Adam Kasperski, Michał Kulej, Badania Operacyjne, Wykład 3, Programowanie całkowite(plc)1 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE(DYSKRET- NE)

Wielkość: px
Rozpocząć pokaz od strony:

Download "Adam Kasperski, Michał Kulej, Badania Operacyjne, Wykład 3, Programowanie całkowite(plc)1 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE(DYSKRET- NE)"

Transkrypt

1 Adam Kasperski, Michał Kulej, Badania Operacyjne, Wykład 3, Programowanie całkowite(plc)1 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE(DYSKRET- NE) Zadanie programowania liniowego w którym zmienne decyzyjne musz a przyjmować wartości całkowite nazywamy zadaniem programowania liniowego całkowitoliczbowego(krótko PLC). max(min)z = c 1x 1 +c x + +c nx n [Funkcjacelu] a 11x 1 +a 1x + +a 1nx n (,=)b 1 [Ograniczenie1]... a m1x 1 +a mx + +a mnx n (,=)b m [Ograniczenie m] x 1 0,...,x r 0, r n [Ograniczenianaznak] x i całkowite, i = 1,...,n 1(n 1 n). Jeśli n 1 = n,zagadnienienazywamyczystymzagadnieniemprogramowanialiniowego(pcl)natomiast,gdy n 1 < nzagadnienienazywamymieszanym(mcl). P1-Zagadnienie rozkroju. Klient zamówił w tartaku 100 desek o szerokości cm,150desekoszerokości3cmi80desekoszerokości4cm.wszystkiezamawiane przez klientów deski są tej samej długości l. Deski wycinane s a ze standardowych desek o długości l i szerokości 10 cm. W jaki sposób zrealizować zamówienie aby ilość ciȩtych desek standardowych była minimalna? Poniższa tabela pokazuje wszystkie możliwe sposoby pociȩcia standardowej deski: Zmienne decyzyjne: Sposób Ilość4cm Ilość3cm Ilośćcm x i -ilośćdesekciȩta i-tymsposobem i = 1,...,8. Model: 8 i=1 x i min x 1 +x +x 3 +x 4 80 [Deski4cm] x +x 3 +3x 5 +x 6 +x [Deski3cm] x 1 +x 3 +3x 4 +x 6 +3x 7 +5x [Deskicm] x i 0, x i całkowite, i = 1,...,8 Zadanie w którym wszystkie zmienne decyzyjne musz a przyjmować wartość 0 lub 1 nazywamy zadaniem programowania 0-1. max(min)z = c 1 x 1 +c x + +c n x n [Funkcjacelu] a 11 x 1 +a 1 x + +a 1n x n (,=)b 1 [Ograniczenie1]... a m1 x 1 +a m x + +a mn x n (,=)b m [Ograniczenie m] x i {0,1}, i = 1,...,n P- Zagadnienie plecakowe. W magazynie znajduje siȩ 7 paczek. Każda paczka ma określon a wagȩ i wartość podan a w poniższej tabeli:

2 Adam Kasperski, Michał Kulej, Badania Operacyjne, Wykład 3, Programowanie całkowite(plc) Paczka Waga Wartość Samochód ma ładowność 15(czyli może zabrać ładunek o ł acznej wadze nie wiȩkszej niż 15). Które paczki ma zabrać samochód aby zmaksymalizować wartość ładunku? Zmienne decyzyjne: x i {0,1}, x i = 1jeżelisamochódzabiera i-t apaczkȩi0wprzeciwnym wypadku, i = 1,...,7. Model: maxz = 8x 1 +3x +10x 3 +x 4 +9x 5 +11x 6 +x 7 5x 1 +x +7x 3 +x 4 +6x 5 +8x 6 +x 7 15 x i {0,1}, i = 1,...,7 [Ładownośćsamochodu] Rozpatrzmy dodatkowe ograniczenia: Należyzabraćpaczkȩlub5.Należyzamodelowaćalternatywȩ x = 1 x 5 = 1. Dodajemy ograniczenie: x +x 5 1 Nie wolno przewozić razem paczek 1 i 6. Należy zamodelować warunek (x 1 = 1 x 6 = 1) (x 1 = 0 x 6 = 0).Dodajemyograniczenie: x 1 +x 6 1 Jeżeli zabieramy paczkȩ 3 to musimy zabrać również paczkȩ 4. Należy zamodelowaćimplikacjȩ x 3 = 1 x 4 = 1.Dodajemyograniczenie: x 4 x 3 P3- Zagadnienie stałych kosztów. Firma tekstylna SZYK zamierza produkowaćtrzyprodukty: W 1,W i W 3.Doprodukcjitychwyrobówpotrzebnesątrzy rodzaje maszyn, które firma zamierza wynająć. Wynajęcie maszyn do produkcji wyrobów W 1,W i W 3 kosztujetygodniowoodpowiednio00,150i100zł.zmiennekosztyprodukcjiszacujesięodpowiedniona6,4i8zł.zasztukęacenazbytu wynosiodpowiednio1,8i15zł.zaszt.wyrobyteprodukujesięzmateriału, któregotygodniowadostawanieprzekracza160 m ajednostkowezużyciewynosi odpowiednio4,3i4m.ponadtozdolnościprodukcyjnefirmyograniczazatrudnienie- dysponuje 150 roboczogodzinami tygodniowo. Pracochłonność wytwarzania jednej sztuki każdego wyrobu wynosi odpowiednio 3, i 6 roboczogodzin. Firma chce opracować plan produkcji maksymalizujący zysk. Zmienne decyzyjne: x i -ilośćprodukowanegowyrobu W i i = 1,,3. y i {0,1}, y i = 1jeżeliprodukujesięwyrób W i i = 1,,3a0wprzeciwnym wypadku.

3 Adam Kasperski, Michał Kulej, Badania Operacyjne, Wykład 3, Programowanie całkowite(plc)3 Model: Funkcją celu jest zysk(dochód- koszt zmienny- koszt wynajmu maszyn) maxz = 1x 1 +8x +15x 3 (6x 1 +4x +8x 3 ) (00y y +100y 3 ) = 6x 1 +4x +7x 3 00y 1 150y 100y 3 3x 1 +4x +7x x 1 +3x +4x x 1 M 1 y 1 (jeśli x 1 > 0to y 1 = 1) x M y (jeśli x > 0to y = 1) x 3 M 3 y 3 (jeśli x 3 > 0to y 3 = 1) x 1,x,x 3 0całkowite; y 1,y,y 3 {0,1} Zograniczeńmamy,że M 1 = 40,M = 53iM 3 = 5.Rozwiązanieoptymalneto: z opt = 75,x 3 = 5,y 3 = 1. P4- Zagadnienie pokrycia. W pewnym regionie znajduje siȩ sześć miast. Czasy przejazdu miȩdzy miastami(w minutach) podane s a w poniższej tabeli: Miasto1 Miasto Miasto3 Miasto4 Miasto5 Miasto6 Miasto Miasto Miasto Miasto Miasto W których miastach należy ulokować posterunki policji aby czas dojazdu do każdego miasta był nie dłuższy niż 15 minut? Chcemy zminimalizować liczbȩ wybudowanych posterunków. Zmienne decyzyjne: Posterunek w mieście obsługuje miasta 1 1, 1,,6 3 3,4 4 3,4,5 5 4,5,6 6,5,6 x i {0,1}, x i = 1jeżelibudujemyposterunekwi-tymmieściei0wprzeciwnymprzypadku, i = 1,...,6. Model: x 1 +x +x 3 +x 4 +x 5 +x 6 min x 1 +x 1 x 1 +x +x 6 1 x 3 +x 4 1 x 3 +x 4 +x 5 1 x 4 +x 5 +x 6 1 x +x 5 +x 6 1 x i {0,1}, i = 1,...,6 [Należyobsłużyćmiasto1] [Należyobsłużyćmiasto] [Należyobsłużyćmiasto3] [Należyobsłużyćmiasto4] [Należyobsłużyćmiasto5] [Należyobsłużyćmiasto6] P5- zaawansowane modelowanie. Firma wytwarza 3 typy samochodów. Dane s a nastȩpuj ace: TYP1 TYP TYP3 Zużycie stali(t/szt) Wymagana praca(h/szt) Zysk($/szt.)

