Wartość przyszła, wartość bieżąca, synergia kapitału. arytmetyki finansowej opisujących wartość przyszłą. Uzyskano w ten sposób

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wartość przyszła, wartość bieżąca, synergia kapitału. arytmetyki finansowej opisujących wartość przyszłą. Uzyskano w ten sposób"

Transkrypt

1 KRZYSZTOF PIASECKI * EFEKT SYNERGII KAPITAŁU W ARYTMETYCE FINANSOWEJ Słowa kluczowe: Wartość przyszła, wartość bieżąca, synergia kapitału Streszczenie: W pracy implementowano warunek synergii kapitału do układu aksjomatów arytmetyki finansowej opisujących wartość przyszłą. Uzyskano w ten sposób pojęcie uogólnionej wartości przyszłej. Zbadano podstawowe własności uogólnionej wartości przyszłej. Zbadano też własności uogólnionej wartości bieżącej. Zwrócono uwagę na kontekst ekonomiczny uzyskanych wyników formalnych.. PROBLEM BADAWCZY Pieniądz odpowiednio traktowany zwiększa swą wartość wraz z upływem czasu. Jest to przyrost wartości realnej będącej naturalną konsekwencją ogólnego kierunku rozwoju społeczności ludzkiej, polegającej na zwiększeniu wartości tworzonych towarów i usług. Pieniądz, jako ekwiwalent tych produktów bezpośrednio na nie wymienialny, zwiększa zatem w czasie swą wartość. Jest to * Akademia Ekonomiczna w Poznaniu, PWSZ im. J.A. Komeńskiego w Lesznie Zawarte w tym artykule oryginalne wyniki zostały przedstawione na posiedzeniu Leszczyńskiego Towarzystwa Przyjaciół Nauk w dniu 3 maja 007. Głównym celem tego wystąpienia była prezentacja alchemii warsztatu badawczego autora, do czego zachęcał Prezes LTPN, prof. dr hab. Stanisław Sierpowski - -

2 wyidealizowany, ze względów na zastosowanie tutaj zasadę ceteris paribus, model przyrostu wartości pieniądza. Ostatnio w polskiej literaturze problem pracy ludzkiej jako czynnika kształtującego przyrost wartości jednostki pieniężnej podnosi Dobija [] cytując przy okazji cały szereg prac równie prominentnych autorów wyrażających ten sam pogląd. Przyrost ten jest dokładnie modelowany przy pomocy całego systemu równań nazywanego kiedyś matematyką finansową [3], [7],a w chwili obecnej arytmetyką finansową [6] lub teorią procentu [4], []. Przy analizie tych modeli uderza ich wysoka złożoność logiczna wyrażająca się dużą ilością przyjętych założeń. W [5] zaproponowano uproszczenia tego systemu na drodze zbudowania matematycznej teorii aksjomatyczno-dedukcyjnej. Przyjęto implicite jednak tam założenie, że tempo przyrostu wartości kapitału jest niezależne od ilości zgromadzonego kapitału. Praktyka gospodarowania i teoria ekonomii wskazują jednak bardzo wyraźnie, że tempo przyrostu wartości kapitału lokowanego w pewnym przedsięwzięciu rośnie wraz ze wzrostem wartości zainwestowanego kapitału. Efekt ten nazywa się efektem synergii kapitału. W prezentowanej pracy zostanie przedstawiona implementacja warunku synergii kapitału do zaprezentowanego w [5] układu aksjomatów arytmetyki finansowej.. ARYTMETYKA FINANSOWA PODSTAWY UJĘCIA AKSJOMATYCZNEGO Cześć ta w całości została opracowana na podstawie [5]. Tam też można znaleźć dowody przedstawionych tutaj twierdzeń. Na wstępie zostanie przedstawiony model opisującego proces przyrostu (aprecjacji) wartości kapitału w jednoznacznie wyróżnionym przedziale czasowym 0,T. Model ten odnosi się do instrumentu finansowego o wartości nominalnej C w momencie t 0. Wartość C nazywamy wartością początkową. Przyjmujemy - -

3 tutaj umowę, że nieujemne wartości finansowe odpowiadać będą przychodom, należnościom lub pozostałym aktywom, podczas gdy ujemne wartości finansowe opisywać będą wydatki, zobowiązania lub inne pasywa. Wartości początkowej C i dowolnemu momentowi czasowemu t 0,T przypisujemy wartość przyszłą s C, t. Oznacza to, że wartość przyszła spot jest funkcją określoną nad dziedziną określoną przez iloczyn kartezjański R 0, T c, t: c R, t 0, T. Podstawowe własności wartości przyszłej spot opisuje poniższa definicja. Definicja : Wartością przyszłą spot nazywamy funkcję s : R [0, T] R spełniającą - dla dowolnych wartości początkowych czasowych t t 0, T, warunki: C, C R i momentów s C C, t sc, t sc t ; (), t t C 0 sc, t sc t ; (), C, 0 C s. (3) Warunek () zakłada, że dowolnie wyznaczana wartość przyszła spot jest funkcją addytywną wartości początkowej. Oznacza to, że wartość przyszła sumy kapitału jest równa sumie wartości przyszłych kapitału. Warunek ten wyklucza efekt synergii kapitału i z tego względu będzie szczegółowo rozważany w drugiej części tej pracy. Warunek () informuje nas, że wraz z upływem czasu wartość przyszła aktywów nie może zmaleć. Inaczej mówiąc, na oszczędzaniu nie można stracić. Warunek (3) identyfikuje wartość przyszłą spot przypisaną chwili bieżącej z wartością początkową. W arytmetyce finansowej wartość przyszłą traktujemy jako model trendu ewolucji wartości pieniądza. Model ten służy między innymi do określenia wartości - 3 -

