RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA

Wielkość: px
Rozpocząć pokaz od strony:

Download "RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA"

Transkrypt

1 RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA LISTA 1 1.Urządzenie składa się z 3 elementów. Każdy z elementów może mieć jedną z trzech jakości. Opisać zbiór zdarzeń elementarnych. Wypisać zdarzenia elementarne sprzyjające zdarzeniu: a) A - wszystkie elementy są takiej samej jakości; b) B - co najmniej dwa elementy są takiej samej jakości; c) C - każdy element jest innej jakości. Czy zdarzenia A oraz C są przeciwne?, czy zdarzenia A oraz C są rozłączne?, czy B oraz C są przeciwne?, czy zdarzenia A B oraz C są równe? 2.Niech A k, k = 1, 2,..., n oznacza zdarzenie: k-ty podzespół w urządzeniu zbudowanym z n podzespołów jest sprawny. Zapisać zdarzenia: a) podzespół pierwszy i drugi są sprawne, pozostałe są zepsute; b) co najmniej jeden z podzespołów A 1 lub A 2 jest zepsuty, pozostałe sprawne c) tylko jeden z A 1 oraz A 2 jest zepsuty, pozostałe są sprawne. d) dokładnie 2 podzespoły są sprawne. 3.Niech A, B, C oznaczają dowolne zdarzenia w Ω. Wykazać,że: a) P (A B C) = = P (A) + P (B) + P (C) P (A B) P (A C) P (B C) + P (A B C); b) jeśli A B to P (A ) P (B ); c) dla C = A B A B (C oznacza: zaszło tylko jedno ze zdarzeń A,B) zachodzi P (C) = P (A) + P (B) 2P (A B). 4.Rzucamy kostką sześcienną dopóki pojawi się 1 lub 6. Opisać zbiór zdarzeń elementarnych tego doświadczenia. Obliczyć prawdopodobieństwo zdarzenia: 1 lub 6 pojawi się po raz pierwszy na parzystym miejscu. 5.Wśród m losów; m 5 jest 5 wygrywających. Dla jakich m prawdopodobieństwo zdarzenia: zakupione 2 losy będą wygrywające jest mniejsze niż O pracę w pewnej firmie ubiega się n osób. Poproszono 3 specjalistów, aby każdy niezależnie uszeregował je według przydatności do pracy. Do pracy zostanie przyjęta osoba, którą przynajmniej 2 specjalistów umieści na pierwszym miejscu. Obliczyć prawdopodobieństwo,że jedna z n osób zostanie przyjęta. 1

2 Odpowiedzi. zad.1 Zdarzenia A,C są rozłączne; nie są przeciwne. Zdarzenia B,C są przeciwne; A B = C. zad.2 a) A 1 A 2 A 3... A n = A 1 A 2 ( n k=3 A k ) b)(a 1 A 2) n k=3 A k c)(a 1 A 2 A 2 A 1 ) n k=3 A k d) i<j(a i A j n k=1 A k)i, j = 1, 2,..., n; k i; k j. zad.3 Wsk. a) A B C = (A B) C zast. 2 razy wzór na sumę b)a B B A. c) Zdarzenia A B oraz A B są rozłączne i A = (A B) (A B ) to P (A B ) + P (A B) = P (A). zad.4 2 3n 2 ; zad.5 m 7; zad.6 P(A)= 5 n 2 LISTA 2 1.W produkcji firmy A jest 1% braków, zaś w produkcji firmy B jest ich 2%.Kupujemy produkt firmy A oraz B. Jakie jest prawdopodobieństwo, że: a) przynajmniej jeden jest dobry; b) obydwa są dobre; c) tylko jeden z nich jest dobry. 2.Dwie osoby umawiają się na spotkanie. Każda z nich przychodzi w losowej chwili między godziną 16 a 17 i czeka 15 min. Jakie jest prawdopodobieństwo, że się spotkają? Ile czasu powinna czekać każda z osób, aby prawdopodobieństwo spotkania było większe niż 0.75? 3.Drut długości 40 cm zgięto w losowo wybranym punkcie pod kątem prostym, a następnie zgięto jeszcze w 2 punktach tak, aby powstała prostokątna ramka o obwodzie 40 cm. Jakie jest prawdopodobieństwo, że pole obszaru ograniczonego ramką jest większe niż 75 cm 2? 4.Wśród wyrobów firmy A jest 0.5% wadliwych, firmy B jest 2% wadliwych zaś firma C ma 1% wadliwych. Z partii towaru zawierającej 500 elementów firmy A,300 firmy B oraz 200 firmy C losujemy jeden element.obliczyć prawdopodobieństwo, że a) jest on dobry, b) jest dobry i pochodzi z firmy B, c) wyprodukowała go firma C, jeśli wiemy,że jest dobry. 5.Dwie wyrzutnie W1 oraz W2 specjalnymi pociskami gaszą reaktor. W tym samym czasie gdy wyrzutnia W1 wyrzuca 9 pocisków to W2 wyrzuca 10. W1 trafia w cel z prawdopodobieństwem 0.8, zaś W2 z prawdopodobieństwem 0.7. Reaktor ugaszono. Jakie jest prawdopodobieństwo, że zrobiła to W2? 2

