PARAMETRY CIEPLNE WYBRANYCH PANELI FOTOWOLTAICZNYCH

Wielkość: px
Rozpocząć pokaz od strony:

Download "PARAMETRY CIEPLNE WYBRANYCH PANELI FOTOWOLTAICZNYCH"

Transkrypt

1 Ewa Krac, Krzysztof Górecki Akademia Morska w Gdyni PARAMETRY CIEPLNE WYBRANYCH PANELI FOTOWOLTAICZNYCH W artykule przedstawiono metodę pomiaru przejściowej impedancji termicznej oraz rezystancji termicznej paneli fotowoltaicznych. Omówiono sposób realizacji wymienionej metody oraz zaprezentowano uzyskane wyniki pomiarów parametrów cieplnych wybranych paneli fotowoltaicznych. Przedyskutowano również wpływ wybranych czynników na przebiegi przejściowej impedancji termicznej rozważanych paneli fotowoltaicznych. Słowa kluczowe: panele fotowoltaiczne, parametry cieplne, przejściowa impedancja termiczna, rezystancja termiczna. WSTĘP Fotowoltaiczne systemy zasilające są coraz bardziej popularnym źródłem pozyskiwania energii elektrycznej, lecz mimo to wciąż przysparza dużo problemów prawidłowe ich zaprojektowanie, np. dobór rozmiaru i liczby paneli fotowoltaicznych (PV) do zapotrzebowania na energię elektryczną, czy też obliczanie stopy zwrotu nakładów inwestycyjnych, związanych z budową elektrowni fotowoltaicznej. Dzieje się tak dlatego, iż produktywność tych urządzeń silnie zależy od gęstości mocy promieniowania oraz temperatury, a oba te parametry nieustannie zmieniają się w zależności od pory roku czy dnia. Dodatkowo temperatura wnętrza rozważanych elementów jest wyższa od temperatury otoczenia na skutek zjawisk cieplnych samonagrzewania oraz zamiany na ciepło energii promieniowania słonecznego. Zależy również od warunków chłodzenia paneli PV. Tymczasem dostępne projektantom dane, dotyczące paneli fotowoltaicznych, szacowane są jedynie dla stałych warunków STC (ang. Standard Test Conditions), tj. dla stałej wartości gęstości mocy promieniowania równej 1000 W/m 2 i stałej temperatury równej 25 o C. Aby podczas projektowania systemów PV uwzględnić wpływ zmian temperatury na panele PV, należy sformułować elektrotermiczne modele tych urządzeń [8]. Do zrealizowania tego celu niezbędne jest zbadanie parametrów cieplnych paneli PV [4]. Parametrem charakteryzującym zdolność elementu półprzewodnikowego do odprowadzania ciepła jest przejściowa impedancja termiczna Z th(t), a w warunkach statycznych rezystancja termiczna R th [6, 9, 10]. Wartości Z th(t) dla elementów półprzewodnikowych wyznacza się, wykorzystując pośrednie metody elektryczne

2 E. Krac, K. Górecki, Parametry cieplne wybranych paneli fotowoltaicznych 93 opisane m.in. w pracach [3, 5, 10] lub metody optyczne opisane m.in. w pracy [2]. W pracy [7] omówiono pirometryczną, stykową oraz stałoprądową metodę pomiaru rezystancji termicznej fotoogniw. W systemach fotowoltaicznych panele PV są urządzeniami, które zawierają wiele fotoogniw połączonych ze sobą elektrycznie oraz zamontowanych na wspólnym podłożu. Metody pomiaru parametrów cieplnych takich paneli omówiono w pracy [4]. W niniejszym artykule omówiono metodę pomiaru parametrów cieplnych paneli fotowoltaicznych oraz układ pomiarowy, za pomocą którego realizowana była rozważana metoda. Przedstawiono również wyniki badań paneli PV pracujących w różnych warunkach chłodzenia, uzyskane za pomocą tej metody. 1. METODA POMIAROWA Do wyznaczenia przebiegu przejściowej impedancji termicznej paneli PV wykorzystano metodę pośrednią opisaną w pracy [4]. Zgodnie z tą metodą badany panel, umieszczony w komorze światłoszczelnej, jest nagrzewany mocą o znanej wartości P. Moc ta stanowi iloczyn napięcia na zaciskach panelu PV U oraz prąd tego panelu I. Panel jest zasilany z zewnętrznego zasilacza aż do uzyskania stanu termicznie ustalonego. Następnie źródło zasilania jest wyłączone i za pomocą pirometru rejestrowany jest przebieg temperatury badanego panelu PV T j(t), aż do ponownego uzyskania stanu ustalonego. W kolejnym kroku wyliczono wartości przejściowej impedancji termicznej Z th(t) wykorzystując wzór: Z th t T j t 0 T t U I gdzie t = 0 oznacza chwilę wyłączenia zasilania. Przedstawiona metoda jest realizowana za pomocą stanowiska pomiarowego zaprezentowanego na rysunku 1. Badane panele PV mocowane są na metalowym stelażu o wymiarach 500 x 1500 x 1000 mm. Stelaż ten stanowił radiator, a jego ruchome ramię umożliwiało zmianę kąta nachylenia badanego paneli PV, a w ślad za tym warunki chłodzenia tego panelu PV. Stelaż znajduje się w światłoszczelnej, zamkniętej komorze o wymiarach 3 x 2 x 2,5 m. Natomiast pozostała część układu pomiarowego, składająca się z woltomierza, amperomierza, rezystancji obciążenia oraz źródła napięcia zasilania, mieści się w sąsiednim pomieszczeniu. Wartości napięcia i prądu panelu PV mierzone są za pomocą multimetrów APPA 207, wyposażonych w interfejs USB, umożliwiający przesyłanie wyników pomiarów do komputera. Podczas pomiaru źródło napięcia U zas wraz z rezystorem R dek umożliwiają regulację prądu zasilania panelu badanego DUT. W chwili t = 0 przełącznik S 1 jest rozwarty, umożliwiając przepływ prądu przez badany panel. j (1)

3 94 ZESZYTY NAUKOWE AKADEMII MORSKIEJ W GDYNI, nr 95, listopad 2016 Temperatura panelu mierzona jest pirometrem Optex ST-3, którego wyjście podłączono do multimetru V 1 (APPA 207), wyposażonego w interfejs USB, za pomocą którego dane przesyłane były do komputera i zapisywane w czasie rzeczywistym w celu dalszej analizy zarejestrowanego przebiegu temperatury [4]. A U zas R dek S 1 PC V DUT Światłoszczelna komora badań cieplnych V1 Optex ST-3 Rys. 1. Schemat stanowiska pomiarowego do badania przejściowej impedancji termicznej paneli PV Fig. 1. The set-up for the measure of the transient thermal impedance of PV panels 2. WYNIKI POMIARÓW Wykorzystując metodę pomiarową, omówioną w rozdziale 1, przeprowadzono badania czterech paneli PV: monokrystalicznego firmy Sungen Polska, o wymiarach 1670 x 1000 x 35 mm, dwóch paneli PV polikrystalicznych firm Hanwha Q CELLS GmbH, o wymiarach 1670 x 1000 x 35 mm oraz Solar Energy S.A. MK-240, o wymiarach 1000 x 1681 x 50 mm, a także amorficznego firmy Sungen Polska, o wymiarach 1400 x 1100 x 7,1 mm. W dalszej części artykułu panele te nazywane są odpowiednio monokrystalicznym, polikrystalicznym (1), polikrystalicznym (2) oraz amorficznym. Wyznaczono przebiegi przejściowej impedancji termicznej dla wszystkich czterech paneli PV badanych w różnych warunkach chłodzenia. Wyniki badania paneli PV, umieszczonych na stelażu ustawionym poziomo, zobrazowano na rysunku 2, natomiast na rysunku 3 przedstawiono wyniki pomiaru przejściowej impedancji termicznej paneli PV, umieszczonych na stelażu pochylonym pod kątem 60 o do poziomu. Z analizy wykreślonych przebiegów wynika, iż stan termicznie ustalony dla paneli umocowanych poziomo osiągnięto w przedziale (dla różnych paneli) od

