Komputery kwantowe - mit czy rzeczywistość?

Wielkość: px
Rozpocząć pokaz od strony:

Download "Komputery kwantowe - mit czy rzeczywistość?"

Transkrypt

1 Działanie realizowane w ramach projektu Absolwent informatyki lub matematyki specjalistą na rynku pracy Komputery kwantowe - mit czy rzeczywistość? Wykład 7 Aneta Polewko-Klim Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

2 Dlaczego komputery nas denerwują? -quiz A) są za wolne B) są za wolne! C) są za wolne!!!!!!!!!!!!!!!!!!!

3 Co możemy zrobić aby były szybsze? Możemy tylko zmniejszać rozmiary obwodów, zwiększać gęstość elementów logicznych na jednostkę powierzchni, budować z półprzewodników jak najwięcej i jak najmniejsze bramki logiczne o jak najkrótszym czasie działania. Cambridge Centre for Quantum Computation

4

5 CHCl3

6 Od bitu do kubitu - bit Bit najmniejsza ilość informacji niezbędna do określenia, który z dwóch równie prawdopodobnych stanów przyjął układ. Posiada jedną z dwóch wartości, które zwykle określa się jako 0 (zero) i 1 (jeden), choć można przyjąć dowolną inną parę wartości, np. prawda i fałsz, tak lub nie czy -1 i +1. W klasycznych komputerach wartość bitu jest określona przez stan jakiegoś elementu np. przewodzenie/nieprzewodzenie tranzystora, zwrot natężenia pola magnetycznego. Tranzystory w procesorach posiadają przełączniki, które mogą zostać ustawione w pozycji 0 (prąd nie płynie) lub 1 (prąd płynie). Informacja, czyli ciąg bitów, przekazywana jest dzięki przepływowi elektronów.

7 Tranzystor półprzewodnikowy tranzystor molekularny

8 Superpozycja stanów przykład 1 Moneta to ma dwie strony : orzeł i reszka. 1 Rzucamy monetą i moneta wiruje na krawędzi 0

9 Superpozycja stanów przykład 1 Erwin Schrödinger wyjaśnił kwantową superpozycję stanów (złożenie), dość oryginalnym eksperymentem myślowym. Polegał on na umieszczeniu kota w zamkniętym pudełku, wraz z aparaturą, która może go uśmiercić, lub nie. Z punktu widzenia mechaniki kwantowej tak opakowany kot doskonale ilustruje stan superpozycji kwantowej jest równocześnie żywy i nieżywy. W skali makro możemy oczywiście mówić jedynie o prawdopodobieństwie tego, czy kot żyje, czy nie. Ψ = a dead + b alive

10 Od bitu do kubitu qubit Kwantowy bit tzw. kubit nie ma ustalonej wartości 1 lub 0, w trakcie obliczeń znajduje się w jakimś stanie pośrednim możemy go nazwać stanem niezdecydowanym. kubit jest kwantową superpozycją zera i jedynki. kubit niesie w sobie naraz o wiele więcej informacji niż zero-jedynkowy bit. Dlatego jest w stanie wykonać równolegle wiele obliczeń. Jeśli wykonamy pomiar to uzyskamy 0 lub 1 ψ = a 0 +b a + b =1 ψ + = 1/ 2 ( ) ψ = 1/ 2 ( 0 1 ) ( 1/ 2 ) +( 2 1/ 2 ) 2 =1

11 Przykładowe kwantowe bramki logiczne kubit kontrolny Kontrolowana bramka NOT kubit celu Bramka pierwiastek z NOT

12 Komputer tradycyjny rejestr Tradycyjny rejestr procesora to komórki pamięci o niewielkich rozmiarach (najczęściej 4/8/16/32/64/128 bitów) umieszczone wewnątrz procesora i służące do przechowywania tymczasowych wyników obliczeń, adresów lokacji w pamięci operacyjnej itd. Większość procesorów przeprowadza działania wyłącznie korzystając z wewnętrznych rejestrów, kopiując do nich dane z pamięci i po zakończeniu obliczeń odsyłając wynik do pamięci. W rejestrze w danej chwili może być zapisany jeden tylko ciąg zerojedynkowy! Np. za pomocą na przykład trzech bitów możemy stworzyć 8 czyli 23 różnych kombinacji : 1-1-1, 0-1-1, 1-0-1, 1-1-0, 0-0-0, 1-0-0, 0-1-0, W danej chwili w tych trzech bitach można zapisać tylko jedną z ośmiu kombinacji!

13 Komputer kwantowy rejestr Rejestr kwantowy to np. zespół atomów, z których każdy realizuje jeden z kubitów. W kubitach tego układu zapisujemy ciąg zer i jedynek, o długości równej rozmiarom rejestru. W takim w rejestrze kwantowym, w tej samej chwili rejestr może być w stanie będącym dowolną superpozycją wielu ciągów zerojedynkowych. Tak więc trzy kubity, mogą jednocześnie przechowywać w swojej pamięci wszystkie osiem kombinacji i wykonać na nich operacje. Ψ = a b c d e f g h 011 Pojedynczy wynik obliczeń komputera kwantowego jest niepewny. Należy wykonać całej serii obliczeń i dopiero ich średnia wartość z dużą dokładnością określi prawidłowy wynik - tym dokładniejszy, im więcej komputer dokona obliczeń.