4 bieżącej określonego zasobu finansowego dostępnego w przyszłości. Każdy taki zasób może być opisany za pomocą strumienia finansowego. Weźmy teraz pod uwagę strumień finansowy reprezentowany przez parę t C 0, T R,, gdzie symbol t oznacza moment przepływu strumienia, zaś symbol C opisuje wartość nominalną tego przepływu. Zastosowano tutaj uporządkowanie pary argumentów odmienne od uporządkowania pary argumentów wartości przyszłej. Rozróżnienie to ma służyć podkreśleniu faktu, że w przypadku dowolnego strumienia finansowego zmienna czasu jest jednoznacznie powiązana z opisaną w parze wartością nominalną, podczas gdy w przypadku wartości przyszłej moment czasu nie jest powiązany z wartością początkową. Wartość bieżąca strumienia finansowego t, C jest taką wartością początkową t, C, której wartość przyszła przypisana momentowi przepływu strumienia t, C jest równa wartości nominalnej C tego przepływu. Ta definicja w formalny sposób może być zapisana przy pomocy tożsamości s t C, t C,. (4) Twierdzenie : Tożsamość (4) jest równoważna tożsamości t sc, t C, (5) Proces wyznaczania wartości bieżącej nazywamy potocznie dyskontowaniem wartości kapitału. Twierdzenie : Warunki (), (), (3) i (4) są warunkami dostatecznymi i koniecznymi na to, aby dla dowolnych wartości C, C R i t, t 0,T spełnione były warunki: t, C C t, C t C ; (6), t t C 0 t, C t C, ; (7) - 4 -

5 0, C C. (8) Dzięki Twierdzeniu wiemy, że na to, aby opisać procesy aprecjacji kapitału i dyskontowania wartości kapitału, wystarczy określić jedynie dowolną wartość przyszłą spełniającą warunki (), () i (3) albo dowolną wartość bieżącą spełniające warunki (6), (7) i (8). W pierwszym przypadku wartość bieżącą jest wyznaczana przy pomocy zależności (4). W drugim przypadku wartość przyszła jest wyznaczana przy pomocy zależności (5). 3. AKSJOMATYCZNE UJĘCIE EFEKTU SYNERGII KAPITAŁU Pan Profesor Antoni Smoluk z Akademii Ekonomicznej we Wrocławiu w swej recenzji wydawniczej książki [5] zaproponował zastąpienie w Definicji warunku () przez warunek 0, T: sc C, t sc, t sc t C C R t, ; (9), Zaproponowany warunek jest modelem dopuszczającym efekt synergii kapitału. Oznacza to przyjęcie założenia, że tempo przyrostu wartości kapitału lokowanego w pewnym przedsięwzięciu rośnie wraz ze wzrostem wartości zainwestowanego kapitału. Prawdziwość tego założenia wielokrotnie była weryfikowana empirycznie. Dyskutując warunek (9) warto też zauważyć, że dla C 0 warunek ten opisuje efekt dźwigni finansowej. Z tego powodu warunek (9) zostanie wykorzystany w tej części do uogólnienia definicji wartości przyszłej kapitału do przypadku nie wykluczającego już efektu synergii. Definicja : Uogólnioną wartością przyszłą nazywamy funkcję s : R [0, T] R spełniającą - dla dowolnych wartości początkowych czasowych t t 0, T, warunki: (), (3) i (9). C, C R i momentów - 5 -

6 Twierdzenie 3: Dowolna uogólniona wartość przyszła s : R [0, T] R posiada właściwości:, T: sc, t 0 C R t 0, (0), T: s0, t 0 t 0, (), T: sc, t 0 C R t 0, () 0, T: sc, t s C, t 0 C R t, (3) 0, T: C C sc, t sc t C C R t,. (4), Dowód: Z () i (3) dla dowolnej pary C, t R 0, T C, t sc,0 C 0 s, co dowodzi (0). Stąd jeśli C C t sc C, t sc, t sc t s,,, otrzymujemy C, to z (9) dla dowolnego t 0,T co dowodzi (4). Korzystając z (9). dla dowolnego t 0,T 0, t s0, t s0, t 0 s0 t mamy otrzymujemy s,. (*) Z drugiej strony, korzystając z () i (3), dla dowolnego momentu czasowego t 0,T otrzymujemy 0, t s0,0 0 s. (**) Zestawiając razem (*) i (**) otrzymujemy (). Korzystając z (9) i (), dla dowolnej pary C, t R0, T mamy C C, t sc, t s C t 0 s,, co dowodzi (3). Korzystając teraz z (0) i (3), dla dowolnej pary C, t R 0, T otrzymujemy C, t s C, t sc t 0 s,, co dowodzi () i kończy dowód całego twierdzenia

7 Warunki (0) i () informują, że klasa aktywów finansowych i klasa pasywów finansowych są zamknięte ze względu na operację wyznaczania wartości przyszłej. Warunek () pokazuje, że efekt synergii kapitału nie jest samoistnym źródłem pojawienia się możliwości arbitrażu cenowego. Treścią warunku (3) jest informacja, że jeśli wartości początkowa aktywów jest równa zwrotowi z wartości początkowej pasywów, to tempo przyrostu wartości przyszłej aktywów nigdy nie przekracza tempa względnego przyrostu wartości przyszłej pasywów. Wszystkie te wnioski potwierdzają poprawność wykorzystania warunku (9) w celu uogólnienia definicji wartości przyszłej. Warunek (4) przedstawia uogólniona wartość przyszłą, jako rosnącą funkcję wartości początkowej kapitału. Dzięki temu, dla każdej ustalonej wartości momentu czasowego t 0,T istnieje funkcja odwrotna do funkcji s t: R R spostrzeżenie to będzie nam ułatwiać dowodzenie dalszych twierdzeń.,. Formalne Analogicznie do podanego w poprzedniej części pojęcia wartości bieżącej, uogólniona wartość bieżąca strumienia finansowego t, C jest taką wartością początkową t C,, której uogólniona wartość przyszła przypisana momentowi przepływu strumienia t, C jest równa wartości nominalnej C tego przepływu. Ta definicja w formalny sposób może być zapisana przy pomocy tożsamości s t C, t C,. (5) Lemat : Dowolna uogólniona wartość bieżąca 0, T R R warunek: 0, T: C C t, C t C R t, : spełnia C, C. (6) Dowód: Wprost z (4) i (5). Twierdzenie 4: Tożsamość (5) jest równoważna tożsamości - 7 -