3 6.Test na obecność pewnego wirusa w organizmie daje wynik pozytywny z prawdopodobieństwem 0.98, jeśli wirus jest w organizmie. Jeśli wirusa w organizmie nie ma to prawdopodobieństwo wyniku pozytywnego wynosi Zakłada się, że 1 % populacji jest zarażona wirusem. Obliczyć prawdopodobieństwo, że: a) test dał wynik pozytywny u losowo wybranej osoby z tej populacji; b) losowo wybrana osoba jest zarażona wirusem, jeśli test dał wynik pozytywny. 7.Wiadomo,że przeciętnie 5 % badanych elementów ma wadę. Do wykrycia wady wykorzystuje się następujący test. Jeśli element ma wadę to test w 90 % wskazuje jej istnienie ( wynik testu jest pozytywny) i w 90 % nie wskazuje wady,gdy element jej nie ma. Jakie jest prawdopodobieństwo, że element ma wadę,jeśli wynik testu jest pozytywny? Jakie będzie powyższe prawdopodobieństwo, jeśli element zostanie poddany testowi dwukrotnie i w obu przypadkach wynik testu będzie pozytywny? Odpowiedzi zad.1 a) 09998; b) ; c) zad.2 odp zad.3 odp. 1 2 ( w zad.2,3 wykorzystać prawdopodobieństwo geometryczne) zad.4 a) ; b) 0.294; c) 0.2 zad.5 odp zad.6 a) ; b) zad.7 odp ; LISTA 3 1. Podać przykład (Ω, P ), i w niej dwóch zdarzeń niezależnych. 2. Wykazać,że jeśli zdarzenia A i B są niezależne to niezależne są A i B. 3.Uzasadnić,że jeśli P (A B) = P (A B ) to zdarzenia A i B są niezależne. 4. Grupie studentów zadano pytanie: czy ściągają na egzaminach? i poproszono o odpowiedź z wykorzystaniem metody losowej. Polega ona na tym,że każdy student rzuca monetą :jeśli wypadnie orzeł i student nie ściąga to odpowiada : NIE w pozostałych przypadkach odpowiada : TAK. Przyjmując,że 40% studentów ściąga,obliczyć prawdopodobieństwo,że losowo wybrana osoba odpowie NIE.Jak oszacować procent studentów ściągających, jeśli w grupie było 20% odpowiedzi NIE. 5. Z talii 52 kart losujemy bez zwracania 2 karty. Jeśli wśród nich będą : 2 piki to wygrywamy 20 punktów, jeśli tylko jeden pik wygrywamy 10 pkt,jeśli żadnego przegrywamy 5 pkt (wygrywamy -5 pkt). Niech zmienna losowa X oznacza wartość wygranej.wyznaczyć rozkład prawdopodobieństwa oraz 3

4 dystrybuantę X. 6. Spośród liczb 1,2,3,...,20 losujemy 4 razy ze zwracaniem po jednej liczbie.obliczyć prawdopodobieństwo, że wśród 4 wylosowanych liczb będą: a) co najmniej 2 liczby mniejsze od 16; b) 2 liczby podzielne przez 5; c) żadnej liczby większej niż 5. W każdym przypadku wykorzystać rozkład dwumianowy z odpowiednimi parametrami. 7.Prawdopodobieństwo,że w każdej sekundzie pojawi się sygnał wynosi 3 5. Obliczyć prawdopodobieństwo,że; a) w ciągu 2 minut pojawią się 3 sygnały; b) w ciągu 2 minut pojawią się co najmniej 2 sygnały. Jaka jest najbardziej prawdopodobna liczba pojawień się sygnału w przeciągu 121s, 122s a jaka w przeciagu 124 s? 8.Partia towaru zawiera 1 % braków. Ile elementów należy sprawdzić, aby prawdopodobieństwo wykrycia co najmniej jednego braku było większe niż Spośród 3 dobrych i 2 wadliwych elementów losujemy jednocześnie 3 elementy.wyznaczyć rozkład prawdopodobieństwa oraz dystrybuantę zmiennej losowej X, gdzie X jest liczbą wylosowanych elementów wadliwych. Z wykresu dystrybuanty odczytać: P (X > 1), P (1 X < 4). 10.Rzucamy kostką tak długo, aż pojawi się szóstka. Niech zmienna losowa X oznacza numer rzutu, w którym szóstka pojawi się po raz pierwszy. Wyznaczyć rozkład prawdopodobieństwa oraz dystrybuantę X. Obliczyć a) P( X 10); b) P (X 10). 11.Liczba samochodów, które ulegają wypadkowi w ciągu jednego dnia w danym mieście i wymagają naprawy w warsztacie ma rozkład Poissona z parametrem λ = 10. Ile miejsc do naprawy należy przygotować, aby z prawdopodobieństwem większym niż 0.95 było wolne miejsce dla uszkodzonego samochodu. 12.Urządzenie produkuje element wadliwy z prawdopodobieństwem p=0.02. Jakie jest prawdopodobieństwo, że w partii 100 elementów są co najwyżej 2 wadliwe? Podaj rozwiązanie dokładne i przybliżone rozkładem Poissona. 4

5 Odpowiedzi zad.2 P (A)P (B ) = P (A)(1 P (B)) = P (A) P (A B) = P (A B ) bo A,B są niezależne oraz A B i A B są rozłączne i ich sumą jest A. zad.4 P( NIE )=0.3; P(ściąga)=0.6 zad.5 P (X = 5) = , P (X = 10) = 102 F (t) =, P (X = 20) = , gdy t 5,, gdy 5 < t 10,, gdy 10 < t 20 1, gdy t zad.6 a) sukces -wylosowanie liczby mniejszej niż 16; X-liczba sukcesów wśród wylosowanych 4 liczb; X B(4, ); P (X 2) = ; b) Y B(4, 1 ), P (Y = 2) = 96/625; 5 c) Z B(4, 1 ), P (Z = 4) = 1/256 4 zad.7 X-liczba sygnałów w ciągu 2 min. X B(120, 3 ), najbardziej prawdopodobna 5 liczba sygnałów to odpowiednio: 73; 73; 74 lub 75. zad.8 n 230, zad.9 P(X=0)=0.1; P(X=1)=0.6; P(X=2)=0.3 F (t) = 0, gdy t 0, 0.1, gdy 0 < t 1, 0.7, gdy 1 < t 2 1, gdy t 2 P (X > 1) = 0.3; P (1 X < 4) = 0.9. zad.10 X-numer rzutu w którym szóstka pojawi się po raz pierwszy P (X = k) = 1( )k 1, F (t) = k<t 1( )k 1, k = 1, 2,...; tɛr; a) 1 F (10) = ( 5 6 )9 ; b) P (X 10) = F (11) = 1 ( 5 6 )10 ; zad.11 X-liczba uszkodzonych samochodów P (X n) > 0.95, z tablic rozkładu Poissona dla λ = 10 odczytujemy : n 15. zad.12 X-liczba elementów wadliwych wśród 100 elementów; X B(100; 0.02); P (X 2) = (0.98) (0.98) (0.02) 2 (0.98)98, z rozkładu Poissona z λ = 2 mamy P (X 2) = LISTA 4 1*.Liczba komputerów, które mogą być zarażone wirusem poprzez pewną sieć ma rozkład Poissona z parametrem λ. Prawdopodobieństwo,że wirus uaktywni się w zarażonym komputerze wynosi p. Jakie jest prawdopodobieństwo,że wirus uaktywni się w m komputerach? Wykonaj obliczenia dla λ = 8, p=0.125, m=10. 5

