10. PODSTAWOWY MODEL POTOKU RUCHU PORÓWNANIE RÓŻNYCH MODELI (wg Ashton, 1966)

Wielkość: px
Rozpocząć pokaz od strony:

Download "10. PODSTAWOWY MODEL POTOKU RUCHU PORÓWNANIE RÓŻNYCH MODELI (wg Ashton, 1966)"

Transkrypt

1 1. Podstawowy model potou ruchu porównanie różnych modeli 1. PODSTAWOWY MODEL POTOKU RUCHU PORÓWNANIE RÓŻNYCH MODELI (wg Ashton, 1966) 1.1. Porównanie ształtu wyresów różnych unci modeli podstawowych Jednym z podstawowych problemów teorii potoów ruchu est teoretyczne rozważanie i doświadczalna weryiaca relaci poto-gęstość lub równanie stanu. Dlatego dale rozważamy, a podstawowy model ruchu może być wydeduowany z różnych teorii i aa to est orma graiczna w ażdym przypadu. Rozważmy napierw a model podstawowy może być otrzymany z rozważań mirosopowych, t. na podstawie rozważania przypadu dwóch szczególnych poazdów podążaących eden za drugim; to uż było opisane w rozdz. 9. Ktoś, to rozważa słania się do opinii, że są tu dwa rodzae następuących zachowań, edno dla gęstego, a drugie dla rzadiego ruchu. Z tego wyniaą dwie uncyne ormy modelu podstawowego z możliwością wyorzystania, ale bez sprecyzowanych ograniczeń na te strumienie tych zależności. Równania (9.9),(9.1) i (9.13), tóre wyniaą z tych teorii przytacza się eszcze raz dla wygody: c( 1 ), gdzie c est natężeniem ruchu (1.1) c ln ( ), gdzie c est prędością (1.) e c, gdzie c est odległością (1.3) Różniczuąc po i załadaąc d d, co dae wartość, dla tóre (max),t. optymalną wartość gęstości potou dla nawięsze przepustowości potou. Dla wzoru (1.) to est e, tzn. 37% zagęszczenia orowego. Optymalna prędość w tym przypadu est c. Dla wzoru (1.3) optymalne zagęszczenie est1 c a optymalna prędość e. c Rys.1.1. Wyres gęstość-natężenie dla modelu c( ) 1, dla, c 18 TPR1-45

2 1. Podstawowy model potou ruchu porównanie różnych modeli Rys.1.. Wyres gęstość-natężenie dla modelu c ln( ), dla, c Rys.1.3. Wyres gęstość-natężenie dla modelu c, e c, dla 1, Na Rys. 1.1 przedstawiony został wyres (1.1). Ja widać, wyres ten est nietypowy, nie spełniaący wszystich założeń granicznych, dla blisich zero. Wyresy przestawione w tym rozdziale pochodzą z różnych źródeł modelowych. Z tego względu, dla celów porównawczych przyęto następuące wartości parametrów: gęstość orowa [po/m], prędość swobodna 1 [m/h]. O przepustowości założono, że nie powinna być więsza od [po/h] oraz mniesza niż 15 [po/h], to znaczy: 15. Dla spełnienia ostatniego warunu dobierano odpowiednie wartości pozostałych parametrów. Gdy nie możliwa była taa normalizaca sali, wprowadzono dodatowy parametr sali d, a na Rys Wartości złożonych unci matematycznych obliczone zostały za pomocą programu EXCEL z paietu OFFICE i zaznaczone na wyresach dla wartości od do, ponieważ nie we wszystich modelach dopuszczalna est wartość. Na Rys. 1. przedstawiony został model (1.), tóry, a widać, ma typowy ształt. Również typowy ształt ma model (1.3), przedstawiony na Rys TPR1-46

3 1. Podstawowy model potou ruchu porównanie różnych modeli Rozważmy teraz a model podstawowy może być wyprowadzony z analogii płynów., różniczowanie dae: Jeżeli i i równanie: d d d + (1.4) d d c d wyraża hipotezę, że prędość ali szoowe w płynie ruchomym est stała. Podstawienie do (1.4) dae: d c, d a rozwiązaniem est: ( ) c ln. (1.5) Zauważmy, że to równanie, tóre było uzysane przez Greenberga (1959) est taie samo a równanie (1.). To będzie przedysutowane późnie. Sugerowane było dodanie dwóch esperymentalnych wzorów. Jeżeli założymy liniowy związe między średnią prędością a gęstością ao wyniaącą z technii regresi, to otrzymuemy: + 1, co prowadzi do wzoru: ( ) 1. (1.6) To równanie otrzymał Greenshields (1985). To est parabola i optymalna gęstość w tym przypadu est, tzn. połowa gęstości orowe. Rys. 1.4 z dodatowym parametrem sali d przedstawia model (1.6) Rys.1.4. Wyres gęstość-natężenie TPR1-47 dla modelu d ( 1 ), dla, 1, d 1 3.

4 1. Podstawowy model potou ruchu porównanie różnych modeli Inna orma, aą sugerowano est: 1 ( ) + ( ) 1. (1.7) A To edna wygląda trochę arbitralnie. Rys. 1.5 przedstawia model (1.7). Wyres z pozoru typowy est trochę nieregularny dla dużych gęstości Rys.1.5. Wyres gęstość-natężenie dla modelu, 1, A, 1. 1 ( ) 1 + ( ), dla A Rozważmy wreszcie a model podstawowy może być wyprowadzony ze stochastycznego podeścia. Załóżmy, za Haightem (1958), że ażdy poazd porusza się z prędością x, wtedy gdy est wolny od wpływów innych poazdów. Niech ta swobodna prędość ma rozład E x. Prędość x nie prawdopodobieństwa z uncą gęstości (x) i sończoną średnią będzie utrzymana przez cały czas, ta więc niech atualna średnia prędość będzie y, gdzie y y x y x,, normalizowana poprzez zastąpienie x, ; w rzeczywistości to est unca przez x, a y przez t y. Rozład x i y est trudny do oreślenia, ale można doonać pewne wiarygodne statystyczne założenia. Należy dodać tu do podstawowego uęcia, że <, gdzie 5 poazdów/m poedynczego pasa ruchu, eżeli przymiemy w przybliżeniu, że eden poazd ma długość 4 m. Dzisia Heidemann (1997) dla dróg niemiecich przymue. Rozład y musi spełniać trzy waruni brzegowe, że poazd porusza się z prędością y x y x,. swobodną, iedy nie ma ruchu I eszcze, że poazd może stanąć na chwilę: y( ),.Że ażdy poazd stoi w oru,. Zares x est < x <, stąd istnieąca masymalna średnia prędość a swobodna prędość rośnie, y musi spełniać: ( ) y, L, TPR1-48