4 Adam Kasperski, Michał Kulej, Badania Operacyjne, Wykład 3, Programowanie całkowite(plc)4 Zapasstaliwynosi6000tadostȩpnapracawynosi60000godzin.Chcemyzmaksymalizować zysk. Zmienne decyzyjne: x i -liczbaprodukowanychsamochodów i-tegotypu, i = 1,...,3. Model: 000x x +4000x 3 max 1.5x 1 +3x +5x [Zużyciestali] 30x 1 +5x +40x [Zużyciepracy] x 1,x,x 0icałkowite Rozpatrzmy nastȩpuj ace dodatkowe wymagania: 1. Produkcja mniej niż 1000 sztuk typu 1 jest nieopłacalna(należy produkować albo0alboconajmniej1000sztuk).należyzamodelowaćalternatywȩ x 1 0 x Wprowadzamyzmienn abinarn a y 1 {0,1}idodajemydwa ograniczenia: x 1 My x 1 M(1 y 1 ) gdziemjestduż aliczb a.jeżeliy 1 = 0tox 1 0.Jeżeliy 1 = 1to1000 x 1 0 czyli x Wtensposóbjedenzdwóchwarunkówmusibyćspełniony. Uwaga: W ogólnym przypadku, jeśli chcemy zamodelować alternatywȩ: f(x 1,...,x n ) 0 g(x 1,...,x n ) 0 tj. chcemy aby przynajmniej jedno z dwóch ograniczeń było spełnione, to wymaganie to modelujemy wprowadzaj ac zmienn a binarn a δ {0, 1} i dodając do zbioru ograniczeń modelu następujące dwa ograniczenia: f(x 1,...,x n ) Mδ g(x 1,...,x n ) M(1 δ), (1) gdzie M jest bardzo duż a liczb a dodatnią..jeżeliprodukcjatypu3przekroczy500szt.toprodukcjatypuniemoże przekroczyć100szt.chcemyzamodelowaćimplikacjȩ (x 3 > 500) (x 100).Korzystamyzprawalogicznego (p q) ( p q).st ad (x 3 > 500) (x 100) (x 3 500) (x 100)Wprowadzamyzmienn abinarn a y {0,1}idodajemyograniczenia(zgodniez(1)): x My x 100 M(1 y ) gdzie Mjestjak aśbardzoduż aliczb a.jeżeli x 3 > 500toabyspełnićpierwsze ograniczenimusizajść y = 1.Wówczaszdrugiegoograniczenieotrzymujemy x 100.Jeżeli x 3 500to y = 0iwartość x możebyćdowolna. Uwaga: W ogólnym przypadku, jeśli chcemy zamodelować implikacjȩ f(x 1,...,x n ) > 0 g(x 1,...,x n ) 0. to korzystamy z równoważnego warunku: f(x 1,...,x n ) 0 g(x 1,...,x n ) 0.

5 Adam Kasperski, Michał Kulej, Badania Operacyjne, Wykład 3, Programowanie całkowite(plc)5 i dodajemy ograniczenia zgodnie z(1). Jeżeli chcemy zamodelować implikacjȩ f(x 1,...,x n ) > 0 g(x 1,...,x n ) 0 to korzystamy z równoważnego warunku: f(x 1,...,x n ) 0 g(x 1,...,x n ) 0. i dodajemy do ograniczeń modelu następujące ograniczenia(zgodnie z(1)): f(x 1,...,x n ) Mδ g(x 1,...,x n ) M(1 δ) δ {0,1}. Uwaga: Nieliniowe problemy binarne można sprowadzić do liniowych: Jeśli x j jestzmiennąbinarnąto x n j = x jdladowolnego n. Jeśliwmodeluwystępujenieliniowewyrażenie x i x j będąceiloczynemdwóch zmiennychbinarnych x i oraz x j,tozastępujemyteniloczynnowązmienną binarną δ spełniającą następujący warunek: δ = 1 (x i = 1) (x j = 1). Spełnienie tego warunku wymusza dodanie do warunków modelu następującego układu nierówności: x i +δ 0 x j +δ 0 x i +x j δ 1. Naprzykład,jeśliwmodeluwystąpinielinioweograniczenie x x 3 x 5 0to wprowadzamynowązmiennąbinarną y(= x 3 x 5 ) {0,1},ograniczenienieliniowe zastępujemyliniowym x 1 +y 0idodajemydoograniczeńmodelutrzydodatkowe liniowe ograniczenia: x 3 +y 0 x 5 +y 0 x 3 +x 5 y 1. P5- Zagadnienie komiwojażera TSP. Komiwojażer wyrusza z miasta, gdzie mieszka, ma odwiedzić klientów mieszkających w innych miastach i powrócic do domu. Problem polega na tym, aby wyznaczyć kolejność odwiedzania(dokładnie jeden raz) tych miast tak, aby łączna ilość przejechanych przez komiwojażera kilometrów była jak najmniejsza. Problem ten może być sformułowany jako zagadnienie programowania całkowitego następująco: Założymy,że miasta które ma odwiedzić komiwojażersąponumerowane 1,,...,n(miasto1jestmiejscemzamieszkaniakomiwojażera). Dowolne rozwiązanie problemu będziemy nazywać trasą. Zdefiniujemy 0 1zmiennedecyzyjne x ij następująco: { 1 jeślitrasaprzebiegaodmiasta ibezpośredniodomiasta j. x ij = 0 w przeciwnym przypadku.