6 2.Czy można dobrać stałe a, b ; aby funkcja F(t) była dystrybuantą zmiennej losowej ciągłej? a) a e t, gdy t 1, F (t) = e 1, gdy 1 t < 1, b(3 2 ), gdy t > 1. t b) F (t) = a + barctgt. 3.Dla jakiej { wartości a funkcja a(2 x), gdy 1 < x < 2 a) f(x) = 0, gdy x 1 lub x 2 b) f(x) = ae x jest gęstością pewnej zmiennej losowej X. Dla przykładu a) oraz b) znaleźć dystrybuntę zmiennej losowej X, naszkicować wykresy gęstości oraz dystrybuantę. Obliczyć P (1 < X < 5), P (X < 0 X > 1). 4.Dzienne zużycie energii (w setkach kwh) pewnej firmy jest zmienną losową X o gęstości: f(x) = { 1 (3 + 2x 9 x2 ), gdy 0 < x < 3, 0, gdy x 0 lub x 3 Jakie jest prawdopodobieństwo, że zużycie energii w ciągu dnia jest: większe niż 50 kwh; między 100 a 200 kwh. Jakie jest prawdopodobieństwo, że w ciągu 30 dni jest 10 dni, w których zużycie energii przekroczy 200 kwh. 5.Czas pracy diody jest zmienną losową o rozkładzie wykładniczym z α = Wiadomo, że dioda pracowała bezawaryjnie przez 1000h, jakie jest prawdopodobieństwo, że popracuje co najmniej 6000h? 6.Prawdopodobieństwo wykrycia awarii urządzenia w czasie krótszym niż t minut wynosi F (t) = 1 e 5t. Jakie jest prawdopodobieństwo, że na wykrycie awarii potrzeba: a) więcej niż 4 min. b) więcej niż 4,ale mniej niż 6 min. c) co najwyżej 5 min. Ile potrzeba czasu na wykrycie awarii z prawdopodobieństwem większym niż 0.5? 6

7 7.Dla zmiennej losowej X o rozkładzie normalnym N(-3,2) wyznaczyć, korzystając z tablic: P ( 1 X 1), P (X > 2), P ( 3 X 1), P (X 5), P (X > 10), P ( X > 2). 8.Dla zmiennej losowej X o rozkładzie normalnym N(m,σ) obliczyć P ( X m < σ). 9.Czas oczekiwania na połączenie telefoniczne w pewnej centrali dla każdego abonenta ma rozkład wykładniczy z α =0.2 s. Z centrali korzysta jednocześnie i niezależnie 100 abonentów. Obliczyć prawdopodobieństwo, że: najkrótszy z czasów oczekiwania na połączenie jest większy niż 5s; najdłuższy mniejszy niż 10s. 10.Czasy pracy każdej z n żarówek są niezależne i mają taki sam rozkład wykładniczy z parametrem α = Niech zmienna losowa X oznacza czas pracy układu złożonego z n żarówek połączonych równolegle, zaś zmienna losowa Y czas pracy układu złożonego z n żarówek połączonych szeregowo. Wyznaczyć dystrybuantę i gęstość X oraz Y. Odpowiedzi zad.1 z wzoru na prawdopodobieństwo całkowite mamy (pλ)m. m!e pλ zad.2 a) nie; b) tak; a = 1/2; b = 1/π zad.3 a) a=2/9 0, gdy t 1, 4 F (t) = 9 t 1 9 t2 + 5, gdy 1 < t 2, 9 1, gdy t > 2. P (1 < X < 5) = 1, P (X < 0 X > 1) = 2; 9 3 b) a=1/2 { 1 F (t) = 2 et, gdy t e t, gdy t > 0 P (1 < X < 5) = 1 2 (e 1 e 5 ), P (X < 0 X > 1) = 1(1 + 2 e 1 ). zad.5 P (X > 5000) = e.5 ; zad.6 a) P (X > 4) = e 20 ; b) P (4 < X < 6) = e 20 e 30 ; c) P (X 5) = 1 e 25 ; P (X < T ) 0.5 dla T 0.2 ln(2). zad.7 P ( 1 < X < 1) = Φ(2) Φ(1) = P (X > 2) = 1 Φ(0.5) = 03085; P ( 3 < X < 1) = ; P (X < 5) = Φ(4) = 1; P (X > 10) = 1; P ( X > 2) = 1 Φ(2.5)+Φ(0.5) zad.8 2Φ(1) 1 = zad.10 X { = max(x 1, X 2,..., X n ); Y = min(x!, X 2,..., X n ) 0, gdy t < 0 F X (t) = (1 e tα ) n, gdy t 0 7

8 { 0, gdy t < 0 f X (t) = nαe tα (1 e tα ) n 1, gdy t > 0 { 0, gdy t < 0 F Y (t) = 1 e ntα, gdy t 0 { 0, gdy t < 0 f Y (t) = nαe ntα, gdy t > 0 LISTA 5 1.Na loterii jest n 1 losów na które pada wygrana x 1, n 2 losów na które pada wygrana x 2,..., n k losów na które pada wygrana x k. Wszystkich losów jest N. Wartość oczekiwana wygranej X przy jednokrotnym losowaniu jest równa połowie ceny losu. Obliczyć cenę losu.czy warto wziąć udział w takiej loterii. 2.Zmienna losowa X ma rozkład jednostajny na przedziale [a,b]. Jaka jest jej wartość oczekiwaną i wariancję. Wyznaczyć stałe A, B takie, że zmienna losowa Y = AX + B ma rozkład jednostajny na przedziale [0,1]. 3.Obliczyć wartość oczekiwaną i wariancję dla następujących zmiennych losowych: a) zmienna losowa X każdą z wartości 1,2,3,4,5,6 przyjmuje z takim samym prawdopodobieństwem; b) P( Y = -2)= P( Y = 0)= 0.1; P( Y = 2)= 0.8; c) dystrybuanta zmiennej losowej Z jest postaci: 0, gdy x 1, F (x) = x 1, gdy 1 < x < 4 1, gdy x 4 d) zmiennej losowej o rozkładzie wykładniczym z parametrem α. 4.Dla zmiennej losowej o rozkładzie wykładniczym z α = 2 wyznaczyć medianę oraz kwantyl rzędu 3.Jaka jest interpretacja otrzymanych wartości? 4 5.Zmienna losowa X ma rozkład B(n,p). Dla jakich p wariancja X jest największa? 6.Wiedząc,że: EX= -1, EX 2 = 3 wyznaczyć: varx, E(4X-1), var(4x-1), E(-2X-2), var(-2x-2). 8