8 t sc, t C, (7) Dowód: W tożsamości (5) podstawiamy C sc, t t, sc, t, t sc t s,, i mamy wtedy co razem z (4) daje (7). Twierdzenie 5: Warunki (), (3), (9) i (5) są warunkami dostatecznymi i koniecznymi na to, aby dla dowolnych wartości C, C R i t, t 0,T spełnione były warunki: t, C C t, C t C ; (8), t t C 0 t, C t C, ; (9) 0, C C. (0) Dowód: Korzystając z (5) i z (9), dla dowolnej trójki C, C, t R 0, T otrzymujemy s s t, C C, t C C t, C, t s t, C, t s t, C t, C, t Powyższa nierówność wraz z (4) dowodzi (8). Załóżmy teraz prawdziwość warunku (8). Korzystając z (7) i (8) otrzymujemy wtedy t, sc C, t C C. t, sc, t t, sc, t t, sc C, t Powyższa nierówność wraz z (6) dowodzi (9). Została zatem wykazana równoważność pomiędzy warunkami (9) i (8). Z warunku () i (5) mamy s t C, t s t, C, t C s t, C,, t, co razem z (6) dowodzi (9). Załóżmy teraz prawdziwość warunku (9). Korzystając z (7) i (9) otrzymujemy wtedy

9 t, sc, t t, sc, t C t, sc t., Powyższa nierówność wraz z (6) dowodzi (). Została zatem wykazana równoważność pomiędzy warunkami () i (9). Z (3) i (5) mamy C, C s 0, C, 0 0, co dowodzi równoważności warunków (3) i (0). Konieczność i dostateczność warunków (), (3) i (9) została wykazana. Dzięki Twierdzeniom 4 i 5 wiemy, że na to, aby w pełni opisać procesy aprecjacji kapitału i dyskontowania wartości kapitału dopuszczające efekt synergii kapitału, wystarczy określić jedynie dowolną uogólnioną wartość przyszłą spełniającą warunki (), (3) i (9) albo dowolną uogólnioną wartość bieżącą spełniające warunki (8), (9) i (0). W pierwszym przypadku uogólnioną wartość bieżącą jest wyznaczana przy pomocy zależności (5). W drugim przypadku wartość przyszła jest wyznaczana przy pomocy zależności (7). Przedstawione tutaj wyniki wskazują, że w sytuacji - gdy spodziewamy się ujawnienia efektu synergii kapitału - dla jednoznacznego zdefiniowania modelu aprecjacji kapitału wystarczy jednoznacznie określić merytoryczne uzasadnione uogólnioną wartość przyszłą albo uogólnioną wartość bieżącą. 4. ZAKOŃCZENIE Oceniając znaczenie przedstawionych powyżej wyników należy tutaj podkreślić fakt, że opisane w Twierdzeniu 5 wzajemne relacje pomiędzy uogólnioną wartością przyszła i uogólnioną wartością bieżącą zostały udowodnione bez pomocy twierdzeń o współczynnikach aprecjacji i dyskontowania, tak jak to miało miejsce w [5] w przypadku dowodzenia Twierdzenia

10 Z drugiej strony zebrane tutaj wyniki są na tyle zachęcające, że wydaje się celowym kontynuowanie podjętych tutaj badań nad efektem synergii kapitału.. Na pierwszy ogień powinny iść uogólnione twierdzenia o czynnikach aprecjacji i dyskontowania. Tematem wartym podjęcia jest tez problem specyfikacji merytorycznie uzasadnionych jednoznacznych modeli uogólnionej wartości przyszłej. LITERATURA [] Chrzan P., Teoria procentu. Chrzan P.; Matematyka finansowa. Podstawy teorii procentu, Katowice 00, Oikońomos Sp.z o.o,. [] Dobija M., Źródła wartości jednostki pieniądza [W:] Tarczyński W. (red.) Rynek kapitałowy- skuteczne inwestowanie (red. Tarczyński W.), Szczecin 00, Uniwersytet Szczeciński, s.-38. [3] Dobija M., Smaga E.; Podstawy matematyki finansowej i ubezpieczeniowej, Warszawa-Kraków 995, PWN [4] Luenberger D.G., Teoria inwestycji finansowych, Warszawa 003, Wydawnictwo Naukowe PWN,. [5] Piasecki K., Od arytmetyki handlowej do inżynierii finansowej, Poznań 005, Wydawnictwo Naukowe AE w Poznaniu [6] Smaga E.; Arytmetyka finansowa, Warszawa-Kraków 999, PWN. [7] Sobczyk M.; Matematyka finansowa, Warszawa 997, Placet

Aksjomat synergii w arytmetyce finansowej

Aksjomat synergii w arytmetyce finansowej Krzysztof Piasecki Akademia Ekonomiczna w Poznaniu Aksjomat synergii w arytmetyce finansowej Problem badawczy Pieniądz odpowiednio traktowany zwiększa swą wartość wraz z upływem czasu. Jest to przyrost

Bardziej szczegółowo

EFEKT SYNERGII KAPITAŁU W ARYTMETYCE FINANSOWEJ**

EFEKT SYNERGII KAPITAŁU W ARYTMETYCE FINANSOWEJ** SCRIPTA COMENIANA LESNENSIA PWSZ im. J. A. Komeńskiego w Lesznie R o k 0 0 8, n r 6 KRZYSZTOF PIASECKI* EFEKT SYNERGII KAPITAŁU W ARYTMETYCE FINANSOWEJ** THE EFFECT OF SYNERGY IN FINANCIAL ARITHMETICS

Bardziej szczegółowo

KRZYSZTOF PIASECKI * EFEKT SYNERGII KAPITAŁU W ARYTMETYCE FINANSOWEJ 1. PROBLEM BADAWCZY. Słowa kluczowe:

KRZYSZTOF PIASECKI * EFEKT SYNERGII KAPITAŁU W ARYTMETYCE FINANSOWEJ 1. PROBLEM BADAWCZY. Słowa kluczowe: KRZYSZTOF PIASECKI * EFEKT SYNERGII KAPITAŁU W ARYTMETYCE FINANSOWEJ Słowa kluczowe: Wartość przyzła, Wartość bieżąca, Synergia kapitału Strezczenie: W pracy implementowano warunek ynergii kapitału do

Bardziej szczegółowo

Dobija M., Smaga E.; Podstawy matematyki finansowej i ubezpieczeniowej, PWN Warszawa- -Kraków 1995.

