2008 Spis tre±ci Listy 1 Listy 2 3 Co to jest lista? Listy List w Mathematice jest wyra»enie oddzielone przecinkami i zamkni te w { klamrach }. Elementy

Bardziej szczegółowo

Funkcje, wielomiany. Informacje pomocnicze

Funkcje, wielomiany. Informacje pomocnicze Funkcje, wielomiany Informacje pomocnicze Przydatne wzory: (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 (a b) 3 = a 3 3a 2 b + 3ab 2 b 3 a 2 b 2 = (a + b)(a

Bardziej szczegółowo

Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna

Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna 1. Podaj denicj liczby zespolonej. 2. Jak obliczy sum /iloczyn dwóch liczb zespolonych w postaci algebraicznej? 3. Co to jest liczba urojona?

Bardziej szczegółowo

Twierdzenie Wedderburna Witold Tomaszewski

Twierdzenie Wedderburna Witold Tomaszewski Twierdzenie Wedderburna Witold Tomaszewski Pier±cie«przemienny P nazywamy dziedzin caªkowito±ci (lub po prostu dziedzin ) je±li nie posiada nietrywialnych dzielników zera. Pier±cie«z jedynk nazywamy pier±cieniem

Bardziej szczegółowo

Vincent Van GOGH: M»czyzna pij cy li»ank kawy. Radosªaw Klimek. J zyk programowania Java

Vincent Van GOGH: M»czyzna pij cy li»ank kawy. Radosªaw Klimek. J zyk programowania Java J zyk programowania JAVA c 2011 Vincent Van GOGH: M»czyzna pij cy li»ank kawy Zadanie 6. Napisz program, który tworzy tablic 30 liczb wstawia do tej tablicy liczby od 0 do 29 sumuje te elementy tablicy,

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków UNIWERSYTET IM. ADAMA MICKIEWICZA W POZNANIU Jerzy Jaworski, Zbigniew Palka, Jerzy Szyma«ski Matematyka dyskretna dla informatyków uzupeænienia Pozna«007 A Notacja asymptotyczna Badaj c du»e obiekty kombinatoryczne

Bardziej szczegółowo

Wybrane zagadnienia teorii liczb

Wybrane zagadnienia teorii liczb Wybrane zagadnienia teorii liczb Podzielność liczb NWW, NWD, Algorytm Euklidesa Arytmetyka modularna Potęgowanie modularne Małe twierdzenie Fermata Liczby pierwsze Kryptosystem RSA Podzielność liczb Relacja

Bardziej szczegółowo

Informacje pomocnicze

Informacje pomocnicze Funkcje wymierne. Równania i nierówno±ci wymierne Denicja. (uªamki proste) Wyra»enia postaci Informacje pomocnicze A gdzie A d e R n N (dx e) n nazywamy uªamkami prostymi pierwszego rodzaju. Wyra»enia

Bardziej szczegółowo

Przekroje Dedekinda 1

Przekroje Dedekinda 1 Przekroje Dedekinda 1 O liczbach wymiernych (tj. zbiorze Q) wiemy,»e: 1. zbiór Q jest uporz dkowany relacj mniejszo±ci < ; 2. zbiór liczb wymiernych jest g sty, tzn.: p, q Q : p < q w : p < w < q 3. 2

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków Matematyka dyskretna dla informatyków Cz ± I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szyma«ski Uniwersytet im. Adama Mickiewicza Pozna«2007 4 Zależności rekurencyjne Wiele zale»no±ci

Bardziej szczegółowo

Twierdzenie Eulera. Kongruencje wykład 6. Twierdzenie Eulera

Twierdzenie Eulera. Kongruencje wykład 6. Twierdzenie Eulera Kongruencje wykład 6 ... Euler, 1760, Sankt Petersburg Dla każdego a m zachodzi kongruencja a φ(m) 1 (mod m). Przypomnijmy: φ(m) to liczba reszt modulo m względnie pierwszych z m; φ(m) = m(1 1/p 1 )...