6 Adam Kasperski, Michał Kulej, Badania Operacyjne, Wykład 3, Programowanie całkowite(plc)6 orazwprowadzimydodakowozmienneciągłe u i for i =,...,n.zmienne u i mają następującąinterpretację: u i jestkolejnymnumeremmiastaodwiedzanegoprzez komiwojażeranatrasiezdefiniowanejprzezzmienne x ij. Model: MinimizeZ = n j=1, j i n i=1, i j n c ijx ij () i j x ij = 1for i = 1,...,n. (3) x ij = 1for j = 1,...,n. (4) x ij {0,1} i,j = 1,...,n;i j. (5) u i u j +(n 1)x ij n for i,j =,...,n;i j. (6) 1 u i n 1fori=,...,n. (7) Warunki(3) formułują wymaganie aby dokładnie jedno miasto było wizytowane bezposrednio po mieście i. Warunki(4), że przed miastem j musi być odwiedzone też dokładnie jedno miasto. Dodatkowe ograniczenia(6) eliminują możliwość występowania podcykli w rozwiązaniu. Do rozwiązywania tego problemu opracowane wiele dokładnych i heurystycznych algorytmów. Jedną z metod dających rozwiązanie dokładne(optymalne) podano poniżej. Metoda dokładna rozwiązywania zagadnienia komiwojażera(rozwiązywanie ciągu zadań PLC) Metoda polega na rozwiązaniu ciągu zagadnień PLC, w którym każde następne zagadnienie otrzymyjemy z poprzedniego dopisując dodatkowe ograniczenia eliminujące podcykle poprzednio uzyskanego rozwiązania. Zaczynamy od rozwiązania następującego zagadnienie PLC(zagadnienie optymalnego przydziału): n c ij x ij = z min (8) i=1 n x ij = 1,dla i = 1,...,n, (9) j=1 n x ij = 1,dla j = 1,...,n, (10) i=1 x ij {0,1} dla i = 1,...,n, j = 1,...,n, i j. (11) Jeśli rozwiązanie optymalne tego zagadnienia nie zawiera podcykli, to jest ono również rozwiązaniem optymalnym zagadnienia komiwojażera. Jeśli natomiast zawiera podcykle(tj. cykle przechodzace przez mniej niż n wierzchołków) to dopisujemy ograniczenia- dla każdego podcyklu jedno- eliminujące te podcykle. Stosujemy następującą metodę eliminacji podcykli: dodajemy ograniczenie, że suma zmiennych, które tworzą dany podcykl musi być nie większa niż liczba łuków tego podcyklu minus 1. Ponownie rozwiązujemy tak zmodyfikowane całkowitoliczbowe zagadnienie (ma teraz tyle dodatkowych ograniczeń ile było podcykli). Powyższe postępowanie kontynuujemy aż do otrzymania rozwiązanie nie zawierającego podcykli, które jest rozwiązaniem optymalnym. Działanie tej metody zilustrujemy na przykładzie zagadanienia komiwojażera o następującej macierzy odległości: Rozwiązanie optymalne zagadnienia optymalnego przydziału jest następujace: x 13 = x 1 = x 3 = x 46 = x 54 = x 65 = 1 Zawieraonodwapodcykleutworzoneprzezłuki (ij),dlaktórych x ij = 1:jedento (1 3 1)adrugi ( ).Eliminujemyjedodającdwanastępujace

7 Adam Kasperski, Michał Kulej, Badania Operacyjne, Wykład 3, Programowanie całkowite(plc) Tabela 1: Macierz odległości dla zagadnienia komiwojażera ograniczenia: x 13 +x 3 +x 1 (1) x 46 +x 65 +x 54 (13) Rozwiązujemy teraz wyjściowy problem z dwoma dodatkowymi ograniczeniami(1 i 13). Rozwiązanie optymalne jest następujące: x 13 = x 4 = x 3 = x 41 = x 56 = x 65 = 1 Rozwiązanietozawieraznowudwapodcykle: ( )oraz (5 6 5). Eliminujemy je dopisując do ograniczeń wyjściowego problemu oprócz(1, 13) dwa nowe: Rozwiązaniem optymalnym tego zagadnienia jest: x 13 +x 3 +x 4 +x 41 3 (14) x 56 +x 65 1 (15) x 13 = x 6 = x 3 = x 41 = x 54 = x 65 = 1 co daje już optymalną trasę komiwojażera: ( ) o długości 346. Naiwne metody rozwi azywania zadania PLC. 1. Pomiń warunki całkowitoliczbowości, rozwi aż problem algorytmem sympleks i zaokr aglij wynik. Rozpatrzmy przykład: maxz = 1x 1 +11x 7x 1 +4x 13 x 1,x 0, x 1,x całkowite

8 Adam Kasperski, Michał Kulej, Badania Operacyjne, Wykład 3, Programowanie całkowite(plc)8 x x 1 Problem posiada 6 rozwi azań dopuszczalnych. S a to punkty(0,0),(0,1),(0,), (0,3),(1,0) i(1,1). Funkcja celu osi aga najwiȩksz a wartość w punkcie(0,3). Pomijaj ac warunki całkowitoliczbowości otrzymujemy optymalny punkt(13/7,0). Zaokr aglaj ac wynik w górȩ otrzymujemy punkt(,0), który jest niedopuszczalny. Zaokr aglaj ac wynik w dół otrzymujemy punkt (1, 0), który jest nieoptymalny.. Wygeneruj wszystkie rozwi azania dopuszczalne i wybierz najlepsze. Rozpatrzmy problem plecakowy: maxz = n i=1 c ix i n i=1 w ix i W x i {0,1}, i = 1...n Wproblemietymnależywygenerowaćisprawdzić n rozwi azań.załóżmy,że jednorozwi azaniemożnasprawdzićwczasie 10 6 s.wówczasdla n = 50czas obliczeńwyniesieok.35latadla n = 60czastenwyniesieok.36558lat. Algorytmy pełnego przegl adu s a wiȩc bardzo nieefektywne. Uwaga: Dla ogólnego zadania PLC nie jest znany efektywny algorytm(wszystkie znane algorytmy mog a działać bardzo długo dla pewnych niedużych problemów) ALGORYTM PODZIAŁU I OGRANICZEŃ Zadanie PL otrzymane z PLC przez usuniȩcie warunków całkowitoliczbowości nazywamy relaksacj a PLC. Przykładowy problem i jego relaksacja: maxz = 1x 1 +11x 7x 1 +4x 13 x 1,x 0 x 1,x całkowite maxz R = 1x 1 +11x 7x 1 +4x 13 x 1,x 0 Wprowadzamy oznaczenia: z -maksymalnawartośćfunkcjiceluplc z R -maksymalnawartośćfunkcjiceluodpowiedniejrelaksacjiplc. Własność:Zachodzizawszewarunek z R z,czylirelaksacjaokreślagórneograniczenie na wartość funkcji celu w PLC. Relaksacjȩ można rozwi azać algorytmem sympleks. Na pojȩciu relaksacji opiera siȩ algorytm podziału i ograniczeń.

9 Adam Kasperski, Michał Kulej, Badania Operacyjne, Wykład 3, Programowanie całkowite(plc)9 Przykład. Rozwi azać problem: maxz = 8x 1 +5x 6x 1 +10x 45 9x 1 +5x 45 x 1,x 0, x 1,x całkowite Zaczynamy od rozwi azania relaksacji(np. algorytmem sympleks albo metod a graficzn a).otrzymujemy x 1 = 3.75, x =.5, z R = x (3.75,.5) x 1 Otrzymane rozwi azanie jest niedopuszczalne ponieważ zmienne s a niecałkowite. Wybieramy zmienn a niecałkowit a z wiȩkszym współczynnikiem funkcji celu czyli x 1.Dokonujemypodziałuzmiennej x 1 irozpatrujemydwapodproblemy: x x 1 = 3.75,x =.5 z R = 41.5 x 1 4 x 1 1 = 3,x =.7 zr = 37.5 x 1 = 4,x = 1.8 z R = (3,.7) (4,1.8) 5 Rozwi azania obu podproblemów s a niedopuszczalne(tzn. nie są całkowite). Wybieramy podproblem, dla którego relaksacja daje wiȩksze górne oszacowaniem czyli podproblem.zmienna x jestniecałkowita.dokonujemywiȩcpodziału x itworzymy dwa podproblemy 3 i 4. Podproblem 4 jest sprzeczny- odpowiadaj acy mu wierzchołek zamykamy(nie dzielimy dalej).