Dobija M., Smaga E.; Podstawy matematyki finansowej i ubezpieczeniowej, PWN Warszawa- -Kraków 1995. Bibliografia Dobija M., Smaga E.; Podstawy matematyki finansowej i ubezpieczeniowej, PWN Warszawa- -Kraków 1995. Elton E.J., Gruber M.J., Nowoczesna teoria portfelowa i analiza papierów wartościowych,

Bardziej szczegółowo

domykanie relacji, relacja równoważności, rozkłady zbiorów

domykanie relacji, relacja równoważności, rozkłady zbiorów 1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i

Bardziej szczegółowo

Matematyka bankowa 1 1 wykład

Matematyka bankowa 1 1 wykład Matematyka bankowa 1 1 wykład Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address: klimdr@math.uni.ldz.pl

Bardziej szczegółowo

Egzamin z logiki i teorii mnogości, rozwiązania zadań

Egzamin z logiki i teorii mnogości, rozwiązania zadań Egzamin z logiki i teorii mnogości, 08.02.2016 - rozwiązania zadań 1. Niech φ oraz ψ będą formami zdaniowymi. Czy formuła [( x : φ(x)) ( x : ψ(x))] [ x : (φ(x) ψ(x))] jest prawem rachunku kwantyfikatorów?

Bardziej szczegółowo

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA DYNAMICZNYCH LOKAT KAPITAŁOWYCH Krzysztof Gąsior Uniwersytet Rzeszowski Streszczenie Celem referatu jest zaprezentowanie praktycznego zastosowania

Bardziej szczegółowo

Ciągi komplementarne. Autor: Krzysztof Zamarski. Opiekun pracy: dr Jacek Dymel

Ciągi komplementarne. Autor: Krzysztof Zamarski. Opiekun pracy: dr Jacek Dymel Ciągi komplementarne Autor: Krzysztof Zamarski Opiekun pracy: dr Jacek Dymel Spis treści 1 Wprowadzenie 2 2 Pojęcia podstawowe 3 2.1 Oznaczenia........................... 3 2.2 "Ciąg odwrotny"........................

Bardziej szczegółowo

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

OLIMPIADA MATEMATYCZNA

OLIMPIADA MATEMATYCZNA OLIMPIADA MATEMATYCZNA Na stronie internetowej wwwomgedupl Olimpiady Matematycznej Gimnazjalistów (OMG) ukazały się ciekawe broszury zawierające interesujące zadania wraz z pomysłowymi rozwiązaniami z

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Teoria mnogości Set theory Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia Liczba godzin/tydzień:

Bardziej szczegółowo

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową

Bardziej szczegółowo

INDEKS FINANSISTY. Monika Skrzydłowska. PWSZ w Chełmie. październik Projekt dofinansowała Fundacja mbanku

INDEKS FINANSISTY. Monika Skrzydłowska. PWSZ w Chełmie. październik Projekt dofinansowała Fundacja mbanku INDEKS FINANSISTY Monika Skrzydłowska PWSZ w Chełmie październik 2017 Projekt dofinansowała Fundacja mbanku Monika Skrzydłowska (PWSZ w Chełmie) INDEKS FINANSISTY październik 2017 1 / 19 Spis treści 1

Bardziej szczegółowo

Klasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Klasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Klasa 1 technikum Przedmiotowy system oceniania wraz z wymaganiami edukacyjnymi Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i

Bardziej szczegółowo

Wykład 4. Określimy teraz pewną ważną klasę pierścieni.

Wykład 4. Określimy teraz pewną ważną klasę pierścieni. Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia

Bardziej szczegółowo

Indukcja matematyczna. Zasada minimum. Zastosowania.

Indukcja matematyczna. Zasada minimum. Zastosowania. Indukcja matematyczna. Zasada minimum. Zastosowania. Arkadiusz Męcel Uwagi początkowe W trakcie zajęć przyjęte zostaną następujące oznaczenia: 1. Zbiory liczb: R - zbiór liczb rzeczywistych; Q - zbiór

Bardziej szczegółowo

WŁASNOŚCI FUNKCJI MONOTONICZNYCH

WŁASNOŚCI FUNKCJI MONOTONICZNYCH Dorota Sasiuk WŁASNOŚCI FUNKCJI MONOTONICZNYCH WSTĘP... WIADOMOŚCI WSTĘPNE... 3. DEFINICJA FUNKCJI:... 3. DZIAŁANIA ARYTMETYCZNE NA FUNKCJACH:... 3.3 ZŁOŻENIE FUNKCJI:... 3.4 FUNKCJA ODWROTNA:... 4.5 FUNKCJA

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

MATeMAtyka 3. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Zakres podstawowy i rozszerzony

MATeMAtyka 3. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Zakres podstawowy i rozszerzony MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne

Bardziej szczegółowo

Elementy logiki i teorii mnogości

Elementy logiki i teorii mnogości Elementy logiki i teorii mnogości Zdanie logiczne Zdanie logiczne jest to zdanie oznajmujące, któremu można przypisać określoną wartość logiczną. W logice klasycznej zdania dzielimy na: prawdziwe (przypisujemy