14 Dlaczego dużo dużo szybszy? W komputerze klasycznym w danej chwili zespół n- bitów może być w jednym z 2n stanów. np. 4 bity to 1 z 64 stanów układu. Czyli w 1 kroku obliczeniowym jest przeliczany tylko 1 stan układu. Komputer kwantowy - w danej chwili każdy z n-kubitów jest w superpozycji ze wszystkimi pozostałymi n- kubitami, co oznacza że jednocześnie są w 2n stanach. np. 4 qubity są 64 stanach jednocześnie. Czyli w 1 kroku obliczeniowym są przeliczane równocześnie 64 stany układu. Z tego wynika, że trzybitowy komputer kwantowy będzie ośmiokrotnie bardziej wydajny, niż obecnie stosowane komputery Obecnie stosowane są komputery 64-bitowe. A kwantowy komputer operujący jednocześnie na 64 kubitach byłby od współcześnie wykorzystywanej maszyny około !!!! (trylionów) razy szybszy.

15 Fizyczni kandydaci na kubity Kubitami mogą być cząstki elementarne, np. foton lub elektron. Ponieważ stan układu w superpozycji jest bardzo łatwo zaburzyć, potrzebne są układy pozwalające utrzymać i kontrolować ten delikatny stan. Spiny jądrowe molekuł w cieczach - magnetyczny rezonans jądrowy (NMR) Stany energetyczne elektronów na powłokach elektronowych- naświetlanie atomów wiązką laserową Polaryzacja światła Stopnie swobody kropek kwantowych - sterowane polem magnetycznym, elektrycznym lub optycznie Elektryczne pułapki jonowe Nadprzewodzące złącza Josephsona spektroskopia rezonansowa nadprzewodników

16 Pułapka jonowa: wymiary 2cm x 3cm, jony są uwięzione 40 mikronów, ponad powierzchnią chipa roku grupa badaczy ( Uniwersytet w Sussex) wyprodukowała pierwszy trójwymiarowy zestaw pułapek jonowych.

17 Kropki kwantowe ( zagroda dla elektronów ) Świat Nauki, styczeń 2000r.

18 Zbudujmy 1 bitowy komputer kwantowy 1. Potrzebny nam jest fizyczny kubit : stan elektronu w atomie (np. wodoru). 2. Co jest 1 a co 0? : podwyższony stan energetyczny elektronu to 0, elektron w stanie w spoczynku to 1;

19 Zbudujmy 1 bitowy komputer kwantowy 3. Jak sterować układem? Zwiększyć energię elektronu? : działamy na atom impulsem światła laserowego o odpowiedniej częstotliwości i długości a jego elektron przechodzi w podwyższony stan energetyczny, kolejny impuls powoduje powrót do stanu spoczynku (czyli mamy bramkę typu NOT).

20 Zbudujmy 1 bitowy komputer kwantowy 4. Jak zrobić superpozycję stanu 0 i 1? : czas naświetlania impulsem skracamy o połowę t/2, jeśli jeszcze raz naświetlimy z czasem t/2 to mamy operację na bramce typu SqrtNOT. 5. Jak zrobić bardziej skomplikowane bramki logiczne niezbędne do operacji logicznych? : wybieramy atomy zawierające większą liczbę elektronów.

21 Obrót spinu w zależności od czasu trwania impulsu.

22 Pierwszy komputer kwantowy Pierwsze udane próby fizycznej realizacji kwantowej jednostki obliczeniowej polegały przeważnie na rozwiązaniach molekularnych W 1996 r. zaprezentowano 2 kubitowy komputer (N.Gershenfeld, L.Chuang, M. Kubinec) wykorzystujące cząsteczkę chloroformu. kubitami były spiny jąder atomu wodoru i węgla (izotop) Procesorem nie była pojedyncza cząsteczka, ale probówka, zawierająca około 1020 cząsteczek CHCl3 umieszczona w polu magnetycznym, które odpowiednio ustawiało spinu jądrowe w atomach. Komputer programowano za pomocą impulsów radiowych. Kwantowy komputer działał gdy spin jądra H był up zaś C down i odwrotnie ( odpowiada działaniu bramki typu XOR). Szczytowe osiągnięcie: Odnalezienie wybranego elementu w 4-elementowym zbiorze!. Koszt: 1 milion dolarów!!!

23 Schemat 2-kubitowego komputera

24 Czy rzeczywiście taki duży? ENIAC (Elektroniczny i Numeryczny Integrator i Komputer ) - stworzony w latach elektroniczny komputer, który składał się z 18 tys. lamp elektronowych 1500 przekaźników, ważył 30 ton i miał wymiary 15 na 9 metrów.

25 Wersja 7 kubitowa 2001r. Zawierająca 7 qubitów cząsteczka wymyślnego związku chemicznego C11H5F5O2Fe - perfluorobutadienylowy kompleks żelaza, po wzbudzeniu impulsem pola elektromagnetycznego rozkładała liczbę 15 na czynniki 3 i 5. W cząsteczce tej (komputerze kwantowym) każdy z pięciu atomów fluoru pełni funkcję qubitu. Do wyszukiwania wykorzystano algorytm kwantowy Schora. Zmianę spinów kubitów odczytywano spektrometrem rezonansu magnetycznego. Procesorem probówka, zawierająca około 1018 cząsteczek tego związku Ograniczenia: - nie może przekroczyć liczby atomów w cząsteczce - wraz ze wzrostem liczby atomów oddziaływania między nimi słabną

26 Dr Isaac L. Chuang trzyma w ręku procesor komputera kwantowego, który zbudował.

27 7-qubitowy rejestr kwantowy IBM sterowany NMR, obliczenia wykorzystują algorytm Shora, IBM s Almaden Research Center,

28 Pierwszy Optyczny Komputer Kwantowy University of Bristol 2009r Dwaj doktoranci z Centrum Fotoniki Kwantowej z Uniwersytetu w Bristolu A. Politi i J. Matthews, przeprowadzili eksperyment, podczas którego dokonali pierwszych w historii obliczeń z użyciem kwantowego optycznego układu scalonego. Przed układem postawiono zadanie: wyszukaj czynniki pierwsze liczby 15. Do silikonowego chipa wprowadzono cztery fotony (nośniki informacji), które wędrując przez falowody tworzą bramki logiczne. Naukowcy uzyskali wyniki obliczeń sprawdzając, którymi falowodami fotony opuściły układ. Podczas obliczeń wykorzystano algorytm Shora.