10 Adam Kasperski, Michał Kulej, Badania Operacyjne, Wykład 3, Programowanie całkowite(plc)10 x x 1 = 3.75,x =.5 z R = 41.5 x 1 4 x x 1 = 4,x = = 3,x =.7 z zr R = 37.5 = 41 x 1 x x 3 1 = 4.44,x = 1 4 zr = model sprzeczny Wybieramy otwarty podproblem z najwiȩkszym górnym oszacowaniem, czyli podproblem3.zmienna x 1 jestniecałkowita.dokonujemywiȩcpodziału x 1 itworzymy podproblemy 5 i 6. Rozwi azuj ac oba podproblemy otrzymujemy optymalne rozwi azania całkowite. Odpowiadaj ace im wierzchołki zamykamy. W tym momencie znamydopuszczalnerozwi azanie x 1 = 5, x = 0owartościfunkcjicelurównej40. Musimy jeszcze zbadać otwarty podproblem 1. Ponieważ górne ograniczenie w tym podproblemie jest równe 37.5 < 40, to podproblem 1 nie może zawierać rozwi azania lepszegoniżrozwi azanie x 1 = 5, x = 0.Wierzchołekodpowiadaj acypodproblemowi 1 zamykamy. W tym momencie wszystkie wierzchołki s a zamlniȩte i optymalnym rozwi azaniemjest x 1 = 5, x = 0. x x 1 = 3.75,x =.5 z R = 41.5 x 1 4 x x 1 = 4,x = = 3,x =.7 z zr R = 37.5 = 41 x 1 x x 3 1 = 4.44,x = 1 4 zr = x 1 4 x x 1 = 4,x = 1 x 6 1 = 5,x = 0 zr = 37 zr = 40 model sprzeczny Przykład. Rozwi azać problem: maxz = x 1 +x 5x 1 +x 8 x 1 +x 3 x 1,x 0, x 1 całkowite Powyższy problem jest tzw. problemem mieszanym(tylko niektóre zmienne musz a byćcałkowite.należydzielićtylkozmienn ax 1.Drzewopodziałuiograniczeńwygl ada nastȩpuj aco: x x 1 = /3,x = 7/3 z R = 11 x 1 1 x 1 1 = 0,x = 3 x 1 = 1,x = 3/ zr = 3 zr = 7/

11 Adam Kasperski, Michał Kulej, Badania Operacyjne, Wykład 3, Programowanie całkowite(plc)11 Optymalnerozwi azanieznajdujesiȩwwierzchołku.jesttorozwi azanie x 1 = 1, x = 3/owartościfunkcjicelu z = 7/. Wierzchołek(podproblem) k zamykamy jeżeli: 1. Rozwi azenie relaksacji w k jest dopuszczalne(odpowiednie zmienne s a całkowite).. Relaksacja w k jest sprzeczna. 3. Znaleziono wcześniej rozwi azanie dopuszczalne dla którego wartość fukcji celu jestniemniejszaod z R w k. Algorytm podziału i ograniczeń dla problemu plecakowego Rozpatrujemy nastȩpuj acy problem: maxz = n i=1 c ix i n i=1 w ix i W x i {0,1}, i = 1...n gdzie c i -cena i-tegoprzedmiotu, w i -waga i-tegoprzedmiotu, W -pojemność plecaka. Przykład. Rozwi azać problem: maxz = 5x 1 +3x +6x 3 +6x 4 +x 5 5x 1 +4x +7x 3 +6x 4 +x 5 15, x 1,..,x 5 {0,1} Relaksacj a powyższego problemu jest nastȩpuj acy problem: maxz R = 5x 1 +3x +6x 3 +6x 4 +x 5 5x 1 +4x +7x 3 +6x 4 +x 5 15, 0 x i 1, i = 1,...,5 Relaksacjȩ rozwi azujemy za pomoc a nastȩpuj acego algorytmu zachłannego: i c i w i c i /w i / / Ładujemyprzedmiotywkolejnościilorazów c i /w i zaczynaj acodnajwiȩkszego. Pocz atkowa wolna pojemność plecaka W = 15. Dodajemy cały przedmiot 1(W = 10),dodajemycałyprzedmiot4(W = 4),dodajemycałyprzedmiot5(W = ), dodajemy /7przedmiotu3(W = 0).Otrzymujemyrozwi azanie x 1 = 1, x = 0, x 3 = /7, x 4 = 1, x 5 = 1iz R = Rozwi azanietojestniedopuszczalne.wybieramyzmienn aniecałkowit a x 3 irozpatrujemydwapodproblemy(dokonujemy podziału): 1.Ustawiamy x 3 = 0czylirozpatrujemyrelaksacjȩbezprzedmiotu3. maxz R = 5x 1 +3x +6x 4 +x 5 5x 1 +4x +6x 4 +x 5 15, 0 x i 1, i = 1,,4,5 Otrzymujemyrozwi azanie: x 1 = 1, x = 1, x 3 = 0, x 4 = 1, x 5 = 1iz R = 141.

12 Adam Kasperski, Michał Kulej, Badania Operacyjne, Wykład 3, Programowanie całkowite(plc)1.ustawiamy x 3 = 1czyliwkładamyprzedmiot3doplecakaipozostałeprzedmioty dodajemy zachłannie. maxz R = 5x 1 +3x +6+6x 4 +x 5 5x 1 +4x +6x 4 +x 5 8, 0 x i 1, i = 1,,4,5 Otrzymujemyrozwi azanie: x 1 = 1, x = 0, x 3 = 1, x 4 = 1, x 5 = 0iz R = 14. Oba podproblemy s a niedopuszczalne. Wybieramy podproblem o lepszym oszacowaniu(relaksacji) czyli podproblem 1 i dzielimy dalej. Pełne drzewo podziału i ograniczeń pokazane jest na poniższym rysunku: 1 z R = zr = 14 (1, 1,0,1,1) 0 zr = (1,0, 7,1,1) x 3 = 0 x 3 = 1 (1,0,1, 1,0,) x = 0 x = 1 x 4 = 0 x 4 = 1 zr = 13 zr = 14 zr = z 4 R = 14 6 (1,0,0,1,1) (1,1,0,1,0) (1, 1 4,1,0,1) ( 5,0,1,1,0) Wierzchołki 5 i 6 zamykamy ponieważ w wierzchołku 4 znaleziono dopuszczalne rozwi azanie o wartości niemniejszej niż górne oszacowanie w 5 i 6. Optymalne rozwi azanie odczytujemy w wierzchołku 4, czyli zabieramy przedmioty 1, i 4.

PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE

PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE Adam Kasperski, Michał Kulej Badania Operacyjne Wykład 3 1 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE Zadanie programowania liniowego w którym zmienne decyzyjne musz a przyjmować wartości całkowite nazywamy

Bardziej szczegółowo

Programowanie liniowe całkowitoliczbowe

Programowanie liniowe całkowitoliczbowe Programowanie liniowe całkowitoliczbowe Jeżeli w zadaniu programowania liniowego pewne (lub wszystkie) zmienne musza przyjmować wartości całkowite, to takie zadanie nazywamy zadaniem programowania liniowego

Bardziej szczegółowo

Programowanie liniowe całkowitoliczbowe

Programowanie liniowe całkowitoliczbowe Programowanie liniowe całkowitoliczbowe Jeżeli w zadaniu programowania liniowego pewne (lub wszystkie) zmienne musza przyjmować wartości całkowite, to takie zadanie nazywamy zadaniem programowania liniowego

Bardziej szczegółowo

Modele całkowitoliczbowe zagadnienia komiwojażera (TSP)