4 E. Krac, K. Górecki, Parametry cieplne wybranych paneli fotowoltaicznych s do 6000 s, przy czym dla panelu polikrystalicznego (2) uzyskano najwyższe wartości przejściowej impedancji termicznej. Dla badanych paneli PV umocowanych na stelażu pochylonym pod kątem 60 o stan ustalony osiągano w przedziale od 4500 s do 5500 s. Ponadto zaobserwowano, iż w przypadku paneli umieszczonych pod kątem 60 o krzywe przebiegu przejściowej impedancji termicznej narastają łagodniej, a różnice w przebiegu pomiędzy krzywymi przejściowej impedancji termicznej dla poszczególnych paneli PV są mniejsze, aniżeli było to w przypadku, gdy badane panele PV umieszczone były na stelażu ułożonym poziomo. Analizując przebiegi pokazane na rysunkach 2 i 3, zaobserwować można, iż panel umocowany na stelażu pod kątem 60 o wykazał lepszą zdolność odprowadzania ciepła niż panel ułożony poziomo. Rys. 2. Przebiegi przejściowej impedancji termicznej różnych paneli PV umocowanych różnolegle do poziomu Fig. 2. Waveforms of transient thermal impedance for difference PV panels mounted horizontally

5 96 ZESZYTY NAUKOWE AKADEMII MORSKIEJ W GDYNI, nr 95, listopad 2016 Rys. 3. Przebiegi przejściowej impedancji termicznej różnych paneli PV umocowanych pod kątem 60 o do linii poziomej Fig. 3. Waveforms of transient thermal impedance for difference PV panels situated at an angle equal to 60 o to the horizontal line Wyznaczono też wartość rezystancji termicznej badanych paneli PV, równą wyznaczonej z pomiarów wartości Z th(t) w stanie ustalonym. Uzyskane wyniki pomiaru rezystancji termicznej rozważanych paneli PV zaprezentowano na rysunku 4. Analizując przedstawione dane, można zauważyć, iż największą wartość rezystancji termicznej równą 0,045 K/W uzyskano dla panelu polikrystalicznego Hanwha Q CELLS GmbH, umocowanego poziomo na stelażu, najmniejszą zaś wartość rezystancji termicznej równą 0,036 K/W uzyskano dla panelu monokrystalicznego Sungen Polska, umieszczonego na stelażu ułożonym równolegle do linii poziomej. Zanotowano również różne wartości rezystancji termicznych dla paneli PV, wykonanych z różnych materiałów, oraz dla paneli PV, wykonanych z tego samego materiału, lecz umocowanych pod różnym kątem względem poziomu. Dla trzech z wymienionych paneli PV uzyskano mniejszą wartość rezystancji termicznej w przypadku, gdy badany panel PV pochylony był pod kątem 60 o do poziomu. Tendencji tej nie wykazano, badając panel monokrystaliczny. Autorzy spodziewają się, iż w trakcie przeprowadzania badań tego panelu PV nastąpiła zmiana warunków termicznych w komorze. Zmiana ta mogła być związana z niewystarczającym wychłodzeniem ścian komory po uprzednio wykonanym badaniu innego panelu PV. Pozostałe wyniki badań tych paneli zaprezentowano w pracy [4].

6 E. Krac, K. Górecki, Parametry cieplne wybranych paneli fotowoltaicznych 97 Rys. 4. Porównanie wartości rezystancji termicznej badanych paneli PV Fig. 4. Comparison of the values of the thermal resistance of the measured PV panels PODSUMOWANIE Wykorzystując omówioną w rozdziale 1 metodę pomiarową, zmierzono przebieg przejściowej impedancji termicznej oraz wyznaczono rezystancję termiczną czterech różnych paneli PV. Badanie przeprowadzono w różnych warunkach chłodzenia. Zanotowano różne wartości rezystancji termicznych dla paneli PV wykonanych z różnych materiałów oraz dla tych samych paneli PV, umocowanych na stelażu ułożonym pod różnym kątem do poziomu. Obserwowane różnice wartości rezystancji termicznej tego samego rodzaju paneli PV umocowanego poziomo i pod kątem 60 o do poziomu należy intepretować jako wpływ wartości kąta pochylenia panelu PV na jego zdolność do odprowadzania ciepła. Zaobserwowane różnice wartości rezystancji termicznej paneli, wykonanych z różnych materiałów umocowanych, w jednej, takiej samej płaszczyźnie dowodzą, iż zdolność odprowadzania ciepła przez panele PV zależna jest również od materiału, z jakiego zostały one wykonane. Porównując uzyskane wartości R th badanych paneli, można zauważyć, że najskuteczniej odprowadzane jest ciepło z monokrystalicznego panelu PV.

7 98 ZESZYTY NAUKOWE AKADEMII MORSKIEJ W GDYNI, nr 95, listopad 2016 LITERATURA 1. Bagnoli P.E., Casarosa C., Ciampi M., Dallago E., Thermal Resistance Analysis by Induced Transient (TRAIT) Method for Power Electronic Devices Thermal Characterization Part I: Fundamentals and Theory, IEEE Transactions on Power Electronics, Vol. 13, 1998, No. 6, s Blackburn D.L., Temperature Measurements of Semiconductor Devices A Review, 20th IEEE Semiconductor Thermal Measurement and Management Symposium SEMI-THERM, 2004, s Blackburn D.L., Oettinger F.F., Transient Thermal Response Measurements of Power Transistors, IEEE Transactions on Industrial Electronics and Control Instrum., IECI-22, 1976, No. 2, s Górecki K., Krac E., Measurements of thermal parameters of a solar module, Proceedings of Microtherm 2015, Microtechnology and Thermal Problems in Electronics, Łódź 2015, s Górecki K., Zarębski J., System mikrokomputerowy do pomiaru parametrów termicznych elementów półprzewodnikowych i układów scalonych, Metrologia i Systemy Pomiarowe, 2001, t. VIII, nr 4, s Janke W., Zjawiska termiczne w elementach i układach półprzewodnikowych, WNT, Warszawa Krac E., Górecki K., Measurements of Thermal Resistance of Solar Cells, Zeszyty Naukowe Akademii Morskiej w Gdyni, 2014, nr 84, s Krac E., Górecki K., Modelling characteristics of photovoltaic panels with thermal phenomena taken into account, IOP Conference Series: Materials Science and Engineering, Vol. 104, 2016, 39th International Microelectronics and Packaging IMAPS Poland 2015 Conference, Gdańsk 2015, s Szekely V., A new evaluation method of thermal transient measurement results, Microelectronic Journal, Vol. 28, 1997, No. 3, s Zarębski J., Górecki K., A Method of Measuring the Transient Thermal Impedance of Monolithic Bipolar Switched Regulators, IEEE Transactions on Components and Packaging Technologies, Vol. 30, 2007, No. 4, s THERMAL PARAMETERS OF SELECTED PHOTOVOLTAIC PANELS Summary The article presents the method of measuring the transient thermal impedance and thermal resistance of photovoltaic panels. Implementation of said method has been discussed as same as the results of measurements of thermal parameters of selected photovoltaic panels. Moreover, the impact of selected factors on transient thermal impedance of mentioned photovoltaic panels is also discussed. Keywords: photovoltaic panels, thermal parameters, transient thermal impedance, thermal resistance.

