ANALIZA WPŁYWU PODWIESZEŃ NA OBCIĄŻENIA AERODYNAMICZNE SAMOLOTU F-16C BLOCK 52 ADVANCED

Wielkość: px
Rozpocząć pokaz od strony:

Download "ANALIZA WPŁYWU PODWIESZEŃ NA OBCIĄŻENIA AERODYNAMICZNE SAMOLOTU F-16C BLOCK 52 ADVANCED"

Transkrypt

1 Mgr inż. Adam DZIUBIŃSKI Instytut Lotnictwa Mgr inż. Łukasz KISZKOWIAK Wojskowa Akademia Techniczna ANALIZA WPŁYWU PODWIESZEŃ NA OBCIĄŻENIA AERODYNAMICZNE SAMOLOTU F-16C BLOCK 52 ADVANCED Streszczenie: W artykule przedstawiono wyniki obliczeniowej analizy stacjonarnego opływu samolotu F-16C Block 52 Advanced wraz z podwieszanym uzbrojeniem. Rozpatrywano wariant uzbrojenia składający się z dwóch podskrzydłowych zbiorników paliwa, dwóch bomb GBU-31 oraz dwóch pocisków rakietowych AIM-120 AMRAAM na końcówkach skrzydeł. Wyniki porównano z konfiguracją bez podwieszeń. Symulacje wykonano w warunkach odpowiadających atmosferze wzorcowej na wysokości 0 m n.p.m. Dla tych warunków wyznaczono charakterystyki aerodynamiczne w funkcji kąta natarcia. Wyniki obliczeń przedstawiono w postaci wykresów współczynnika siły oporu, siły nośnej oraz momentu pochylającego. Analizy pola przepływu oraz sił i momentów aerodynamicznych działających na bryłę samolotu dokonano za pomocą specjalistycznego oprogramowania FLUENT. ANALYSIS OF EXTERNAL STORES INFLUENCE ON AERODYNAMIC LOADS OF F-16C BLOCK 52 ADVANCED Abstract: In following paper the results of CFD steady flow analysis around F-16C Block 52 Advanced with external stores were presented. Store configuration consisting of two external wing tanks, two GBU-31 JDAM smart bombs, and two AIM-120 AMRAAM missiles on wingtip launchers has been considered. Configuration without external stores has been also calculated for comparison. The boundary conditions used in simulation corresponded with those for international standard atmosphere (ISA) at sea level. For those conditions the aerodynamic characteristics as functions of angle of attack have been determined. To analyze flowfield and then extract aerodynamic forces and moments, a specialized FLUENT code has been used. Słowa kluczowe: aerodynamika, RANS, metoda objętości skończonych Keywords: aerodynamics, RANS, MES 1. WPROWADZENIE Celem pracy było opracowanie modelu numerycznego samolotu F-16C Block 52 Advanced. W trakcie prac uzyskano charakterystyki aerodynamiczne, które stanowią istotny fragment 165

2 wiedzy na temat badanego obiektu. Korzystając z wyników analizy numerycznej, określono wpływ podwieszeń na charakterystyki aerodynamiczne samolotu F-16C. Charakterystyki sumaryczne zostały uzupełnione o charakterystyki poszczególnych elementów konstrukcyjnych samolotu. Ta część pracy jest nie do odtworzenia za pomocą badań tunelowych bez poniesienia dużych kosztów wyposażenia modelu. Porównując konfigurację bez podwieszeń oraz tę z podwieszeniami, można było przeanalizować, czy istnieje wyraźny wpływ obecności podwieszeń na dany element konstrukcyjny płatowca, czy jest on pomijalny, oraz jak ta zależność zmienia się wraz ze zmianą kąta natarcia. Rozpatrywano wariant uzbrojenia składający się z dwóch podskrzydłowych zbiorników paliwa, dwóch bomb GBU-31 JDAM oraz dwóch pocisków rakietowych AIM-120 AMRAAM na końcówkach skrzydeł. Z uwagi na dokładność odwzorowania geometrii oraz korzystając z symetrii geometrii samolotu i przewidywanej symetrii przepływu, zmniejszono obszar siatki obliczeniowej do jednej połowy. Ponadto w celach porównawczych wykonano obliczenia dla konfiguracji gładkiej bez podwieszeń. Wykorzystana w pracy metoda rozwiązania równań Naviera Stokesa przy użyciu objętości skończonych w wiarygodny sposób przewiduje wpływ nośności wirowej, bardzo istotnej w koncepcji skrzydła pasmowego, w które wyposażony jest samolot F-16C. Analizując pole przepływu, można zbadać, jaki wpływ na zachowanie się wirów powstających na pasmach skrzydła mają podwieszenia zewnętrzne samolotu. 2. NARZĘDZIA BADAWCZE OPROGRAMOWANIE Symulacje obliczeniowe wykonano, wykorzystując metody Obliczeniowej Mechaniki Płynów (Computational Fluid Dynamics). CFD stanowi dział mechaniki płynów, służący do szczegółowej analizy i modelowania przepływów za pomocą metod numerycznych. W teorii mechaniki płynów ruch cieczy i gazów opisywany jest układem równań różniczkowych [1]: równanie Naviera Stokesa (równanie zachowania pędu) w postaci: t (ρv ) + (ρv v ) = p + (τ) + ρg + F (1) gdzie: p ciśnienie statyczne, ρg i F odpowiednio siły grawitacji i siły zewnętrzne, np. narastające w wyniku przepływu przez fazę rozproszoną, τ tensor naprężeń. gdzie: μ lepkość kinematyczna, I macierz jednostkowa; τ = μ ( v + v ) 2 v I (2) 3 równanie ciągłości przepływu (równanie zachowania masy w odniesieniu do płynu traktowanego jako ośrodek ciągły) w postaci: ρ t + (ρv ) = S (3) gdzie: S m źródło masy (np. w wyniku odparowywania fazy rozproszonej); 166

3 równanie zachowania energii w postaci: t (ρe) + u x (ρe + p) = k + c μ T + u x Pr x τ + S (4) gdzie: k przewodność cieplna, E energia całkowita, τ tensor naprężeń ścinających. τ = μ u x + u x 2 3 μ u x δ (5) Rozwiązanie ich w ogólnym przypadku jest możliwe jedynie przez zastosowanie metod numerycznych. Jednym z częściej stosowanych pakietów służących do rozwiązywania problemów inżynierskich z zakresu mechaniki płynów i aerodynamiki jest program FLUENT [1] bazujący na rozwiązaniu równań różniczkowych cząstkowych metodą objętości skończonych (Finite Volumes Method). Umożliwia on analizę przepływów nieściśliwych i ściśliwych, z opcjonalnym uwzględnieniem lepkości przepływu. W programie zaimplementowano wiele modeli turbulencji. Równania ruchu rozwiązywane są na siatkach niestrukturalnych (tetrahedralnych), strukturalnych i hybrydowych. Do generacji siatek obliczeniowych użyto programu ICEM CFD [2], wchodzącego w skład pakietu ANSYS. Program ICEM CFD jest zaawansowanym narzędziem do preprocesoringu, umożliwiającym pełne przygotowanie modelu geometrycznego, czyli budowę lub import geometrii z programu CAD, jej naprawę oraz upraszczanie. Program ICEM CFD umożliwia tworzenie siatek strukturalnych oraz niestrukturalnych, o elementach tetrahedralnych, pryzmatycznych, heksagonalnych, ostrosłupowych, a także siatek hybrydowych składających się z wielu typów elementów. Jest on również wyposażony w liczne narzędzia do sprawdzania i poprawy jakości siatki. Do poprawy jakości elementów siatki służą automatyczne i manualne narzędzia, dające możliwość m.in. wygładzenia, zagęszczenia, rozrzedzenia siatki, a także w razie potrzeby przesuwania poszczególnych węzłów wewnątrz domeny. 3. PRZEDMIOT I ZAKRES BADAŃ OBLICZENIOWYCH Przedmiotem analiz numerycznych był samolot F-16C Block 52 Advanced wraz z kompletem podwieszeń. Pod odpowiednimi belkami umieszczone zostały modele geometryczne podskrzydłowego zbiornika paliwa oraz bomby GBU-31 JDAM. Na wyrzutniach zlokalizowanych na końcówkach skrzydeł umieszczono model geometryczny rakiety średniego zasięgu AIM-120 AMRAAM. W środowisku wyspecjalizowanych systemów CAD oraz korzystając z metod inżynierii odwrotnej i najnowszych systemów przestrzennego skanowania optycznego, zbudowano model samolotu na podstawie rzeczywistej konstrukcji. Przy realizacji zadania korzystano z mobilnego systemu pomiarowego ATOS II Triple Scan. System ten bazuje na metodzie triangulacji optycznej. Ponadto wykonano pomiary fotogrametryczne przy użyciu przenośnego systemu pomiarowego TRITOP [3]. Po zaimportowaniu modeli geometrycznych do programu ICEM CFD, wprowadzono pewne poprawki niezbędne w celu wykonania poprawnej siatki obliczeniowej i przeprowadzenia wielu analiz numerycznych. 167