29 Trwają badania nad procesorem kwantowym wykorzystującym pułapki jonowe University of Innsbruck, Austria

30 Komputer kwantowy sektor prywatny 13 lutego 2007 r. firma D-Wave Systems zaprezentowała układ, nazywany pierwszym na świecie komputerem z rejestrem kwantowym. Maszynę nazwano Orion. Orion nie zaimponował szerokim zakresem możliwości, pokazał jednak praktycznie, że komputer kwantowy jest zdolny do rozwiązywania w ciągu kilku sekund problemów, które konwencjonalnemu komputerowi zajęłyby nawet dziesiątki lat. Podstawą działania układu jest wykorzystanie zjawiska nadprzewodnictwa, które, występuje najczęściej w bardzo niskich temperaturach. Orion musi być ochłodzony do temperatury 5 mk (czyli ok C). Niska temperatura pracy Oriona eliminuje wszelkiego rodzaju szumy, szczególnie o charakterze termicznym.

31 Układ scalony 16-qubitowego procesora Oriona Na płytce z niobu jest 16 węzłów, zawierających Sama maszyna nie jest wielka, ma wymiary dużej szafy. poszczególne qubity procesora. W skład każdego węzła, oprócz Pobór mocy układu wynosi zaledwie kilka nanowatów. umieszczonego w centrum qubitu osiemjednocześnie.. pętli Kwantowy komputer firmy D-Wave wykonuje ponoć jest operacji nadprzewodnikowych zaś w okolicy Odczyt wartości spinów bez zmiany ich stanu bazujeindukcyjnych, na efekcie tunelowania centrum węzła znajdują się Josephsona ( zjawisko przepływu prądu na styku dwóch nadprzewodników, złącza Josephsona. rozdzielonych cienką warstwą izolacyjną). SQUID-y mogą być indywidualnie odczytywane, Złącze Josephsona wchodzi w skład urządzenia pomiarowego zwanego SQUID każdemu z do qubitów można Superconducting Quantum Interference Device, przeznaczonym detekcji i nadać indywidualnie dowolny pomiarów natężenia bardzo słabych pól magnetycznych. stan. Programowanie qubitów, jak i analiza odczytów z nich, dokonywane są na zewnątrz, już przez konwencjonalne komputery.

32 Chip jest umieszczony w obudowie nieco przypominającej konwencjonalne obudowy procesorów, która jest przystosowana do pracy w bardzo niskich temperaturach.

33 Obudowa jest umieszczona między dwoma takimi wymiennikami ciepła - systemy chłodzące są zasilane ciekłym helem

34 Całość znajduje się w tunelu, utworzonym przez płytki z układami elektronicznymi

35 Co potrafi obliczyć? Powszechnie znanym przykładem tej klasy zadań jest tak zwany problem komiwojażera znalezienie najkrótszej trasy, jaka trzeba przebyć w drodze z punktu A z powrotem do punktu A, poprzez wszystkie punkty znajdujące się na zadanym obszarze. W prezentacji D-Wave przytoczono właśnie ten problem, z użyciem konkretnych danych na obliczenie trasy komiwojażera dla liczącej miejscowości Szwecji dobry współczesny PC potrzebowałby około 85 lat. W praktycznych pokazach Orion realizował nieco mniej skomplikowane, choć pracochłonne zadania. - Wyszukał struktury cząsteczek pasujących do wybranej wstępnie cząsteczki kofeiny - Ułożył plan miejsc na przyjęciu weselnym (ze skomplikowanymi uwarunkowaniami kto koło kogo ) - oraz ułożył prymitywne puzzle.

36 2008r. Adiabatyczny Chip 128 kubitowego komputera firmy D-WaVe

37 Silikonowy Chip procesora 128-kubitowego

38

39

40 Nie całkiem prawdziwy? Jeśli przyjrzymy się szczegółom rozwiązania Oriona, zauważymy od razu, że nie jest on procesorem kwantowym w takim sensie, w jakim określa to teoria. Wszystkie ewentualne relacje pomiędzy kubitami są sterowane zewnętrznie nie ma, jak w teoretycznym komputerze kwantowym czy w opisywanym wcześniej procesorze molekularnym IBM, bezpośrednich oddziaływań pomiędzy kubitami. Firma D-Wave System przyznaje, że Orion nie jest prawdziwym komputerem kwantowym, ale maszyną do specjalnych zastosowań, wykorzystującą zjawiska kwantowe.

41 Zastosowanie komputerów kwantowych kryptografia bezpieczne przesyłanie informacji sztuczna inteligencja

42 Główne problemy komputera kwantowego. Komputer kwantowy oblicza jednocześnie wynik dla wielu danych. Wyniki te, wyróżniają się z tła. Odczytuje się je z pewnym prawdopodobieństwem. Problem pojawia się gdy te wyniki słabo się wyróżniają z tła, jest tzw. szum. Innym problemem są zderzenia cząstek (wskutek kontaktu z otoczeniem), które prowadzą do zapadnięcie się systemu i wygaśnięcia po pewnym czasie do jednego stanu.