Bardziej szczegółowo

O PEWNEJ ANOMALII W WYCENIE INSTRUMENTÓW DŁUŻNYCH

O PEWNEJ ANOMALII W WYCENIE INSTRUMENTÓW DŁUŻNYCH O PEWNEJ ANOMALII W WYCENIE INSTRUMENTÓW DŁUŻNYCH A. KARPIO KATEDRA EKONOMETRII I STATYSTYKI SGGW W WARSZAWIE Krzywa dochodowości Obligacja jest papierem wartościowym, którego wycena opiera się na oczekiwanych

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA

RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA Wydział: WiLiŚ, Transport, sem.2 dr Jolanta Dymkowska RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA Przestrzeń probabilistyczna Modelem matematycznym (tj. teoretycznym, wyidealizowanym,

Bardziej szczegółowo

Dwa równania kwadratowe z częścią całkowitą

Dwa równania kwadratowe z częścią całkowitą Dwa równania kwadratowe z częścią całkowitą Andrzej Nowicki Wydział Matematyki i Informatyki Uniwersytet M. Kopernika w Toruniu anow @ mat.uni.torun.pl 4 sierpnia 00 Jeśli r jest liczbą rzeczywistą, to

Bardziej szczegółowo

Wymagania edukacyjne z matematyki klasa II technikum

Wymagania edukacyjne z matematyki klasa II technikum Wymagania edukacyjne z matematyki klasa II technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: 1. JĘZYK MATEMATYKI I FUNKCJE LICZBOWE Uczeń otrzymuje ocenę dopuszczającą

Bardziej szczegółowo

Informacja o przestrzeniach Hilberta

Informacja o przestrzeniach Hilberta Temat 10 Informacja o przestrzeniach Hilberta 10.1 Przestrzenie unitarne, iloczyn skalarny Niech dana będzie przestrzeń liniowa X. Załóżmy, że każdej parze elementów x, y X została przyporządkowana liczba

Bardziej szczegółowo

7 Twierdzenie Fubiniego

7 Twierdzenie Fubiniego M. Beśka, Wstęp do teorii miary, wykład 7 19 7 Twierdzenie Fubiniego 7.1 Miary produktowe Niech i będą niepustymi zbiorami. Przez oznaczmy produkt kartezjański i tj. zbiór = { (x, y : x y }. Niech E oraz

Bardziej szczegółowo

LX Olimpiada Matematyczna

LX Olimpiada Matematyczna LX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 13 lutego 2009 r. (pierwszy dzień zawodów) Zadanie 1. Liczby rzeczywiste a 1, a 2,..., a n (n 2) spełniają warunek a 1

Bardziej szczegółowo

F t+ := s>t. F s = F t.

F t+ := s>t. F s = F t. M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną

Bardziej szczegółowo

Akademia Młodego Ekonomisty

Akademia Młodego Ekonomisty Akademia Młodego Ekonomisty Matematyka finansowa wokół nas Michał Trzęsiok Uniwersytet Ekonomiczny w Katowicach 20 października 2014 r. Czym jest pieniądz? Pieniądz - dobro, które jest powszechnie akceptowane

Bardziej szczegółowo

Bilans dostarcza użytkownikowi sprawozdania finansowego informacji o posiadanych aktywach tj. zgromadzonego majątku oraz wskazuje na źródła jego

Bilans dostarcza użytkownikowi sprawozdania finansowego informacji o posiadanych aktywach tj. zgromadzonego majątku oraz wskazuje na źródła jego Bilans dostarcza użytkownikowi sprawozdania finansowego informacji o posiadanych aktywach tj. zgromadzonego majątku oraz wskazuje na źródła jego finansowania strona pasywów. Bilans jest sporządzany na

Bardziej szczegółowo

DYSKONTO A AWERSJA DO RYZYKA UTRATY PŁYNNOŚCI. Problem badawczy. 1. Elementy teorii użyteczności strumienia finansowego

DYSKONTO A AWERSJA DO RYZYKA UTRATY PŁYNNOŚCI. Problem badawczy. 1. Elementy teorii użyteczności strumienia finansowego Krzysztof Piasecki Uniwersytet Ekonomiczny w Poznaniu DYSKONTO A AWERSJA DO RYZYKA UTRATY PŁYNNOŚCI Streszczenie: Wartość bieżąca jest rozważana, jako użyteczność strumienia finansowego. Dzięki temu można

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 7/15 Rachunek różnicowy Dobrym narzędziem do obliczania skończonych sum jest rachunek różnicowy. W rachunku tym odpowiednikiem operatora

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt

Bardziej szczegółowo

Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów

Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Liga zadaniowa 202/203 Seria VI (grudzień 202) rozwiązania zadań 26. Udowodnij, że istnieje 0 00 kolejnych liczb całkowitych dodatnich nie większych

Bardziej szczegółowo

Matematyka Dyskretna Zestaw 2

Matematyka Dyskretna Zestaw 2 Materiały dydaktyczne Matematyka Dyskretna (Zestaw ) Matematyka Dyskretna Zestaw 1. Wykazać, że nie istnieje liczba naturalna, która przy dzieleniu przez 18 daje resztę 13, a przy dzieleniu przez 1 daje

Bardziej szczegółowo

DYSKONTO A AWERSJA DO RYZYKA UTRATY PŁYNNOŚCI

DYSKONTO A AWERSJA DO RYZYKA UTRATY PŁYNNOŚCI Krzysztof Piasecki Uniwersytet Ekonomiczny w Poznaniu Wydział Informatyki i Gospodarki Elektronicznej Katedra Badań Operacyjnych k.piasecki@ue.poznan.pl DYSKONTO A AWERSJA DO RYZYKA UTRATY PŁYNNOŚCI Streszczenie:

Bardziej szczegółowo

Zbiory, relacje i funkcje

Zbiory, relacje i funkcje Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk

WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk str 1 Klasa 1d: wpisy oznaczone jako: LICZBY RZECZYWISTE, JĘZYK MATEMATYKI, FUNKCJA LINIOWA, (F) FUNKCJE, FUNKCJA KWADRATOWA. Przypisanie