4 a) b) Rys. 1. Geometria samolotu F-16C Block 52 Advanced: a) wersja gładka (bez podwieszeń); b) wersja z podwieszeniami (od końcówki skrzydła): pocisk rakietowy AIM-120 AMRAAM, bomba GBU-31 JDAM oraz podskrzydłowy zbiornik paliwa z integralnym pylonem Geometria samolotu w wersji gładkiej, która została przedstawiona na rysunku 1a, składała się z następujących elementów konstrukcyjnych: kadłub, usterzenie, płetwy podkadłubowe oraz skrzydło z wyrzutnią na końcówce. Geometria została zdefiniowana w skali rzeczywistej. Dla tej wersji geometrii przyjęto nazwę CLEAN. Geometria samolotu w wersji z podwieszeniami, którą zaprezentowano na rysunku 1b, zawierała dodatkowo: belki podwieszeń podskrzydłowych, podskrzydłowy zbiornik paliwa, pocisk rakietowy AIM-120 AMRAAM oraz bombę GBU-31 JDAM. Przy pracach związanych z generacją siatki obliczeniowej, dodatkowo opracowano opis podwieszeń i belek mocowania. Dla tej wersji geometrii przyjęto nazwę STORES. W programie ICEM CFD dostosowano geometrię modelu samolotu F-16C do obliczeń CFD przy użyciu programu FLUENT. Zlikwidowano szczeliny i niedokładności dopasowania powierzchni przy jednoczesnym jak najwierniejszym odwzorowaniu zdefiniowanego przez tę geometrię kształtu. Program ICEM generuje siatkę obliczeniową, korzystając tylko z powierzchniowego zapisu geometrii. Wiąże się z tym duża wrażliwość na błędy pasowania geometrii. W wyniku tego obszary wewnątrz płatowca potrafią wypełniać się siatką. W zaimportowanej do programu ICEM geometrii płatowca dokonano kilku zmian, które między innymi obejmowały: odsunięcie usterzenia poziomego od gondoli kadłuba oraz uzupełnienie brakującego elementu powierzchni ze względu na przenikanie się tych dwóch brył, program nie był w stanie prawidłowo zdefiniować objętości płynu; wypełnienie fragmentu geometrii u nasady dyszy silnika tak, aby powierzchnie hamulca aerodynamicznego i dyszy silnika nie tworzyły ze sobą kąta ostrego umożliwiło to wykonanie dobrej jakości siatki oraz pokrycie całego modelu kilkoma warstwami elementów pryzmatycznych, lepiej odwzorowujących warstwę przyścienną; zastąpienie brzechw podkadłubowych płaskimi płytkami; zwiększenie grubości krawędzi spływu skrzydła do 4 mm; rozsunięcie górnej i dolnej powierzchni usterzenia poziomego o 4 mm. 168

5 a) b) Rys. 2. Modyfikacje geometrii modelu samolotu F-16C: a) usterzenie poziome; b) hamulec aerodynamiczny Rozmieszczenie punktów podwieszeń przyjęto zgodnie z informacjami zawartymi w literaturze i instrukcji użytkowania samolotu. Geometrię podskrzydłowego zbiornika paliwa uzyskano korzystając z metod inżynierii odwrotnej i najnowszych systemów przestrzennego skanowania optycznego powierzchni. Geometrię i dane masowe bomby GBU-31 JDAM oraz rakiety AIM-120 AMRAAM odtworzono na podstawie informacji zawartych w specjalistycznej literaturze i instrukcji użytkowania samolotu [3-7]. 4. SIATKA OBLICZENIOWA W celu wykonania numerycznych analiz aerodynamicznych przygotowano odpowiednie przestrzenne siatki obliczeniowe. Wokół samolotu w celu poprawnego zamodelowania warstwy przyściennej wygenerowano siatkę o elementach typu PRISM. W obszarze otaczającym płatowiec zastosowano siatkę o elementach typu TETRA, przejście między siatką warstwy przyściennej a pozostałą przestrzenią domeny obliczeniowej wykonano z elementów typu PYRAMID. Elementy siatki w obszarze warstwy przyściennej zostały wykonane w taki sposób, że pierwsza warstwa elementów przy ścianie miała wysokość 0,6 mm (y+ ~30). Wysokości elementów w kolejnych warstwach zwiększały się ze współczynnikiem 1,2. Wykonano 5 warstw elementów. Rys. 3. Gęstość siatki obliczeniowej na powierzchni kadłuba samolotu F-16C Block 52 Advanced dla wariantu CLEAN i STORES widok z góry 169

6 Rys. 4. Gęstość siatki obliczeniowej na powierzchni kadłuba samolotu F-16C Block 52 Advanced dla wariantu CLEAN i STORES widok z dołu Dla wariantu samolotu bez podwieszeń (CLEAN) ilość elementów siatki obliczeniowej wynosiła 1,45 mln, natomiast dla wariantu z podwieszeniami (STORES) ok. 2,2 mln. Na rysunkach 3 i 4 zaprezentowano gęstość siatki obliczeniowej na kadłubie samolotu. Rysunek 5 przedstawia wybrane obszary siatki obliczeniowej dla wariantu samolotu bez podwieszeń. a) b) c) Rys. 5. Szczegóły siatki obliczeniowej dla konfiguracji samolotu bez podwieszeń: a) rurka Pitota na dziobie samolotu; b) skrzydło pasmowe; c) tył kadłuba 5. ZAKRES BADAŃ Dla każdego przypadku obliczeniowego zostały obliczone charakterystyki aerodynamiczne w przyjętym zakresie kątów natarcia. Obliczenia dla samolotu w konfiguracji bez podwieszeń przeprowadzono w warunkach lotu na wysokości morza wg atmosfery wzorcowej. Prędkość odpowiadała liczbie Ma = 0,2. Zakres kątów natarcia przyjęty dla konfiguracji bez podwieszeń wynosił α <-25,25 >. Natomiast dla konfiguracji z podwieszeniami wynosił α <0,25 >. Wszystkie obliczenia wykonano z krokiem co 1 kąta natarcia Model obliczeniowy W obliczeniach przyjęto następujące założenia: symetria geometrii i symetria przepływu umożliwiająca użycie modelu połówkowego; 170

7 zagadnienie analizowano jako stan ustalony; model turbulencji Spalart Allmaras; przepływ uznano za ściśliwy. Obszar obliczeniowy stanowił prostopadłościan o wymiarach 100 x 50 x 100 m. Na wlocie i wylocie z silnika przyjęto warunki zerowego nadciśnienia. Zaniedbano wydatek masowy przepływu pomiędzy wlotem a wylotem z silnika. Ze względu na konieczność zbadania wpływu wydzielonych elementów płatowca na współczynniki aerodynamiczne, wprowadzono podział na odpowiednie strefy (zones), dla których program oddzielnie obliczał siły i momenty aerodynamiczne Wielkości i układy odniesienia Podstawowym układem odniesienia był kartezjański układ współrzędnych związany z punktem zerowym geometrii kadłuba układ związany z geometrią (lokalny). Osie X o i Z o leżą w umownej płaszczyźnie symetrii modelu, a oś Y o dopełnia układ. Wykorzystano również układ strumieniowy. Jest to układ związany z kierunkiem strumienia niezaburzonego. W układzie tym zostały przedstawione wszystkie wyniki obliczeń w postaci sił i momentów aerodynamicznych. Rys. 6. Układ współrzędnych związany z samolotem (OX 0 Y 0 Z 0 ) i układ strumieniowy (OXYZ) Przy wyznaczaniu wielkości bezwymiarowych wykorzystano następujące wielkości: liniowy wymiar charakterystyczny SCA = 3,452 m (średnia cięciwa aerodynamiczna); powierzchnia odniesienia S = 27,868 m 2 (powierzchnia nośna samolotu). Wszystkie symulacje przeprowadzono dla warunków atmosfery wzorcowej (ISA). 6. WYNIKI OBLICZEŃ Według przedstawionego w punkcie 5 programu badań wykonano serię analiz numerycznych dla dwóch konfiguracji samolotu (CLEAN i STORES). 171