5 gdzie 1. Podstawowy model potou ruchu porównanie różnych modeli L, L L est bezwymiarowe i. Innymi słowy unca gęstości prawdopodobieństwa musi być taa, że est zdeiniowana, L i musi mieć granicę zależną od ształtu unci gęstości prawdopodobieństwa w oreśloną w(, ) a. To est dobrze znana właściwość rozładu beta-pearsona typu I. Odpowiednia unca gęstości est: gdzie C est dane przez: ( ) a α i β są parametrami. Wartość oczeiwana y est dana przez: β α 1 Cy L y L 1, < y < L, 1 C B L L L β + α 1 ( α, β) L α Lβ 1 E y C y L y dx ( α, + 1 β) ( α, β) B L L B L L Lβ+ α Lβ+ α 1 α L β L + α (1.8) gdzie, gdy: L E( y), W gęstym ruchu i L. W ruchu regulowanym, gdy L, rozład Pearsona Typu I przeształca się w Typ III - rozład gamma. Jest to rozład x. Jego unca gęstości est: gdzie: C' β α Γ α, a α i β są granicznymi wartościami α i β. Wartość oczeiwana tego rozładu est: α β x x C' x e, < x < α β Γ α + 1 β x E( x) C' x e dx α β ( α + 1) Γ( α ) α β stąd: α β. Gdy obowiązue wzór (1.8), to problem oreślenia unci orm modelu podstawowego reduue się do problemu znalezienia średnie prędości niesończenie szybiego poazdu ao unci gęstości t. znalezienie ( ). To est możliwe, że α i β mogą zależeć od, ale to nie est niezbędne w przypadu gdy zbieżność L do zera w gęstości masymalne gwarantue, że ( ) ar ( ). Haight otrzymał dwie unce odpowiadaące wartościom granicznym: ( ). Po znormalizowaniu one przeształcaą się na następuące: L ln. Gdy wzór (1.8), to mamy: (i) i TPR1-49

6 dla pewnych α, β, i 1. Podstawowy model potou ruchu porównanie różnych modeli α ln( ) ( ) βln + α βln α ln( ) ( ) + α. (1.9) Rys. 1.6 przedstawia model (1.9) o typowym ształcie wyresu α ln Rys.1.6. Wyres gęstość-natężenie dla modelu β ln +, α, dla (ii) π L ( ).Gdy wzór (5.8), to mamy: ( ) ( ) αtπ βπ + ( α βπ ) dla pewnych α i β, a ( ) α π βπ + ( α βπ ) (1.1) Na Rys. 1.7 przedstawiono model (1.1) o typowym ształcie wyresu. TPR1-5

7 1. Podstawowy model potou ruchu porównanie różnych modeli Rys.1.7. Wyres gęstość-natężenie dla modelu, 1 α, 15 β 1,, ( ) α π, dla β π + ( α β π ) Rozważmy teraz rytycznie różne ormy podstawowego modelu ruchu dane powyższymi ośmioma wzorami. Żadna z tych orm nie była w pełni dowiedziona. Tylo dwa esperymentalne wzory: (1.6) i (1.7) i dwa wzory wyprowadzone z rozważań statystycznych: (1.9) i (1.1) spełniaą wszystie waruni brzegowe. Wzór (1.6) otrzymany został na podstawie założenia liniowego związu między i, co w pratyce est prawdziwe tylo w przybliżeniu. Wzór (1.) dae lepszą zgodność z doświadczeniami, ale nie spełnia wszystich warunów brzegowych. Zauważmy, że wzór (1.) uzysano z rozważań dwóch podążaących za sobą poazdów. W taim przypadu c est parametrem opisuącym wrażliwość na bodziec w modelu odwrotności odległości i to czasami est nazywane "charaterystyczną prędością". Wzór (1.5), z drugie strony otrzymano z rozważań marosopowych. Tuta c est optymalną prędością mierzoną esperymentalnie odniesioną dla wiele poazdów na drodze i a to było znalezione prędość rzędu 3 [m/h]. Fatem dosyć godnym uwagi est, że możliwy est związe prędości charaterystyczne z modelu mirosopowego z optymalną średnią prędością z modelu marosopowego. 1.. Zastosowanie teorii olee do modelu dopędzania (model Millera) Aż do tego miesca ten rozdział dotyczył zastosowania standardowe teorii olee do sytuaci ruchowych. Na zaończenie poświęćmy uwagę na prace Millera (1961, 196) o modelu dopędzania, w tórym poazdy podróżuą w losowych paietach lub oleach i łapią i wyprzedzaą inne paiety losową liczbę razy. W taim modelu prędości poazdów wychodzą z ednego ogólnego rozładu prawdopodobieństwa. Natychmiastowe zmiany prędości są załadane, oraz poazdy tratowane są ao punty, t. są niesończone odległości pomiędzy poazdami w olece. To nie est bardzo realistyczny model w tym stanie, ale zawarte są pewne propozyce orety. Załada się, że intensywność łapania olee est proporconalna do iloczynu gęstości i ich odpowiednich prędości. Miller wyprowadził uład równań stochastycznych. Rozważał on głównie stany staconarne, w tórych intensywność łapania było równe średnie intensywności TPR1-51