Bardziej szczegółowo

Liniowe zadania najmniejszych kwadratów

Liniowe zadania najmniejszych kwadratów Rozdziaª 9 Liniowe zadania najmniejszych kwadratów Liniowe zadania najmniejszych kwadratów polega na znalezieniu x R n, który minimalizuje Ax b 2 dla danej macierzy A R m,n i wektora b R m. Zauwa»my,»e

Bardziej szczegółowo

Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja

Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja Macierze 1 Podstawowe denicje Macierz wymiaru m n, gdzie m, n N nazywamy tablic liczb rzeczywistych (lub zespolonych) postaci a 11 a 1j a 1n A = A m n = [a ij ] m n = a i1 a ij a in a m1 a mj a mn W macierzy

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja 1. Tablic nast puj cej postaci a 11 a 12... a 1n a 21 a 22... a 2n A =... a m1 a m2... a mn nazywamy macierz o m wierszach i n kolumnach,

Bardziej szczegółowo

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14 WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 2013/14 Spis tre±ci 1 Kodowanie i dekodowanie 4 1.1 Kodowanie a szyfrowanie..................... 4 1.2 Podstawowe poj cia........................

Bardziej szczegółowo

2 Liczby rzeczywiste - cz. 2

2 Liczby rzeczywiste - cz. 2 2 Liczby rzeczywiste - cz. 2 W tej lekcji omówimy pozostaªe tematy zwi zane z liczbami rzeczywistymi. 2. Przedziaªy liczbowe Wyró»niamy nast puj ce rodzaje przedziaªów liczbowych: (a) przedziaªy ograniczone:

Bardziej szczegółowo

ANALIZA MATEMATYCZNA Z ALGEBR

ANALIZA MATEMATYCZNA Z ALGEBR ANALIZA MATEMATYCZNA Z ALGEBR WYKŠAD II Maªgorzata Murat MACIERZ A rzeczywist (zespolon ) o m wierszach i n kolumnach nazywamy przyporz dkowanie ka»dej uporz dkowanej parze liczb naturalnych (i, j), gdzie

Bardziej szczegółowo

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Twierdzenie Wainera Marek Czarnecki Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 3 lipca 2009 Motywacje Dla dowolnej

Bardziej szczegółowo

O pewnym zadaniu olimpijskim

O pewnym zadaniu olimpijskim O pewnym zadaniu olimpijskim Michaª Seweryn, V LO w Krakowie opiekun pracy: dr Jacek Dymel Problem pocz tkowy Na drugim etapie LXII Olimpiady Matematycznej pojawiª si nast puj cy problem: Dla ka»dej liczby

Bardziej szczegółowo

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA. W obu podpunktach zakªadamy,»e kolejno± ta«ców jest wa»na.

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA. W obu podpunktach zakªadamy,»e kolejno± ta«ców jest wa»na. Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zadanko 1 (12p.) Na imprezie w Noc Kupaªy s 44 dziewczyny. Nosz one 11 ró»nych imion, a dla ka»dego imienia s dokªadnie 4 dziewczyny o tym imieniu przy czym ka»da

Bardziej szczegółowo

istnienie elementu neutralnego dodawania (zera): 0 K a K a + 0 = a, istnienie elementu neutralnego mno»enia (jedynki): 1 K a K a 1 = a,

istnienie elementu neutralnego dodawania (zera): 0 K a K a + 0 = a, istnienie elementu neutralnego mno»enia (jedynki): 1 K a K a 1 = a, Ciaªo Denicja. Zbiór K z dziaªaniami dodawania + oraz mno»enia (których argumentami s dwa elementy z tego zbioru, a warto±ciami elementy z tego zbioru) nazywamy ciaªem, je±li zawiera co najmniej dwa elementy

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13 WST P DO KRYPTOGRAFII Grzegorz Szkibiel Jesie«2012/13 Spis tre±ci 1 Kryptograa a steganograa 5 1.1 Steganograa........................... 6 1.2 Szyfry przestawieniowe...................... 8 1.3 Systemy

Bardziej szczegółowo

Teoria liczb. Magdalena Lemańska. Magdalena Lemańska,

Teoria liczb. Magdalena Lemańska. Magdalena Lemańska, Teoria liczb Magdalena Lemańska Literatura Matematyka Dyskretna Andrzej Szepietowski http://wazniak.mimuw.edu.pl/ Discrete Mathematics Seymour Lipschutz, Marc Lipson Wstęp Teoria liczb jest dziedziną matematyki,

Bardziej szczegółowo

1 Metody iteracyjne rozwi zywania równania f(x)=0

1 Metody iteracyjne rozwi zywania równania f(x)=0 1 Metody iteracyjne rozwi zywania równania f()=0 1.1 Metoda bisekcji Zaªó»my,»e funkcja f jest ci gªa w [a 0, b 0 ]. Pierwiastek jest w przedziale [a 0, b 0 ] gdy f(a 0 )f(b 0 ) < 0. (1) Ustalmy f(a 0