8 Rys. 7. Porównanie współczynników aerodynamicznych w funkcji kąta natarcia dla całego samolotu Całkując rozkłady ciśnienia na powierzchniach omywanych, otrzymano wartości sił i momentów aerodynamicznych dla całego samolotu wraz z podziałem na poszczególne elementy konstrukcyjne płatowca. Na rysunkach 7-10 przedstawiono porównanie charakterystyk aerodynamicznych dla wariantów samolotu bez i z podwieszeniami. Rys. 8. Porównanie współczynników aerodynamicznych w funkcji kąta natarcia dla kadłuba samolotu 172

9 Rys. 9. Porównanie współczynników aerodynamicznych w funkcji kąta natarcia dla skrzydła samolotu Rys. 10. Porównanie współczynników aerodynamicznych w funkcji kąta natarcia dla usterzenia poziomego 6.1. Charakterystyki aerodynamiczne podwieszeń samolotu Na rysunku 11 zamieszczono charakterystyki aerodynamiczne podwieszeń samolotu F-16C Block 52 Advanced. W trakcie wyznaczania wartości współczynników ciśnienia na powierzchni analizowanych obiektów, uwzględniono interferencję nosiciela i pozostałych podwieszeń. 173

10 a) b) c) Rys. 11. Charakterystyki aerodynamiczne podwieszeń samolotu F-16C Block 52 Advanced: a) AIM-120 AMRAAM; b) GBU-31; c) podskrzydłowy zbiornika paliwa 6.2. Wizualizacja pola przepływu Oprócz wyznaczania wartości liczbowych, pakiet FLUENT umożliwia również przeprowadzenie numerycznej analizy jakościowej przepływu wokół badanych obiektów. Wizualizacji pola przepływu dokonano za pomocą linii prądu. Punkty startowe dla poszczególnych linii prądu umieszczono w odległości 100 mm przed krawędziami natarcia skrzydła pasmowego oraz usterzenia. Linie prądu mają w każdym punkcie kolor odpowiadający prędkości przepływu (velocity magnitude). W ten sposób otrzymuje się skonsolidowaną informację na temat jakości przepływu oraz struktur wirowych w polu przepływu. Na rysunku 12 zaprezentowano obraz pola przepływu dla samolotu w konfiguracjach bez i z podwieszeniami. Można zaobserwować struktury wirowe spływające ze skrzydła pasmowego przy wysokich kątach natarcia. a) b) Rys. 12. Wizualizacja przepływu za pomocą linii prądu przy kącie natarcia α = 15⁰ dla samolotu F-16C Block 52 Advanced w wersji: a) bez podwieszeń; b) z podwieszeniami 7. PODSUMOWANIE Celem niniejszej pracy było przygotowanie geometrii obliczeniowej do symulacji zrzutu podwieszeń z samolotu F-16C Block 52 Advanced [8]. W trakcie prac wykonano numeryczne wyznaczenie własności aerodynamicznych samolotu w dwóch konfiguracjach bez i z podwieszeniami. W toku przygotowywania obliczeń sprawdzono jakość geometrii oraz dobrano gęstość siatki. Opracowano charakterystyki aerodynamiczne w funkcji kąta natarcia 174

11 dla całego samolotu oraz wybranych elementów konstrukcyjnych płatowca. Przeprowadzono również wizualizację pola przepływu w postaci linii prądu. Analizując otrzymane wyniki, stwierdzono, że podwieszenia samolotu wpływają na: niewielki spadek wartości współczynnika siły nośnej C Z w całym zakresie analizowanych kątów natarcia; wzrost wartości współczynnika oporu C X dla małych kątów natarcia; niewielką zmianę współczynnika momentu pochylającego C MY dla dużych kątów natarcia. Pracę zrealizowano w ramach projektu nr O N pn. Badania charakterystyk aerodynamicznych modelu samolotu F-16 w opływie około i naddźwiękowym, wizualizacja opływu oraz modelowe badania zrzutu podwieszeń. Realizacja projektu została dofinansowana z Narodowego Centrum Badań i Rozwoju. LITERATURA [1] Fluent Inc FLUENT 12 Theory Guide, September [2] ANSYS ICEM CFD 11.0 Tutorial Manual, [3] Olejnik A., Rogólski R., Łącki T., Kiszkowiak Ł.: Pomiar geometrii samolotu F-16C Block 52 Advanced przy użyciu nowoczesnych technik pomiarowych, Mechanik, nr 7/2012, s [4] T.O. 1F-16CJ-1 FLIGHT MANUAL F-16C/D, DOD, 15 grudnia [5] Janes Corporation Jane s Air Launched Weapon Systems 2002, [6] Rybak F.: Przegląd konstrukcji lotniczych F-16C, AL Altair, Warszawa, [7] Placek R.: Badania symulacyjne bezpieczeństwa zrzutu dynamicznie podobnych modeli wybranych podwieszeń z modelu samolotu F-16 Sprawozdanie wewnętrzne Instytutu Lotnictwa nr 1/BA-A1/11/A. [8] Dziubiński A.: Przygotowanie geometrii samolotu F-16C do obliczeń zrzutu podwieszeń Sprawozdanie wewnętrzne Instytutu Lotnictwa nr 21/BAA2/12/P. 175

12 176

NUMERYCZNA ANALIZA ZRZUTU PODWIESZEŃ SAMOLOTU F-16C BLOCK 52 ADVANCED

NUMERYCZNA ANALIZA ZRZUTU PODWIESZEŃ SAMOLOTU F-16C BLOCK 52 ADVANCED Mgr inż. Adam DZIUBIŃSKI Instytut Lotnictwa Mgr inż. Łukasz KISZKOWIAK Wojskowa Akademia Techniczna NUMERYCZNA ANALIZA ZRZUTU PODWIESZEŃ SAMOLOTU F-16C BLOCK 52 ADVANCED Streszczenie: W opracowaniu przedstawiono

Bardziej szczegółowo

BADANIA NAUKOWE WSPIERAJĄCE PROCES EKSPLOATACJI SAMOLOTÓW F-16 W SIŁACH ZBROJNYCH RP

BADANIA NAUKOWE WSPIERAJĄCE PROCES EKSPLOATACJI SAMOLOTÓW F-16 W SIŁACH ZBROJNYCH RP BADANIA NAUKOWE WSPIERAJĄCE PROCES EKSPLOATACJI SAMOLOTÓW F-16 W SIŁACH ZBROJNYCH RP ALEKSANDER OLEJNIK, ROBERT ROGÓLSKI ŁUKASZ KISZKOWIAK Instytut Techniki Lotniczej Wydział Mechatroniki i Lotnictwa Wojskowa

Bardziej szczegółowo

ANALiZA AERODYNAMiCZNA WŁASNOŚCi ŚMiGŁOWCA Z UWZGLĘDNiENiEM NADMUCHU WiRNiKA NOŚNEGO

ANALiZA AERODYNAMiCZNA WŁASNOŚCi ŚMiGŁOWCA Z UWZGLĘDNiENiEM NADMUCHU WiRNiKA NOŚNEGO PRACE instytutu LOTNiCTWA 219, s. 176-181, Warszawa 2011 ANALiZA AERODYNAMiCZNA WŁASNOŚCi ŚMiGŁOWCA Z UWZGLĘDNiENiEM NADMUCHU WiRNiKA NOŚNEGO KatarzyNa GrzeGorczyK Instytut Lotnictwa Streszczenie W pracy

Bardziej szczegółowo

Numeryczna symulacja rozpływu płynu w węźle

Numeryczna symulacja rozpływu płynu w węźle 231 Prace Instytutu Mechaniki Górotworu PAN Tom 7, nr 3-4, (2005), s. 231-236 Instytut Mechaniki Górotworu PAN Numeryczna symulacja rozpływu płynu w węźle JERZY CYGAN Instytut Mechaniki Górotworu PAN,

Bardziej szczegółowo

BADANIA WIZUALIZACYJNE OPŁYWU SAMOLOTU WIELOZADANIOWEGO F-16C BLOCK 52 ADVANCED

BADANIA WIZUALIZACYJNE OPŁYWU SAMOLOTU WIELOZADANIOWEGO F-16C BLOCK 52 ADVANCED Polskie Towarzystwo Mechaniki Teoretycznej i Stosowanej MECHANIKA W LOTNICTWIE ML-XVI 2014 BADANIA WIZUALIZACYJNE OPŁYWU SAMOLOTU WIELOZADANIOWEGO F-16C BLOCK 52 ADVANCED Aleksander Olejnik, Łukasz Kiszkowiak,

Bardziej szczegółowo

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL We wstępnej analizie przyjęto następujące założenia: Dwuwymiarowość

Bardziej szczegółowo

Numeryczna symulacja opływu wokół płata o zmodyfikowanej krawędzi natarcia. Michał Durka