Bardziej szczegółowo

Załącznik nr 2 do zarządzenia nr 111 Rektora UŚ z dnia 31 sierpnia 2012 r. Literatura i treści programowe studiów podyplomowych Inwestycje Giełdowe

Załącznik nr 2 do zarządzenia nr 111 Rektora UŚ z dnia 31 sierpnia 2012 r. Literatura i treści programowe studiów podyplomowych Inwestycje Giełdowe Załącznik nr 2 do zarządzenia nr 111 Rektora UŚ z dnia 31 sierpnia 2012 r Literatura i treści programowe studiów podyplomowych Inwestycje Giełdowe 1 Opis zakładanych efektów kształcenia na studiach podyplomowych

Bardziej szczegółowo

Treść wykładu. Pierścienie wielomianów. Dzielenie wielomianów i algorytm Euklidesa Pierścienie ilorazowe wielomianów

Treść wykładu. Pierścienie wielomianów. Dzielenie wielomianów i algorytm Euklidesa Pierścienie ilorazowe wielomianów Treść wykładu Pierścienie wielomianów. Definicja Niech P będzie pierścieniem. Wielomianem jednej zmiennej o współczynnikach z P nazywamy każdy ciąg f = (f 0, f 1, f 2,...), gdzie wyrazy ciągu f są prawie

Bardziej szczegółowo

BOGDAN ZARĘBSKI ZASTOSOWANIE ZASADY ABSTRAKCJI DO KONSTRUKCJI LICZB CAŁKOWITYCH

BOGDAN ZARĘBSKI ZASTOSOWANIE ZASADY ABSTRAKCJI DO KONSTRUKCJI LICZB CAŁKOWITYCH BOGDAN ZARĘBSKI ZASTOSOWANIE ZASADY ABSTRAKCJI DO KONSTRUKCJI LICZB CAŁKOWITYCH WSTĘP Zbiór liczb całkowitych można definiować na różne sposoby. Jednym ze sposobów określania zbioru liczb całkowitych jest

Bardziej szczegółowo

Algebra Boole a i jej zastosowania

Algebra Boole a i jej zastosowania lgebra oole a i jej zastosowania Wprowadzenie Niech dany będzie zbiór dwuelementowy, którego elementy oznaczymy symbolami 0 oraz 1, tj. {0, 1}. W zbiorze tym określamy działania sumy :, iloczynu : _ oraz

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS PRZEDMIOTU. Obowiązuje od roku akademickiego: 2010/2011

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS PRZEDMIOTU. Obowiązuje od roku akademickiego: 2010/2011 PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS Obowiązuje od roku akademickiego: 2010/2011 Instytut Ekonomiczny Kierunek studiów: Ekonomia Kod kierunku: 04.9 Specjalność: Finanse i rachunkowość

Bardziej szczegółowo

Jolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r.

Jolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r. Jolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r. Ocena dopuszczająca: Temat lekcji Stopień i współczynniki wielomianu Dodawanie i odejmowanie wielomianów Mnożenie

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem

Bardziej szczegółowo

Podstawy teorii oprocentowania. Łukasz Stodolny Radosław Śliwiński Cezary Kwinta Andrzej Koredczuk

Podstawy teorii oprocentowania. Łukasz Stodolny Radosław Śliwiński Cezary Kwinta Andrzej Koredczuk Podstawy teorii oprocentowania Łukasz Stodolny Radosław Śliwiński Cezary Kwinta Andrzej Koredczuk Cykl produkcyjny zakładów ubezpieczeń Ryzyko działalności zakładu ubezpieczeń Ryzyko finansowe działalności

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017 Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język

Bardziej szczegółowo

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady część II

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady część II Wydział Matematyki i Informatyki Uniwersytetu Łódzkiego w Łodzi Dariusz Wardowski Katedra Analizy Nieliniowej Bankowość i metody statystyczne w biznesie - zadania i przykłady część II Łódź 2008 Rozdział

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2015 andrzej.lachwa@uj.edu.pl 3/15 Indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej

Bardziej szczegółowo

MATEMATYKA FINANSOWA ZARYS UJĘCIA AKSJOMATYCZNEGO

MATEMATYKA FINANSOWA ZARYS UJĘCIA AKSJOMATYCZNEGO Krzysztof Piasecki Akademia Ekonomiczna w Poznaniu MATEMATYKA FINANSOWA ZARYS UJĘCIA AKSJOMATYCZNEGO Studiując literaturę z zakresu matematyki finansowej napotykamy dużą ilość modeli oceniających wpływ

Bardziej szczegółowo

Elementy matematyki finansowej

Elementy matematyki finansowej ROZDZIAŁ 2 Elementy matematyki finansowej 1. Procent składany i ciągły Stopa procentowa i jest związana z podstawową jednostką czasu, jaką jest zwykle jeden rok. Jeśli pożyczamy komuś 100 zł na jeden rok,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013 Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami. M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Politechnika Częstochowska, Wydział Zarządzania Nazwa przedmiotu: Finanse Finance Kierunek: Rodzaj przedmiotu: obieralny Matematyka Poziom kwalifikacji: I stopnia Semestr: IV Rodzaj zajęć: wykład, ćwiczenia

Bardziej szczegółowo

Wartość przyszła pieniądza: Future Value FV

Wartość przyszła pieniądza: Future Value FV Wartość przyszła pieniądza: Future Value FV Jeśli posiadamy pewną kwotę pieniędzy i mamy możliwość ulokowania ich w banku na ustalony czas i określony procent, to kwota w przyszłości (np. po 1 roku), zostanie

Bardziej szczegółowo

Elementy logiki matematycznej

Elementy logiki matematycznej Elementy logiki matematycznej Przedmiotem logiki matematycznej jest badanie tzw. wyrażeń logicznych oraz metod rozumowania i sposobów dowodzenia używanych w matematyce, a także w innych dziedzinach, w