Bardziej szczegółowo

Czy funkcja zadana wzorem f(x) = ex e x. 1 + e. = lim. e x + e x lim. lim. 2 dla x = 1 f(x) dla x (0, 1) e e 1 dla x = 1

Czy funkcja zadana wzorem f(x) = ex e x. 1 + e. = lim. e x + e x lim. lim. 2 dla x = 1 f(x) dla x (0, 1) e e 1 dla x = 1 II KOLOKWIUM Z AM M1 - GRUPA A - 170101r Ka»de zadanie jest po 5 punktów Ostatnie zadanie jest nieobowi zkowe, ale mo»e dostarczy dodatkowe 5 punktów pod warunkiem rozwi zania pozostaªych zada«zadanie

Bardziej szczegółowo

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13 WST P DO KRYPTOGRAFII Grzegorz Szkibiel Jesie«2012/13 Spis tre±ci 1 Kryptograa a steganograa 5 1.1 Steganograa........................... 6 1.2 Szyfry przestawieniowe...................... 8 1.3 Systemy

Bardziej szczegółowo

Liczby zmiennoprzecinkowe

Liczby zmiennoprzecinkowe Liczby zmiennoprzecinkowe 1 Liczby zmiennoprzecinkowe Najprostszym sposobem reprezentowania liczb rzeczywistych byªaby reprezentacja staªopozycyjna: zakªadamy,»e mamy n bitów na cz ± caªkowit oraz m na

Bardziej szczegółowo

Wst p teoretyczny do wiczenia nr 3 - Elementy kombinatoryki

Wst p teoretyczny do wiczenia nr 3 - Elementy kombinatoryki Wst p teoretyczny do wiczenia nr 3 - Elementy kombinatoryki 1 Zadania na wiczenia nr 3 - Elementy kombinatoryki Zad. 1. Ile istnieje ró»nych liczb czterocyfrowych zakªadaj c,»e cyfry nie powtarzaj si a

Bardziej szczegółowo

Wykªad 3. Funkcje skrótu

Wykªad 3. Funkcje skrótu Wykªad 3 Funkcje skrótu Damian Niwi«ski Instytut Informatyki, Uniwersytet Warszawski Funkcje jednokierunkowe Podstawowa intuicja funkcji jednokierunkowej jest: ªatwo obliczalna, ale trudno odwracalna,

Bardziej szczegółowo

Wst p do informatyki. Systemy liczbowe. Piotr Fulma«ski. 21 pa¹dziernika 2010. Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska

Wst p do informatyki. Systemy liczbowe. Piotr Fulma«ski. 21 pa¹dziernika 2010. Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska Wst p do informatyki Systemy liczbowe Piotr Fulma«ski Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska 21 pa¹dziernika 2010 Spis tre±ci 1 Liczby i ich systemy 2 Rodzaje systemów liczbowych

Bardziej szczegółowo

Funkcja kwadratowa, wielomiany oraz funkcje wymierne

Funkcja kwadratowa, wielomiany oraz funkcje wymierne Funkcja kwadratowa, wielomiany oraz funkcje wymierne Šukasz Dawidowski Nocne powtórki maturalne 28 kwietnia 2014 r. Troch teorii Funkcj f : R R dan wzorem: f (x) = ax 2 + bx + c gdzie a 0 nazywamy funkcj

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki dr Krzysztof yjewski Mechatronika; S-I.in». 5 pa¹dziernika 6 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja. Tablic nast puj cej postaci a a... a n a a... a n A =... a m a m...

Bardziej szczegółowo

Zbiory i odwzorowania

Zbiory i odwzorowania Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):

Bardziej szczegółowo

1 0 Je»eli wybierzemy baz A = ((1, 1), (2, 1)) to M(f) A A =. 0 2 Daje to znacznie lepszy opis endomorzmu f.