Numeryczna symulacja opływu wokół płata o zmodyfikowanej krawędzi natarcia. Michał Durka Numeryczna symulacja opływu wokół płata o zmodyfikowanej krawędzi natarcia Michał Durka Politechnika Poznańska Inspiracja Inspiracją mojej pracy był artykuł w Świecie Nauki opisujący znakomite charakterystyki

Bardziej szczegółowo

SYMULACJA OBROTU ŚMiGŁOWCA WOKÓŁ OSi PiONOWEJ W WARUNKACH WYSTĘPOWANiA LTE

SYMULACJA OBROTU ŚMiGŁOWCA WOKÓŁ OSi PiONOWEJ W WARUNKACH WYSTĘPOWANiA LTE PRACE instytutu LOTNiCTWA 219, s. 182-188, Warszawa 2011 SYMULACJA OBROTU ŚMiGŁOWCA WOKÓŁ OSi PiONOWEJ W WARUNKACH WYSTĘPOWANiA LTE KatarzyNa GrzeGorczyK Instytut Lotnictwa Streszczenie W artykule przedstawiono

Bardziej szczegółowo

.DOŚWIADCZALNE CHARAKTERYSTYKI AERODYNAMICZNE MODELU SAMOLOTU TU-154M W OPŁYWIE SYMETRYCZNYM I NIESYMETRYCZNYM

.DOŚWIADCZALNE CHARAKTERYSTYKI AERODYNAMICZNE MODELU SAMOLOTU TU-154M W OPŁYWIE SYMETRYCZNYM I NIESYMETRYCZNYM .DOŚWIADCZALNE CHARAKTERYSTYKI AERODYNAMICZNE MODELU SAMOLOTU TU-154M W OPŁYWIE SYMETRYCZNYM I NIESYMETRYCZNYM ALEKSANDER OLEJNIK MICHAŁ FRANT STANISŁAW KACHEL MACIEJ MAJCHER Wojskowa Akademia Techniczna,

Bardziej szczegółowo

MODEL 3D MCAD LEKKIEGO SAMOLOTU SPORTOWEGO, JAKO ŹRÓDŁO GEOMETRII DLA ANALIZY WYTRZYMAŁOŚCIOWEJ MES OBIEKTU

MODEL 3D MCAD LEKKIEGO SAMOLOTU SPORTOWEGO, JAKO ŹRÓDŁO GEOMETRII DLA ANALIZY WYTRZYMAŁOŚCIOWEJ MES OBIEKTU IX Konferencja naukowo-techniczna Programy MES w komputerowym wspomaganiu analizy, projektowania i wytwarzania MODEL 3D MCAD LEKKIEGO SAMOLOTU SPORTOWEGO, JAKO ŹRÓDŁO GEOMETRII DLA ANALIZY WYTRZYMAŁOŚCIOWEJ

Bardziej szczegółowo

PROCES MODELOWANIA AERODYNAMICZNEGO SAMOLOTU TU-154M Z WYKORZYSTANIEM METOD NUMERYCZNEJ MECHANIKI PŁYNÓW.

PROCES MODELOWANIA AERODYNAMICZNEGO SAMOLOTU TU-154M Z WYKORZYSTANIEM METOD NUMERYCZNEJ MECHANIKI PŁYNÓW. PROCES MODELOWANIA AERODYNAMICZNEGO SAMOLOTU TU-154M Z WYKORZYSTANIEM METOD NUMERYCZNEJ MECHANIKI PŁYNÓW. Aleksander OLEJNIK1, Łukasz KISZKOWIAK1, Adam DZIUBIŃSKI2 1 Wojskowa Akademia Techniczna, Wydział

Bardziej szczegółowo

SYMULACJA OBLICZENIOWA OPŁYWU I OBCIĄŻEŃ BEZPRZEGUBOWEGO WIRNIKA OGONOWEGO WRAZ Z OCENĄ ICH ODDZIAŁYWANIA NA PRACĘ WIRNIKA

SYMULACJA OBLICZENIOWA OPŁYWU I OBCIĄŻEŃ BEZPRZEGUBOWEGO WIRNIKA OGONOWEGO WRAZ Z OCENĄ ICH ODDZIAŁYWANIA NA PRACĘ WIRNIKA SYMULACJA OBLICZENIOWA OPŁYWU I OBCIĄŻEŃ BEZPRZEGUBOWEGO WIRNIKA OGONOWEGO WRAZ Z OCENĄ ICH ODDZIAŁYWANIA NA PRACĘ WIRNIKA Airflow Simulations and Load Calculations of the Rigide with their Influence on

Bardziej szczegółowo

Doświadczalne charakterystyki aerodynamiczne modelu samolotu F-16 w opływie symetrycznym

Doświadczalne charakterystyki aerodynamiczne modelu samolotu F-16 w opływie symetrycznym BIULETYN WAT VOL. LVI, NR 1, 2007 Doświadczalne charakterystyki aerodynamiczne modelu samolotu F-16 w opływie symetrycznym ALEKSANDER OLEJNIK, ADAM KRZYŻANOWSKI, STANISŁAW KACHEL, MICHAŁ FRANT, WOJCIECH

Bardziej szczegółowo

Aerodynamika I Efekty lepkie w przepływach ściśliwych.

Aerodynamika I Efekty lepkie w przepływach ściśliwych. Aerodynamika I Efekty lepkie w przepływach ściśliwych. przepłw wokół profilu RAE-2822 (M = 0.85, Re = 6.5 10 6, α = 2 ) Efekty lepkie w przepływach ściśliwych Równania ruchu lepkiego płynu ściśliwego Całkowe

Bardziej szczegółowo

Modelowanie zjawisk przepływowocieplnych. i wewnętrznie ożebrowanych. Karol Majewski Sławomir Grądziel

Modelowanie zjawisk przepływowocieplnych. i wewnętrznie ożebrowanych. Karol Majewski Sławomir Grądziel Modelowanie zjawisk przepływowocieplnych w rurach gładkich i wewnętrznie ożebrowanych Karol Majewski Sławomir Grądziel Plan prezentacji Wprowadzenie Wstęp do obliczeń Obliczenia numeryczne Modelowanie

Bardziej szczegółowo

MODELOWANIE NUMERYCZNE POLA PRZEPŁYWU WOKÓŁ BUDYNKÓW

MODELOWANIE NUMERYCZNE POLA PRZEPŁYWU WOKÓŁ BUDYNKÓW 1. WSTĘP MODELOWANIE NUMERYCZNE POLA PRZEPŁYWU WOKÓŁ BUDYNKÓW mgr inż. Michał FOLUSIAK Instytut Lotnictwa W artykule przedstawiono wyniki dwu- i trójwymiarowych symulacji numerycznych opływu budynków wykonanych

Bardziej szczegółowo

Nowoczesne narzędzia obliczeniowe do projektowania i optymalizacji kotłów

Nowoczesne narzędzia obliczeniowe do projektowania i optymalizacji kotłów Nowoczesne narzędzia obliczeniowe do projektowania i optymalizacji kotłów Mateusz Szubel, Mariusz Filipowicz Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie AGH University of Science and

Bardziej szczegółowo

OPŁYW PROFILU. Ciała opływane. profile lotnicze łopatki. Rys. 1. Podział ciał opływanych pod względem aerodynamicznym

OPŁYW PROFILU. Ciała opływane. profile lotnicze łopatki. Rys. 1. Podział ciał opływanych pod względem aerodynamicznym OPŁYW PROFILU Ciała opływane Nieopływowe Opływowe walec kula profile lotnicze łopatki spoilery sprężarek wentylatorów turbin Rys. 1. Podział ciał opływanych pod względem aerodynamicznym Płaski np. z blachy

Bardziej szczegółowo

Pomiar rozkładu ciśnień na modelu samochodu

Pomiar rozkładu ciśnień na modelu samochodu Miernictwo C-P 1 Pomiar rozkładu ciśnień na modelu samochodu Polonez (Część instrukcji dotyczącą aerodynamiki samochodu opracowano na podstawie książki J. Piechny Podstawy aerodynamiki pojazdów, Wyd. Komunikacji

Bardziej szczegółowo

. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz

. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz ZAKŁAD MECHANIKI PŁYNÓW I AERODYNAMIKI ABORATORIUM MECHANIKI PŁYNÓW ĆWICZENIE NR DOŚWIADCZENIE REYNODSA: WYZNACZANIE KRYTYCZNEJ ICZBY REYNODSA opracował: Piotr Strzelczyk Rzeszów 997 . Cel ćwiczenia Celem

Bardziej szczegółowo

Mechanika lotu. TEMAT: Parametry aerodynamiczne skrzydła samolotu PZL Orlik. Anna Kaszczyszyn