9 7*.Rzucamy kostką sześcienną. Niech X oznacza numer rzutu, w którym ścianka z 2 oczkami wypadła po raz pierwszy. Jaka jest EX oraz varx? 8.Prawdopodobieństwo,że obroty firmy jednego dnia przekroczą 1 mln zł wynosi 0.2.Jaka jest oczekiwana, a jaka jest najbardziej prawdopodobna liczba dni z obrotami większymi niż 1 mln w ciągu 24 dni pracy firmy? Odpowiedzi: zad.1 c = 2EX = 1 Ni=1 x N i n i, nie warto,ponieważ cena losu jest większa niż wartość oczekiwana wygranej. zad.2 EX = a+b (b a)2, varx =, A = 1 albo A = 1 ; B = 1 A (a + b) b a b a 2 2 zad.3 a)ex= 7 35, varx = ; b) EY=1.4, vary= c)ex= 7 34, varx= ; d) 3 45 EX=α 1 ;varx=α 2. zad.4 mediana=ln 2, kwantyl rzędu 3 = ln 2; zad.5 p=0.5; 4 zad.6 2; -5; 32; 0; 8. zad.7 EX=6, varx=30; zad.8 EX=4.8,k 0 = 4lubk 0 = 5. LISTA 6 1.Czas sprawnej pracy mierników pewnego typu (w dniach) ma rozkład N(1000,100).Jaki powinien być okres gwarancji, aby na 99% miernik działał przynajmniej przez okres gwarancji? 2.Czas działania (w dniach) drukarek pewnego typu ma rozkład N(1000,σ).Dobrać σ,aby drukarka działała co najmniej 900 dni z prawdopodobieństwem W windach osobowych jest napis: maksymalne obciążenie 7 osób albo 500 kg. Zakładając,że waga pasażerów ma rozkład N(70,4) obliczyć prawdopodobieństwo, że waga 7 osób przekroczy dopuszczalne obciążenie 500 kg. 4.Zmienne losowe X 1, X 2 są niezależne i mają rozkład jednostajny na przedziale [-1,5]. Dla zmiennej losowej Z = max(x 1, X 2 ) wyznaczyć funkcję gęstości oraz obliczyć EZ. 5.Zmienne losowe X 1, X 2,..., X n są niezależne i każda ma rozkład N(0,1).Jaki rozkład prawdopodobieństwa ma zmienna losowa Y n = 1 nk=1 n X k. 6.Prawdopodobieństwo sukcesu w jednej próbie wynosi Ile prób należy wykonać,aby prawdopodobieństwo,że liczba sukcesów odchyla się od swojej wartości oczekiwanej o mniej niż 20% wszystkich prób było większe od 0.8? 9

10 7.Prawdopodobieństwo porażki w każdej próbie wynosi 0.9. Oszacować: a) wykorzystując nierówność Czebyszewa; b) centralne twierdzenie graniczne prawdopodobieństwo,że w 400 próbach liczba porażek będzie większa niż 320 i mniejsza niż Komputer dodaje 1200 liczb rzeczywistych przedtem każdą zaokrąglając do najbliższej liczby całkowitej.zakładamy, że błędy zaokrągleń są niezależne i mają rozkład jednostajny na przedziale [-0.5; 0.5]. Jakie jest prawdopodobieństwo, że błąd w obliczaniu sumy będzie większy niż 5 i mniejszy niż 10? 9.Czas pracy diody (w godz.) jest wykładniczy z α = Jakie jest prawdopodobieństwo,że zapas 100 diod wystarczy na co najmniej godzin pracy? 10.Korzystając ze zdjęć satelitarnych mierzono odległości między 2 obiektami. Niech X 1, X 2,..., X n będą niezależnymi zmiennymi losowymi opisującymi wyniki kolejnych pomiarów.założono,że EX k = d, varx k = 1, k=1.2,...,n. Za oszacowanie odległości d przyjęto Y n = 1 n X k n k=1. Ile pomiarów należy wykonać, aby P ( Y n d 0.1) Odpowiedzi zad.1 co najwyżej 767 dni, zad.2 Φ( 100 ) 0.95,, σ 61, zad , σ { t+1, gdy 1 < t < 5 zad.4 f Z (t) = 18, 0, poza EZ=3, zad.5 N(0,1); zad.7 a)większe niż 391; b)równe zad.9 Φ(2)=

5.Dzienne zużycie energii (1=100kWh) pewnej firmy jest zmienną losową. 0, gdy x 0 lub x 3

5.Dzienne zużycie energii (1=100kWh) pewnej firmy jest zmienną losową. 0, gdy x 0 lub x 3 LISTA 4 1.Liczba komputerów, które mogą być zarażone wirusem poprzez pewną sieć ma rozkład Poissona z parametrem λ = 7. Prawdopodobieństwo,że wirus uaktywni się w zarażonym komputerze wynosi p. Jakie jest

Bardziej szczegółowo

Rachunek Prawdopodobieństwa MAP1151, kurs 15h

Rachunek Prawdopodobieństwa MAP1151, kurs 15h Wydział Elektroniki 015/016 Rachunek Prawdopodobieństwa MAP1151, kurs 15h LISTA 1 Listy zadań opracowanie W. Wawrzyniak-Kosz 1. Urządzenie składa się z 3 elementów. Każdy z elementów może mieć jedną z

Bardziej szczegółowo

I STATYSTYKA STOSOWANA, LISTA 1

I STATYSTYKA STOSOWANA, LISTA 1 I STATYSTYKA STOSOWANA, LISTA 1 1.Urządzenie składa się z 3 elementów. Każdy z elementów może mieć jedną z trzech jakości. Opisać zbiór zdarzeń elementarnych. Wypisać zdarzenia elementarne sprzyjające