1 0 Je»eli wybierzemy baz A = ((1, 1), (2, 1)) to M(f) A A =. 0 2 Daje to znacznie lepszy opis endomorzmu f. GAL II 2012-2013 A Strojnowski str1 Wykªad 1 Ten semestr rozpoczniemy badaniem endomorzmów sko«czenie wymiarowych przestrzeni liniowych Denicja 11 Niech V b dzie przestrzeni liniow nad ciaªem K 1) Przeksztaªceniem

Bardziej szczegółowo

Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA

Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA Grzegorz Bobiński Uniwersytet Mikołaja Kopernika Toruń, 22.05.2010 Kodowanie a szyfrowanie kodowanie sposoby przesyłania danych tak, aby

Bardziej szczegółowo

Ekstremalnie fajne równania

Ekstremalnie fajne równania Ekstremalnie fajne równania ELEMENTY RACHUNKU WARIACYJNEGO Zaczniemy od ogólnych uwag nt. rachunku wariacyjnego, który jest bardzo przydatnym narz dziem mog cym posªu»y do rozwi zywania wielu problemów

Bardziej szczegółowo

Proste modele o zªo»onej dynamice

Proste modele o zªo»onej dynamice Proste modele o zªo»onej dynamice czyli krótki wst p do teorii chaosu Tomasz Rodak Festiwal Nauki, Techniki i Sztuki 2018 April 17, 2018 Dyskretny model pojedynczej populacji Rozwa»my pojedyncz populacj

Bardziej szczegółowo

Algorytmy i struktury danych. Wykład 4

Algorytmy i struktury danych. Wykład 4 Wykład 4 Różne algorytmy - obliczenia 1. Obliczanie wartości wielomianu 2. Szybkie potęgowanie 3. Algorytm Euklidesa, liczby pierwsze, faktoryzacja liczby naturalnej 2017-11-24 Algorytmy i struktury danych

Bardziej szczegółowo

Lab. 02: Algorytm Schrage

Lab. 02: Algorytm Schrage Lab. 02: Algorytm Schrage Andrzej Gnatowski 5 kwietnia 2015 1 Opis zadania Celem zadania laboratoryjnego jest zapoznanie si z jednym z przybli»onych algorytmów sªu» cych do szukania rozwi za«znanego z

Bardziej szczegółowo

Opis matematyczny ukªadów liniowych

Opis matematyczny ukªadów liniowych Rozdziaª 1 Opis matematyczny ukªadów liniowych Autorzy: Alicja Golnik 1.1 Formy opisu ukªadów dynamicznych 1.1.1 Liniowe równanie ró»niczkowe Podstawow metod przedstawienia procesu dynamicznego jest zbiór

Bardziej szczegółowo

MADE IN CHINA czyli SYSTEM RESZTOWY

MADE IN CHINA czyli SYSTEM RESZTOWY MADE IN CHINA czyli SYSTEM RESZTOWY System ten oznaczmy skrótem RNS (residue number system czyli po prostu resztowy system liczbowy). Wartość liczby w tym systemie reprezentuje wektor (zbiór) reszt z dzielenia

Bardziej szczegółowo

Liczby zespolone. dr Krzysztof yjewski Mechatronika; S-I 0.in». 6 pa¹dziernika Oznaczenia. B dziemy u»ywali nast puj cych oznacze«:

Liczby zespolone. dr Krzysztof yjewski Mechatronika; S-I 0.in». 6 pa¹dziernika Oznaczenia. B dziemy u»ywali nast puj cych oznacze«: Liczby zespolone Oznaczenia B dziemy u»ywali nast puj cych oznacze«: N = {1, 2, 3,...}- zbiór liczb naturalnych, Z = {..., 3, 2, 1, 0, 1, 2, 3,...}- zbiór liczb caªkowitych, Q = { a b : a, b Z, b 0}- zbiór

Bardziej szczegółowo

2. L(a u) = al( u) dla dowolnych u U i a R. Uwaga 1. Warunki 1., 2. mo»na zast pi jednym warunkiem: L(a u + b v) = al( u) + bl( v)

2. L(a u) = al( u) dla dowolnych u U i a R. Uwaga 1. Warunki 1., 2. mo»na zast pi jednym warunkiem: L(a u + b v) = al( u) + bl( v) Przeksztaªcenia liniowe Def 1 Przeksztaªceniem liniowym (homomorzmem liniowym) rzeczywistych przestrzeni liniowych U i V nazywamy dowoln funkcj L : U V speªniaj c warunki: 1 L( u + v) = L( u) + L( v) dla