Mechanika lotu. TEMAT: Parametry aerodynamiczne skrzydła samolotu PZL Orlik. Anna Kaszczyszyn Mechanika lotu TEMAT: Parametry aerodynamiczne skrzydła samolotu PZL Orlik Anna Kaszczyszyn SAMOLOT SZKOLNO-TRENINGOWY PZL-130TC-I Orlik Dane geometryczne: 1. Rozpiętość płata 9,00 m 2. Długość 9,00 m

Bardziej szczegółowo

J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1

J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1 J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1 Warstwa przyścienna jest to część obszaru przepływu bezpośrednio sąsiadująca z powierzchnią opływanego ciała. W warstwie przyściennej znaczącą rolę

Bardziej szczegółowo

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki

Bardziej szczegółowo

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów FORMOWANIE SIĘ PROFILU PRĘDKOŚCI W NIEŚCIŚLIWYM, LEPKIM PRZEPŁYWIE PRZEZ PRZEWÓD ZAMKNIĘTY Cel ćwiczenia Celem ćwiczenia będzie analiza formowanie się profilu prędkości w trakcie przepływu płynu przez

Bardziej szczegółowo

POLITECHNIKA LUBELSKA

POLITECHNIKA LUBELSKA Badania opływu turbiny wiatrowej typu VAWT (Vertical Axis Wind Turbine) Międzyuczelniane Inżynierskie Warsztaty Lotnicze Cel prezentacji Celem prezentacji jest opis przeprowadzonych badań CFD oraz tunelowych

Bardziej szczegółowo

DETEKCJA FAL UDERZENIOWYCH W UKŁADACH ŁOPATKOWYCH CZĘŚCI NISKOPRĘŻNYCH TURBIN PAROWYCH

DETEKCJA FAL UDERZENIOWYCH W UKŁADACH ŁOPATKOWYCH CZĘŚCI NISKOPRĘŻNYCH TURBIN PAROWYCH Mgr inż. Anna GRZYMKOWSKA Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa DOI: 10.17814/mechanik.2015.7.236 DETEKCJA FAL UDERZENIOWYCH W UKŁADACH ŁOPATKOWYCH CZĘŚCI NISKOPRĘŻNYCH TURBIN PAROWYCH

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃCZONYCH.

METODA ELEMENTÓW SKOŃCZONYCH. METODA ELEMENTÓW SKOŃCZONYCH. W programie COMSOL multiphisics 3.4 Wykonali: Łatas Szymon Łakomy Piotr Wydzał, Kierunek, Specjalizacja, Semestr, Rok BMiZ, MiBM, TPM, VII, 2011 / 2012 Prowadzący: Dr hab.inż.

Bardziej szczegółowo

Doświadczalne charakterystyki aerodynamiczne modelu samolotu dalekiego zasięgu ze skrzydłem o ujemnym kącie skosu w opływie symetrycznym

Doświadczalne charakterystyki aerodynamiczne modelu samolotu dalekiego zasięgu ze skrzydłem o ujemnym kącie skosu w opływie symetrycznym BIULETYN WAT VOL. LV, NR 4, 2006 Doświadczalne charakterystyki aerodynamiczne modelu samolotu dalekiego zasięgu ze skrzydłem o ujemnym kącie skosu w opływie symetrycznym ALEKSANDER OLEJNIK, STANISŁAW KACHEL,

Bardziej szczegółowo

Kurs teoretyczny PPL (A) Dlaczego samolot lata?

Kurs teoretyczny PPL (A) Dlaczego samolot lata? 1 Kurs teoretyczny PPL (A) Dlaczego samolot lata? 2 Spis treści: 1. Wstęp (str. 4) 2. Siła nośna Pz (str. 4) 3. Siła oporu Px (str. 7) 4. Usterzenie poziome i pionowe (str. 9) 5. Powierzchnie sterowe (str.

Bardziej szczegółowo

Modelowanie numeryczne oddziaływania pociągu na konstrukcje przytorowe

Modelowanie numeryczne oddziaływania pociągu na konstrukcje przytorowe KRÓL Roman 1 Modelowanie numeryczne oddziaływania pociągu na konstrukcje przytorowe Aerodynamika, oddziaływania pociągu, metoda objętości skończonych, CFD, konstrukcje kolejowe Streszczenie W artykule

Bardziej szczegółowo

Osiadanie kołowego fundamentu zbiornika

Osiadanie kołowego fundamentu zbiornika Przewodnik Inżyniera Nr 22 Aktualizacja: 01/2017 Osiadanie kołowego fundamentu zbiornika Program: MES Plik powiązany: Demo_manual_22.gmk Celem przedmiotowego przewodnika jest przedstawienie analizy osiadania

Bardziej szczegółowo

Karta (sylabus) przedmiotu Mechanika i Budowa Maszyn Studia II stopnia

Karta (sylabus) przedmiotu Mechanika i Budowa Maszyn Studia II stopnia Karta (sylabus) przedmiotu Mechanika i Budowa Maszyn Studia II stopnia Przedmiot: Aerodynamika Rodzaj przedmiotu: Podstawowy Kod przedmiotu: MBM S 1 17-0_1 Rok: 1 Semestr: Forma studiów: Studia stacjonarne

Bardziej szczegółowo

MODELOWANIE ROZKŁADU TEMPERATUR W PRZEGRODACH ZEWNĘTRZNYCH WYKONANYCH Z UŻYCIEM LEKKICH KONSTRUKCJI SZKIELETOWYCH

MODELOWANIE ROZKŁADU TEMPERATUR W PRZEGRODACH ZEWNĘTRZNYCH WYKONANYCH Z UŻYCIEM LEKKICH KONSTRUKCJI SZKIELETOWYCH Budownictwo o Zoptymalizowanym Potencjale Energetycznym 2(18) 2016, s. 55-60 DOI: 10.17512/bozpe.2016.2.08 Maciej MAJOR, Mariusz KOSIŃ Politechnika Częstochowska MODELOWANIE ROZKŁADU TEMPERATUR W PRZEGRODACH

Bardziej szczegółowo

dr inż. Cezary Żrodowski Wizualizacja Informacji WETI PG, sem. V, 2015/16

dr inż. Cezary Żrodowski Wizualizacja Informacji WETI PG, sem. V, 2015/16 Zadanie 4 - Holonur 1. Budowa geometrii felgi i opony a) Szkic i wyciągnięcie obrotowe dyszy (1pkt) b) Zaokrąglenie krawędzi natarcia dyszy (1pkt) 1 c) Wyznaczenie płaszczyzny stycznej do zewnętrznej powierzchni

Bardziej szczegółowo

MECHANIKA PŁYNÓW Płyn

MECHANIKA PŁYNÓW Płyn MECHANIKA PŁYNÓW Płyn - Każda substancja, która może płynąć, tj. pod wpływem znikomo małych sił dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje, oraz może swobodnie się przemieszczać

Bardziej szczegółowo

POLITECHNIKA LUBELSKA

POLITECHNIKA LUBELSKA BADANIE WPŁYWU AKTYWNEGO PRZEPŁYWU NA SIŁĘ NOŚNĄ PROFILI LOTNICZYCH Międzyuczelniane Inżynierskie Warsztaty Lotnicze Cel projektu: 1. zbadanie wpływu aktywnego przepływu odprofilowego lub doprofilowego

Bardziej szczegółowo

Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania

Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Kierunek : Mechanika i Budowa Maszyn Profil dyplomowania : Inżynieria mechaniczna Studia stacjonarne I stopnia PROJEKT ZALICZENIOWY METODA ELEMENTÓW

Bardziej szczegółowo

prędkości przy przepływie przez kanał

prędkości przy przepływie przez kanał Ćwiczenie numer 5 Wyznaczanie rozkładu prędkości przy przepływie przez kanał 1. Wprowadzenie Stanowisko umożliwia w eksperymentalny sposób zademonstrowanie prawa Bernoulliego. Układ wyposażony jest w dyszę

Bardziej szczegółowo

Badanie klasy wymaganej odporności ogniowej wentylatora przy wykorzystaniu programu FDS

Badanie klasy wymaganej odporności ogniowej wentylatora przy wykorzystaniu programu FDS Badanie klasy wymaganej odporności ogniowej wentylatora przy wykorzystaniu programu FDS 1. Wstęp: Symulacje komputerowe CFD mogą posłużyć jako narzędzie weryfikujące klasę odporności ogniowej wentylatora,

Bardziej szczegółowo

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ . Cel ćwiczenia Doświadczalne i teoretyczne wyznaczenie profilu prędkości w rurze prostoosiowej 2. Podstawy teoretyczne:

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃCZONYCH

METODA ELEMENTÓW SKOŃCZONYCH METODA ELEMENTÓW SKOŃCZONYCH Krzysztof Bochna Michał Sobolewski M-2 WBMiZ MiBM 2013/2014 1 SPIS TREŚCI 1. Analiza opływu wody wokół okrętu podwodnego USS Minnesota...3 1.1 Opis obiektu...3 1.2 Przebieg

Bardziej szczegółowo

Analiza wymiany ciepła w przekroju rury solarnej Heat Pipe w warunkach ustalonych

Analiza wymiany ciepła w przekroju rury solarnej Heat Pipe w warunkach ustalonych Stanisław Kandefer 1, Piotr Olczak Politechnika Krakowska 2 Analiza wymiany ciepła w przekroju rury solarnej Heat Pipe w warunkach ustalonych Wprowadzenie Wśród paneli słonecznych stosowane są często rurowe

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃOCZNYCH Projekt

METODA ELEMENTÓW SKOŃOCZNYCH Projekt METODA ELEMENTÓW SKOŃOCZNYCH Projekt Wykonali: Maciej Sobkowiak Tomasz Pilarski Profil: Technologia przetwarzania materiałów Semestr 7, rok IV Prowadzący: Dr hab. Tomasz STRĘK 1. Analiza przepływu ciepła.