Modele całkowitoliczbowe zagadnienia komiwojażera (TSP) & Zagadnienie komowojażera 1 Modele całkowitoliczbowe zagadnienia komiwojażera (TSP) Danych jest miast oraz macierz odległości pomiędzy każdą parą miast. Komiwojażer wyjeżdża z miasta o numerze 1 chce

Bardziej szczegółowo

zadaniem programowania liniowego całkowitoliczbowego. nazywamy zadaniem programowania liniowego 0-1. Zatem, w

zadaniem programowania liniowego całkowitoliczbowego. nazywamy zadaniem programowania liniowego 0-1. Zatem, w Sformułowanie problemu Zastosowania Programowanie liniowe całkowitoliczbowe Jeżeli w zadaniu programowania liniowego pewne (lub wszystkie) zmienne musza przyjmować wartości całkowite, to takie zadanie

Bardziej szczegółowo

Modelowanie całkowitoliczbowe

Modelowanie całkowitoliczbowe 1 Modelowanie całkowitoliczbowe Zmienne binarne P 1 Firma CMC rozważa budowę nowej fabryki w miejscowości A lub B lub w obu tych miejscowościach. Bierze również pod uwagę budowę co najwyżej jednej hurtowni

Bardziej szczegółowo

1 Programowanie całkowitoliczbowe PLC

1 Programowanie całkowitoliczbowe PLC Metody optymalizacji, wykład nr 9 Paweł Zieliński Programowanie całkowitoliczbowe PLC Literatura [] S.P. Bradley, A.C. Hax, T. L. Magnanti Applied Mathematical Programming Addison-Wesley Pub. Co. (Reading,

Bardziej szczegółowo

A. Kasperski, M. Kulej Badania Operacyjne- metoda sympleks 1

A. Kasperski, M. Kulej Badania Operacyjne- metoda sympleks 1 A. Kasperski, M. Kulej Badania Operacyjne- metoda sympleks 1 ALGORYTM SYMPLEKS Model liniowy nazywamy modelem w postaci standardowej jeżeli wszystkie ograniczenia s a w postaci równości i wszystkie zmienne

Bardziej szczegółowo

ZAGADNIENIE DUALNE Rozważmy zagadnienie liniowe(zagadnienie to nazywamy prymalnym) o postaci kanonicznej:

ZAGADNIENIE DUALNE Rozważmy zagadnienie liniowe(zagadnienie to nazywamy prymalnym) o postaci kanonicznej: A Kasperski, M Kulej Badania Operacyjne- programowanie liniowe 1 ZAGADNIENIE DUALNE Rozważmy zagadnienie liniowe(zagadnienie to nazywamy prymalnym) o postaci kanonicznej: max z = c 1 x 1 + c 2 x 2 + +

Bardziej szczegółowo

Definicja problemu programowania matematycznego

Definicja problemu programowania matematycznego Definicja problemu programowania matematycznego minimalizacja lub maksymalizacja funkcji min (max) f(x) gdzie: x 1 x R n x 2, czyli: x = [ ] x n przy ograniczeniach (w skrócie: p.o.) p.o. g i (x) = b i

Bardziej szczegółowo

etody programowania całkowitoliczboweg

etody programowania całkowitoliczboweg etody programowania całkowitoliczboweg Wyróżnia się trzy podejścia do rozwiazywania zagadnień programowania całkowitoliczbowego metody przegladu pośredniego (niebezpośredniego), m.in. metody podziału i

Bardziej szczegółowo

Programowanie liniowe całkowitoliczbowe. Tadeusz Trzaskalik

Programowanie liniowe całkowitoliczbowe. Tadeusz Trzaskalik Programowanie liniowe całkowitoliczbowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Rozwiązanie całkowitoliczbowe Założenie podzielności Warunki całkowitoliczbowości Czyste zadanie programowania

Bardziej szczegółowo

A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe1

A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe1 A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a,a 2,...,a p i qodbiorców, którychpopytwynosi b,b 2,...,b

Bardziej szczegółowo

Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik

Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik Zadanie transportowe i problem komiwojażera Tadeusz Trzaskalik 3.. Wprowadzenie Słowa kluczowe Zbilansowane zadanie transportowe Rozwiązanie początkowe Metoda minimalnego elementu macierzy kosztów Metoda

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 5 (Materiały)

Badania Operacyjne Ćwiczenia nr 5 (Materiały) ZADANIE 1 Zakład produkuje trzy rodzaje papieru: standardowy do kserokopiarek i drukarek laserowych (S), fotograficzny (F) oraz nabłyszczany do drukarek atramentowych (N). Każdy z rodzajów papieru wymaga

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE(ZT)

ZAGADNIENIE TRANSPORTOWE(ZT) A. Kasperski, M. Kulej BO Zagadnienie transportowe 1 ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a 1, a 2,...,a p i q odbiorców,którychpopytwynosi b 1, b 2,...,b q.zakładamy,że

Bardziej szczegółowo

OPTYMALIZACJA DYSKRETNA

OPTYMALIZACJA DYSKRETNA Temat nr a: odelowanie problemów decyzyjnych, c.d. OPTYALIZACJA DYSKRETA Zagadnienia decyzyjne, w których chociaż jedna zmienna decyzyjna przyjmuje wartości dyskretne (całkowitoliczbowe), nazywamy dyskretnymi

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe

Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe Spis treści Elementy Modelowania Matematycznego Wykład 7 i całkowitoliczbowe Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 Spis treści Spis treści 1 Wstęp

Bardziej szczegółowo

A. Kasperski, M. Kulej Badania Operacyjne- programowanie liniowe 1

A. Kasperski, M. Kulej Badania Operacyjne- programowanie liniowe 1 A. Kasperski, M. Kulej Badania Operacyjne- programowanie liniowe ZAGADNIENIE DUALNE Z każdym zagadnieniem liniowym związane jest inne zagadnienie nazywane dualnym. Podamy teraz teraz jak budować zagadnienie

Bardziej szczegółowo

Metody Numeryczne Wykład 4 Wykład 5. Interpolacja wielomianowa

Metody Numeryczne Wykład 4 Wykład 5. Interpolacja wielomianowa Sformułowanie zadania interpolacji Metody Numeryczne Wykład 4 Wykład 5 Interpolacja wielomianowa Niech D R i niech F bȩdzie pewnym zbiorem funkcji f : D R. Niech x 0, x 1,..., x n bȩdzie ustalonym zbiorem

Bardziej szczegółowo

Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład):

Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): 1 Narysuj na płaszczyźnie zbiór dopuszczalnych rozwiazań. 2 Narysuj funkcję

Bardziej szczegółowo

Schemat programowania dynamicznego (ang. dynamic programming)

Schemat programowania dynamicznego (ang. dynamic programming) Schemat programowania dynamicznego (ang. dynamic programming) Jest jedną z metod rozwiązywania problemów optymalizacyjnych. Jej twórcą (1957) był amerykański matematyk Richard Ernest Bellman. Schemat ten

Bardziej szczegółowo

Programowanie dynamiczne i algorytmy zachłanne

Programowanie dynamiczne i algorytmy zachłanne Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5

Bardziej szczegółowo

Sieć (graf skierowany)

Sieć (graf skierowany) Sieci Sieć (graf skierowany) Siecia (grafem skierowanym) G = (V, A) nazywamy zbiór wierzchołków V oraz zbiór łuków A V V. V = {A, B, C, D, E, F}, A = {(A, B), (A, D), (A, C), (B, C),..., } Ścieżki i cykle