Bardziej szczegółowo

Rachunek Prawdopodobieństwa MAP4702

Rachunek Prawdopodobieństwa MAP4702 Wydział Mechaniczny 2014/2015 Rachunek Prawdopodobieństwa MAP4702 Listy zadań opracowanie W. Wawrzyniak-Kosz Literatura podstawowa 1. J.Jakubowski, R.Sztencel, Rachunek prawdopodobieństwa dla prawie każdego,script,

Bardziej szczegółowo

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) = Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x

Bardziej szczegółowo

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru

Bardziej szczegółowo

Lista 5. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym

Lista 5. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym Lista 5 Zadania na zastosowanie nierównosci Markowa i Czebyszewa. Zadanie 1. Niech zmienna losowa X ma rozkład jednostajny na odcinku [0, 1]. Korzystając z nierówności Markowa oszacować od góry prawdopodobieństwo,

Bardziej szczegółowo

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w

Bardziej szczegółowo

Laboratorium nr 7. Zmienne losowe typu skokowego.

Laboratorium nr 7. Zmienne losowe typu skokowego. Laboratorium nr 7. Zmienne losowe typu skokowego.. Zmienna losowa X ma rozkład dany tabelką: - 0 3 0, 0,3 0, 0,3 0, Naszkicować dystrybuantę zmiennej X. Obliczyć EX oraz VarX.. Zmienna losowa ma rozkład

Bardziej szczegółowo

4.Zmienne losowe X 1, X 2,..., X 100 są niezależne i mają rozkład wykładniczy z α = 0.25 Jakie jest prawdopodobieństwo, że 1

4.Zmienne losowe X 1, X 2,..., X 100 są niezależne i mają rozkład wykładniczy z α = 0.25 Jakie jest prawdopodobieństwo, że 1 LISTA 7 W rozwiązaniu zadań 1-4 wykorzystać centralne twierdzenie graniczne. 1.Prawdopodobieństwo, że aparat zepsuje się w czasie jego konserwacji wynosi 0.02. Jakie jest prawdopodobieństwo, że w trakcie

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 3 ZADANIA - ZESTAW 3

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 3 ZADANIA - ZESTAW 3 ZADANIA - ZESTAW 3 Zadanie 3. L Prawdopodobieństwo trafienia celu w jednym strzale wynosi 0,6. Do celu oddano niezależnie 0 strzałów. Oblicz prawdopodobieństwo, że cel został trafiony: a) jeden raz, b)

Bardziej szczegółowo

Rozkłady prawdopodobieństwa zmiennych losowych

Rozkłady prawdopodobieństwa zmiennych losowych Rozkłady prawdopodobieństwa zmiennych losowych Rozkład dwumianowy Rozkład normalny Marta Zalewska Zmienna losowa dyskretna (skokowa) jest to zmienna, której zbór wartości jest skończony lub przeliczalny.

Bardziej szczegółowo

STATYSTYKA STOSOWANA MAP1079

STATYSTYKA STOSOWANA MAP1079 STATYSTYKA STOSOWANA MAP1079 LISTY ZADAŃ opracowanie W. Wawrzyniak-Kosz Literatura podstawowa 1.J.Koronacki, J.Mielniczuk, Statystyka dla studentów kierunków technicznych i przyrodniczych, WNT, Warszawa

Bardziej szczegółowo

Jednowymiarowa zmienna losowa

Jednowymiarowa zmienna losowa 1 Jednowymiarowa zmienna losowa Przykład Doświadczenie losowe - rzut kostką do gry. Obserwujemy ilość wyrzuconych oczek. Teoretyczny model eksperymentu losowego - przestrzeń probabilistyczna (Ω, S, P ),

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 2 ZADANIA - ZESTAW 2

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 2 ZADANIA - ZESTAW 2 ZADANIA - ZESTAW 2 Zadanie 2.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 1 0 2 p k 1/ 1/6 1/2 a) wyznaczyć dystrybuantę tej zmiennej losowej i naszkicować jej wykres, b) obliczyć

Bardziej szczegółowo

g) wartość oczekiwaną (przeciętną) i wariancję zmiennej losowej K.

g) wartość oczekiwaną (przeciętną) i wariancję zmiennej losowej K. TEMAT 1: WYBRANE ROZKŁADY TYPU SKOKOWEGO ROZKŁAD DWUMIANOWY (BERNOULLIEGO) Zadanie 1-1 Prawdopodobieństwo nieprzekroczenia przez pewien zakład pracy dobowego limitu zużycia energii elektrycznej (bez konieczności

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 6 Magdalena Alama-Bućko 8 kwietnia 019 Magdalena Alama-Bućko Statystyka matematyczna 8 kwietnia 019 1 / 1 Rozkłady ciagłe Magdalena Alama-Bućko Statystyka matematyczna 8

Bardziej szczegółowo

Zmienna losowa. Rozkład skokowy

Zmienna losowa. Rozkład skokowy Temat: Zmienna losowa. Rozkład skokowy Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga * - materiał nadobowiązkowy Anna Rajfura, Matematyka i statystyka matematyczna na kierunku Rolnictwo SGGW 1 Zagadnienia

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 5 Magdalena Alama-Bućko 1 kwietnia 2019 Magdalena Alama-Bućko Statystyka matematyczna 1 kwietnia 2019 1 / 19 Rozkład Poissona Po(λ), λ > 0 - parametr tzw. rozkład zdarzeń

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości

Bardziej szczegółowo

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 4 / 9 Przekształcenia zmiennej losowej X

Bardziej szczegółowo

Rozkłady prawdopodobieństwa

Rozkłady prawdopodobieństwa Tytuł Spis treści Wersje dokumentu Instytut Matematyki Politechniki Łódzkiej 10 grudnia 2011 Spis treści Tytuł Spis treści Wersje dokumentu 1 Wartość oczekiwana Wariancja i odchylenie standardowe Rozkład

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA

RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA LISTA 10 1.Dokonano 8 pomiarów pewnej odległości (w m) i otrzymano: 201, 195, 207, 203, 191, 208, 198, 210. Wiedząc,że błąd pomiaru ma rozkład normalny

Bardziej szczegółowo

Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu.

Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. A Teoria Definicja A.1. Niech (Ω, F, P) będzie przestrzenią probabilistyczną. Zmienną losową określoną na przestrzeni Ω nazywamy dowolną

Bardziej szczegółowo

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści

Bardziej szczegółowo

Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń

Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń Agata Boratyńska Ćwiczenia z rachunku prawdopodobieństwa 1 Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń UWAGA:

Bardziej szczegółowo

Przestrzeń probabilistyczna

Przestrzeń probabilistyczna Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty

Bardziej szczegółowo

Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń

Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń Agata Boratyńska Ćwiczenia z rachunku prawdopodobieństwa 1 Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń UWAGA:

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu

Bardziej szczegółowo

Biostatystyka, # 3 /Weterynaria I/

Biostatystyka, # 3 /Weterynaria I/ Biostatystyka, # 3 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów

LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów LISTA 4 1.Na pewnym obszarze dokonano 40 pomiarów grubości warstwy piasku otrzymując w m.: 54, 58, 64, 69, 61, 56, 41, 48, 56, 61, 70, 55, 46, 57, 70, 55, 47, 62, 55, 60, 54,57,65,60,53,54, 49,58,62,59,55,50,58,

Bardziej szczegółowo

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A) Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P

Bardziej szczegółowo

Przykłady do zadania 3.1 :

Przykłady do zadania 3.1 : Rachunek prawdopodobieństwa MAP5 Wydział Elektroniki, rok akad. /, sem. letni Wykładowca: dr hab. A. Jurlewicz Przykłady do listy 3: Zmienne losowe dyskretne. Rozkłady Bernoulliego (dwumianowy), Pascala,

Bardziej szczegółowo

Lista 1 - Prawdopodobieństwo

Lista 1 - Prawdopodobieństwo Lista 1 - Prawdopodobieństwo Zadanie 1. Niech A, B, C będą zdarzeniami. Zapisać za pomocą działań na zbiorach następujące zdarzenia: a) zachodzi dokładnie jedno ze zdarzeń A, B, C; b) zachodzą dokładnie

Bardziej szczegółowo

Zadania zestaw 1: Zadania zestaw 2

Zadania zestaw 1: Zadania zestaw 2 Zadania zestaw 1: Zadania zestaw 2 Zadania zestaw 3. 1 Rozkład zmiennej losowej skokowej X przedstawia tabela. x i m 0 n p i 0,4 0,3 0,3 a) Wyznacz m i n jeśli: są całkowite, m

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω)

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω) ZADANIA - ZESTAW 1 Zadanie 1.1 Rzucamy trzy razy monetą. A i - zdarzenie polegające na tym, że otrzymamy orła w i - tym rzucie. Określić zbiór zdarzeń elementarnych. Wypisać zdarzenia elementarne sprzyjające

Bardziej szczegółowo

Elementy Rachunek prawdopodobieństwa

Elementy Rachunek prawdopodobieństwa Elementy rachunku prawdopodobieństwa Rachunek prawdopodobieństwa zajmuje się analizą praw rządzących zdarzeniami losowymi Pojęciami pierwotnymi są: zdarzenie elementarne ω oraz zbiór zdarzeń elementarnych

Bardziej szczegółowo

07DRAP - Zmienne losowe: dyskretne i ciągłe

07DRAP - Zmienne losowe: dyskretne i ciągłe 07DRAP - Zmienne losowe: dyskretne i ciągłe Słynne rozkłady dyskretne Rozkład parametry P (X = k dla k = E(X Var(X uwagi ( dwumianowy n, p n k p k ( p n k 0,,, n np np( p liczba sukcesów w n próbach Bernoulliego

Bardziej szczegółowo

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga 1 Zagadnienia 1. Przypomnienie wybranych pojęć rachunku prawdopodobieństwa. Zmienna losowa. Rozkład

Bardziej szczegółowo

Rozkład zajęć, statystyka matematyczna, Rok akademicki 2015/16, semestr letni, Grupy dla powtarzających (C15; C16)

Rozkład zajęć, statystyka matematyczna, Rok akademicki 2015/16, semestr letni, Grupy dla powtarzających (C15; C16) Rozkład zajęć, statystyka matematyczna, Rok akademicki 05/6, semestr letni, Grupy powtarzających (C5; C6) Lp Grupa C5 Grupa C6 Liczba godzin 0046 w godz 600-000 C03 0046 w godz 600-000 B05 4 6046 w godz

Bardziej szczegółowo

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 2 i 3 1 / 19 Zmienna losowa Definicja Dana jest przestrzeń probabilistyczna

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

a)dane są wartości zmiennej losowej: 2, 4, 2, 1, 1, 3, 2, 1. Obliczyć wartość średnią i wariancję.

a)dane są wartości zmiennej losowej: 2, 4, 2, 1, 1, 3, 2, 1. Obliczyć wartość średnią i wariancję. Zad Rozkład zmiennej losowej dyskretnej : a)dane są wartości zmiennej losowej: 2, 4, 2,,, 3, 2,. Obliczyć wartość średnią i wariancję. b)oceny z pracy klasowej w tabeli: Ocena 2 3 4 5 6 Liczba uczniów

Bardziej szczegółowo

Lista 1a 1. Statystyka. Lista 1. Prawdopodobieństwo klasyczne i geometryczne

Lista 1a 1. Statystyka. Lista 1. Prawdopodobieństwo klasyczne i geometryczne Lista 1a 1 Statystyka Lista 1. Prawdopodobieństwo klasyczne i geometryczne 1. Jakie jest prawdopodobieństwo, że (a) z talii zawierającej 52 karty wybierzemy losowo asa? (b) z talii zawierającej 52 karty

Bardziej szczegółowo

Zmienne losowe skokowe

Zmienne losowe skokowe Zmienne losowe skokowe 1.1 Rozkład prawdopodobieństwa i dystrybuanta Zad.1 Niech zmienna losowa X przyjmuje wartości równe liczbie wyrzuconych oczek przy pojedynczym rzucie kostką do gry, czyli =1,2,3,,6.