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Poznań, 19.01.2013 Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa Maszyn Technologia Przetwarzania Materiałów Semestr 7 METODA ELEMENTÓW SKOŃCZONYCH PROJEKT Prowadzący: dr

Bardziej szczegółowo

NOWOCZESNE TECHNOLOGIE ENERGETYCZNE Rola modelowania fizycznego i numerycznego

NOWOCZESNE TECHNOLOGIE ENERGETYCZNE Rola modelowania fizycznego i numerycznego Politechnika Częstochowska Katedra Inżynierii Energii NOWOCZESNE TECHNOLOGIE ENERGETYCZNE Rola modelowania fizycznego i numerycznego dr hab. inż. Zbigniew BIS, prof P.Cz. dr inż. Robert ZARZYCKI Wstęp

Bardziej szczegółowo

Sieci obliczeniowe poprawny dobór i modelowanie

Sieci obliczeniowe poprawny dobór i modelowanie Sieci obliczeniowe poprawny dobór i modelowanie 1. Wstęp. Jednym z pierwszych, a zarazem najważniejszym krokiem podczas tworzenia symulacji CFD jest poprawne określenie rozdzielczości, wymiarów oraz ilości

Bardziej szczegółowo

POLITECHNIKA LUBELSKA

POLITECHNIKA LUBELSKA 2. Prezentacja KTMPiNL Międzyuczelniane Inżynierskie Warsztaty Lotnicze Oprogramowanie CAD/CAM/CAE Catia v5 Oprogramowanie CAD/CAM/CAE Abaqus 6.9 EF1 ABAQUS 6.9 EF1 ABAQUS - pakiet służący do analizy nieliniowej

Bardziej szczegółowo

J. Szantyr Wykład 4 Podstawy teorii przepływów turbulentnych Zjawisko występowania dwóch różnych rodzajów przepływów, czyli laminarnego i

J. Szantyr Wykład 4 Podstawy teorii przepływów turbulentnych Zjawisko występowania dwóch różnych rodzajów przepływów, czyli laminarnego i J. Szantyr Wykład 4 Podstawy teorii przepływów turbulentnych Zjawisko występowania dwóch różnych rodzajów przepływów, czyli laminarnego i turbulentnego, odkrył Osborne Reynolds (1842 1912) w swoim znanym

Bardziej szczegółowo

THE IMPACT OF PROPELLER ON AERODYNAMICS OF AIRCRAFT

THE IMPACT OF PROPELLER ON AERODYNAMICS OF AIRCRAFT DOl 10.1515/jok-2015-0018 Journal ofkonbin 1(33)2015 ISSN 1895-8281 ESSN 2083-4608 THE IMPACT OF PROPELLER ON AERODYNAMICS OF AIRCRAFT WPLYWSMUGLA NAAERODYNAMI~SAMOLOTU Wieslaw Zalewski Instytut Lotnictwa

Bardziej szczegółowo

J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I

J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I J. Szantyr Wykład nr 7 Przepływy w kanałach otwartych Przepływy w kanałach otwartych najczęściej wymuszane są działaniem siły grawitacji. Jako wstępny uproszczony przypadek przeanalizujemy spływ warstwy

Bardziej szczegółowo

Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka

Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka Poznań, 16.05.2012r. Raport z promocji projektu Nowa generacja energooszczędnych

Bardziej szczegółowo

Jan A. Szantyr tel

Jan A. Szantyr tel Katedra Energetyki i Aparatury Przemysłowej Zakład Mechaniki Płynów, Turbin Wodnych i Pomp J. Szantyr Wykład 1 Rozrywkowe wprowadzenie do Mechaniki Płynów Jan A. Szantyr jas@pg.gda.pl tel. 58-347-2507

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW

LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie numer 5 Wyznaczanie rozkładu prędkości przy przepływie przez kanał 1. Wprowadzenie Stanowisko umożliwia w eksperymentalny sposób zademonstrowanie prawa Bernoulliego. Układ wyposażony jest w dyszę

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

Politechnika Poznańska. Metoda Elementów Skończonych

Politechnika Poznańska. Metoda Elementów Skończonych Politechnika Poznańska Metoda Elementów Skończonych Mechanika i Budowa Maszyn Gr. M-5 Prowadzący: dr hab. Tomasz Stręk, prof. nadzw. Wykonali: Damian Woźniak Michał Walerczyk 1 Spis treści 1.Analiza zjawiska

Bardziej szczegółowo

Spis treści. Wykaz ważniejszych oznaczeń. Przedmowa 15. Wprowadzenie Ruch falowy w ośrodku płynnym Pola akustyczne źródeł rzeczywistych

Spis treści. Wykaz ważniejszych oznaczeń. Przedmowa 15. Wprowadzenie Ruch falowy w ośrodku płynnym Pola akustyczne źródeł rzeczywistych Spis treści Wykaz ważniejszych oznaczeń u Przedmowa 15 Wprowadzenie 17 1. Ruch falowy w ośrodku płynnym 23 1.1. Dźwięk jako drgania ośrodka sprężystego 1.2. Fale i liczba falowa 1.3. Przestrzeń liczb falowych

Bardziej szczegółowo

dr inż. Cezary Żrodowski Wizualizacja Informacji WETI PG, sem. V, 2015/16 b) Operacja wyciągnięcia obrotowego z dodaniem materiału - uchwyt (1pkt)

dr inż. Cezary Żrodowski Wizualizacja Informacji WETI PG, sem. V, 2015/16 b) Operacja wyciągnięcia obrotowego z dodaniem materiału - uchwyt (1pkt) Zadanie 5 - Jacht 1. Budowa geometrii koła sterowego a) Szkic (1pkt) b) Operacja wyciągnięcia obrotowego z dodaniem materiału - uchwyt (1pkt) 1 c) Operacja wyciagnięcia liniowego z dodaniem materiału obręcze

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: specjalności obieralny Rodzaj zajęć: wykład, ćwiczenia, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Przekazanie

Bardziej szczegółowo

J. Szantyr Wykład nr 18 Podstawy teorii płatów nośnych Płaty nośne są ważnymi elementami wielu wytworów współczesnej techniki.

J. Szantyr Wykład nr 18 Podstawy teorii płatów nośnych Płaty nośne są ważnymi elementami wielu wytworów współczesnej techniki. J. Szantyr Wykład nr 18 Podstawy teorii płatów nośnych Płaty nośne są ważnymi elementami wielu wytworów współczesnej techniki. < Helikoptery Samoloty Lotnie Żagle > < Kile i stery Wodoloty Śruby okrętowe

Bardziej szczegółowo

Numeryczne modelowanie procesów przepł ywowych

Numeryczne modelowanie procesów przepł ywowych Numeryczne modelowanie procesów przepł ywowych dr inż. Andrzej Bogusławski, mgr inż. Artur Tyliszczak, mgr inż. Sławomir Kubacki Temat: Ć wiczenie 2 Przykłady wykorzystania numerycznej mechaniki płynów

Bardziej szczegółowo

Nasyp przyrost osiadania w czasie (konsolidacja)

Nasyp przyrost osiadania w czasie (konsolidacja) Nasyp przyrost osiadania w czasie (konsolidacja) Poradnik Inżyniera Nr 37 Aktualizacja: 10/2017 Program: Plik powiązany: MES Konsolidacja Demo_manual_37.gmk Wprowadzenie Niniejszy przykład ilustruje zastosowanie

Bardziej szczegółowo

Aerodynamika I. wykład 3: Ściśliwy opływ profilu. POLITECHNIKA WARSZAWSKA - wydz. Mechaniczny Energetyki i Lotnictwa A E R O D Y N A M I K A I