WPŁYW MOCOWANIA ELEMENTU PÓŁPRZEWODNIKOWEGO NA JEGO PRZEJŚCIOWĄ IMPEDANCJĘ TERMICZNĄ

WPŁYW MOCOWANIA ELEMENTU PÓŁPRZEWODNIKOWEGO NA JEGO PRZEJŚCIOWĄ IMPEDANCJĘ TERMICZNĄ ELEKTRYKA 2014 Zeszyt 1 (229) Rok LX Krzysztof GÓRECKI, Janusz ZARĘBSKI Akademia Morska w Gdyni WPŁYW MOCOWANIA ELEMENTU PÓŁPRZEWODNIKOWEGO NA JEGO PRZEJŚCIOWĄ IMPEDANCJĘ TERMICZNĄ Streszczenie. W pracy

Bardziej szczegółowo

WYNIKI POMIARÓW PARAMETRÓW TERMICZNYCH TRANZYSTORA SiC JFET

WYNIKI POMIARÓW PARAMETRÓW TERMICZNYCH TRANZYSTORA SiC JFET Kamil Bargieł, Damian Bisewski, Janusz Zarębski, Ewelina Szarmach Akademia Morska w Gdyni WYNIKI POMIARÓW PARAMETRÓW TERMICZNYCH TRANZYSTORA SiC JFET W pracy zaprezentowano wyniki pomiarów rezystancji

Bardziej szczegółowo

POMIARY PARAMETRÓW TERMICZNYCH DŁAWIKÓW

POMIARY PARAMETRÓW TERMICZNYCH DŁAWIKÓW Zeszyty problemowe Maszyny Elektryczne Nr 0/013 cz. I 135 Krzysztof Górecki, Katarzyna Górecka Katedra Elektroniki Morskiej, Akademia Morska w Gdyni Kalina Detka Pomorska Wyższa Szkoła Nauk Stosowanych

Bardziej szczegółowo

(12) OPIS PATENTOWY (19) PL (11) (13) B1

(12) OPIS PATENTOWY (19) PL (11) (13) B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 173831 (13) B1 (21) Numer zgłoszenia: 304562 Urząd Patentowy (22) Data zgłoszenia: 03.08.1994 Rzeczypospolitej Polskiej (51) IntCl6: G01R 31/26 (54)

Bardziej szczegółowo

Modelowanie modułów LED z uwzględnieniem zjawisk cieplnych

Modelowanie modułów LED z uwzględnieniem zjawisk cieplnych dr hab. inż. Krzysztof Górecki, prof. nadzw. AMG mgr inż. Przemysław Ptak Wydział Elektryczny Akademia Morska w Gdyni ul. Morska 83, 81-225 Gdynia Modelowanie modułów LED z uwzględnieniem zjawisk cieplnych

Bardziej szczegółowo

MODELOWANIE CHARAKTERYSTYK WYBRANYCH DIOD LED MOCY Z UWZGLĘDNIENIEM ZJAWISK CIEPLNYCH

MODELOWANIE CHARAKTERYSTYK WYBRANYCH DIOD LED MOCY Z UWZGLĘDNIENIEM ZJAWISK CIEPLNYCH Przemysław Ptak Akademia Morska w Gdyni MODELOWANIE CHARAKTERYSTYK WYBRANYCH DIOD LED MOCY Z UWZGLĘDNIENIEM ZJAWISK CIEPLNYCH W pracy rozważany jest problem modelowania diod LED mocy przy wykorzystaniu

Bardziej szczegółowo

WPŁYW WARUNKÓW ZASILANIA TRANSFORMATORA NA ROZKŁAD TEMPERATURY NA JEGO POWIERZCHNI

WPŁYW WARUNKÓW ZASILANIA TRANSFORMATORA NA ROZKŁAD TEMPERATURY NA JEGO POWIERZCHNI Krzysztof Górski, Krzysztof Górecki Akademia Morska w Gdyni WPŁYW WARUNKÓW ZASILANIA TRANSFORMATORA NA ROZKŁAD TEMPERATURY NA JEGO POWIERZCHNI W artykule przedstawiono wyniki badań eksperymentalnych, ilustrujące

Bardziej szczegółowo

LABORATORIUM POMIARÓW ELEMENTÓW I UKŁADÓW ELEKTRONICZNYCH

LABORATORIUM POMIARÓW ELEMENTÓW I UKŁADÓW ELEKTRONICZNYCH POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 76 Electrical Engineering 2013 Damian BISEWSKI* Janusz ZARĘBSKI* LABORATORIUM POMIARÓW ELEMENTÓW I UKŁADÓW ELEKTRONICZNYCH W pracy zaprezentowano

Bardziej szczegółowo

BADANIA WŁAŚCIWOŚCI CIEPLNYCH TRANZYSTORA MOS MOCY CHŁODZONEGO CIECZĄ

BADANIA WŁAŚCIWOŚCI CIEPLNYCH TRANZYSTORA MOS MOCY CHŁODZONEGO CIECZĄ POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 87 Electrical Engineering 2016 Damian BISEWSKI* Janusz ZARĘBSKI* BADANIA WŁAŚCIWOŚCI CIEPLNYCH TRANZYSTORA MOS MOCY CHŁODZONEGO CIECZĄ W pracy zaprezentowano

Bardziej szczegółowo

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym?

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym? Domowe urządzenia elektryczne są często łączone równolegle, dzięki temu każde tworzy osobny obwód z tym samym źródłem napięcia. Na podstawie poszczególnych rezystancji, można przewidzieć całkowite natężenie

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKA. I. Scalony, trzykońcówkowy stabilizator napięcia II. Odprowadzanie ciepła z elementów półprzewodnikowych

LABORATORIUM ELEKTRONIKA. I. Scalony, trzykońcówkowy stabilizator napięcia II. Odprowadzanie ciepła z elementów półprzewodnikowych LABORATORIUM ELEKTRONIKA I. Scalony, trzykońcówkowy stabilizator napięcia II. Odprowadzanie ciepła z elementów półprzewodnikowych Opracował: dr inż. Jerzy Sawicki Wymagania, znajomość zagadnień (I): 1.