43 Jak korygować błędy? Zjawisko splątania. Jeśli mamy dwa splątane fotony to nie wiemy jaki ma spin każdy z nich. Gdy jednak dokonamy pomiaru jednego z fotonów, wówczas stan drugiego ustali się automatycznie (nawet gdy będzie bardzo daleko). Zmiana jakiejś właściwości jednej cząstki w splątanym układzie powoduje natychmiastową zmianę w pozostałych cząstkach niezależnie jak daleko są do siebie Zjawisko to odkrył Albert Einstein. Wykorzystywane w teleportacji. Naukowcom amerykańskim udało się bez przesyłania materii przerzucić informację między dwoma atomami. Teleportacja odbyła się na odległość metra. Zespół z Joint Quantum Institute z Uniwersytetu Maryland i Uniwersytetu Michigan przeprowadził eksperyment, w którym udowodnił, że przesyłanie informacji kwantowej na odległość jest możliwie.

44 Komora teleportacyjna używana do łapania, przetrzymywania i teleportacji jonów. The University of Maryland, the University of Michigan

45 Działanie realizowane w ramach projektu Absolwent informatyki lub matematyki specjalistą na rynku pracy Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

W5. Komputer kwantowy

W5. Komputer kwantowy W5. Komputer kwantowy Komputer klasyczny: Informacja zapisana w postaci bitów (binary digit) (sygnał jest albo go nie ma) W klasycznych komputerach wartość bitu jest określona przez stan pewnego elementu

Bardziej szczegółowo

Historia. Zasada Działania

Historia. Zasada Działania Komputer kwantowy układ fizyczny do opisu którego wymagana jest mechanika kwantowa, zaprojektowany tak, aby wynik ewolucji tego układu reprezentował rozwiązanie określonego problemu obliczeniowego. Historia

Bardziej szczegółowo

Informatyka kwantowa. Karol Bartkiewicz

Informatyka kwantowa. Karol Bartkiewicz Informatyka kwantowa Karol Bartkiewicz Informacja = Wielkość fizyczna Jednostka informacji: Zasada Landauera: I A =log 2 k B T ln 2 1 P A R. Landauer, Fundamental Physical Limitations of the Computational

Bardziej szczegółowo

Wstęp do algorytmiki kwantowej

Wstęp do algorytmiki kwantowej Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Komputer kwantowy - co to właściwie jest? Komputer kwantowy Komputer, którego zasada działania nie może zostać wyjaśniona bez użycia formalizmu mechaniki

Bardziej szczegółowo

Informatyka Kwantowa Sekcja Informatyki Kwantowej prezentacja

Informatyka Kwantowa Sekcja Informatyki Kwantowej prezentacja Informatyka Kwantowa Sekcja Informatyki Kwantowej prezentacja Robert Nowotniak Wydział FTIMS, Politechnika Łódzka XV konferencja SIS, 26 października 2007 Streszczenie Informatyka kwantowa jest dziedziną

Bardziej szczegółowo

Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu.

Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu. Zakład Optyki Nieliniowej http://zon8.physd.amu.edu.pl 1/35 Informatyka kwantowa wykład z cyklu Zaproszenie do fizyki Ryszard Tanaś Umultowska 85, 61-614 Poznań mailto:tanas@kielich.amu.edu.pl Spis treści

Bardziej szczegółowo

VIII. TELEPORTACJA KWANTOWA Janusz Adamowski

VIII. TELEPORTACJA KWANTOWA Janusz Adamowski VIII. TELEPORTACJA KWANTOWA Janusz Adamowski 1 1 Wprowadzenie Teleportacja kwantowa polega na przesyłaniu stanów cząstek kwantowych na odległość od nadawcy do odbiorcy. Przesyłane stany nie są znane nadawcy

Bardziej szczegółowo

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan Spis zagadnień Fizyczne podstawy zjawiska NMR Parametry widma NMR Procesy relaksacji jądrowej Metody obrazowania Fizyczne podstawy NMR Proton, neutron,

Bardziej szczegółowo

dr inż. Andrzej Skorupski Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

dr inż. Andrzej Skorupski Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska dr inż. Andrzej Skorupski Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska Zasilacz pierwszego polskiego komputera UMC1 produkowanego seryjnie w ELWRO opracowanego w katedrze kierowanej

Bardziej szczegółowo

XIII Poznański Festiwal Nauki i Sztuki. Wydziale Fizyki UAM

XIII Poznański Festiwal Nauki i Sztuki. Wydziale Fizyki UAM XIII Poznański Festiwal Nauki i Sztuki na Wydziale Fizyki UAM XIII Poznański Festival Nauki i Sztuki na Wydziale Fizyki UAM Od informatyki klasycznej do kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas

Bardziej szczegółowo

Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd.

Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman (1918-1988) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Równocześnie Feynman podkreślił, że obliczenia mechaniki

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 13

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś   Wykład 13 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 13 Spis treści 19 Algorytmy kwantowe 3 19.1 Bit kwantowy kubit (qubit)........... 3 19. Twierdzenie

Bardziej szczegółowo

Menu. Badające rozproszenie światła,

Menu. Badające rozproszenie światła, Menu Badające rozproszenie światła, Instrumenty badające pole magnetyczne Ziemi Pole magnetyczne Ziemi mierzy się za pomocą magnetometrów. Instrumenty badające pole magnetyczne Ziemi Rodzaje magnetometrów:»

Bardziej szczegółowo

Informatyka kwantowa

Informatyka kwantowa VI Festiwal Nauki i Sztuki na Wydziale Fizyki UAM Informatyka kwantowa Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas 16 października 2003 Spis treści 1 Rozwój komputerów 4 1.1 Początki..................