Aerodynamika I. wykład 3: Ściśliwy opływ profilu. POLITECHNIKA WARSZAWSKA - wydz. Mechaniczny Energetyki i Lotnictwa A E R O D Y N A M I K A I Aerodynamika I Ściśliwy opływ profilu transoniczny przepływ wokół RAE-8 M = 0.73, Re = 6.5 10 6, α = 3.19 Ściśliwe przepływy potencjalne Teoria pełnego potencjału Wprowadźmy potencjał prędkości (zakładamy

Bardziej szczegółowo

ANALIZA PRZEPŁYWU W TUNELU AERODYNAMICZNYM PO MODERNIZACJI

ANALIZA PRZEPŁYWU W TUNELU AERODYNAMICZNYM PO MODERNIZACJI Dr inż. Waldemar DUDDA Dr inż. Jerzy DOMAŃSKI Uniwersytet Warmińsko-Mazurski w Olsztynie ANALIZA PRZEPŁYWU W TUNELU AERODYNAMICZNYM PO MODERNIZACJI Streszczenie: W opracowaniu przedstawiono wyniki symulacji

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: PODSTAWY MODELOWANIA PROCESÓW WYTWARZANIA Fundamentals of manufacturing processes modeling Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności APWiR Rodzaj

Bardziej szczegółowo

dr inż. Cezary Żrodowski Wizualizacja Informacji WETI PG, sem. V, 2015/16

dr inż. Cezary Żrodowski Wizualizacja Informacji WETI PG, sem. V, 2015/16 Zadanie 3 - Karuzela 1. Budowa geometrii felgi i opony a) Szkic i wyciagnięcie obrotowe korpusu karuzeli (1 pkt) b) Szkic i wyciagnięcie liniowe podstawy karuzeli (1pkt) 1 c) Odsunięta płaszczyzna, szkic

Bardziej szczegółowo

Projekt Metoda Elementów Skończonych. COMSOL Multiphysics 3.4

Projekt Metoda Elementów Skończonych. COMSOL Multiphysics 3.4 Projekt Metoda Elementów Skończonych w programie COMSOL Multiphysics 3.4 Wykonali: Dawid Trawiński Wojciech Sochalski Wydział: BMiZ Kierunek: MiBM Semestr: V Rok: 2015/2016 Prowadzący: dr hab. inż. Tomasz

Bardziej szczegółowo

PRZYKŁAD SKOMPLIKOWANEJ GEOMETRII WEJŚCIOWEJ MODELU MES USTERZENIA OGONOWEGO I SKRZYDEŁ SAMOLOTU SPORTOWEGO

PRZYKŁAD SKOMPLIKOWANEJ GEOMETRII WEJŚCIOWEJ MODELU MES USTERZENIA OGONOWEGO I SKRZYDEŁ SAMOLOTU SPORTOWEGO PRZYKŁAD SKOMPLIKOWANEJ GEOMETRII WEJŚCIOWEJ MODELU MES USTERZENIA OGONOWEGO I SKRZYDEŁ SAMOLOTU SPORTOWEGO mgr inż. Waldemar Topol, Szef Produkcji, Wojskowe Zakłady Lotnicze Nr 2, Bydgoszcz mgr inż. Dariusz

Bardziej szczegółowo

Badania właściwości dynamicznych sieci gazowej z wykorzystaniem pakietu SimNet TSGas 3

Badania właściwości dynamicznych sieci gazowej z wykorzystaniem pakietu SimNet TSGas 3 Andrzej J. Osiadacz Maciej Chaczykowski Łukasz Kotyński Badania właściwości dynamicznych sieci gazowej z wykorzystaniem pakietu SimNet TSGas 3 Andrzej J. Osiadacz, Maciej Chaczykowski, Łukasz Kotyński,

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Wprowadzenie do numerycznej mechaniki płynów Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności: Inżynieria cieplna i samochodowa Rodzaj zajęć: wykład,

Bardziej szczegółowo

Numeryczne modelowanie mikrozwężkowego czujnika przepływu

Numeryczne modelowanie mikrozwężkowego czujnika przepływu Numeryczne modelowanie mikrozwężkowego czujnika przepływu Antoni Gondek Tadeusz Filiciak Przedstawiono wybrane wyniki modelowania numerycznego podwójnej mikrozwężki stosowanej jako czujnik przepływu, dla

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: MODELOWANIE I SYMULACJA PROCESÓW WYTWARZANIA Modeling and Simulation of Manufacturing Processes Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy specjalności PSM Rodzaj zajęć: wykład,

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃCZONYCH

METODA ELEMENTÓW SKOŃCZONYCH Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Kierunek: Mechanika i Budowa Maszyn Studia stacjonarne I stopnia PROJEKT ZALICZENIOWY METODA ELEMENTÓW SKOŃCZONYCH Krystian Gralak Jarosław Więckowski

Bardziej szczegółowo

Numeryczne modelowanie procesów przepł ywowych

Numeryczne modelowanie procesów przepł ywowych Numeryczne modelowanie procesów przepł ywowych dr inż. Andrzej Bogusławski, mgr inż. Artur Tyliszczak, mgr inż. Sławomir Kubacki Temat: Ć wiczenie 2 Przykłady wykorzystania numerycznej mechaniki płynów

Bardziej szczegółowo

Numeryczne modelowanie procesów przepł ywowych

Numeryczne modelowanie procesów przepł ywowych Numeryczne modelowanie procesów przepł ywowych dr inż. Grzegorz Grodzki Temat: Ć wiczenie 3 Numeryczna symulacja ruchu elastycznie umocowanego płata lotniczego umieszczonego w tunelu aerodynamicznym 1.

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Krzysztof Szwedt Karol Wenderski M-2 WBMiZ MiBM 2013/2014 1 SPIS TREŚCI 1 Analiza przepływu powietrza wokół lecącego airbusa a320...3 1.1 Opis badanego obiektu...3 1.2 Przebieg

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA METODA ELEMENTÓW SKOŃCZONYCH LABORATORIA

POLITECHNIKA POZNAŃSKA METODA ELEMENTÓW SKOŃCZONYCH LABORATORIA POLITECHNIKA POZNAŃSKA METODA ELEMENTÓW SKOŃCZONYCH LABORATORIA Prowadzący: dr hab. Tomasz Stręk, prof. nadzw. Wykonanie: Magdalena Winiarska Wojciech Białek Wydział Budowy Maszyn i Zarządzania Mechanika

Bardziej szczegółowo

MODELOWANIE ZJAWISKA INTERFERENCJI AERODYNAMICZNEJ OPŁYWU ŚMIGŁOWCA Z WYKORZYSTANIEM OPROGRAMOWANIA FLUENT

MODELOWANIE ZJAWISKA INTERFERENCJI AERODYNAMICZNEJ OPŁYWU ŚMIGŁOWCA Z WYKORZYSTANIEM OPROGRAMOWANIA FLUENT Tomasz Łusiak 1) MODELOWANIE ZJAWISKA INTERFERENCJI AERODYNAMICZNEJ OPŁYWU ŚMIGŁOWCA Z WYKORZYSTANIEM OPROGRAMOWANIA FLUENT Streszczenie: W pracy przedstawiono jedną z metod modelowania zjawiska interferencji

Bardziej szczegółowo

SYMULACJA NUMERYCZNA RUCHU POWIETRZA W OTOCZENIU ODSŁONIĘTYCH CZĘŚCI CIAŁA CZŁOWIEKA

SYMULACJA NUMERYCZNA RUCHU POWIETRZA W OTOCZENIU ODSŁONIĘTYCH CZĘŚCI CIAŁA CZŁOWIEKA SYMULACJA NUMERYCZNA RUCHU POWIETRZA W OTOCZENIU ODSŁONIĘTYCH CZĘŚCI CIAŁA CZŁOWIEKA KLEMM Katarzyna 1 JABŁOŃSKI Marek 2 1 Instytut Architektury i Urbanistyki, Politechnika Łódzka 2 Katedra Fizyki Budowli

Bardziej szczegółowo

STATYKA I DYNAMIKA PŁYNÓW (CIECZE I GAZY)

STATYKA I DYNAMIKA PŁYNÓW (CIECZE I GAZY) STTYK I DYNMIK PŁYNÓW (CIECZE I GZY) Ciecz idealna: brak sprężystości postaci (czyli brak naprężeń ścinających) Ciecz rzeczywista małe naprężenia ścinające - lepkość F s F n Nawet najmniejsza siła F s

Bardziej szczegółowo

Politechnika Poznańska. Metoda Elementów Skończonych

Politechnika Poznańska. Metoda Elementów Skończonych Politechnika Poznańska Metoda Elementów Skończonych Prowadzący: dr hab. Tomasz Stręk, prof. nadzw. Wykonały: Górna Daria Krawiec Daria Łabęda Katarzyna Spis treści: 1. Analiza statyczna rozkładu ciepła