Bardziej szczegółowo

Ekonomia matematyczna - 1.2

Ekonomia matematyczna - 1.2 Ekonomia matematyczna - 1.2 6. Popyt Marshalla, a popyt Hicksa. Poruszać się będziemy w tzw. standardowym polu preferencji X,, gdzie X R n i jest relacją preferencji, która jest: a) rosnąca (tzn. x y x

Bardziej szczegółowo

Równania i nierówności wykładnicze i logarytmiczne

Równania i nierówności wykładnicze i logarytmiczne Równania i nierówności wykładnicze i logarytmiczne Paweł Foralewski Teoria Ponieważ funkcje wykładnicza i logarytmiczna zostały wprowadzone wcześniej, tutaj przypomnimy tylko definicję logarytmu i jego

Bardziej szczegółowo

Uczeń: -podaje przykłady ciągów liczbowych skończonych i nieskończonych oraz rysuje wykresy ciągów

Uczeń: -podaje przykłady ciągów liczbowych skończonych i nieskończonych oraz rysuje wykresy ciągów Wymagania edukacyjne PRZEDMIOT: Matematyka KLASA: III Th ZAKRES: zakres podstawowy Poziom wymagań Lp. Dział programu Konieczny-K Podstawowy-P Rozszerzający-R Dopełniający-D Uczeń: 1. Ciągi liczbowe. -zna

Bardziej szczegółowo

Kształcenie w zakresie podstawowym. Klasa 1

Kształcenie w zakresie podstawowym. Klasa 1 Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. L Egzamin dla Aktuariuszy z 5 października 2009 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. L Egzamin dla Aktuariuszy z 5 października 2009 r. Komisja Egzaminacyjna dla Aktuariuszy L Egzamin dla Aktuariuszy z 5 października 2009 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 0 minut 1 1.

Bardziej szczegółowo

O pewnych związkach teorii modeli z teorią reprezentacji

O pewnych związkach teorii modeli z teorią reprezentacji O pewnych związkach teorii modeli z teorią reprezentacji na podstawie referatu Stanisława Kasjana 5 i 12 grudnia 2000 roku 1. Elementy teorii modeli Będziemy rozważać język L składający się z przeliczalnej

Bardziej szczegółowo

Nauka o finansach. Prowadzący: Dr Jarosław Hermaszewski

Nauka o finansach. Prowadzący: Dr Jarosław Hermaszewski Nauka o finansach Prowadzący: Dr Jarosław Hermaszewski WARTOŚĆ PIENIĄDZA W CZASIE Wykład 4 Prawda ekonomiczna Pieniądz, który mamy realnie w ręku, dziś jest wart więcej niż oczekiwana wartość tej samej

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

Matematyka liczby zespolone. Wykład 1

Matematyka liczby zespolone. Wykład 1 Matematyka liczby zespolone Wykład 1 Siedlce 5.10.015 Liczby rzeczywiste Zbiór N ={0,1,,3,4,5, } nazywamy zbiorem Liczb naturalnych, a zbiór N + ={1,,3,4, } nazywamy zbiorem liczb naturalnych dodatnich.

Bardziej szczegółowo

Twierdzenia Rolle'a i Lagrange'a

Twierdzenia Rolle'a i Lagrange'a Twierdzenia Rolle'a i Lagrange'a Zadanie 1 Wykazać, że dla dowolnych zachodzi. W przypadku nierówność (a właściwie równość) w treści zadania spełniona jest w sposób oczywisty, więc tego przypadku nie musimy

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III Program nauczania matematyki w gimnazjum Matematyka dla przyszłości DKW 4014 162/99 Opracowała: mgr Mariola Bagińska 1. Liczby i działania Podaje rozwinięcia

Bardziej szczegółowo

WYKŁAD 6 KINEMATYKA PRZEPŁYWÓW CZĘŚĆ 2 1/11

WYKŁAD 6 KINEMATYKA PRZEPŁYWÓW CZĘŚĆ 2 1/11 WYKŁAD 6 KINEMATYKA PRZEPŁYWÓW CZĘŚĆ 1/11 DEFORMACJA OŚRODKA CIĄGŁEGO Rozważmy dwa elementy płynu położone w pewnej chwili w bliskich sobie punktach A i B. Jak zmienia się ich względne położenie w krótkim

Bardziej szczegółowo

Akademia Młodego Ekonomisty

Akademia Młodego Ekonomisty Akademia Młodego Ekonomisty Matematyka finansowa wokół nas Michał Trzęsiok Uniwersytet Ekonomiczny w Katowicach 6 listopada 2017 r. Czym jest pieniądz? Pieniądz - dobro, które jest powszechnie akceptowane

Bardziej szczegółowo

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLASY 1LO i 1TI ROK SZKOLNY 2018/2019

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLASY 1LO i 1TI ROK SZKOLNY 2018/2019 PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLASY 1LO i 1TI ROK SZKOLNY 2018/2019 Przedmiotowy system oceniania jest zgodny z Rozporządzeniem Ministra Edukacji Narodowej z dnia 10 czerwca 2015 r. w

Bardziej szczegółowo

FUNKCJE. (odwzorowania) Funkcje 1

FUNKCJE. (odwzorowania) Funkcje 1 FUNKCJE (odwzorowania) Funkcje 1 W matematyce funkcja ze zbioru X w zbiór Y nazywa się odwzorowanie (przyporządkowanie), które każdemu elementowi zbioru X przypisuje jeden, i tylko jeden element zbioru

Bardziej szczegółowo

Adam Meissner.

Adam Meissner. Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Podstawy logiki pierwszego rzędu

Bardziej szczegółowo

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości.

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości. Własności Odległości i normy w Będziemy się teraz zajmować funkcjami od zmiennych, tzn. określonymi na (iloczyn kartezja/nski egzemplarzy ). Punkt należący do będziemy oznaczać jako Przykł. Wysokość terenu

Bardziej szczegółowo

Za pierwszy niebanalny algorytm uważa się algorytm Euklidesa wyszukiwanie NWD dwóch liczb (400 a 300 rok przed narodzeniem Chrystusa).