Bardziej szczegółowo

WPŁYW WARUNKÓW CHŁODZENIA NA CHARAKTERYSTYKI LINIOWEGO STABILIZATORA NAPIĘCIA

WPŁYW WARUNKÓW CHŁODZENIA NA CHARAKTERYSTYKI LINIOWEGO STABILIZATORA NAPIĘCIA ELEKTRYKA 21 Zeszyt 3 (215) Rok LVI Krzysztof GÓRECKI, Janusz ZARĘBSKI Katedra Elektroniki Morskiej, Akademia Morska w Gdyni WPŁYW WARUNKÓW CHŁODZENIA NA CHARAKTERYSTYKI LINIOWEGO STABILIZATORA NAPIĘCIA

Bardziej szczegółowo

Zależność parametrów modelu przejściowej impedancji termicznej tranzystora MOS mocy od konstrukcji układu chłodzenia

Zależność parametrów modelu przejściowej impedancji termicznej tranzystora MOS mocy od konstrukcji układu chłodzenia Damian BISEWSKI, Krzysztof GÓRECKI, Janusz ZARĘBSKI Akademia Morska w Gdyni, Katedra Elektroniki Morskiej doi:.599/8.5.. Zależność parametrów modelu przejściowej impedancji termicznej tranzystora MOS mocy

Bardziej szczegółowo

Laboratorium Metrologii

Laboratorium Metrologii Laboratorium Metrologii Ćwiczenie nr 3 Oddziaływanie przyrządów na badany obiekt I Zagadnienia do przygotowania na kartkówkę: 1 Zdefiniować pojęcie: prąd elektryczny Podać odpowiednią zależność fizyczną

Bardziej szczegółowo

Badanie baterii słonecznych w zależności od natężenia światła

Badanie baterii słonecznych w zależności od natężenia światła POLITECHNIKA WARSZAWSKA Instytut Elektroenergetyki, Zakład Elektrowni i Gospodarki Elektroenergetycznej Przemiany energii laboratorium Ćwiczenie Badanie baterii słonecznych w zależności od natężenia światła

Bardziej szczegółowo

Katedra Energetyki. Laboratorium Podstaw Elektrotechniki i Elektroniki

Katedra Energetyki. Laboratorium Podstaw Elektrotechniki i Elektroniki 1 Katedra Energetyki Laboratorium Podstaw Elektrotechniki i Elektroniki Temat ćwiczenia: POMIARY PODSTAWOWYCH WIELKOŚCI ELEKTRYCZNYCH W OBWODACH PRĄDU STAŁEGO (obwód 3 oczkowy) 2 1. POMIARY PRĄDÓW I NAPIĘĆ

Bardziej szczegółowo

Uniwersytet Pedagogiczny

Uniwersytet Pedagogiczny Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie Laboratorium elektroniki Ćwiczenie nr 4 Temat: PRZYRZĄDY PÓŁPRZEWODNIKOWE TRANZYSTOR UNIPOLARNY Rok studiów Grupa Imię i nazwisko Data

Bardziej szczegółowo

Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie

Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie Laboratorium elektroniki Ćwiczenie nr 2 Temat: PRZYRZĄDY PÓŁPRZEWODNIKOWE - DIODY Rok studiów Grupa Imię i nazwisko Data Podpis Ocena

Bardziej szczegółowo

Zakład Zastosowań Elektroniki i Elektrotechniki

Zakład Zastosowań Elektroniki i Elektrotechniki Zakład Zastosowań Elektroniki i Elektrotechniki Laboratorium Wytwarzania energii elektrycznej Temat ćwiczenia: Badanie alternatora 52 BADANIE CHARAKTERYSTYK EKSPLOATACYJNYCH ALTERNATORÓW SAMO- CHODOWYCH

Bardziej szczegółowo

Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych

Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych Na rys. 3.1 przedstawiono widok wykorzystywanego w ćwiczeniu stanowiska pomiarowego do badania zjawiska tłumienia światła w ośrodkach

Bardziej szczegółowo

Sprawozdanie z laboratorium proekologicznych źródeł energii

Sprawozdanie z laboratorium proekologicznych źródeł energii P O L I T E C H N I K A G D A Ń S K A Sprawozdanie z laboratorium proekologicznych źródeł energii Temat: Wyznaczanie charakterystyk prądowo-napięciowych modułu ogniw fotowoltaicznych i sprawności konwersji

Bardziej szczegółowo

Podstawy użytkowania i pomiarów za pomocą MULTIMETRU

Podstawy użytkowania i pomiarów za pomocą MULTIMETRU Podstawy użytkowania i pomiarów za pomocą MULTIMETRU Spis treści Informacje podstawowe...2 Pomiar napięcia...3 Pomiar prądu...5 Pomiar rezystancji...6 Pomiar pojemności...6 Wartość skuteczna i średnia...7

Bardziej szczegółowo

SPRAWOZDANIE LABORATORIUM ENERGOELEKTRONIKI. Prowadzący ćwiczenie 5. Data oddania 6. Łączniki prądu przemiennego.

SPRAWOZDANIE LABORATORIUM ENERGOELEKTRONIKI. Prowadzący ćwiczenie 5. Data oddania 6. Łączniki prądu przemiennego. SPRAWOZDANIE LABORATORIUM ENERGOELEKTRONIKI Grupa Podgrupa Lp. Nazwisko i imię Numer ćwiczenia 2 1. Data wykonania 2. ćwiczenia 3. 4. Prowadzący ćwiczenie 5. Data oddania 6. sprawozdania Temat Łączniki

Bardziej szczegółowo

MODELOWANIE ELEKTROTERMICZNYCH CHARAKTERYSTYK TRANZYSTORA MESFET W PROGRAMIE PSPICE

MODELOWANIE ELEKTROTERMICZNYCH CHARAKTERYSTYK TRANZYSTORA MESFET W PROGRAMIE PSPICE Damian Bisewski, Janusz Zarębski Akademia Morska w Gdyni MODELOWANIE ELEKTROTERMICZNYCH CHARAKTERYSTYK TRANZYSTORA MESFET W PROGRAMIE PSPICE Praca dotyczy problematyki modelowania tranzystorów MESFET z

Bardziej szczegółowo

BADANIA MODELOWE OGNIW SŁONECZNYCH

BADANIA MODELOWE OGNIW SŁONECZNYCH POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012 Bartosz CERAN* BADANIA MODELOWE OGNIW SŁONECZNYCH W artykule przedstawiono model matematyczny modułu fotowoltaicznego.