8 1. Podstawowy model potou ruchu porównanie różnych modeli wyprzedzania. Wolniesza olea w tym modelu może być tratowana ao punt obsługi w lasyczne teorii olee. Jeżeli est zdeiniowane ao gęstość olei poazdów, i 1 <, że część z porusza się ao poedyncze poazdy, może być wyprowadzone aprosymacyne równanie na zmianę gęstości w czasie t. Intensywność zmian, w tórych edna olea łapie inną est proporconalna w tym przypadu do wadratu gęstości stąd, eżeli ω est intensywnością dopędzania olee zawieraących więce niż eden poazd, to: d dt a + ω 1. Stała a może być wyprowadzona ao połowa średnie różnicy prędości, tóra est dodatnia. Załadaąc, że łapanie i dopędzanie ma osiągać statystyczną równowagę, to: 1 a 1. ω Jeżeli 1 1 w przybliżeniu wszystie poazdy podróżuą swobodnie, i stąd a ω może być użyte ao miara paietowania. Jeżeli ω est duże, to są małe paiety, eżeli est eszcze duże. Jeżeli ω est mniesze, to paietowanie ma mnieszą gęstość. Używaąc modeli Millera można było badać wiele problemów. Rozważaąc za powolnym poazdem można było oszacować wpływy przechodzące na cały poto. On eszcze zastosował teorię olee do problemu srzyżowań regulowanych o stałym cylu oraz rozładu czasu czeania pieszych chcących prześć przez drogę. Problem intensywności dopędzania est nierozłącznie powiązany z przepustowością drogi. W artyule Rallisa (1965) poazano, że wartości "bazowe" i "pratyczne" przepustowości dla różnych typów dróg, aie dae Highway Capacity Manual (Biuro Dróg Publicznych, Washington 197) są zależne od procentowych intensywności awarii, dopędzania lub utrzymania swobodne prędości. Na przyład, dla tuneli dróg szybich maących dwa pasy w ednym ierunu liczby dla bazowe i pratyczne przepustowości odpowiadaą 4% i % załóceniom dopędzania. To prawdopodobieństwo załócenia dopędzania, tóre odnosi się do wszystich zaętych pasów ruchu, może być obliczane ze wzoru Erlanga, tóry w oryginale był wyprowadzony dla ruchu teleonicznego. To est ta zwany wzór "strat" lub "odrzuceń" i atycznie pozwala zrozumieć poziom, do tórego ruch zależy od gęstości. Prawdopodobieństwo, że poazd ponosi opóźnienie est więsze niż prawdopodobieństwo załócenia dopędzania, ponieważ przyazdy aumuluą się i powoduą rozprzestrzenianie warunu. To prawdopodobieństwo ednaże est trudno oszacować, ponieważ wiele założeń est potrzebnych przed użyciem atualnych rezultatów numerycznych. Wzór "odrzucania est niezależny od rozładu ruchu na poszczególne pasy, Jednaże musi być zrobione założenie staconarności, aby pociągnąć za sobą aprosymace w pratycznych sytuacach. Jeżeli A est obciążeniem ruchowym n pasów ruchu wzór Erlanga, załadaąc Poissonowsie przybycia dae: R n n A r n A n! r r! Prawdopodobieństwo "odrzucenia" ( załócenia przy dwóch pasach) TPR1-5

9 1. Podstawowy model potou ruchu porównanie różnych modeli Wzór ten może być użyty do obliczania aiegoś n, A lub R n, eżeli dwa z nich są znane. Na przyład, eżeli n, to odpowiednie wartości R dla A,6; 1,; i 1, są: 1%, % i 5%. Obciążenie ruchowe ANT, gdzie N est średnią liczbą poazdów na ednostę czasu, a T est czasem spędzonym przez poazd na dystansie s, bezpiecznym dystansie pomiędzy dwoma poazdami. Prędość s T i gęstość NT s A s. Wielość R n może być użyta do ustalenia standardów proetowych. Na przyład, można tego użyć do oreślenia, czy droga wymaga dodania pasa ruchu czy nie. Dodanie ednego pasa ruchu zreduue liczbę użytowniów drogi przenoszących załócenia z NR n / edn. Czasu do NR n+1 / edn. Czasu. Pozwala to wziąć do rozważań eonomicznych liczbę N(R n - R n+1 ), tóra musi być porównana z pewną wotą naładu inwestycynego. Załóżmy dla przyładu, że rozważane est dostarczenie dla ogólne wielości ruchu 6 po. / h na drogę maącą eden pas w ażdym ierunu. Średnia prędość est 3 m / h i minimalny dystans 5 m. Pragniemy znaleźć procent poazdów, tóre nie mogą wyprzedzić i poprawa aa może być uzysana poprzez dodanie dodatowego pasa. W tym przypadu: N6, 3, dystans ednostowy s 1/ m, n Stąd: 6 1 A 3 1, R A 1 % lub 1 po./ h 1 + A + A 5 R 3 3 A , % lub 38 po./ h A + A + A To oznacza, że poprawa o 14,5% lub zmnieszenie o 6 po./ h, tóre nie mogą wyprzedzać. Ten sposób podeścia umożliwia oparcie pracy proetowe na raconalnych przesłanach. TPR1-53

Koła rowerowe malują fraktale

Koła rowerowe malują fraktale Koła rowerowe malują fratale Mare Berezowsi Politechnia Śląsa Rozważmy urządzenie sładającego się z n ół o różnych rozmiarach, obracających się z różnymi prędościami. Na obręczy danego oła, obracającego

Bardziej szczegółowo

Wykład 21: Studnie i bariery cz.1.

Wykład 21: Studnie i bariery cz.1. Wyład : Studnie i bariery cz.. Dr inż. Zbigniew Szlarsi Katedra Eletronii, paw. C-, po.3 szla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szlarsi/ 3.6.8 Wydział Informatyi, Eletronii i Równanie Schrödingera

Bardziej szczegółowo

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

Koła rowerowe kreślą fraktale

Koła rowerowe kreślą fraktale 26 FOTON 114, Jesień 2011 Koła rowerowe reślą fratale Mare Berezowsi Politechnia Śląsa Od Redacji: Fratalom poświęcamy ostatnio dużo uwagi. W Fotonach 111 i 112 uazały się na ten temat artyuły Marcina

Bardziej szczegółowo

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F;

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F; Zdarzenie losowe i zdarzenie elementarne Zdarzenie (zdarzenie losowe) - wyni pewnej obserwacji lub doświadczenia; może być ilościowy lub jaościowy. Zdarzenie elementarne - najprostszy wyni doświadczenia

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5.