Bardziej szczegółowo

Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010

Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010 R. Rȩbowski 1 WPROWADZENIE Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010 1 Wprowadzenie Powszechnie uważa siȩ, że metoda simplex, jako uniwersalny algorytm pozwalaj acyznaleźć rozwi azanie optymalne

Bardziej szczegółowo

Programowanie nieliniowe

Programowanie nieliniowe Rozdział 5 Programowanie nieliniowe Programowanie liniowe ma zastosowanie w wielu sytuacjach decyzyjnych, jednak często zdarza się, że zależności zachodzących między zmiennymi nie można wyrazić za pomocą

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Badania operacyjne Problem Model matematyczny Metoda rozwiązania Znaleźć optymalny program produkcji. Zmaksymalizować 1 +3 2 2 3 (1) Przy ograniczeniach 3 1 2 +2 3 7 (2) 2 1 +4 2 12 (3) 4 1 +3 2 +8 3 10

Bardziej szczegółowo

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,

Bardziej szczegółowo

Standardowe zadanie programowania liniowego. Gliwice 1

Standardowe zadanie programowania liniowego. Gliwice 1 Standardowe zadanie programowania liniowego 1 Standardowe zadanie programowania liniowego Rozważamy proces, w którym zmiennymi są x 1, x 2,, x n. Proces poddany jest m ograniczeniom, zapisanymi w postaci

Bardziej szczegółowo

Badania operacyjne. Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie:

Badania operacyjne. Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie: Badania operacyjne Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie: www.ioz.pwr.wroc.pl/pracownicy/kasperski Forma zaliczenia

Bardziej szczegółowo

PROGRAMOWANIE CAŁKOWITOLICZBOWE

PROGRAMOWANIE CAŁKOWITOLICZBOWE PROGRAMOWANIE CAŁKOWITOLICZBOWE METODA PODZIAŁU I OGRANICZEŃ Przykład 6. Metoda podziału i ograniczeń Rozwiązać zadanie z Przykładu 1. metodą podziału i ograniczeń, przy czym wielkość produkcji wyrobu

Bardziej szczegółowo

TOZ -Techniki optymalizacji w zarządzaniu

TOZ -Techniki optymalizacji w zarządzaniu TOZ -Techniki optymalizacji w zarządzaniu Wykład dla studentów II roku studiów II stopnia na kierunku Zarządzanie Semestr zimowy 2009/2010 Wykładowca: prof. dr hab. inż. Michał Inkielman Wykład 2 Optymalizacja

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,

Bardziej szczegółowo

[1] E. M. Reingold, J. Nievergelt, N. Deo Algorytmy kombinatoryczne PWN, 1985.

[1] E. M. Reingold, J. Nievergelt, N. Deo Algorytmy kombinatoryczne PWN, 1985. Metody optymalizacji, wykład nr 10 Paweł Zieliński 1 Literatura [1] E. M. Reingold, J. Nievergelt, N. Deo Algorytmy kombinatoryczne PWN, 1985. [2] R.S. Garfinkel, G.L. Nemhauser Programowanie całkowitoliczbowe

Bardziej szczegółowo

OPTYMALIZACJA W LOGISTYCE

OPTYMALIZACJA W LOGISTYCE OPTYMALIZACJA W LOGISTYCE Zagadnienie przydziału dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Zagadnienie przydziału 1 Można wyodrębnić kilka grup problemów, których zadaniem jest alokacja szeroko

Bardziej szczegółowo

Algorytmy i struktury danych.

Algorytmy i struktury danych. Algorytmy i struktury danych. Wykład 4 Krzysztof M. Ocetkiewicz Krzysztof.Ocetkiewicz@eti.pg.gda.pl Katedra Algorytmów i Modelowania Systemów, WETI, PG Problem plecakowy mamy plecak o określonej pojemności

Bardziej szczegółowo

Wykład z modelowania matematycznego. Zagadnienie transportowe.

Wykład z modelowania matematycznego. Zagadnienie transportowe. Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana

Bardziej szczegółowo

Badania operacyjne. te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze.

Badania operacyjne. te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze. BADANIA OPERACYJNE Badania operacyjne Badania operacyjne są sztuką dawania złych odpowiedzi na te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze. T. Sayty 2 Standardowe zadanie

Bardziej szczegółowo

Programowanie dynamiczne cz. 2

Programowanie dynamiczne cz. 2 Programowanie dynamiczne cz. 2 Wykład 7 16 kwietnia 2019 (Wykład 7) Programowanie dynamiczne cz. 2 16 kwietnia 2019 1 / 19 Outline 1 Mnożenie ciągu macierzy Konstruowanie optymalnego rozwiązania 2 Podstawy

Bardziej szczegółowo

Wybrane podstawowe rodzaje algorytmów

Wybrane podstawowe rodzaje algorytmów Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.

Bardziej szczegółowo

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl

Bardziej szczegółowo

Elementy Modelowania Matematycznego

Elementy Modelowania Matematycznego Elementy Modelowania Matematycznego Wykład 6 Metoda simpleks Spis treści Wstęp Zadanie programowania liniowego Wstęp Omówimy algorytm simpleksowy, inaczej metodę simpleks(ów). Jest to stosowana w matematyce

Bardziej szczegółowo

Ekonometria - ćwiczenia 10

Ekonometria - ćwiczenia 10 Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 3 autorzy: A. Gonczarek, J.M. Tomczak Zbiory i funkcje wypukłe Zad. 1 Pokazać, że następujące zbiory są wypukłe: a) płaszczyzna S = {x

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca

Bardziej szczegółowo

MATEMATYKA REPREZENTACJA LICZB W KOMPUTERZE

MATEMATYKA REPREZENTACJA LICZB W KOMPUTERZE 1 SZKO LA PODSTAWOWA HELIANTUS 02-892 WARSZAWA ul. BAŻANCIA 16 B l ad bezwzglȩdny zaokr aglenia liczby ɛ = fl() B l ad wzglȩdny zaokr aglenia liczby 0 δ = fl() B l ad procentowy zaokr aglenia liczby 0

Bardziej szczegółowo

[1] R. K. Ahuja, T. L. Magnanti, J. B. Orlin, Network Flows: Theory, Algorithms, and Applications, Prentice Hall, 1993.

[1] R. K. Ahuja, T. L. Magnanti, J. B. Orlin, Network Flows: Theory, Algorithms, and Applications, Prentice Hall, 1993. Metody optymalizacji, wykład nr 11 Paweł Zieliński 1 1 Relaksacja Lagrange a Literatura [1] R. K. Ahuja, T. L. Magnanti, J. B. Orlin, Network Flows: Theory, Algorithms, and Applications, Prentice Hall,

Bardziej szczegółowo

Algebra liniowa. Macierze i układy równań liniowych

Algebra liniowa. Macierze i układy równań liniowych Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Algorytmy zachłanne, programowanie dynamiczne Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk(Wydział Fizyki) WP w. IX Jesień 2014 1 / 26 Algorytmy zachłanne Strategia polegająca

Bardziej szczegółowo

Optymalizacja. Algorytmy dokładne

Optymalizacja. Algorytmy dokładne dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Organizacja zbioru rozwiązań w problemie SAT Wielokrotny podział na dwia podzbiory: x 1 = T, x 1

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 8, 2016 Łukasz Kowalik (UW) LP April 8, 2016 1 / 15 Problem diety Tabelka wit. A (µg) wit. B1 (µg) wit. C (µg) (kcal)