Bardziej szczegółowo

bity kwantowe zastosowania stanów splątanych

bity kwantowe zastosowania stanów splątanych bity kwantowe zastosowania stanów splątanych Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW Bit kwantowy zawiera więcej informacji niż bit klasyczny

Bardziej szczegółowo

Podejścia do realizacji modelu obliczeń kwantowych

Podejścia do realizacji modelu obliczeń kwantowych Podejścia do realizacji modelu obliczeń kwantowych Instytut Informatyki Uniwersytetu Wrocławskiego 18 maja 2007 Jak reprezentować qubit? Główne zasady Warunki dla obliczeń kwantowych Spin Oscylator harmoniczny

Bardziej szczegółowo

Podstawy informatyki kwantowej

Podstawy informatyki kwantowej Wykład 6 27 kwietnia 2016 Podstawy informatyki kwantowej dr hab. Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Wykłady: 6, 13, 20, 27 kwietnia oraz 4 maja (na ostatnim wykładzie będzie

Bardziej szczegółowo

bity kwantowe zastosowania stanów splątanych

bity kwantowe zastosowania stanów splątanych bity kwantowe zastosowania stanów splątanych Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW Bit jest jednostką informacji tzn. jest "najmniejszą możliwą

Bardziej szczegółowo

1.6. Falowa natura cząstek biologicznych i fluorofullerenów Wstęp Porfiryny i fluorofullereny C 60 F

1.6. Falowa natura cząstek biologicznych i fluorofullerenów Wstęp Porfiryny i fluorofullereny C 60 F SPIS TREŚCI Przedmowa 11 Wprowadzenie... 13 Część I. Doświadczenia dyfrakcyjno-interferencyjne z pojedynczymi obiektami mikroświata.. 17 Literatura... 23 1.1. Doświadczenia dyfrakcyjno-interferencyjne

Bardziej szczegółowo

- nowe wyzwanie. Feliks Kurp

- nowe wyzwanie. Feliks Kurp INFORMATYKA KWANTOWA - nowe wyzwanie Feliks Kurp 2006 2 Plan wystąpienia: 1. Dlaczego informatyka kwantowa? 2. Grupy i ludzie zajmujący się informatyką kwantową 3. Fenomeny mechaniki kwantowej 4. Podstawy

Bardziej szczegółowo

2. Metody, których podstawą są widma atomowe 32

2. Metody, których podstawą są widma atomowe 32 Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola

Bardziej szczegółowo

SPEKTROSKOPIA NMR. No. 0

SPEKTROSKOPIA NMR. No. 0 No. 0 Spektroskopia magnetycznego rezonansu jądrowego, spektroskopia MRJ, spektroskopia NMR jedna z najczęściej stosowanych obecnie technik spektroskopowych w chemii i medycynie. Spektroskopia ta polega

Bardziej szczegółowo

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej

Bardziej szczegółowo

Obliczenia inspirowane Naturą

Obliczenia inspirowane Naturą Obliczenia inspirowane Naturą Wykład 12 - Algorytmy i protokoły kwantowe Jarosław Miszczak IITiS PAN Gliwice 19/05/2016 1 / 39 1 Motywacja rozwoju informatyki kwantowej. 2 Stany kwantowe. 3 Notacja Diraca.

Bardziej szczegółowo

Fizyka dla wszystkich

Fizyka dla wszystkich Fizyka dla wszystkich Wykład popularny dla młodzieży szkół średnich Splątane kubity czyli rzecz o informatyce kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas 21 kwietnia 2004 Spis treści 1

Bardziej szczegółowo

Fizyka 3.3 WYKŁAD II

Fizyka 3.3 WYKŁAD II Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło

Bardziej szczegółowo

Protokół teleportacji kwantowej

Protokół teleportacji kwantowej Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka Sekcja Informatyki Kwantowej, 9 stycznia 008 Teleportacja kwantowa 1993 Propozycja teoretyczna protokołu teleportacji

Bardziej szczegółowo

Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe

Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe Wykład 4 29 kwietnia 2015 Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Dobra lektura: Michel Le Bellac

Bardziej szczegółowo

Kwantowe stany splątane. Karol Życzkowski Instytut Fizyki, Uniwersytet Jagielloński 25 kwietnia 2017

Kwantowe stany splątane. Karol Życzkowski Instytut Fizyki, Uniwersytet Jagielloński 25 kwietnia 2017 B l i ż e j N a u k i Kwantowe stany splątane Karol Życzkowski Instytut Fizyki, Uniwersytet Jagielloński 25 kwietnia 2017 Co to jest fizyka? Kopnij piłkę! Co to jest fizyka? Kopnij piłkę! Kup lody i poczekaj

Bardziej szczegółowo

Energetyka konwencjonalna odnawialna i jądrowa

Energetyka konwencjonalna odnawialna i jądrowa Energetyka konwencjonalna odnawialna i jądrowa Wykład 8-27.XI.2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład 8 Energia atomowa i jądrowa

Bardziej szczegółowo

Kryptografia kwantowa

Kryptografia kwantowa Kryptografia kwantowa Krzysztof Maćkowiak DGA SECURE 2006 Plan referatu Wprowadzenie, podstawowe pojęcia Algorytm Grovera Algorytm Shora Algorytm Bennetta-Brassarda Algorytm Bennetta Praktyczne zastosowanie

Bardziej szczegółowo

Atomy wieloelektronowe

Atomy wieloelektronowe Wiązania atomowe Atomy wieloelektronowe, obsadzanie stanów elektronowych, układ poziomów energii. Przykładowe konfiguracje elektronów, gazy szlachetne, litowce, chlorowce, układ okresowy pierwiastków,