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5. RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5. PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Rozłady soowe Rozład jednopuntowy Oreślamy: P(X c) 1 gdzie c ustalona liczba. 1 EX c, D 2 X 0 (tylo ten rozład ma zerową wariancję!!!)

Bardziej szczegółowo

Badanie stacjonarności szeregów czasowych w programie GRETL

Badanie stacjonarności szeregów czasowych w programie GRETL Badanie stacjonarności szeregów czasowych w programie GRETL Program proponuje następujące rodzaje testów stacjonarności zmiennych:. Funcję autoorelacji i autoorelacji cząstowej 2. Test Diceya-Fullera na

Bardziej szczegółowo

Colloquium 3, Grupa A

Colloquium 3, Grupa A Colloquium 3, Grupa A 1. Z zasobów obliczeniowych pewnego serwera orzysta dwóch użytowniów. Każdy z nich wysyła do serwera zawsze trzy programy naraz. Użytowni czea, aż serwer wyona obliczenia dotyczące

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

Podstawy rachunku prawdopodobieństwa (przypomnienie)

Podstawy rachunku prawdopodobieństwa (przypomnienie) . Zdarzenia odstawy rachunu prawdopodobieństwa (przypomnienie). rawdopodobieństwo 3. Zmienne losowe 4. rzyład rozładu zmiennej losowej. Zdarzenia (events( events) Zdarzenia elementarne Ω - zbiór zdarzeń

Bardziej szczegółowo

Wykres linii ciśnień i linii energii (wykres Ancony)

Wykres linii ciśnień i linii energii (wykres Ancony) Wyres linii ciśnień i linii energii (wyres Ancony) W wyorzystywanej przez nas do rozwiązywania problemów inżyniersich postaci równania Bernoulliego występuje wysoość prędości (= /g), wysoość ciśnienia

Bardziej szczegółowo

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza

Bardziej szczegółowo

Pattern Classification

Pattern Classification Pattern Classification All materials in these slides were taen from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stor, John Wiley & Sons, 2000 with the permission of the authors

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Inducja matematyczna Inducja jest taą metodą rozumowania, za pomocą tórej od tezy szczegółowej dochodzimy do tezy ogólnej. Przyład 1 (o zanurzaniu ciał w wodzie) 1. Kawałe żelaza, tóry zanurzyłem w wodzie,

Bardziej szczegółowo

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań Mieczysław POŁOŃSKI Wydział Budownictwa i Inżynierii Środowisa, Szoła Główna Gospodarstwa Wiejsiego, Warszawa, ul. Nowoursynowsa 159 e-mail: mieczyslaw_polonsi@sggw.pl Założenia Optymalizacja harmonogramów

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 10

Stanisław Cichocki. Natalia Nehrebecka. Wykład 10 Stanisław Cichoci Natalia Nehrebeca Wyład 10 1 1. Testowanie hipotez prostych Rozład estymatora b Testowanie hipotez prostych przy użyciu statystyi t Przedziały ufności Badamy czy hipotezy teoretyczne

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Zadanie Rozważmy następujący model strzelania do tarczy. Współrzędne puntu trafienia (, Y ) są niezależnymi zmiennymi losowymi o jednaowym rozładzie normalnym N ( 0, σ ). Punt (0,0) uznajemy za środe tarczy,

Bardziej szczegółowo

Relaksacja. Chem. Fiz. TCH II/19 1

Relaksacja. Chem. Fiz. TCH II/19 1 Relasaja Relasaja oznaza powrót uładu do stanu równowagi po zaburzeniu równowagi pierwotnej jaimś bodźem (wielośią zewnętrzną zmieniająą swoją wartość soowo, np. stężenie jednego z reagentów, iśnienie

Bardziej szczegółowo

A4: Filtry aktywne rzędu II i IV

A4: Filtry aktywne rzędu II i IV A4: Filtry atywne rzędu II i IV Jace Grela, Radosław Strzała 3 maja 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i definicje, tórych używaliśmy w obliczeniach: 1. Związe między stałą czasową

Bardziej szczegółowo

Modelowanie przez zjawiska przybliżone. Modelowanie poprzez zjawiska uproszczone. Modelowanie przez analogie. Modelowanie matematyczne

Modelowanie przez zjawiska przybliżone. Modelowanie poprzez zjawiska uproszczone. Modelowanie przez analogie. Modelowanie matematyczne Modelowanie rzeczywistości- JAK? Modelowanie przez zjawisa przybliżone Modelowanie poprzez zjawisa uproszczone Modelowanie przez analogie Modelowanie matematyczne Przyłady modelowania Modelowanie przez

Bardziej szczegółowo

Nr 2. Laboratorium Maszyny CNC. Politechnika Poznańska Instytut Technologii Mechanicznej

Nr 2. Laboratorium Maszyny CNC. Politechnika Poznańska Instytut Technologii Mechanicznej Politechnia Poznańsa Instytut Technologii Mechanicznej Laboratorium Maszyny CNC Nr 2 Badania symulacyjne napędów obrabiare sterowanych numerycznie Opracował: Dr inż. Wojciech Ptaszyńsi Poznań, 3 stycznia

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Przestrzenne uwarunkowania lokalizacji źródeł sygnałów radiowych na bazie pomiaru częstotliwości chwilowej

Przestrzenne uwarunkowania lokalizacji źródeł sygnałów radiowych na bazie pomiaru częstotliwości chwilowej Cezary Ziółowsi Jan M. Kelner Instytut Teleomuniacji Wojsowa Aademia Techniczna Przestrzenne uwarunowania loalizacji źródeł sygnałów radiowych na bazie pomiaru częstotliwości chwilowej Problematya loalizacji

Bardziej szczegółowo

A. Cel ćwiczenia. B. Część teoretyczna

A. Cel ćwiczenia. B. Część teoretyczna A. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z wsaźniami esploatacyjnymi eletronicznych systemów bezpieczeństwa oraz wyorzystaniem ich do alizacji procesu esplatacji z uwzględnieniem przeglądów

Bardziej szczegółowo

BADANIE DOKŁADNOŚCI INSTRUMENTÓW RTK GNSS W OPARCIU O STANDARD ISO 17123-8

BADANIE DOKŁADNOŚCI INSTRUMENTÓW RTK GNSS W OPARCIU O STANDARD ISO 17123-8 Archiwum Fotogrametri Kartografii i Teledetec Vol. 9, 009 ISBN 978-83-6576-09-9 BADANIE DOKŁADNOŚCI INSTRUMENTÓW RTK GNSS W OPARCIU O STANDARD ISO 73-8 EXAMINATION OF THE ACCURACY OF RTK GNSS RECEIVERS

Bardziej szczegółowo

Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość

Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość Idea Niech θ oznacza parametr modelu statystycznego. Dotychczasowe rozważania dotyczyły metod estymacji tego parametru. Teraz zamiast szacować nieznaną wartość parametru będziemy weryfikowali hipotezę

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X.

STATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X. STATYSTYKA MATEMATYCZNA WYKŁAD 4 WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X. Wysuwamy hipotezy: zerową (podstawową H ( θ = θ i alternatywną H, która ma jedną z

Bardziej szczegółowo

1. RACHUNEK WEKTOROWY

1. RACHUNEK WEKTOROWY 1 RACHUNEK WEKTOROWY 1 Rozstrzygnąć, czy możliwe jest y wartość sumy dwóch wetorów yła równa długości ażdego z nich 2 Dane są wetory: a i 3 j 2 ; 4 j = + = Oliczyć: a+, a, oraz a 3 Jai ąt tworzą dwa jednaowe

Bardziej szczegółowo

METODA WSTECZNEJ PROPAGACJI BŁĘDU

METODA WSTECZNEJ PROPAGACJI BŁĘDU Nowoczesne technii informatyczne - Ćwiczenie 5: UCZENIE WIELOWARSTWOWEJ SIECI JEDNOKIERUNKOWEJ str. Ćwiczenie 5: UCZENIE SIECI WIELOWARSTWOWYCH. METODA WSTECZNEJ PROPAGACJI BŁĘDU WYMAGANIA. Sztuczne sieci

Bardziej szczegółowo

WYKŁAD 4 ZASADA ZMIENNOŚCI PĘDU I OGÓLNE RÓWNANIA ZNACZENIE ZASADY ZMIENNOŚCI KRĘTU. RUCHU PŁYNU. 1/11

WYKŁAD 4 ZASADA ZMIENNOŚCI PĘDU I OGÓLNE RÓWNANIA ZNACZENIE ZASADY ZMIENNOŚCI KRĘTU. RUCHU PŁYNU. 1/11 WYKŁAD 4 ZASADA ZMIENNOŚCI PĘDU I OGÓLNE RÓWNANIA RUCHU PŁYNU. ZNACZENIE ZASADY ZMIENNOŚCI KRĘTU. 1/11 RÓŻNICZKOWE RÓWNANIA RUCHU PŁYNU Wiemy uż, że Zasada Zmienności Pędu est szczególnym przypadkiem ogólne

Bardziej szczegółowo

Filtracja pomiarów z głowic laserowych

Filtracja pomiarów z głowic laserowych dr inż. st. of. Paweł Zalewsi Filtracja pomiarów z głowic laserowych słowa luczowe: filtracja pomiaru odległości, PNDS Założenia filtracji pomiaru odległości. Problem wyznaczenia odległości i parametrów

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

D Program ćwiczenia I X U X R V

D Program ćwiczenia I X U X R V Ćwiczenie nr 3. Elementy liniowe i nieliniowe obwodów eletrycznych, pomiar charaterysty stałoprądowych. D- Cel ćwiczenia: Zapoznanie się ze sposobem opracowania wyniów pomiarowych, obliczeniem niepewności

Bardziej szczegółowo

jest scharakteryzowane przez: wektor maksymalnych żądań (ang. claims), T oznaczający maksymalne żądanie zasobowe zadania P j

jest scharakteryzowane przez: wektor maksymalnych żądań (ang. claims), T oznaczający maksymalne żądanie zasobowe zadania P j Systemy operacyjne Zaleszczenie Zaleszczenie Rozważmy system sładający się z n procesów (zadań) P 1,P 2,...,P n współdzielący s zasobów nieprzywłaszczalnych tzn. zasobów, tórych zwolnienie może nastąpić

Bardziej szczegółowo

Matematyka dyskretna. Wykład 2: Kombinatoryka. Gniewomir Sarbicki

Matematyka dyskretna. Wykład 2: Kombinatoryka. Gniewomir Sarbicki Matematya dysretna Wyład 2: Kombinatorya Gniewomir Sarbici Kombinatorya Definicja Kombinatorya zajmuje się oreślaniem mocy zbiorów sończonych, w szczególności mocy zbiorów odwzorowań jednego zbioru w drugi

Bardziej szczegółowo

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas: ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Ćwiczenie 4 Badanie wpływu asymetrii obciążenia na pracę sieci

Ćwiczenie 4 Badanie wpływu asymetrii obciążenia na pracę sieci Ćwiczenie 4 - Badanie wpływu asymetrii obciążenia na pracę sieci Strona 1/13 Ćwiczenie 4 Badanie wpływu asymetrii obciążenia na pracę sieci Spis treści 1.Cel ćwiczenia...2 2.Wstęp...2 2.1.Wprowadzenie

Bardziej szczegółowo

n=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa

n=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa Równanie Bessela Będziemy rozważać następujące równanie Bessela x y xy x ν )y 0 ) gdzie ν 0 jest pewnym parametrem Rozwiązania równania ) nazywamy funkcjami Bessela rzędu ν Sprawdzamy, że x 0 jest regularnym

Bardziej szczegółowo

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07)

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07) Wyład 9 Fizya 1 (Informatya - EEIiA 006/07) 9 11 006 c Mariusz Krasińsi 006 Spis treści 1 Ruch drgający. Dlaczego właśnie harmoniczny? 1 Drgania harmoniczne proste 1.1 Zależność między wychyleniem, prędością

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

Sygnały stochastyczne

Sygnały stochastyczne Sygnały stochastyczne Zmienne losowe E zbiór zdarzeń elementarnych (zbiór możliwych wyniów esperymentu) e E zdarzenie elementarne (wyni esperymentu) B zbiór wybranych podzbiorów zbioru E β B zdarzenie