Bardziej szczegółowo

INSTRUKCJA LABORATORYJNA NR 10-PV MODUŁ FOTOWOLTAICZNY

INSTRUKCJA LABORATORYJNA NR 10-PV MODUŁ FOTOWOLTAICZNY LABORATORIUM ODNAWIALNYCH ŹRÓDEŁ ENERGII Katedra Aparatury i Maszynoznawstwa Chemicznego Wydział Chemiczny Politechniki Gdańskiej INSTRUKCJA LABORATORYJNA NR 10-PV MODUŁ FOTOWOLTAICZNY 1. Cel i zakres

Bardziej szczegółowo

Ćwiczenie 3 WPŁYW NASŁONECZNIENIA I TECHNOLOGII PRODUKCJI KRZEMOWYCH OGNIW FOTOWOLTAICZNYCH NA ICH WŁASNOŚCI EKSPLOATACYJNE

Ćwiczenie 3 WPŁYW NASŁONECZNIENIA I TECHNOLOGII PRODUKCJI KRZEMOWYCH OGNIW FOTOWOLTAICZNYCH NA ICH WŁASNOŚCI EKSPLOATACYJNE Ćwiczenie WPŁYW NASŁONECZNIENIA I TECHNOLOGII PRODUKCJI KRZEMOWYCH OGNIW FOTOWOLTAICZNYCH NA ICH WŁASNOŚCI EKSPLOATACYJNE Opis stanowiska pomiarowego Stanowisko do wyznaczania charakterystyk prądowo napięciowych

Bardziej szczegółowo

Wyznaczanie krzywej ładowania kondensatora

Wyznaczanie krzywej ładowania kondensatora Ćwiczenie E10 Wyznaczanie krzywej ładowania kondensatora E10.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie przebiegu procesu ładowania kondensatora oraz wyznaczenie stałej czasowej szeregowego układu.

Bardziej szczegółowo

MD-585L. Badanie modułów fotowoltaicznych Stanowisko 1

MD-585L. Badanie modułów fotowoltaicznych Stanowisko 1 MD-585L Badanie modułów fotowoltaicznych Stanowisko 1 Spis treści 1. Charakterystyka stanowiska...3 1.1. Wstęp...3 1.2. Specyfikacja stanowiska...3 1.3. Schemat układu pomiarowego...5 2. Obsługa stanowiska...7

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE

ELEMENTY ELEKTRONICZNE KATEDRA ELEKTRONIKI AGH L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE DIODY REV. 2.0 1. CEL ĆWICZENIA - pomiary charakterystyk stałoprądowych diod prostowniczych, świecących oraz stabilizacyjnych - praktyczne

Bardziej szczegółowo

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Mechatronika (WM) Laboratorium Elektrotechniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Bardziej szczegółowo

4. Schemat układu pomiarowego do badania przetwornika

4. Schemat układu pomiarowego do badania przetwornika 1 1. Projekt realizacji prac związanych z uruchomieniem i badaniem przetwornika napięcie/częstotliwość z układem AD654 2. Założenia do opracowania projektu a) Dane techniczne układu - Napięcie zasilające

Bardziej szczegółowo

Ćwiczenie 4 Pomiar prądu i napięcia stałego

Ćwiczenie 4 Pomiar prądu i napięcia stałego Ćwiczenie 4 Pomiar prądu i napięcia stałego Instrukcja do ćwiczenia laboratoryjnego opracowali: Łukasz Śliwczyński Witold Skowroński Karol Salwik ver. 3, 05.2019 1. Cel ćwiczenia Zapoznanie się z metodami

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE. Układy polaryzacji i stabilizacji punktu pracy tranzystora

ELEMENTY ELEKTRONICZNE. Układy polaryzacji i stabilizacji punktu pracy tranzystora Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEMENTY ELEKTRONICZNE TS1C300 018 Układy polaryzacji i stabilizacji punktu

Bardziej szczegółowo

Ćwiczenie 1. Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym

Ćwiczenie 1. Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym Ćwiczenie 1 Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym Wprowadzenie Celem ćwiczenia jest sprawdzenie podstawowych praw elektrotechniki w obwodach prądu stałego. Badaniu

Bardziej szczegółowo

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie ĆWICZENIE Połączenia szeregowe oraz równoległe elementów C. CEL ĆWICZENIA Celem ćwiczenia jest praktyczno-analityczna ocena wartości

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA Wydział Elektryczny Instytut Elektroenergetyki Zakład Elektrowni i Gospodarki Elektroenergetycznej

POLITECHNIKA WARSZAWSKA Wydział Elektryczny Instytut Elektroenergetyki Zakład Elektrowni i Gospodarki Elektroenergetycznej POLITECHNIKA WARSZAWSKA Wydział Elektryczny Instytut Elektroenergetyki Zakład Elektrowni i Gospodarki Elektroenergetycznej INSTRUKCJA DO ĆWICZENIA: BADANIE BATERII SŁONECZNYCH W ZALEśNOŚCI OD NATĘśENIA

Bardziej szczegółowo

WZMACNIACZ NAPIĘCIOWY RC

WZMACNIACZ NAPIĘCIOWY RC WZMACNIACZ NAPIĘCIOWY RC 1. WSTĘP Tematem ćwiczenia są podstawowe właściwości jednostopniowego wzmacniacza pasmowego z tranzystorem bipolarnym. Zadaniem ćwiczących jest dokonanie pomiaru częstotliwości

Bardziej szczegółowo

Badanie wzmacniacza operacyjnego

Badanie wzmacniacza operacyjnego Badanie wzmacniacza operacyjnego CEL: Celem ćwiczenia jest poznanie właściwości wzmacniaczy operacyjnych i komparatorów oraz możliwości wykorzystania ich do realizacji bloków funkcjonalnych poprzez dobór

Bardziej szczegółowo

BADANIE ELEMENTÓW RLC

BADANIE ELEMENTÓW RLC KATEDRA ELEKTRONIKI AGH L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE BADANIE ELEMENTÓW RLC REV. 1.0 1. CEL ĆWICZENIA - zapoznanie się z systemem laboratoryjnym NI ELVIS II, - zapoznanie się z podstawowymi

Bardziej szczegółowo

Ćwiczenie 2 WSPÓŁPRACA JEDNAKOWYCH OGNIW FOTOWOLTAICZNYCH W RÓŻNYCH KONFIGURACJACH POŁĄCZEŃ. Opis stanowiska pomiarowego. Przebieg ćwiczenia

Ćwiczenie 2 WSPÓŁPRACA JEDNAKOWYCH OGNIW FOTOWOLTAICZNYCH W RÓŻNYCH KONFIGURACJACH POŁĄCZEŃ. Opis stanowiska pomiarowego. Przebieg ćwiczenia Ćwiczenie WSPÓŁPRACA JEDNAKOWYCH OGNIW FOTOWOLTAICZNYCH W RÓŻNYCH KONFIGURACJACH POŁĄCZEŃ Opis stanowiska pomiarowego Stanowisko do analizy współpracy jednakowych ogniw fotowoltaicznych w różnych konfiguracjach

Bardziej szczegółowo

TRANZYSTORY BIPOLARNE

TRANZYSTORY BIPOLARNE Instrukcja do ćwiczenia laboratoryjnego TRANZYSTORY BIPOLARNE Instrukcję opracował: dr inż. Jerzy Sawicki Wymagania, znajomość zagadnień: 1. Tranzystory bipolarne rodzaje, typowe parametry i charakterystyki,

Bardziej szczegółowo

Ćwiczenie 4 Pomiar prądu i napięcia stałego

Ćwiczenie 4 Pomiar prądu i napięcia stałego Ćwiczenie 4 Pomiar prądu i napięcia stałego Instrukcja do ćwiczenia laboratoryjnego opracowali: Łukasz Śliwczyński Witold Skowroński Karol Salwik ver. 3, 05.2018 1. Cel ćwiczenia Zapoznanie się z metodami

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA

WOJSKOWA AKADEMIA TECHNICZNA WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego ENERGOELEKTRONIKA Laboratorium Ćwiczenie nr 2 Łączniki prądu przemiennego Warszawa 2015r. Łączniki prądu przemiennego na przemienny Celem ćwiczenia