Bardziej szczegółowo

Dydaktyka Informatyki budowa i zasady działania komputera

Dydaktyka Informatyki budowa i zasady działania komputera Dydaktyka Informatyki budowa i zasady działania komputera Instytut Matematyki Uniwersytet Gdański System komputerowy System komputerowy układ współdziałania dwóch składowych: szprzętu komputerowego oraz

Bardziej szczegółowo

cz. 1. dr inż. Zbigniew Szklarski

cz. 1. dr inż. Zbigniew Szklarski Wykład 14: Pole magnetyczne cz. 1. dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Wektor indukcji pola magnetycznego, siła Lorentza v F L Jeżeli na dodatni ładunek

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6

Bardziej szczegółowo

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Streszczenie Spektroskopia magnetycznego rezonansu jądrowego jest jedną z technik spektroskopii absorpcyjnej mającej zastosowanie w chemii,

Bardziej szczegółowo

V. KWANTOWE BRAMKI LOGICZNE Janusz Adamowski

V. KWANTOWE BRAMKI LOGICZNE Janusz Adamowski V. KWANTOWE BRAMKI LOGICZNE Janusz Adamowski 1 1 Wprowadzenie Wykład ten poświęcony jest dokładniejszemu omówieniu własności kwantowych bramek logicznych (kwantowych operacji logicznych). Podstawowymi

Bardziej szczegółowo

Splątanie a przesyłanie informacji

Splątanie a przesyłanie informacji Splątanie a przesyłanie informacji Jarosław A. Miszczak 21 marca 2003 roku Plan referatu Stany splątane Co to jest splątanie? Gęste kodowanie Teleportacja Przeprowadzone eksperymenty Możliwości wykorzystania

Bardziej szczegółowo

Metody rezonansowe. Magnetyczny rezonans jądrowy Magnetometr protonowy

Metody rezonansowe. Magnetyczny rezonans jądrowy Magnetometr protonowy Metody rezonansowe Magnetyczny rezonans jądrowy Magnetometr protonowy Co należy wiedzieć Efekt Zeemana, precesja Larmora Wektor magnetyzacji w podstawowym eksperymencie NMR Transformacja Fouriera Procesy

Bardziej szczegółowo

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. 1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu

Bardziej szczegółowo

Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego

Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego W5. Energia molekuł Przemieszczanie się całych molekuł w przestrzeni - Ruch translacyjny - Odbywa się w fazie gazowej i ciekłej, w fazie stałej

Bardziej szczegółowo

Kwantowe stany splątane w układach wielocząstkowych. Karol Życzkowski (UJ / CFT PAN) 44 Zjazd PTF Wrocław, 12 września 2017

Kwantowe stany splątane w układach wielocząstkowych. Karol Życzkowski (UJ / CFT PAN) 44 Zjazd PTF Wrocław, 12 września 2017 Kwantowe stany splątane w układach wielocząstkowych Karol Życzkowski (UJ / CFT PAN) 44 Zjazd PTF Wrocław, 12 września 2017 Otton Nikodym oraz Stefan Banach rozmawiają na ławce na krakowskich plantach

Bardziej szczegółowo

KARTA PRZEDMIOTU. Informacje ogólne WYDZIAŁ MATEMATYCZNO-PRZYRODNICZY. SZKOŁA NAUK ŚCISŁYCH UNIWERSYTET KARDYNAŁA STEFANA WYSZYŃSKIEGO W WARSZAWIE

KARTA PRZEDMIOTU. Informacje ogólne WYDZIAŁ MATEMATYCZNO-PRZYRODNICZY. SZKOŁA NAUK ŚCISŁYCH UNIWERSYTET KARDYNAŁA STEFANA WYSZYŃSKIEGO W WARSZAWIE 1 3 4 5 6 7 8 8.0 Kod przedmiotu Nazwa przedmiotu Jednostka Punkty ECTS Język wykładowy Poziom przedmiotu Symbole efektów kształcenia Symbole efektów dla obszaru kształcenia Symbole efektów kierunkowych

Bardziej szczegółowo

Seminarium: Efekty kwantowe w informatyce

Seminarium: Efekty kwantowe w informatyce Seminarium: Efekty kwantowe w informatyce Aleksander Mądry Sprawy organizacyjne Spotykamy się w piątki o 12:15 w sali 105. Sprawy organizacyjne Spotykamy się w piątki o 12:15 w sali 105. Każdy kto będzie

Bardziej szczegółowo

FALOWA I KWANTOWA HASŁO :. 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N

FALOWA I KWANTOWA HASŁO :. 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N OPTYKA FALOWA I KWANTOWA 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N 8 D Y F R A K C Y J N A 9 K W A N T O W A 10 M I R A Ż 11 P

Bardziej szczegółowo

Wymagania edukacyjne: Elektrotechnika i elektronika. Klasa: 1Tc TECHNIK MECHATRONIK. Ilość godzin: 4. Wykonała: Beata Sedivy

Wymagania edukacyjne: Elektrotechnika i elektronika. Klasa: 1Tc TECHNIK MECHATRONIK. Ilość godzin: 4. Wykonała: Beata Sedivy Wymagania edukacyjne: Elektrotechnika i elektronika Klasa: 1Tc TECHNIK MECHATRONIK Ilość godzin: 4 Wykonała: Beata Sedivy Ocena Ocenę niedostateczną uczeń który Ocenę dopuszczającą Wymagania edukacyjne

Bardziej szczegółowo

Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl

Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl Plan ogólny Kryształy, półprzewodniki, nanotechnologie, czyli czym będziemy się