Bardziej szczegółowo

WYKŁAD 15. Rozdział 8: Drgania samowzbudne

WYKŁAD 15. Rozdział 8: Drgania samowzbudne WYKŁAD 5 Rozdział 8: Drgania samowzbudne 8.. Istota uładów i drgań samowzbudnych W tym wyładzie omówimy właściwości drgań samowzbudnych [,4], odróżniając je od poznanych wcześniej drgań swobodnych, wymuszonych

Bardziej szczegółowo

Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI. Konwekcja wymuszona - 1 -

Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI. Konwekcja wymuszona - 1 - Katedra Silniów Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Konwecja wymuszona - - Wstęp Konwecją nazywamy wymianę ciepła pomiędzy powierzchnią ciała stałego przylegającym do niej płynem, w tórym występuje

Bardziej szczegółowo

koszt kapitału D/S L dźwignia finansowa σ EBIT zysku operacyjnego EBIT firmy. Firmy Modele struktury kapitału Rys. 8.3. Krzywa kosztów kapitału.

koszt kapitału D/S L dźwignia finansowa σ EBIT zysku operacyjnego EBIT firmy. Firmy Modele struktury kapitału Rys. 8.3. Krzywa kosztów kapitału. Modele strutury apitału oszt apitału Optymalna strutura apitału dźwignia finansowa / Rys. 8.3. Krzywa osztów apitału. Założenia wspólne modeli MM Modigliani i Miller w swoich rozważaniach ograniczyli się

Bardziej szczegółowo

Analiza progu rentowności

Analiza progu rentowności Analiza progu rentowności Próg rentowności ( literaturze przedmiotu spotyka się również określenia: punkt równowagi, punkt krytyczny, punkt bez straty punkt zerowy) jest to taki punkt, w którym jednostka

Bardziej szczegółowo

REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO. Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój

REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO. Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój 1 REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój 2 DOTYCHCZASOWE MODELE Regresja liniowa o postaci: y

Bardziej szczegółowo

Kinetyka reakcji chemicznych

Kinetyka reakcji chemicznych Kinetya reacji chemicznych Metody doświadczalne Reacje powolne (> s) do analizy Reacje szybie ( -3 s) detetor v x x t tx/v Reacje b. szybie ( -4-4 s) (fotochemiczne) wzbudzenie analiza Szybość reacji aa

Bardziej szczegółowo

Programowanie celowe #1

Programowanie celowe #1 Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIŁ INŻYNIERII MECHNICZNEJ INSTYTUT EKSPLOTCJI MSZYN I TRNSPORTU ZKŁD STEROWNI ELEKTROTECHNIK I ELEKTRONIK ĆWICZENIE: E2 POMIRY PRĄDÓW I NPIĘĆ W

Bardziej szczegółowo

Pomiary napięć przemiennych

Pomiary napięć przemiennych LABORAORIUM Z MEROLOGII Ćwiczenie 7 Pomiary napięć przemiennych . Cel ćwiczenia Celem ćwiczenia jest poznanie sposobów pomiarów wielości charaterystycznych i współczynniów, stosowanych do opisu oresowych

Bardziej szczegółowo

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie doświadczalne

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie doświadczalne XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie doświadczalne ZADANIE D Nazwa zadania: Prędość chwilowa uli Zaproponuj metodę pomiaru prędości chwilowej stalowej uli poruszającej się po zadanym torze. Wyorzystaj

Bardziej szczegółowo

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,

Bardziej szczegółowo

Zastosowanie Excela w matematyce

Zastosowanie Excela w matematyce Zastosowanie Excela w matematyce Komputer w dzisiejszych czasach zajmuje bardzo znamienne miejsce. Trudno sobie wyobrazić jakąkolwiek firmę czy instytucję działającą bez tego urządzenia. W szkołach pierwsze

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 28 listopada 2018 Plan zaj eć 1 Rozk lad estymatora b 2 3 dla parametrów 4 Hipotezy l aczne - test F 5 Dodatkowe za lożenie

Bardziej szczegółowo

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85

Bardziej szczegółowo

Uwaga. Decyzje brzmią różnie! Testy parametryczne dotyczące nieznanej wartości

Uwaga. Decyzje brzmią różnie! Testy parametryczne dotyczące nieznanej wartości TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu, z którego pochodzi próbka. Hipotezy dzielimy na parametryczne i nieparametryczne. Parametrycznymi

Bardziej szczegółowo

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA ALGORYTM MRÓWKOWY (ANT SYSTEM) ALGORYTM MRÓWKOWY. Algorytm mrówkowy

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA ALGORYTM MRÓWKOWY (ANT SYSTEM) ALGORYTM MRÓWKOWY. Algorytm mrówkowy PLAN WYKŁADU Algorytm mrówowy OPTYMALIZACJA GLOBALNA Wyład 8 dr inż. Agniesza Bołtuć (ANT SYSTEM) Inspiracja: Zachowanie mrówe podczas poszuiwania żywności, Zachowanie to polega na tym, że jeśli do żywności

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XI: Testowanie hipotez statystycznych 12 stycznia 2015 Przykład Motywacja X 1, X 2,..., X N N (µ, σ 2 ), Y 1, Y 2,..., Y M N (ν, δ 2 ). Chcemy sprawdzić, czy µ = ν i σ 2 = δ 2, czyli że w obu populacjach

Bardziej szczegółowo

ładunek do przewiezienia dwie możliwości transportu

ładunek do przewiezienia dwie możliwości transportu ładune do przewiezienia dwie możliwości transportu Potrzeba jest przesłać np. 10 Mb/s danych drogą radiową jedna ala nośna Kod NRZ + modulacja PSK czas trwania jednego bitu 0,1 us przy możliwej wielodrogowości

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,

Bardziej szczegółowo

Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1

Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1 Weryfikacja hipotez statystycznych KG (CC) Statystyka 26 V 2009 1 / 1 Sformułowanie problemu Weryfikacja hipotez statystycznych jest drugą (po estymacji) metodą uogólniania wyników uzyskanych w próbie

Bardziej szczegółowo

R w =

R w = Laboratorium Eletrotechnii i eletronii LABORATORM 6 Temat ćwiczenia: BADANE ZASLACZY ELEKTRONCZNYCH - pomiary w obwodach prądu stałego Wyznaczanie charaterysty prądowo-napięciowych i charaterysty mocy.