Bardziej szczegółowo

Rachunek prawdopodobieństwa

Rachunek prawdopodobieństwa Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry

Bardziej szczegółowo

a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.);

a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.); 03DRAP - Przykłady przestrzeni probabilistycznych Definicja 1 Przestrzeń probabilistyczna to trójka (Ω, F, P), gdzie Ω zbiór zdarzeń elementarnych, F σ ciało zdarzeń (podzbiorów Ω), P funkcja prawdopodobieństwa/miara

Bardziej szczegółowo

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe

Bardziej szczegółowo

Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ

Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ Zadanie 1. Zmienna losowa przyjmuje wartości -1, 0, 1 z prawdopodobieństwami równymi odpowiednio: ¼, ½, ¼. Należy: a. Wyznaczyć rozkład prawdopodobieństwa

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych 1 Zmienne losowe dyskretne 1.1 Rozkład dwumianowy Zad.1.1.1 Prawdopodobieństwo dziedziczenia pewnej cechy wynosi 0,7. Jakie jest prawdopodobieństwo, że spośród pięciu potomków

Bardziej szczegółowo

12DRAP - parametry rozkładów wielowymiarowych

12DRAP - parametry rozkładów wielowymiarowych DRAP - parametry rozkładów wielowymiarowych Definicja.. Jeśli h : R R, a X, Y ) jest wektorem losowym o gęstości fx, y) to EhX, Y ) = hx, y)fx, y)dxdy. Jeśli natomiast X, Y ) ma rozkład dyskretny skupiony

Bardziej szczegółowo

I. Kombinatoryka i prawdopodobieństwo. g) różnowartościowych, h) bez miejsc zerowych, i) z jednym miejscem zerowym, j) z dwoma miejscami zerowymi,

I. Kombinatoryka i prawdopodobieństwo. g) różnowartościowych, h) bez miejsc zerowych, i) z jednym miejscem zerowym, j) z dwoma miejscami zerowymi, I. Kombinatoryka i prawdopodobieństwo I.1 Mała Lusia bawi się literkami A,A,A,E,K,M,M,T,T,Y ustawiając je w różnej kolejności. Jakie jest prawdopodobieństwo ustawienia wyrazu MATEMATYKA? I. Wśród funkcji

Bardziej szczegółowo

Rachunek Prawdopodobieństwa i Statystyka

Rachunek Prawdopodobieństwa i Statystyka Rachunek Prawdopodobieństwa i Statystyka W 2. Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne

Bardziej szczegółowo

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast

Bardziej szczegółowo

a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.);

a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.); 03DRAP - Przykłady przestrzeni probabilistycznych A Zadania na ćwiczenia Zadanie A1 (wskazówka: pierwsze ćwicznia i rozdział 23 przykł 1 i 2) Zbuduj model przestrzeni klasycznej (czyli takiej, w której

Bardziej szczegółowo

Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej

Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Statystyka i opracowanie danych Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne losowe Zmienna

Bardziej szczegółowo

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Podstawowe rozkłady zmiennych losowych Rozkłady zmiennych skokowych Rozkład zero-jedynkowy Rozpatrujemy doświadczenie, którego rezultatem może

Bardziej szczegółowo

Zmienne losowe zadania na sprawdzian

Zmienne losowe zadania na sprawdzian Zmienne losowe zadania na sprawdzian Zad. 1. Podane poniżej dane dotyczą zawartości suchej masy (w %) i sosu (w %) w 24 konserwach ze śledzia w pomidorach: Zawartość suchej masy: 12,0 13,0 14,5 14,0 12,0

Bardziej szczegółowo

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:

Bardziej szczegółowo

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas: ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań

Bardziej szczegółowo

5. Obliczyć prawdopodobieństwo, że rzucona na pokratkowaną kartkę papieru(kratki 2 2) moneta o średnicy 1 nie dotknie żadnej linii.

5. Obliczyć prawdopodobieństwo, że rzucona na pokratkowaną kartkę papieru(kratki 2 2) moneta o średnicy 1 nie dotknie żadnej linii. ELEKTRONIKA Rachunek Prawdopodobieństwa(MAP5) LISTA. (Przestrzeń zdarzeń elementarnych, prawdopodobieństwo klasyczne i geometryczne. Wzór na prawdopodobieństwo całkowite. Niezależność zdarzeń). Niech A,

Bardziej szczegółowo

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15 II WYKŁAD STATYSTYKA 12/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 2 Rachunek prawdopodobieństwa zdarzenia elementarne zdarzenia losowe zmienna losowa skokowa i ciągła prawdopodobieństwo i gęstość prawdopodobieństwa

Bardziej szczegółowo

Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/

Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/ Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a bud. Agro II, e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

ćwiczenia z rachunku prawdopodobieństwa

ćwiczenia z rachunku prawdopodobieństwa ćwiczenia z rachunku prawdopodobieństwa 9.10.2010 ogólna definicja prawdopodobieństwa, własności 1. Niech Ω = [0, 1] oraz niech Σ będzie pewną σ-algebrą podzbiorów odcinka [0, 1]. Udowodnić, że funkcja

Bardziej szczegółowo

4,5. Dyskretne zmienne losowe (17.03; 31.03)

4,5. Dyskretne zmienne losowe (17.03; 31.03) 4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie

Bardziej szczegółowo

Przykłady 6.1 : charakterystyki liczbowe rozkładów dyskretnych

Przykłady 6.1 : charakterystyki liczbowe rozkładów dyskretnych Rachunek Prawdopodobieństwa MAP8 Wydział Matematyki, Matematyka Stosowana Przykłady 6. Wartość oczekiwana, wariancja, mediana, kwartyle rozkładu prawdopodobieństwa. Transformacje zmiennej losowej. Opracowanie:

Bardziej szczegółowo

Centralne twierdzenie graniczne

Centralne twierdzenie graniczne Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 4 Ważne uzupełnienie Dwuwymiarowy rozkład normalny N (µ X, µ Y, σ X, σ Y, ρ): f XY (x, y) = 1 2πσ X σ Y 1 ρ 2 { [ (x ) 1

Bardziej szczegółowo

Dyskretne zmienne losowe

Dyskretne zmienne losowe Dyskretne zmienne losowe dr Mariusz Grządziel 16 marca 2009 Definicja 1. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Najczęściej spotykane rozkłady dyskretne:

Najczęściej spotykane rozkłady dyskretne: I. Rozkład dwupunktowy: Najczęściej spotykane rozkłady dyskretne: Def. Zmienna X ma rozkład dwupunktowy z prawdopodobieostwem 1 przyjmuje tylko dwie wartości, tzn. P(X = x 1 ) = p i P(X = x 2 ) = 1 p =

Bardziej szczegółowo

1.1 Wstęp Literatura... 1

1.1 Wstęp Literatura... 1 Spis treści Spis treści 1 Wstęp 1 1.1 Wstęp................................ 1 1.2 Literatura.............................. 1 2 Elementy rachunku prawdopodobieństwa 2 2.1 Podstawy..............................