Za pierwszy niebanalny algorytm uważa się algorytm Euklidesa wyszukiwanie NWD dwóch liczb (400 a 300 rok przed narodzeniem Chrystusa). Algorytmy definicja, cechy, złożoność. Algorytmy napotykamy wszędzie, gdziekolwiek się zwrócimy. Rządzą one wieloma codziennymi czynnościami, jak np. wymiana przedziurawionej dętki, montowanie szafy z

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (I)

Równanie przewodnictwa cieplnego (I) Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca

Bardziej szczegółowo

2. FUNKCJE. jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy FUNKCJĄ, lub

2. FUNKCJE. jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy FUNKCJĄ, lub WYKŁAD 2 1 2. FUNKCJE. 2.1.PODSTAWOWE DEFINICJE. Niech będą dane zbiory i. Jeżeli każdemu elementowi x ze zbioru,, przyporządkujemy jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy

Bardziej szczegółowo

Wstęp do Matematyki (2)

Wstęp do Matematyki (2) Wstęp do Matematyki (2) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Własności relacji Jerzy Pogonowski (MEG) Wstęp do Matematyki (2) Własności relacji 1 / 24 Wprowadzenie

Bardziej szczegółowo

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ. 8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą

Bardziej szczegółowo

Wartość przyszła pieniądza

Wartość przyszła pieniądza O koszcie kredytu nie można mówić jedynie na podstawie wysokości płaconych odsetek. Dla pożyczającego pieniądze najważniejszą kwestią jest kwota, jaką będzie musiał zapłacić za korzystanie z cudzych środków

Bardziej szczegółowo

System finansowy gospodarki. Zajęcia nr 5 Matematyka finansowa

System finansowy gospodarki. Zajęcia nr 5 Matematyka finansowa System finansowy gospodarki Zajęcia nr 5 Matematyka finansowa Wartość pieniądza w czasie 1 złoty posiadany dzisiaj jest wart więcej niż 1 złoty posiadany w przyszłości, np. za rok. Powody: Suma posiadana

Bardziej szczegółowo

MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA

MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA 1. Funkcje i ich własności. odróżnić przyporządkowanie,

Bardziej szczegółowo

Głównym celem opracowania jest próba określenia znaczenia i wpływu struktury kapitału na działalność przedsiębiorstwa.

Głównym celem opracowania jest próba określenia znaczenia i wpływu struktury kapitału na działalność przedsiębiorstwa. KAPITAŁ W PRZEDSIĘBIORSTWIE I JEGO STRUKTURA Autor: Jacek Grzywacz, Wstęp W opracowaniu przedstawiono kluczowe zagadnienia dotyczące możliwości pozyskiwania przez przedsiębiorstwo kapitału oraz zasad kształtowania

Bardziej szczegółowo

Matematyka finansowa - lista zagadnień teoretycznych

Matematyka finansowa - lista zagadnień teoretycznych Matematyka finansowa - lista zagadnień teoretycznych Ostatnie zadanie na egzaminie będzie się składać z jednego bardziej skomplikowanego lub dwóch prostych pytań teoretycznych. Pytanie takie będzie dotyczyło

Bardziej szczegółowo

I Liceum Ogólnokształcące im. Cypriana Kamila Norwida w Bydgoszczy. Wojciech Kretowicz PODZIELNOŚĆ SILNI A SUMA CYFR

I Liceum Ogólnokształcące im. Cypriana Kamila Norwida w Bydgoszczy. Wojciech Kretowicz PODZIELNOŚĆ SILNI A SUMA CYFR I Liceum Ogólnokształcące im. Cypriana Kamila Norwida w Bydgoszczy Wojciech Kretowicz PODZIELNOŚĆ SILNI A SUMA CYFR Opiekun Mariusz Adamczak wojtekkretowicz@gmail.com Bydgoszcz 2017 Spis treści Wstęp...

Bardziej szczegółowo

Podstawy metod probabilistycznych. dr Adam Kiersztyn

Podstawy metod probabilistycznych. dr Adam Kiersztyn Podstawy metod probabilistycznych dr Adam Kiersztyn Przestrzeń zdarzeń elementarnych i zdarzenia losowe. Zjawiskiem lub doświadczeniem losowym nazywamy taki proces, którego przebiegu i ostatecznego wyniku

Bardziej szczegółowo

Całki niewłaściwe. Całki w granicach nieskończonych

Całki niewłaściwe. Całki w granicach nieskończonych Całki niewłaściwe Całki w granicach nieskończonych Wiemy, co to jest w przypadku skończonego przedziału i funkcji ograniczonej. Okazuje się potrzebne uogólnienie tego pojęcia w różnych kierunkach (przedział

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze

Bardziej szczegółowo

Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska

Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska Funkcje liniowe i wieloliniowe w praktyce szkolnej Opracowanie : mgr inż. Renata Rzepińska . Wprowadzenie pojęcia funkcji liniowej w nauczaniu matematyki w gimnazjum. W programie nauczania matematyki w

Bardziej szczegółowo

KONSPEKT FUNKCJE cz. 1.

KONSPEKT FUNKCJE cz. 1. KONSPEKT FUNKCJE cz. 1. DEFINICJA FUNKCJI Funkcją nazywamy przyporządkowanie, w którym każdemu elementowi zbioru X odpowiada dokładnie jeden element zbioru Y Zbiór X nazywamy dziedziną, a jego elementy

Bardziej szczegółowo

E-learning - matematyka - poziom rozszerzony. Funkcja wykładnicza. Materiały merytoryczne do kursu

E-learning - matematyka - poziom rozszerzony. Funkcja wykładnicza. Materiały merytoryczne do kursu E-learning - matematyka - poziom rozszerzony Funkcja wykładnicza Materiały merytoryczne do kursu Definicję i własności funkcji wykładniczej poprzedzimy definicją potęgi o wykładniku rzeczywistym. Poprawna

Bardziej szczegółowo