Bardziej szczegółowo

Materiały dydaktyczne. Matematyka. Semestr III. Wykłady

Materiały dydaktyczne. Matematyka. Semestr III. Wykłady Materiały dydatyczne Matematya Semestr III Wyłady Aademia Morsa w Szczecinie ul. Wały Chrobrego - 70-500 Szczecin WIII RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE PIERWSZEGO RZĘDU. Pojęcia wstępne. Równania różniczowe

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy

Bardziej szczegółowo

DSP-MATLAB, Ćwiczenie 5, P.Korohoda, KE AGH. Ćwiczenie 5. Przemysław Korohoda, KE, AGH

DSP-MATLAB, Ćwiczenie 5, P.Korohoda, KE AGH. Ćwiczenie 5. Przemysław Korohoda, KE, AGH DSP-MATLAB, Ćwiczenie 5, P.Korohoda, KE AGH Instrucja do laboratorium z cyfrowego przetwarzania sygnałów Ćwiczenie 5 Wybrane właściwości Dysretnej Transformacji Fouriera Przemysław Korohoda, KE, AGH Zawartość

Bardziej szczegółowo

UZUPEŁNIENIA DO WYKŁADÓW A-C

UZUPEŁNIENIA DO WYKŁADÓW A-C UZUPEŁNIENIA DO WYKŁADÓW A-C Objaśnienia: 1. Uzupełnienia sładają się z dwóch części właściwych uzupełnień do treści wyładowych, zwyle zawierających wyprowadzenia i nietóre definicje oraz Zadań i problemów.

Bardziej szczegółowo

2.1 Przykład wstępny Określenie i konstrukcja Model dwupunktowy Model gaussowski... 7

2.1 Przykład wstępny Określenie i konstrukcja Model dwupunktowy Model gaussowski... 7 Spis treści Spis treści 1 Przedziały ufności 1 1.1 Przykład wstępny.......................... 1 1.2 Określenie i konstrukcja...................... 3 1.3 Model dwupunktowy........................ 5 1.4

Bardziej szczegółowo

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań Mieczysław OŁOŃSI Wydział Budownictwa i Inżynierii Środowisa, Szoła Główna Gospodarstwa Wiejsiego, Warszawa, ul. Nowoursynowsa 159 e-mail: mieczyslaw_polonsi@sggw.pl Założenia Optymalizacja harmonogramów

Bardziej szczegółowo

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r Wykład 5. Zagadnienia omawiane na wykładzie w dniu 14.11.2018r Definicja (iloraz różnicowy) Niech x 0 R oraz niech funkcja f będzie określona przynajmnniej na otoczeniu O(x 0 ). Ilorazem różnicowym funkcji

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu

Bardziej szczegółowo

(U.3) Podstawy formalizmu mechaniki kwantowej

(U.3) Podstawy formalizmu mechaniki kwantowej 3.10.2004 24. (U.3) Podstawy formalizmu mechanii wantowej 33 Rozdział 24 (U.3) Podstawy formalizmu mechanii wantowej 24.1 Wartości oczeiwane i dyspersje dla stanu superponowanego 24.1.1 Założenia wstępne

Bardziej szczegółowo

Wpływ zamiany typów elektrowni wiatrowych o porównywalnych parametrach na współpracę z węzłem sieciowym

Wpływ zamiany typów elektrowni wiatrowych o porównywalnych parametrach na współpracę z węzłem sieciowym Wpływ zamiany typów eletrowni wiatrowych o porównywalnych parametrach na współpracę z węzłem sieciowym Grzegorz Barzy Paweł Szwed Instytut Eletrotechnii Politechnia Szczecińsa 1. Wstęp Ostatnie ila lat,

Bardziej szczegółowo

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N = HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

Analiza progu rentowności

Analiza progu rentowności Analiza progu rentowności Próg rentowności ( literaturze przedmiotu spotyka się również określenia: punkt równowagi, punkt krytyczny, punkt bez straty punkt zerowy) jest to taki punkt, w którym jednostka

Bardziej szczegółowo

Algebra liniowa z geometrią analityczną

Algebra liniowa z geometrią analityczną WYKŁAD. Własności zbiorów liczbowych. Podzielność liczb całowitych, relacja przystawania modulo, twierdzenie chińsie o resztach. Liczby całowite Liczby 0,±,±,±3,... nazywamy liczbami całowitymi. Zbiór

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Przykład (wstępny). Producent twierdzi, że wadliwość produkcji wynosi 5%. My podejrzewamy, że rzeczywista wadliwość produkcji wynosi 15%. Pobieramy próbę stuelementową

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Drgania w obwodzie L Autorzy: Zbigniew Kąkol Kamil Kutorasiński 016 Drgania w obwodzie L Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Rozpatrzmy obwód złożony z szeregowo połączonych indukcyjności L (cewki)

Bardziej szczegółowo

Linie wpływu w belkach statycznie niewyznaczalnych

Linie wpływu w belkach statycznie niewyznaczalnych EHANIKA BUOWI inie wpływu w belach statycznie niewyznaczalnych Zadanie.: la poniższej beli naszicuj linie wpływu reacji A, B i. Za pomocą metody przemieszczeń wyznaczyć rzędne poszczególnych linii w połowie

Bardziej szczegółowo

Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =

Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k = Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,

Bardziej szczegółowo

1. Przyszła długość życia x-latka

1. Przyszła długość życia x-latka Przyszła długość życia x-latka Rozważmy osobę mającą x lat; oznaczenie: (x) Jej przyszłą długość życia oznaczymy T (x), lub krótko T Zatem x+t oznacza całkowitą długość życia T jest zmienną losową, której

Bardziej szczegółowo

Wybrane rozkłady zmiennych losowych i ich charakterystyki

Wybrane rozkłady zmiennych losowych i ich charakterystyki Rozdział 1 Wybrane rozłady zmiennych losowych i ich charaterystyi 1.1 Wybrane rozłady zmiennych losowych typu soowego 1.1.1 Rozład równomierny Rozpatrzmy esperyment, tóry może sończyć się jednym z n możliwych

Bardziej szczegółowo

MODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH

MODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH MODYFICJ OSZTOW LGORYTMU JOHNSON DO SZEREGOWNI ZDŃ UDOWLNYCH Michał RZEMIŃSI, Paweł NOW a a Wydział Inżynierii Lądowej, Załad Inżynierii Producji i Zarządzania w udownictwie, ul. rmii Ludowej 6, -67 Warszawa

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych round Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 13 grudnia 2014 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie

Bardziej szczegółowo

REFERAT PRACY MAGISTERSKIEJ Symulacja estymacji stanu zanieczyszczeń rzeki z wykorzystaniem sztucznych sieci neuronowych.