Bardziej szczegółowo

Opis dydaktycznych stanowisk pomiarowych i przyrządów w lab. EE (paw. C-3, 302)

Opis dydaktycznych stanowisk pomiarowych i przyrządów w lab. EE (paw. C-3, 302) Opis dydaktycznych stanowisk pomiarowych i przyrządów w lab. EE (paw. C-3, 302) 1. Elementy elektroniczne stosowane w ćwiczeniach Elementy elektroniczne będące przedmiotem pomiaru, lub służące do zestawienia

Bardziej szczegółowo

Badanie obwodów rozgałęzionych prądu stałego z jednym źródłem. Pomiar mocy w obwodach prądu stałego

Badanie obwodów rozgałęzionych prądu stałego z jednym źródłem. Pomiar mocy w obwodach prądu stałego Badanie obwodów rozgałęzionych prądu stałego z jednym źródłem. Pomiar mocy w obwodach prądu stałego I. Prawa Kirchoffa Celem ćwiczenia jest zapoznanie się z rozpływami prądów w obwodach rozgałęzionych

Bardziej szczegółowo

Co się stanie, gdy połączymy szeregowo dwie żarówki?

Co się stanie, gdy połączymy szeregowo dwie żarówki? Różne elementy układu elektrycznego można łączyć szeregowo. Z wartości poszczególnych oporów, można wyznaczyć oporność całkowitą oraz całkowite natężenie prądu. Zadania 1. Połącz szeregowo dwie identyczne

Bardziej szczegółowo

Badanie własności hallotronu, wyznaczenie stałej Halla (E2)

Badanie własności hallotronu, wyznaczenie stałej Halla (E2) Badanie własności hallotronu, wyznaczenie stałej Halla (E2) 1. Wymagane zagadnienia - ruch ładunku w polu magnetycznym, siła Lorentza, pole elektryczne - omówić zjawisko Halla, wyprowadzić wzór na napięcie

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1) Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDLNEGO

Bardziej szczegółowo

Liniowe stabilizatory napięcia

Liniowe stabilizatory napięcia . Cel ćwiczenia. Liniowe stabilizatory napięcia Celem ćwiczenia jest praktyczne poznanie właściwości stabilizatora napięcia zbudowanego na popularnym układzie scalonym. Zakres ćwiczenia obejmuje projektowanie

Bardziej szczegółowo

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4) OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PĄDU SINUSOIDLNEGO

Bardziej szczegółowo

MOBILNE STANOWISKO DO BADAŃ EFEKTYWNOSCI MODUŁÓW PV.

MOBILNE STANOWISKO DO BADAŃ EFEKTYWNOSCI MODUŁÓW PV. MOBILNE STANOWISKO DO BADAŃ EFEKTYWNOSCI MODUŁÓW PV www.oze.utp.edu.pl MOBILNE STANOWISKO DO BADAŃ EFEKTYWNOSCI MODUŁÓW PV Prezentacja stanowiska łącznie z mobilnym układem instalacji solarnej z kolektorem

Bardziej szczegółowo

Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora.

Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora. I. Cel ćwiczenia ĆWICZENIE 6 Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora. Badanie właściwości wzmacniaczy tranzystorowych pracujących w układzie wspólnego kolektora. II.

Bardziej szczegółowo

Sprzęt i architektura komputerów

Sprzęt i architektura komputerów Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Sprzęt i architektura komputerów Laboratorium Temat:Pomiary podstawowych wielkości elektryczych: prawa Ohma i Kirchhoffa Katedra Architektury

Bardziej szczegółowo

E12. Wyznaczanie parametrów użytkowych fotoogniwa

E12. Wyznaczanie parametrów użytkowych fotoogniwa 1/5 E12. Wyznaczanie parametrów użytkowych fotoogniwa Celem ćwiczenia jest poznanie podstaw zjawiska konwersji energii świetlnej na elektryczną, zasad działania fotoogniwa oraz wyznaczenie jego podstawowych

Bardziej szczegółowo

Ćwiczenie nr 1. Badanie obwodów jednofazowych RLC przy wymuszeniu sinusoidalnym

Ćwiczenie nr 1. Badanie obwodów jednofazowych RLC przy wymuszeniu sinusoidalnym Ćwiczenie nr Badanie obwodów jednofazowych RC przy wymuszeniu sinusoidalnym. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z rozkładem napięć prądów i mocy w obwodach złożonych z rezystorów cewek i

Bardziej szczegółowo

PL B1. POLITECHNIKA LUBELSKA, Lublin, PL BUP 21/11

PL B1. POLITECHNIKA LUBELSKA, Lublin, PL BUP 21/11 PL 218599 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 218599 (13) B1 (21) Numer zgłoszenia: 390920 (51) Int.Cl. G01K 15/00 (2006.01) H01L 35/34 (2006.01) Urząd Patentowy Rzeczypospolitej

Bardziej szczegółowo

SENSORY i SIECI SENSOROWE

SENSORY i SIECI SENSOROWE SKRYPT DO LABORATORIUM SENSORY i SIECI SENSOROWE ĆWICZENIE 1: Pętla prądowa 4 20mA Osoba odpowiedzialna: dr hab. inż. Piotr Jasiński Gdańsk, 2018 1. Informacje wstępne Cele ćwiczenia: Celem ćwiczenia jest

Bardziej szczegółowo

POMIAR CHARAKTERYSTYKI PRĄDOWO- NAPIĘCIOWEJ OGNIWA FOTOWOLTAICZNEGO METODĄ POJEMNOŚCIOWĄ W WARUNKACH OŚWIETLENIA SZTUCZNEGO

POMIAR CHARAKTERYSTYKI PRĄDOWO- NAPIĘCIOWEJ OGNIWA FOTOWOLTAICZNEGO METODĄ POJEMNOŚCIOWĄ W WARUNKACH OŚWIETLENIA SZTUCZNEGO CZASOPISMO INŻYNIERII LĄDOWEJ, ŚRODOWISKA I ARCHITEKTURY JOURNAL OF CIVIL ENGINEERING, ENVIRONMENT AND ARCHITECTURE JCEEA, t. XXXIII, z. 63 (4/16), październik-grudzień 2016, s. 443-450 Patrycja PRAŻMO

Bardziej szczegółowo

st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE

st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE Układem

Bardziej szczegółowo

Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa. Katedra Architektury Komputerów i Telekomunikacji

Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa. Katedra Architektury Komputerów i Telekomunikacji Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Elektronika Laboratorium nr 1 Temat: Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa Katedra Architektury Komputerów i Telekomunikacji

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwiczenia PC-13 BADANIE DZIAŁANIA EKRANÓW CIEPLNYCH

Bardziej szczegółowo

PL B1. Sposób wyznaczania błędów napięciowego i kątowego indukcyjnych przekładników napięciowych dla przebiegów odkształconych

PL B1. Sposób wyznaczania błędów napięciowego i kątowego indukcyjnych przekładników napięciowych dla przebiegów odkształconych PL 216925 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 216925 (13) B1 (21) Numer zgłoszenia: 389198 (51) Int.Cl. G01R 35/02 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