Bardziej szczegółowo

1 K A T E D R A F I ZYKI S T O S O W AN E J

1 K A T E D R A F I ZYKI S T O S O W AN E J 1 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 1. Łączenie i pomiar oporu Wprowadzenie Prąd elektryczny Jeżeli w przewodniku

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 13 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład

Bardziej szczegółowo

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA NADPRZEWODNICTWO I EFEKT MEISSNERA

POLITECHNIKA GDAŃSKA NADPRZEWODNICTWO I EFEKT MEISSNERA POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA ENERGETYKI I APARATURY PRZEMYSŁOWEJ NADPRZEWODNICTWO I EFEKT MEISSNERA Katarzyna Mazur Inżynieria Mechaniczno-Medyczna Sem. 9 1. Przypomnienie istotnych

Bardziej szczegółowo

MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM

MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM Ćwiczenie nr 16 MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM Aparatura Zasilacze regulowane, cewki Helmholtza, multimetry cyfrowe, dynamometr torsyjny oraz pętle próbne z przewodnika. X Y 1 2 Rys. 1 Układ pomiarowy

Bardziej szczegółowo

TEORIA PASMOWA CIAŁ STAŁYCH

TEORIA PASMOWA CIAŁ STAŁYCH TEORIA PASMOWA CIAŁ STAŁYCH Skolektywizowane elektrony w metalu Weźmy pod uwagę pewną ilość atomów jakiegoś metalu, np. sodu. Pojedynczy atom sodu zawiera 11 elektronów o konfiguracji 1s 2 2s 2 2p 6 3s

Bardziej szczegółowo

Atom wodoru w mechanice kwantowej. Równanie Schrödingera

Atom wodoru w mechanice kwantowej. Równanie Schrödingera Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz

Bardziej szczegółowo

26 Okresowy układ pierwiastków

26 Okresowy układ pierwiastków 26 Okresowy układ pierwiastków Przyjmując procedurę Hartree ego otrzymujemy poziomy numerowane, jak w atomie wodoru, liczbami kwantowymi (n, l, m) z tym, że degeneracja ze względu na l na ogół już nie

Bardziej szczegółowo

Pamięć wirtualna. Przygotował: Ryszard Kijaka. Wykład 4

Pamięć wirtualna. Przygotował: Ryszard Kijaka. Wykład 4 Pamięć wirtualna Przygotował: Ryszard Kijaka Wykład 4 Wstęp główny podział to: PM- do pamięci masowych należą wszelkiego rodzaju pamięci na nośnikach magnetycznych, takie jak dyski twarde i elastyczne,

Bardziej szczegółowo

Spis treści. Przedmowa redaktora do wydania czwartego 11

Spis treści. Przedmowa redaktora do wydania czwartego 11 Mechanika kwantowa : teoria nierelatywistyczna / Lew D. Landau, Jewgienij M. Lifszyc ; z jęz. ros. tł. Ludwik Dobrzyński, Andrzej Pindor. - Wyd. 3. Warszawa, 2012 Spis treści Przedmowa redaktora do wydania

Bardziej szczegółowo

!!!DEL są źródłami światła niespójnego.

!!!DEL są źródłami światła niespójnego. Dioda elektroluminescencyjna DEL Element czynny DEL to złącze p-n. Gdy zostanie ono spolaryzowane w kierunku przewodzenia, to w obszarze typu p, w warstwie o grubości rzędu 1µm, wytwarza się stan inwersji

Bardziej szczegółowo

Algorytm Grovera. Kwantowe przeszukiwanie zbiorów. Robert Nowotniak

Algorytm Grovera. Kwantowe przeszukiwanie zbiorów. Robert Nowotniak Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka 13 listopada 2007 Plan wystapienia 1 Informatyka Kwantowa podstawy 2 Opis problemu (przeszukiwanie zbioru) 3 Intuicyjna

Bardziej szczegółowo

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego Arytmetyka cyfrowa Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego (binarnego). Zapis binarny - to system liczenia

Bardziej szczegółowo

Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych.

Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych. VII. SPIN 1 Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych. 1 Wstęp Spin jest wielkością fizyczną charakteryzującą cząstki

Bardziej szczegółowo

Wprowadzenie do informatyki i użytkowania komputerów. Kodowanie informacji System komputerowy

Wprowadzenie do informatyki i użytkowania komputerów. Kodowanie informacji System komputerowy 1 Wprowadzenie do informatyki i użytkowania komputerów Kodowanie informacji System komputerowy Kodowanie informacji 2 Co to jest? bit, bajt, kod ASCII. Jak działa system komputerowy? Co to jest? pamięć

Bardziej szczegółowo

kondensat Bosego-Einsteina

kondensat Bosego-Einsteina kondensat Bosego-Einsteina Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW Podziękowania dla Dr. M. Zawady (Krajowe Laboratorium Fizyki Atomowej, Molekularnej

Bardziej szczegółowo

I. Przedmiot i metodologia fizyki

I. Przedmiot i metodologia fizyki I. Przedmiot i metodologia fizyki Rodowód fizyki współczesnej Świat zjawisk fizycznych: wielkości fizyczne, rzędy wielkości, uniwersalność praw Oddziaływania fundamentalne i poszukiwanie Teorii Ostatecznej

Bardziej szczegółowo

o pomiarze i o dekoherencji

o pomiarze i o dekoherencji o pomiarze i o dekoherencji Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW pomiar dekoherencja pomiar kolaps nieoznaczoność paradoksy dekoherencja Przykładowy

Bardziej szczegółowo

ANALITYKA W KONTROLI JAKOŚCI

ANALITYKA W KONTROLI JAKOŚCI ANALITYKA W KONTROLI JAKOŚCI ANALIZA ŚLADÓW METODA ICP-OES Optyczna spektroskopia emisyjna ze wzbudzeniem w indukcyjnie sprzężonej plazmie WYKŁAD 4 Rodzaje widm i mechanizm ich powstania PODSTAWY SPEKTROSKOPII