REFERAT PRACY MAGISTERSKIEJ Symulacja estymacji stanu zanieczyszczeń rzeki z wykorzystaniem sztucznych sieci neuronowych. REFERAT PRACY MAGISTERSKIEJ Symulacja estymacji stanu zanieczyszczeń rzei z wyorzystaniem sztucznych sieci neuronowych. Godło autora pracy: EwGron. Wprowadzenie. O poziomie cywilizacyjnym raju, obo wielu

Bardziej szczegółowo

Uwaga 1.1 Jeśli R jest relacją w zbiorze X X, to mówimy, że R jest relacją w zbiorze X. Rozważmy relację R X X. Relację R nazywamy zwrotną, gdy:

Uwaga 1.1 Jeśli R jest relacją w zbiorze X X, to mówimy, że R jest relacją w zbiorze X. Rozważmy relację R X X. Relację R nazywamy zwrotną, gdy: Matematya dysretna - wyład 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produtu artezjańsiego X Y, tórego elementami są pary uporządowane (x, y), taie, że x X i y Y. Uwaga 1.1 Jeśli

Bardziej szczegółowo

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań KAEDRA FIZYKI SOSOWANEJ PRACOWNIA 5 FIZYKI Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na ores drgań Wprowadzenie Ruch drgający naeży do najbardziej rozpowszechnionych ruchów w przyrodzie.

Bardziej szczegółowo

ZASTOSOWANIE ENTROPIJNEGO UOGÓLNIENIA ROZKŁADU MAXWELLA- BOLTZMANNA DO MODELOWANIA ROZDRABNIANIA W MŁYNIE STRUMIENIOWO- FLUIDALNYM

ZASTOSOWANIE ENTROPIJNEGO UOGÓLNIENIA ROZKŁADU MAXWELLA- BOLTZMANNA DO MODELOWANIA ROZDRABNIANIA W MŁYNIE STRUMIENIOWO- FLUIDALNYM ZESZYTY NAUKOWE POLITECHNIKI RZESZOWSKIEJ 290, Mechania 86 RUTMech, t. XXXI, z. 86 (2/14), wiecień-czerwiec 2014, s. 277-284 Dariusz URBANIAK 1 Tomasz WYLECIAŁ 2 Vladimir P. ZHUKOV 3 Evgenii V. BAROCHKIN

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD stycznia 2010

STATYSTYKA MATEMATYCZNA WYKŁAD stycznia 2010 STATYSTYKA MATEMATYCZNA WYKŁAD 14 18 stycznia 2010 Model statystyczny ROZKŁAD DWUMIANOWY ( ) {0, 1,, n}, {P θ, θ (0, 1)}, n ustalone P θ {K = k} = ( ) n θ k (1 θ) n k, k k = 0, 1,, n Geneza: Rozkład Bernoulliego

Bardziej szczegółowo

Wykład 5. Skręcanie nieskrępowane prętów o przekroju prostokątnym.

Wykład 5. Skręcanie nieskrępowane prętów o przekroju prostokątnym. Adresy internetowe, pod którymi można znaleźć wykłady z Wytrzymałości Materiałów: Politechnika Krakowska http://limba.wil.pk.edu.pl/kwm-edu.html Politechnika Łódzka http://kmm.p.lodz.pl/dydaktyka Wykład

Bardziej szczegółowo

Q strumień objętości, A przekrój całkowity, Przedstawiona zależność, zwana prawem filtracji, została podana przez Darcy ego w postaci równania:

Q strumień objętości, A przekrój całkowity, Przedstawiona zależność, zwana prawem filtracji, została podana przez Darcy ego w postaci równania: Filtracja to zjawiso przepływu płynu przez ośrode porowaty (np. wody przez grunt). W więszości przypadów przepływ odbywa się ruchem laminarnym, wyjątiem może być przepływ przez połady grubego żwiru lub

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, Biomatematyka

EGZAMIN DYPLOMOWY, część II, Biomatematyka Biomatematyka Badamy wpływ dwóch czynników mutagennych na DNA. W tym celu podczas każdej replikacji nić DNA poddawana jest na przemian działaniu pierwszego i drugiego czynnika wywołującego mutacje. Wiemy,

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Testowanie hipotez statystycznych Wyk lad 8 Natalia Nehrebecka Stanis law Cichocki 29 listopada 2015 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie

Bardziej szczegółowo

Wykład 7 Testowanie zgodności z rozkładem normalnym

Wykład 7 Testowanie zgodności z rozkładem normalnym Wykład 7 Testowanie zgodności z rozkładem normalnym Wrocław, 05 kwietnia 2017 Rozkład normalny Niech X = (X 1, X 2,..., X n ) będzie próbą z populacji o rozkładzie normalnym określonym przez dystrybuantę

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ LISTA ZADAŃ 1 1 Napisać w formie rozwiniętej następujące wyrażenia: 4 (a 2 + b +1 =0 5 a i b j =1 n a i b j =1 n =0 (a nb 4 3 (! + ib i=3 =1 2 Wyorzystując twierdzenie o

Bardziej szczegółowo

Wykład 9 Wnioskowanie o średnich

Wykład 9 Wnioskowanie o średnich Wykład 9 Wnioskowanie o średnich Rozkład t (Studenta) Wnioskowanie dla jednej populacji: Test i przedziały ufności dla jednej próby Test i przedziały ufności dla par Porównanie dwóch populacji: Test i

Bardziej szczegółowo