Zespół Szkół Technicznych w Skarżysku - Kamiennej. Projekt budowy Zasilacza regulowanego. Opracował: Krzysztof Gałka kl. 2Te

Zespół Szkół Technicznych w Skarżysku - Kamiennej. Projekt budowy Zasilacza regulowanego. Opracował: Krzysztof Gałka kl. 2Te Zespół Szkół Technicznych w Skarżysku - Kamiennej Projekt budowy Zasilacza regulowanego Opracował: Krzysztof Gałka kl. 2Te 1. Wstęp Wydawać by się mogło, że stary, niepotrzebny już zasilacz komputerowy

Bardziej szczegółowo

Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Wydział IEiT. Ćwiczenie laboratoryjne Badanie modułu fotowoltaicznego

Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Wydział IEiT. Ćwiczenie laboratoryjne Badanie modułu fotowoltaicznego Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Wydział IEiT Katedra Elektroniki Alternatywne Źródła Energii Ćwiczenie laboratoryjne Badanie modułu fotowoltaicznego Opracowanie instrukcji:

Bardziej szczegółowo

Eksperymentalnie wyznacz bilans energii oraz wydajność turbiny wiatrowej, przy obciążeniu stałą rezystancją..

Eksperymentalnie wyznacz bilans energii oraz wydajność turbiny wiatrowej, przy obciążeniu stałą rezystancją.. Eksperyment 1.2 1.2 Bilans energii oraz wydajność turbiny wiatrowej Zadanie Eksperymentalnie wyznacz bilans energii oraz wydajność turbiny wiatrowej, przy obciążeniu stałą rezystancją.. Układ połączeń

Bardziej szczegółowo

PODSTAWY METROLOGII ĆWICZENIE 2 REZYSTANCJA WEWNĘTRZNA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3

PODSTAWY METROLOGII ĆWICZENIE 2 REZYSTANCJA WEWNĘTRZNA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3 PODSTAWY METROLOGII ĆWICZENIE 2 REZYSTANCJA WEWNĘTRZNA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3 Rozwiązania zadań nie były w żaden sposób konsultowane z żadnym wiarygodnym źródłem

Bardziej szczegółowo

BADANIE UKŁADÓW CYFROWYCH. CEL: Celem ćwiczenia jest poznanie właściwości statycznych układów cyfrowych serii TTL. PRZEBIEG ĆWICZENIA

BADANIE UKŁADÓW CYFROWYCH. CEL: Celem ćwiczenia jest poznanie właściwości statycznych układów cyfrowych serii TTL. PRZEBIEG ĆWICZENIA BADANIE UKŁADÓW CYFROWYCH CEL: Celem ćwiczenia jest poznanie właściwości statycznych układów cyfrowych serii TTL. PRZEBIEG ĆWICZENIA 1. OGLĘDZINY Dokonać oględzin badanego układu cyfrowego określając jego:

Bardziej szczegółowo

Źródła zasilania i parametry przebiegu zmiennego

Źródła zasilania i parametry przebiegu zmiennego POLIECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGEYKI INSYU MASZYN I URZĄDZEŃ ENERGEYCZNYCH LABORAORIUM ELEKRYCZNE Źródła zasilania i parametry przebiegu zmiennego (E 1) Opracował: Dr inż. Włodzimierz

Bardziej szczegółowo

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

LABORATORIUM INŻYNIERII MATERIAŁOWEJ Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Protokół

Bardziej szczegółowo

WIECZOROWE STUDIA ZAWODOWE LABORATORIUM OBWODÓW I SYGNAŁÓW

WIECZOROWE STUDIA ZAWODOWE LABORATORIUM OBWODÓW I SYGNAŁÓW POLTECHNKA WARSZAWSKA NSTYTUT RADOELEKTRONK ZAKŁAD RADOKOMUNKACJ WECZOROWE STUDA ZAWODOWE LABORATORUM OBWODÓW SYGNAŁÓW Ćwiczenie 1 Temat: OBWODY PRĄDU STAŁEGO Opracował: mgr inż. Henryk Chaciński Warszawa

Bardziej szczegółowo

Badanie ogniw fotowoltaicznych

Badanie ogniw fotowoltaicznych POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Badanie ogniw fotowoltaicznych Laboratorium Energetyki Rozproszonej i Odnawialnych Źródeł Energii

Bardziej szczegółowo

Ćwiczenie 14 Temat: Pomiary rezystancji metodami pośrednimi, porównawczą napięć i prądów.

Ćwiczenie 14 Temat: Pomiary rezystancji metodami pośrednimi, porównawczą napięć i prądów. Ćwiczenie 14 Temat: Pomiary rezystancji metodami pośrednimi, porównawczą napięć i prądów. Cel ćwiczenia; Zaplanować pomiary w obwodach prądu stałego, dobrać metodę pomiarową do zadanej sytuacji, narysować

Bardziej szczegółowo

Tranzystory bipolarne. Podstawowe układy pracy tranzystorów.

Tranzystory bipolarne. Podstawowe układy pracy tranzystorów. ĆWICZENIE 4 Tranzystory bipolarne. Podstawowe układy pracy tranzystorów. I. Cel ćwiczenia Zapoznanie się z układami zasilania tranzystorów. Wybór punktu pracy tranzystora. Statyczna prosta pracy. II. Układ

Bardziej szczegółowo

ĆWICZENIE T2 PRACA RÓWNOLEGŁA TRANSFORMATORÓW

ĆWICZENIE T2 PRACA RÓWNOLEGŁA TRANSFORMATORÓW ĆWICZENIE T2 PRACA RÓWNOLEGŁA TRANSFORMATORÓW I. Program ćwiczenia 1. Pomiar napięć i impedancji zwarciowych transformatorów 2. Pomiar przekładni napięciowych transformatorów 3. Wyznaczenie pomiarowe charakterystyk

Bardziej szczegółowo

Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera.

Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera. ĆWICZENIE 5 Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera. I. Cel ćwiczenia Badanie właściwości dynamicznych wzmacniaczy tranzystorowych pracujących w układzie

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Struktura pasmowa ciał stałych. 2. Klasyfikacja ciał stałych w oparciu o teorię

Bardziej szczegółowo

Mgr inż. Marta DROSIŃSKA Politechnika Gdańska, Wydział Oceanotechniki i Okrętownictwa

Mgr inż. Marta DROSIŃSKA Politechnika Gdańska, Wydział Oceanotechniki i Okrętownictwa MECHANIK 7/2014 Mgr inż. Marta DROSIŃSKA Politechnika Gdańska, Wydział Oceanotechniki i Okrętownictwa WYZNACZENIE CHARAKTERYSTYK EKSPLOATACYJNYCH SIŁOWNI TURBINOWEJ Z REAKTOREM WYSOKOTEMPERATUROWYM W ZMIENNYCH

Bardziej szczegółowo

PRZEŁĄCZANIE DIOD I TRANZYSTORÓW

PRZEŁĄCZANIE DIOD I TRANZYSTORÓW L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE PRZEŁĄCZANIE DIOD I TRANZYSTORÓW REV. 1.1 1. CEL ĆWICZENIA - obserwacja pracy diod i tranzystorów podczas przełączania, - pomiary charakterystycznych czasów