Bardziej szczegółowo

1 Przykładowe klasy zagadnień liniowych

1 Przykładowe klasy zagadnień liniowych & " 1 PRZYKŁADOWE KLASY ZAGADNIEŃ LINIOWYCH 1 1 Przykładowe klasy zagadnień liniowych Liniowy model produkcji Zakład może prowadzić rodzajów działalności np. produkować różnych wyrobów). Do prowadzenia

Bardziej szczegółowo

Temat: Algorytmy zachłanne

Temat: Algorytmy zachłanne Temat: Algorytmy zachłanne Algorytm zachłanny ( ang. greedy algorithm) wykonuje zawsze działanie, które wydaje się w danej chwili najkorzystniejsze. Wybiera zatem lokalnie optymalną możliwość w nadziei,

Bardziej szczegółowo

Techniki optymalizacji

Techniki optymalizacji Techniki optymalizacji Dokładne algorytmy optymalizacji Maciej Hapke maciej.hapke at put.poznan.pl Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem minimalizacji

Bardziej szczegółowo

) a j x j b; x j binarne (j N) całkowitoliczbowe; przyjmujemy (bez straty ogólności): c j > 0, 0 <a j b (j N), P n

) a j x j b; x j binarne (j N) całkowitoliczbowe; przyjmujemy (bez straty ogólności): c j > 0, 0 <a j b (j N), P n PDczęść4 8. Zagadnienia załadunku 8.1 Klasyczne zagadnienia załadunku (ozn. N = {1, 2,..., n} Binarny problem ( (Z v(z =max c j x j : a j x j b; x j binarne (j N zakładamy, że wszystkie dane sa całkowitoliczbowe;

Bardziej szczegółowo

Iwona Konarzewska Programowanie celowe - wprowadzenie. Katedra Badań Operacyjnych UŁ

Iwona Konarzewska Programowanie celowe - wprowadzenie. Katedra Badań Operacyjnych UŁ 1 Iwona Konarzewska Programowanie celowe - wprowadzenie Katedra Badań Operacyjnych UŁ 2 Programowanie celowe W praktycznych sytuacjach podejmowania decyzji często występuje kilka celów. Problem pojawia

Bardziej szczegółowo

Optymalizacja. Algorytmy dokładne

Optymalizacja. Algorytmy dokładne dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Organizacja zbioru rozwiązań w problemie SAT Wielokrotny podział na dwia podzbiory: x 1 = T, x 1

Bardziej szczegółowo

Wielokryteriowa optymalizacja liniowa

Wielokryteriowa optymalizacja liniowa Wielokryteriowa optymalizacja liniowa 1. Przy decyzjach złożonych kierujemy się zwykle więcej niż jednym kryterium. Postępowanie w takich sytuacjach nie jest jednoznaczne. Pojawiło się wiele sposobów dochodzenia

Bardziej szczegółowo

Metody Ilościowe w Socjologii

Metody Ilościowe w Socjologii Metody Ilościowe w Socjologii wykład 4 BADANIA OPERACYJNE dr inż. Maciej Wolny AGENDA I. Badania operacyjne podstawowe definicje II. Metodologia badań operacyjnych III. Wybrane zagadnienia badań operacyjnych

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Badania operacyjne Ćwiczenia 4 Programowanie liniowe Dualizm w programowaniu liniowym Plan zajęć Dualizm w programowaniu liniowym Projektowanie programu dualnego Postać programu dualnego Przykład 1 Rozwiązania

Bardziej szczegółowo

Metody Optymalizacji. Wstęp. Programowanie matematyczne. Dr hab. inż. Maciej Komosiński, mgr Agnieszka Mensfelt

Metody Optymalizacji. Wstęp. Programowanie matematyczne. Dr hab. inż. Maciej Komosiński, mgr Agnieszka Mensfelt Metody Optymalizacji Dr hab. inż. Maciej Komosiński, mgr Agnieszka Mensfelt Wstęp W ogólności optymalizacja związana jest z maksymalizowaniem lub minimalizowaniem pewnej wielkości np. maksymalizacja zysku

Bardziej szczegółowo

Badania operacyjne. Dr Michał Kulej. Pokój 509, budynek B4 Forma zaliczenia wykładu: egzamin pisemny.

Badania operacyjne. Dr Michał Kulej. Pokój 509, budynek B4 Forma zaliczenia wykładu: egzamin pisemny. Badania operacyjne Dr Michał Kulej. Pokój 509, budynek B4 michal.kulej@pwr.wroc.pl Materiały do zajęć będa dostępne na stronie: www.ioz.pwr.wroc.pl/pracownicy/kasperski Forma zaliczenia wykładu: egzamin

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2010 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Homo oeconomicus=

Bardziej szczegółowo

Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka

Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka Zagadnienie Dualne Zadania Programowania Liniowego Seminarium Szkoleniowe Edyta Mrówka Ogólne zagadnienie PL Znajdź taki wektor X = (x 1, x 2,..., x n ), który minimalizuje kombinacje liniow a przy ograniczeniach

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2015 Mirosław Sobolewski (UW) Warszawa, 2015 1 / 16 Homo oeconomicus=

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNENE TRANSPORTOWE Definicja: Program liniowy to model, w którym warunki ograniczające oraz funkcja celu są funkcjami liniowymi. W skład każdego programu liniowego wchodzą: zmienne decyzyjne, ograniczenia

Bardziej szczegółowo

Elementy Modelowania Matematycznego

Elementy Modelowania Matematycznego Elementy Modelowania Matematycznego Wykład 8 Programowanie nieliniowe Spis treści Programowanie nieliniowe Zadanie programowania nieliniowego Zadanie programowania nieliniowego jest identyczne jak dla

Bardziej szczegółowo

Klasyczne zagadnienie przydziału

Klasyczne zagadnienie przydziału Klasyczne zagadnienie przydziału Można wyodrębnić kilka grup problemów, w których zadaniem jest odpowiednie rozmieszczenie posiadanych zasobów. Najprostszy problem tej grupy nazywamy klasycznym zagadnieniem

Bardziej szczegółowo

Programowanie liniowe. Tadeusz Trzaskalik

Programowanie liniowe. Tadeusz Trzaskalik Programowanie liniowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Model matematyczny Cel, środki, ograniczenia Funkcja celu funkcja kryterium Zmienne decyzyjne Model optymalizacyjny Układ warunków

Bardziej szczegółowo

Model zagadnienia programowania liniowego jest w postaci standardowej:

Model zagadnienia programowania liniowego jest w postaci standardowej: METODA SYMPLEKS Model zagadnienia programowania liniowego jest w postaci standardowej: max(min)z = c 1 x 1 + c 2 x 2 + + c n x n a 11 x 1 + a 12 x 2 + + a 1n x n = b 1... a m1 x 1 + a m2 x 2 + + a mn x

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja Politechnika Wrocławska, Wydział Informatyki i Zarządzania Optymalizacja Dla podanych niżej problemów decyzyjnych (zad.1 zad.5) należy sformułować zadania optymalizacji, tj.: określić postać zmiennych

Bardziej szczegółowo

Algorytmika Problemów Trudnych

Algorytmika Problemów Trudnych Algorytmika Problemów Trudnych Wykład 9 Tomasz Krawczyk krawczyk@tcs.uj.edu.pl Kraków, semestr letni 2016/17 plan wykładu Algorytmy aproksymacyjne: Pojęcie algorytmu aproksymacyjnego i współczynnika aproksymowalności.