Bardziej szczegółowo

Symulacja statyczna sieci gazowej miasta Chełmna

Symulacja statyczna sieci gazowej miasta Chełmna Andrzej J. Osiadacz Maciej Chaczykowski Łukasz Kotyński Teresa Zwiewka Symulacja statyczna sieci gazowej miasta Chełmna Andrzej J. Osiadacz, Maciej Chaczykowski, Łukasz Kotyński, Fluid Systems Sp z o.o.,

Bardziej szczegółowo

Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe)

Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe) METODA ELEMENTÓW W SKOŃCZONYCH 1 Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe) stałych własnościach

Bardziej szczegółowo

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI Laboratorium z mechaniki płynów ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH . Cel ćwiczenia Celem ćwiczenia jest doświadczalne

Bardziej szczegółowo

Badanie własności aerodynamicznych samochodu

Badanie własności aerodynamicznych samochodu 1 Badanie własności aerodynamicznych samochodu Polonez (Instrukcję opracowano na podstawie ksiąŝki J. Piechny Podstawy aerodynamiki pojazdów, Wyd. Komunikacji i Łączności, Warszawa 000) Cele ćwiczenia

Bardziej szczegółowo

KOMPUTEROWE MODELOWANIE I OBLICZENIA WYTRZYMAŁOŚCIOWE ZBIORNIKÓW NA GAZ PŁYNNY LPG

KOMPUTEROWE MODELOWANIE I OBLICZENIA WYTRZYMAŁOŚCIOWE ZBIORNIKÓW NA GAZ PŁYNNY LPG Leon KUKIEŁKA, Krzysztof KUKIEŁKA, Katarzyna GELETA, Łukasz CĄKAŁA KOMPUTEROWE MODELOWANIE I OBLICZENIA WYTRZYMAŁOŚCIOWE ZBIORNIKÓW NA GAZ PŁYNNY LPG Streszczenie W artykule przedstawiono komputerowe modelowanie

Bardziej szczegółowo

WPŁYW METODY DOPASOWANIA NA WYNIKI POMIARÓW PIÓRA ŁOPATKI INFLUENCE OF BEST-FIT METHOD ON RESULTS OF COORDINATE MEASUREMENTS OF TURBINE BLADE

WPŁYW METODY DOPASOWANIA NA WYNIKI POMIARÓW PIÓRA ŁOPATKI INFLUENCE OF BEST-FIT METHOD ON RESULTS OF COORDINATE MEASUREMENTS OF TURBINE BLADE Dr hab. inż. Andrzej Kawalec, e-mail: ak@prz.edu.pl Dr inż. Marek Magdziak, e-mail: marekm@prz.edu.pl Politechnika Rzeszowska Wydział Budowy Maszyn i Lotnictwa Katedra Technik Wytwarzania i Automatyzacji

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA

POLITECHNIKA POZNAŃSKA POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA Metoda Elementów Skończonych PROJEKT COMSOL Multiphysics 3.4 Prowadzący: dr hab. inż. Tomasz Stręk prof. PP Wykonali: Maciej Bogusławski Mateusz

Bardziej szczegółowo

LABORATORIUM METODA ELEMENTÓW SKOŃCZONYCH

LABORATORIUM METODA ELEMENTÓW SKOŃCZONYCH LABORATORIUM METODA ELEMENTÓW SKOŃCZONYCH Projekt z wykorzystaniem programu COMSOL Multiphysics Prowadzący: dr hab. Tomasz Stręk, prof. PP Wykonali: Aleksandra Oźminkowska, Marta Woźniak Wydział: Elektryczny

Bardziej szczegółowo

Projekt skrzydła. Dobór profilu

Projekt skrzydła. Dobór profilu Projekt skrzydła Dobór profilu Wybór profilu ze względu na jego charakterystyki aerodynamiczne (K max, C Zmax, charakterystyki przeciągnięcia) Wybór profilu ze względu na strukturę płata; 1 GEOMETRIA PROFILU

Bardziej szczegółowo

Politechnika Poznańska. Metoda Elementów Skończonych

Politechnika Poznańska. Metoda Elementów Skończonych Politechnika Poznańska PROJEKT: Metoda Elementów Skończonych Prowadzący: Dr hab. Tomasz Stręk Autorzy: Rafał Wesoły Daniel Trojanowicz Wydział: WBMiZ Kierunek: MiBM Specjalność: IMe Spis treści: 1. Zagadnienie

Bardziej szczegółowo

Laboratorium LAB1. Moduł małej energetyki wiatrowej

Laboratorium LAB1. Moduł małej energetyki wiatrowej Laboratorium LAB1 Moduł małej energetyki wiatrowej Badanie charakterystyki efektywności wiatraka - kompletnego systemu (wiatrak, generator, akumulator) prędkość wiatru - moc produkowana L1-U1 Pełne badania

Bardziej szczegółowo

Krzysztof Gosiewski, Anna Pawlaczyk-Kurek

Krzysztof Gosiewski, Anna Pawlaczyk-Kurek * Krzysztof Gosiewski, Anna Pawlaczyk-Kurek Instytut Inżynierii Chemicznej PAN ul. Bałtycka 5, 44-100 Gliwice 15 lutego 2018 1 * A. Opracowanie metody modelowania sprzęgającej symulację modelem CFD z wynikami

Bardziej szczegółowo

Wojskowa Akademia Techniczna Katedra Pojazdów Mechanicznych i Transportu

Wojskowa Akademia Techniczna Katedra Pojazdów Mechanicznych i Transportu Wojskowa Akademia Techniczna Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ Instrukcja do ćwiczenia T-05 Temat: Pomiar parametrów przepływu gazu. Opracował: dr inż.

Bardziej szczegółowo

Ruch granulatu w rozdrabniaczu wielotarczowym

Ruch granulatu w rozdrabniaczu wielotarczowym JÓZEF FLIZIKOWSKI ADAM BUDZYŃSKI WOJCIECH BIENIASZEWSKI Wydział Mechaniczny, Akademia Techniczno-Rolnicza, Bydgoszcz Ruch granulatu w rozdrabniaczu wielotarczowym Streszczenie: W pracy usystematyzowano

Bardziej szczegółowo

Metoda Elementów Skończonych

Metoda Elementów Skończonych Projekt Metoda Elementów Skończonych w programie COMSOL Multiphysics 3.4 Wykonali: Dziamski Dawid Krajcarz Jan BMiZ, MiBM, TPM, VII, 2012-2013 Prowadzący: dr hab. inż. Tomasz Stręk Spis treści 1. Analiza

Bardziej szczegółowo

DIGITALIZACJA GEOMETRII WKŁADEK OSTRZOWYCH NA POTRZEBY SYMULACJI MES PROCESU OBRÓBKI SKRAWANIEM

DIGITALIZACJA GEOMETRII WKŁADEK OSTRZOWYCH NA POTRZEBY SYMULACJI MES PROCESU OBRÓBKI SKRAWANIEM Dr inż. Witold HABRAT, e-mail: witekhab@prz.edu.pl Politechnika Rzeszowska, Wydział Budowy Maszyn i Lotnictwa Dr hab. inż. Piotr NIESŁONY, prof. PO, e-mail: p.nieslony@po.opole.pl Politechnika Opolska,

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności: Inżynieria Cieplna i Samochodowa Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU

Bardziej szczegółowo

Projekt 1 Wymiarowanie (sizing) analiza trendów, wyznaczenie konstrukcyjnej masy startowej.

Projekt 1 Wymiarowanie (sizing) analiza trendów, wyznaczenie konstrukcyjnej masy startowej. Projekt 1 Wymiarowanie (sizing) analiza trendów, wyznaczenie konstrukcyjnej masy startowej. Niniejszy projekt obejmuje wstępne wymiarowanie projektowanego samolotu i składa się z następujących punktów

Bardziej szczegółowo

Projektowanie Aerodynamiczne Wirnika Autorotacyjnego

Projektowanie Aerodynamiczne Wirnika Autorotacyjnego Obliczeniowa Analiza Własności Aerodynamicznych Profili Łopat Nowoczesnych Wirników Autorotacyjnych Projektowanie Aerodynamiczne Wirnika Autorotacyjnego Wieńczysław Stalewski Adam Dziubiński Działanie

Bardziej szczegółowo

Metoda Elementów Skończonych - Laboratorium

Metoda Elementów Skończonych - Laboratorium Metoda Elementów Skończonych - Laboratorium Laboratorium 5 Podstawy ABAQUS/CAE Analiza koncentracji naprężenia na przykładzie rozciąganej płaskiej płyty z otworem. Główne cele ćwiczenia: 1. wykorzystanie

Bardziej szczegółowo