Bardziej szczegółowo

Ćwiczenie nr 34. Badanie elementów optoelektronicznych

Ćwiczenie nr 34. Badanie elementów optoelektronicznych Ćwiczenie nr 34 Badanie elementów optoelektronicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z elementami optoelektronicznymi oraz ich podstawowymi parametrami, a także doświadczalne sprawdzenie

Bardziej szczegółowo

(54) (12) OPIS PATENTOWY (19) PL (11) (13) B1 PL B1 C23F 13/04 C23F 13/22 H02M 7/155

(54) (12) OPIS PATENTOWY (19) PL (11) (13) B1 PL B1 C23F 13/04 C23F 13/22 H02M 7/155 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 169318 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 296640 (22) Data zgłoszenia: 16.11.1992 (51) IntCl6: H02M 7/155 C23F

Bardziej szczegółowo

Laboratorium Podstaw Pomiarów

Laboratorium Podstaw Pomiarów Laboratorium Podstaw Pomiarów Ćwiczenie 5 Pomiary rezystancji Instrukcja Opracował: dr hab. inż. Grzegorz Pankanin, prof. PW Instytut Systemów Elektronicznych Wydział Elektroniki i Technik Informacyjnych

Bardziej szczegółowo

Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE

Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl

Bardziej szczegółowo

BADANIA EKSPERYMENTALNE HYBRYDOWEGO UKŁADU PV-TEG

BADANIA EKSPERYMENTALNE HYBRYDOWEGO UKŁADU PV-TEG POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 89 Electrical Engineering 2017 DOI 10.21008/j.1897-0737.2017.89.0034 Dominik MATECKI* BADANIA EKSPERYMENTALNE HYBRYDOWEGO UKŁADU PV-TEG Niniejsza

Bardziej szczegółowo

ZŁĄCZOWE TRANZYSTORY POLOWE

ZŁĄCZOWE TRANZYSTORY POLOWE L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE ZŁĄCZOWE TRANZYSTORY POLOWE RE. 0.4 1. CEL ĆWICZENIA Wyznaczenie podstawowych parametrów tranzystora unipolarnego takich jak: o napięcie progowe, o transkonduktancja,

Bardziej szczegółowo

OCENA DOKŁADNOŚCI FIRMOWYCH MODELI DIOD SCHOTTKY EGO Z WĘGLIKA KRZEMU

OCENA DOKŁADNOŚCI FIRMOWYCH MODELI DIOD SCHOTTKY EGO Z WĘGLIKA KRZEMU POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 84 Electrical Engineering 2015 Damian BISEWSKI* Janusz ZARĘBSKI* OCENA DOKŁADNOŚCI FIRMOWYCH MODELI DIOD SCHOTTKY EGO Z WĘGLIKA KRZEMU W pracy przedstawiono

Bardziej szczegółowo

NATĘŻENIE POLA ELEKTRYCZNEGO PRZEWODU LINII NAPOWIETRZNEJ Z UWZGLĘDNIENIEM ZWISU

NATĘŻENIE POLA ELEKTRYCZNEGO PRZEWODU LINII NAPOWIETRZNEJ Z UWZGLĘDNIENIEM ZWISU POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 85 Electrical Engineering 016 Krzysztof KRÓL* NATĘŻENIE POLA ELEKTRYCZNEGO PRZEWODU LINII NAPOWIETRZNEJ Z UWZGLĘDNIENIEM ZWISU W artykule zaprezentowano

Bardziej szczegółowo

METROLOGIA EZ1C

METROLOGIA EZ1C Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu METOLOGI Kod przedmiotu: EZ1C 300 016 POMI EZYSTNCJI METODĄ

Bardziej szczegółowo

1 Ćwiczenia wprowadzające

1 Ćwiczenia wprowadzające 1 W celu prawidłowego wykonania ćwiczeń w tym punkcie należy posiłkować się wiadomościami umieszczonymi w instrukcji punkty 1.1.1. - 1.1.4. oraz 1.2.2. 1.1 Rezystory W tym ćwiczeniu należy odczytać wartość

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 2 OBWODY NIELINIOWE PRĄDU

Bardziej szczegółowo

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA E1. OBWODY PRĄDU STŁEGO WYZNCZNIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁ tekst opracowała: Bożena Janowska-Dmoch Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych wywołany

Bardziej szczegółowo

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej

Bardziej szczegółowo

Wyznaczanie współczynnika przewodnictwa

Wyznaczanie współczynnika przewodnictwa Ćwiczenie C5 Wyznaczanie współczynnika przewodnictwa cieplnego wybranych materiałów C5.1. Cel ćwiczenia Celem ćwiczenia jest poznanie mechanizmów transportu energii, w szczególności zjawiska przewodnictwa

Bardziej szczegółowo

ZŁĄCZOWY TRANZYSTOR POLOWY

ZŁĄCZOWY TRANZYSTOR POLOWY L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE ZŁĄCZOWY TRANZYSTOR POLOWY RE. 2.0 1. CEL ĆWICZENIA - Pomiary charakterystyk prądowo-napięciowych tranzystora. - Wyznaczenie podstawowych parametrów tranzystora

Bardziej szczegółowo

Ćwiczenie: "Mierniki cyfrowe"

Ćwiczenie: Mierniki cyfrowe Ćwiczenie: "Mierniki cyfrowe" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Próbkowanie

Bardziej szczegółowo

Odporny na korozję czujnik ciśnienia dla mikroreaktorów chemicznych

Odporny na korozję czujnik ciśnienia dla mikroreaktorów chemicznych MIROSYSTEMY - LABRATORIUM Ćwiczenie nr 2 Odporny na korozję czujnik ciśnienia dla mikroreaktorów chemicznych Charakterystyka badanego elementu: Odporny na korozję czujnik ciśnienia został opracowany w

Bardziej szczegółowo

Uniwersytet Pedagogiczny

Uniwersytet Pedagogiczny Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie Laboratorium elektroniki Ćwiczenie nr 5 Temat: STABILIZATORY NAPIĘCIA Rok studiów Grupa Imię i nazwisko Data Podpis Ocena 1. Cel ćwiczenia

Bardziej szczegółowo

Etapy Projektowania Instalacji Fotowoltaicznej. Analiza kosztów

Etapy Projektowania Instalacji Fotowoltaicznej. Analiza kosztów Etapy Projektowania Instalacji Fotowoltaicznej Analiza kosztów Główne składniki systemu fotowoltaicznego 1 m 2 instalacji fotowoltaicznej może dostarczyć rocznie 90-110 kwh energii elektrycznej w warunkach

Bardziej szczegółowo

4. EKSPLOATACJA UKŁADU NAPĘD ZWROTNICOWY ROZJAZD. DEFINICJA SIŁ W UKŁADZIE Siła nastawcza Siła trzymania

4. EKSPLOATACJA UKŁADU NAPĘD ZWROTNICOWY ROZJAZD. DEFINICJA SIŁ W UKŁADZIE Siła nastawcza Siła trzymania 3 SPIS TREŚCI Przedmowa... 11 1. WPROWADZENIE... 13 1.1. Budowa rozjazdów kolejowych... 14 1.2. Napędy zwrotnicowe... 15 1.2.1. Napęd zwrotnicowy EEA-4... 18 1.2.2. Napęd zwrotnicowy EEA-5... 20 1.3. Współpraca

Bardziej szczegółowo