Bardziej szczegółowo

Kongruencje twierdzenie Wilsona

Kongruencje twierdzenie Wilsona Kongruencje Wykład 5 Twierdzenie Wilsona... pojawia się po raz pierwszy bez dowodu w Meditationes Algebraicae Edwarda Waringa (1770), profesora (Lucasian Professor) matematyki w Cambridge, znanego głównie

Bardziej szczegółowo

Statystyka matematyczna - ZSTA LMO

Statystyka matematyczna - ZSTA LMO Statystyka matematyczna - ZSTA LMO Šukasz Smaga Wydziaª Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza w Poznaniu Wykªad 4 Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 1 / 18 Wykªad 4 - zagadnienia

Bardziej szczegółowo

Rozdział 4. Macierze szyfrujące. 4.1 Algebra liniowa modulo 26

Rozdział 4. Macierze szyfrujące. 4.1 Algebra liniowa modulo 26 Rozdział 4 Macierze szyfrujące Opiszemy system kryptograficzny oparty o rachunek macierzowy. W dalszym ciągu przypuszczamy, że dany jest 26 literowy alfabet, w którym utożsamiamy litery i liczby tak, jak

Bardziej szczegółowo

Zadania do samodzielnego rozwiązania

Zadania do samodzielnego rozwiązania Zadania do samodzielnego rozwiązania I. Podzielność liczb całkowitych 1. Pewna liczba sześciocyfrowa a kończy się cyfrą 5. Jeśli tę cyfrę przestawimy na miejsce pierwsze ze strony lewej, to otrzymamy nową

Bardziej szczegółowo

Zadania z kolokwiów ze Wst pu do Informatyki. Semestr II.

Zadania z kolokwiów ze Wst pu do Informatyki. Semestr II. Zadania z kolokwiów ze Wst pu do Informatyki. Semestr II. Poni»sze zadania s wyborem zada«z kolokwiów ze Wst pu do Informatyki jakie przeprowadziªem w ci gu ostatnich lat. Marek Zawadowski Zadanie 1 Napisz

Bardziej szczegółowo

CAŠKOWANIE METODAMI MONTE CARLO Janusz Adamowski

CAŠKOWANIE METODAMI MONTE CARLO Janusz Adamowski III. CAŠKOWAIE METODAMI MOTE CARLO Janusz Adamowski 1 1 azwa metody Podstawowym zastosowaniem w zyce metody Monte Carlo (MC) jest opis zªo-»onych ukªadów zycznych o du»ej liczbie stopni swobody. Opis zªo»onych

Bardziej szczegółowo

Wykład 4. Określimy teraz pewną ważną klasę pierścieni.

Wykład 4. Określimy teraz pewną ważną klasę pierścieni. Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia

Bardziej szczegółowo

Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej

Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej Matematyka wykªad 1 Macierze (1) Andrzej Torój Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej 17 wrze±nia 2011 Plan wykªadu 1 2 3 4 5 Plan prezentacji 1 2 3 4 5 Kontakt moja strona internetowa:

Bardziej szczegółowo

Równania ró»niczkowe I rz du (RRIR) Twierdzenie Picarda. Anna D browska. WFTiMS. 23 marca 2010

Równania ró»niczkowe I rz du (RRIR) Twierdzenie Picarda. Anna D browska. WFTiMS. 23 marca 2010 WFTiMS 23 marca 2010 Spis tre±ci 1 Denicja 1 (równanie ró»niczkowe pierwszego rz du) Równanie y = f (t, y) (1) nazywamy równaniem ró»niczkowym zwyczajnym pierwszego rz du w postaci normalnej. Uwaga 1 Ogólna

Bardziej szczegółowo

Algorytmy w teorii liczb

Algorytmy w teorii liczb Łukasz Kowalik, ASD 2004: Algorytmy w teorii liczb 1 Algorytmy w teorii liczb Teoria liczb jest działem matemtyki dotyczącym własności liczb naturalnych. Rozważa się zagadnienia związane z liczbami pierwszymi,

Bardziej szczegółowo

1. Rozwiązać układ równań { x 2 = 2y 1

1. Rozwiązać układ równań { x 2 = 2y 1 Dzień Dziecka z Matematyką Tomasz Szymczyk Piotrków Trybunalski, 4 czerwca 013 r. Układy równań szkice rozwiązań 1. Rozwiązać układ równań { x = y 1 y = x 1. Wyznaczając z pierwszego równania zmienną y,

Bardziej szczegółowo