Bardziej szczegółowo

Analiza stanów gry na potrzeby UCT w DVRP

Analiza stanów gry na potrzeby UCT w DVRP Analiza stanów gry na potrzeby UCT w DVRP Seminarium IO na MiNI 04.11.2014 Michał Okulewicz based on the decision DEC-2012/07/B/ST6/01527 Plan prezentacji Definicja problemu DVRP DVRP na potrzeby UCB Analiza

Bardziej szczegółowo

Ekonometria - ćwiczenia 11

Ekonometria - ćwiczenia 11 Ekonometria - ćwiczenia 11 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 21 grudnia 2012 Na poprzednich zajęciach zajmowaliśmy

Bardziej szczegółowo

Wprowadzenie do badań operacyjnych - wykład 2 i 3

Wprowadzenie do badań operacyjnych - wykład 2 i 3 Wprowadzenie do badań operacyjnych - wykład 2 i 3 Hanna Furmańczyk 14 listopada 2008 Programowanie liniowe (PL) - wszystkie ograniczenia muszą być liniowe - wszystkie zmienne muszą być ciągłe n j=1 c j

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 2 (Materiały)

Badania Operacyjne Ćwiczenia nr 2 (Materiały) Zbiór rozwiązań dopuszczalnych programu liniowego Zbiór rozwiązań dopuszczalnych programu linowego to taki zbiór, który spełnia warunki ograniczające (funkcyjne oraz brzegowe) programu liniowego. Przy

Bardziej szczegółowo

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest

Bardziej szczegółowo

Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty

Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty November 20, 2009 Przyk ladowe zadania z rozwi azaniami Zadanie 1. Znajdź równanie asymptot funkcji f jeśli: a) f(x)

Bardziej szczegółowo

Uniwersytet Kardynała Stefana Wyszyńskiego Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych. Piotr Kaczyński. Badania Operacyjne

Uniwersytet Kardynała Stefana Wyszyńskiego Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych. Piotr Kaczyński. Badania Operacyjne Uniwersytet Kardynała Stefana Wyszyńskiego Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Piotr Kaczyński Badania Operacyjne Notatki do ćwiczeń wersja 0. Warszawa, 7 stycznia 007 Spis treści Programowanie

Bardziej szczegółowo

Przykład wykorzystania dodatku SOLVER 1 w arkuszu Excel do rozwiązywania zadań programowania matematycznego

Przykład wykorzystania dodatku SOLVER 1 w arkuszu Excel do rozwiązywania zadań programowania matematycznego Przykład wykorzystania dodatku SOLVER 1 w arkuszu Ecel do rozwiązywania zadań programowania matematycznego Firma produkująca samochody zaciągnęła kredyt inwestycyjny w wysokości mln zł na zainstalowanie

Bardziej szczegółowo

Wykład 7. Informatyka Stosowana. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23

Wykład 7. Informatyka Stosowana. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23 Wykład 7 Informatyka Stosowana Magdalena Alama-Bućko 16 kwietnia 2018 Magdalena Alama-Bućko Wykład 7 16 kwietnia 2018 1 / 23 Programowanie liniowe Magdalena Alama-Bućko Wykład 7 16 kwietnia 2018 2 / 23

Bardziej szczegółowo

0.1 Reprezentacja liczb w komputerze

0.1 Reprezentacja liczb w komputerze 1 0.1 Reprezentacja liczb w komputerze Zapis liczb w zmiennym przecinku. U lamki dziesiȩtne w laṡciwe i niew laṡciwe piszemy oddzielaj ac czȩṡċ ca lkowit a od czȩṡci u lamkowej w laṡciwej przecinkiem w

Bardziej szczegółowo

Badania operacyjne egzamin

Badania operacyjne egzamin Imię i nazwisko:................................................... Nr indeksu:............ Zadanie 1 Załóżmy, że Tablica 1 reprezentuje jeden z kroków algorytmu sympleks dla problemu (1)-(4). Tablica

Bardziej szczegółowo

Niesimpleksowe metody rozwia zywania zadań PL. Seminarium Szkoleniowe Edyta Mrówka

Niesimpleksowe metody rozwia zywania zadań PL. Seminarium Szkoleniowe Edyta Mrówka Niesimpleksowe metody rozwia zywania zadań PL Seminarium Szkoleniowe Metoda Simplex: wady i zalety Algorytm SIMPLEX jest szeroko znany i stosowany do rozwi azywania zadań programowania liniowego w praktyce.

Bardziej szczegółowo

PROGRAMOWANIE KWADRATOWE

PROGRAMOWANIE KWADRATOWE PROGRAMOWANIE KWADRATOWE Programowanie kwadratowe Zadanie programowania kwadratowego: Funkcja celu lub/i co najmniej jedno z ograniczeń jest funkcją kwadratową. 2 Programowanie kwadratowe Nie ma uniwersalnej

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Wykład 5. Metoda eliminacji Gaussa

Wykład 5. Metoda eliminacji Gaussa 1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne

Bardziej szczegółowo

Zagadnienie transportowe

Zagadnienie transportowe 9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Przykłady problemów optymalizacyjnych

Przykłady problemów optymalizacyjnych Przykłady problemów optymalizacyjnych NAJKRÓTSZA ŚCIEŻKA W zadanym grafie G = (V, A) wyznacz najkrótsza ścieżkę od wierzchołka s do wierzchołka t. 2 7 5 5 3 9 5 s 8 3 1 t 2 2 5 5 1 5 4 Przykłady problemów

Bardziej szczegółowo

Wydział Matematyki I Informatyki ul. Słoneczna Olsztyn

Wydział Matematyki I Informatyki ul. Słoneczna Olsztyn Klucz Napisać program sprawdzający czy dany klucz pasuje do danego zamka. Dziurka w zamku reprezentowana jest w postaci tablicy zero-jedynkowej i jest spójna. Klucz zakodowany jest jako ciąg par liczb

Bardziej szczegółowo

Pierwsze kolokwium z Matematyki I 4. listopada 2013 r. J. de Lucas

Pierwsze kolokwium z Matematyki I 4. listopada 2013 r. J. de Lucas Pierwsze kolokwium z Matematyki I 4. listopada 03 r. J. de Lucas Uwagi organizacyjne: Każde zadanie rozwi azujemy na osobnej kartce, opatrzonej imieniem i nazwiskiem w lasnym oraz osoby prowadz acej ćwiczenia,

Bardziej szczegółowo

Agenda. Politechnika Poznańska WMRiT ZST. Piotr Sawicki Optymalizacja w transporcie 1. Kluczowe elementy wykładu. WPROWADZENIE Cel i zakres wykładu.

Agenda. Politechnika Poznańska WMRiT ZST. Piotr Sawicki Optymalizacja w transporcie 1. Kluczowe elementy wykładu. WPROWADZENIE Cel i zakres wykładu. Tytuł: 01 Budowa portfela produktowego. Zastosowanie programowania liniowego Autor: Piotr SAWICKI Zakład Systemów Transportowych WMRiT PP piotr.sawicki@put.poznan.pl www.put.poznan.pl/~piotr.sawicki www.facebook.com/piotr.sawicki.put

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

8. Neuron z ciągłą funkcją aktywacji.

8. Neuron z ciągłą funkcją aktywacji. 8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i

Bardziej szczegółowo

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby Zadania 1 Przedsiębiorstwo wytwarza cztery rodzaje wyrobów: A, B, C, D, które są obrabiane na dwóch maszynach M 1 i M 2. Czas pracy maszyn przypadający na obróbkę jednostki poszczególnych wyrobów podany

Bardziej szczegółowo