Bardziej szczegółowo

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena

Bardziej szczegółowo

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl Statystyka Opisowa z Demografią oraz Biostatystyka Zmienne losowe Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.

Bardziej szczegółowo

Zmienne losowe. dr Mariusz Grządziel Wykład 12; 20 maja 2014

Zmienne losowe. dr Mariusz Grządziel Wykład 12; 20 maja 2014 Zmienne losowe dr Mariusz Grządziel Wykład 2; 20 maja 204 Definicja. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje

Bardziej szczegółowo

Zmienne losowe dyskretne i Zmienne losowe ciągłe Rozkład Normalny

Zmienne losowe dyskretne i Zmienne losowe ciągłe Rozkład Normalny Zmienne losowe dyskretne i Zmienne losowe ciągłe Rozkład Normalny 1. Wyprodukowanie określonej liczby wyrobów przez jednego pracownika w ciągu godziny jest zmienną losową o następującym rozkładzie prawdopodobieństwa:

Bardziej szczegółowo

Wybrane rozkłady zmiennych losowych. Statystyka

Wybrane rozkłady zmiennych losowych. Statystyka Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1

Bardziej szczegółowo

c) ( 13 (1) (2) Zadanie 2. Losując bez zwracania kolejne litery ze zbioru AAAEKMMTTY, jakie jest prawdopodobieństwo Odp.

c) ( 13 (1) (2) Zadanie 2. Losując bez zwracania kolejne litery ze zbioru AAAEKMMTTY, jakie jest prawdopodobieństwo Odp. Zadania na kolokwium nr Zadanie. Spośród kart w tali wylosowano. Jakie jest prawdopodobieństwo: pików, kierów, trefli i karo otrzymania wszystkich kolorów otrzymania dokładnie pików a ( b ( ( c ( ( ( (

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 6 Ciągłe zmienne losowe ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Zmienna losowa ciągła jest

Bardziej szczegółowo

Prawdopodobieństwo

Prawdopodobieństwo Prawdopodobieństwo http://www.matemaks.pl/ Wstęp do rachunku prawdopodobieństwa http://www.matemaks.pl/wstep-do-rachunku-prawdopodobienstwa.html Rachunek prawdopodobieństwa pomaga obliczyć szansę zaistnienia

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5.

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5. RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5. PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Rozłady soowe Rozład jednopuntowy Oreślamy: P(X c) 1 gdzie c ustalona liczba. 1 EX c, D 2 X 0 (tylo ten rozład ma zerową wariancję!!!)

Bardziej szczegółowo

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =. Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,

Bardziej szczegółowo

Rzucamy dwa razy sprawiedliwą, sześcienną kostką do gry. Oblicz prawdopodobieństwo otrzymania:

Rzucamy dwa razy sprawiedliwą, sześcienną kostką do gry. Oblicz prawdopodobieństwo otrzymania: Statystyka Ubezpieczeniowa Część 1. Rachunek prawdopodobieństwa: - prawdopodobieństwo klasyczne - zdarzenia niezależne - prawdopodobieństwo warunkowe - prawdopodobieństwo całkowite - wzór Bayesa Schemat

Bardziej szczegółowo

Lista 1 1. Ile jest tablic rejestracyjnych formatu LL CCCC? A ile CC LLLL?

Lista 1 1. Ile jest tablic rejestracyjnych formatu LL CCCC? A ile CC LLLL? Statystyka i Rachunek Prawdopodobieństwa (Fizyka i Optyka) Lista zadań Marek Klonowski Wrocław 2015/16 Lista 1 1. Ile jest tablic rejestracyjnych formatu LL CCCC? A ile CC LLLL? 2. Ile jest ciągów bitowych

Bardziej szczegółowo

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

rachunek prawdopodobieństwa - zadania

rachunek prawdopodobieństwa - zadania rachunek prawdopodobieństwa - zadania ogólna definicja prawdopodobieństwa, własności - 9.10.2011 1. (d, 1pkt) Udowodnić twierdzenie 2 tj. własności prawdopodobieństwa (W1)-(W7). 2. Niech Ω = [0, 1] oraz

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA

RACHUNEK PRAWDOPODOBIEŃSTWA RACHUNEK PRAWDOPODOBIEŃSTWA Zadanie 1. W urnie jest 1000 kartoników będących losami loterii pieniężnej. Cztery z kartoników wygrywają po 100 zł i szesnaście po 10 zł. Reszta kartoników to losy puste. Pierwszy

Bardziej szczegółowo

Wybrane rozkłady zmiennych losowych. Statystyka

Wybrane rozkłady zmiennych losowych. Statystyka Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1

Bardziej szczegółowo

Wykład 3 Jednowymiarowe zmienne losowe

Wykład 3 Jednowymiarowe zmienne losowe Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014 Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka

Rachunek prawdopodobieństwa i statystyka Rachunek prawdopodobieństwa i statystyka Momenty Zmienna losowa jest wystarczająco dokładnie opisana przez jej rozkład prawdopodobieństwa. Względy praktyczne dyktują jednak potrzebę znalezienia charakterystyk

Bardziej szczegółowo

x x 0.5. x Przykłady do zadania 4.1 :

x x 0.5. x Przykłady do zadania 4.1 : Rachunek prawdopodobieństwa MAP5 Wydział Elektroniki, rok akad. /, sem. letni Wykładowca: dr hab. A. Jurlewicz Przykłady do listy 4: Wartość oczekiwana, wariancja, mediana, kwartyle rozkładu prawdopodobieństwa.

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p. Kwantyle Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p, że P(X x p ) p P(X x p ) 1 p Możemy go obliczyć z dystrybuanty: Jeżeli F(x p ) = p, to x p jest kwantylem rzędu p Jeżeli F(x p )

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 31 marca 2014 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś

Bardziej szczegółowo