Bardziej szczegółowo

Badanie własności hallotronu, wyznaczenie stałej Halla (E2)

Badanie własności hallotronu, wyznaczenie stałej Halla (E2) Badanie własności hallotronu, wyznaczenie stałej Halla (E2) 1. Wymagane zagadnienia - ruch ładunku w polu magnetycznym, siła Lorentza, pole elektryczne - omówić zjawisko Halla, wyprowadzić wzór na napięcie

Bardziej szczegółowo

Nanostruktury, spintronika, komputer kwantowy

Nanostruktury, spintronika, komputer kwantowy Nanostruktury, spintronika, komputer kwantowy Wykªad dla uczniów Gimnazjum Nr 2 w Krakowie I. Nanostruktury Skala mikrometrowa 1µm (mikrometr) = 1 milionowa cz ± metra = 10 6 m obiekty mikrometrowe, np.

Bardziej szczegółowo

Kwantowe przelewy bankowe foton na usługach biznesu

Kwantowe przelewy bankowe foton na usługach biznesu Kwantowe przelewy bankowe foton na usługach biznesu Rafał Demkowicz-Dobrzański Centrum Fizyki Teoretycznej PAN Zakupy w Internecie Secure Socket Layer Bazuje na w wymianie klucza metodą RSA Jak mogę przesłać

Bardziej szczegółowo

prawda symbol WIEDZA DANE komunikat fałsz liczba INFORMACJA (nie tyko w informatyce) kod znak wiadomość ENTROPIA forma przekaz

prawda symbol WIEDZA DANE komunikat fałsz liczba INFORMACJA (nie tyko w informatyce) kod znak wiadomość ENTROPIA forma przekaz WIEDZA prawda komunikat symbol DANE fałsz kod INFORMACJA (nie tyko w informatyce) liczba znak forma ENTROPIA przekaz wiadomość Czy żyjemy w erze informacji? TAK Bo używamy nowego rodzaju maszyn maszyn

Bardziej szczegółowo

PAMIĘCI. Część 1. Przygotował: Ryszard Kijanka

PAMIĘCI. Część 1. Przygotował: Ryszard Kijanka PAMIĘCI Część 1 Przygotował: Ryszard Kijanka WSTĘP Pamięci półprzewodnikowe są jednym z kluczowych elementów systemów cyfrowych. Służą do przechowywania informacji w postaci cyfrowej. Liczba informacji,

Bardziej szczegółowo

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków Budowa atomów Atomy wieloelektronowe Układ okresowy pierwiastków Model atomu Bohra atom zjonizowany (ciągłe wartości energii) stany wzbudzone jądro Energia (ev) elektron orbita stan podstawowy Poziomy

Bardziej szczegółowo

Nadprzewodniki. W takich materiałach kiedy nastąpi przepływ prądu może on płynąć nawet bez przyłożonego napięcia przez długi czas! )Ba 2. Tl 0.2.

Nadprzewodniki. W takich materiałach kiedy nastąpi przepływ prądu może on płynąć nawet bez przyłożonego napięcia przez długi czas! )Ba 2. Tl 0.2. Nadprzewodniki Pewna klasa materiałów wykazuje prawie zerową oporność (R=0) poniżej pewnej temperatury zwanej temperaturą krytyczną T c Większość przewodników wykazuje nadprzewodnictwo dopiero w temperaturze

Bardziej szczegółowo

Cząstka w pudle potencjału. Jan Bojanowski 201034 Nowoczesna synteza i analiza organiczna

Cząstka w pudle potencjału. Jan Bojanowski 201034 Nowoczesna synteza i analiza organiczna Cząstka w pudle potencjału Jan Bojanowski 201034 Nowoczesna synteza i analiza organiczna 1 Plan prezentacji Czym jest cząstka w pudle potencjału? Czym się różni od piłki w pudle kartonowym? Teoria jednowymiarowego

Bardziej szczegółowo

Podstawowe pojęcia i prawa chemiczne, Obliczenia na podstawie wzorów chemicznych

Podstawowe pojęcia i prawa chemiczne, Obliczenia na podstawie wzorów chemicznych Podstawowe pojęcia i prawa chemiczne, Obliczenia na podstawie wzorów chemicznych 1. Wielkości i jednostki stosowane do wyrażania ilości materii 1.1 Masa atomowa, cząsteczkowa, mol Masa atomowa Atomy mają

Bardziej szczegółowo

Atomy w zewnętrznym polu magnetycznym i elektrycznym

Atomy w zewnętrznym polu magnetycznym i elektrycznym Atomy w zewnętrznym polu magnetycznym i elektrycznym 1. Kwantowanie przestrzenne momentów magnetycznych i rezonans spinowy 2. Efekt Zeemana (normalny i anomalny) oraz zjawisko Paschena-Backa 3. Efekt Starka

Bardziej szczegółowo

XV FESTIWAL NAUKI 2011 WPROWADZENIE DO BIOCYBERNETYKI

XV FESTIWAL NAUKI 2011 WPROWADZENIE DO BIOCYBERNETYKI XV FESTIWAL NAUKI 2011 WPROWADZENIE DO BIOCYBERNETYKI ZESPÓŁ APARATURY BIOCYBERNETYCZNEJ (http://www.ise.pw.edu.pl/index.php?id=138) STUDENCKIE KOŁO NAUKOWE CYBERNETYKI (http://cyber.ise.pw.edu.pl) INSTYTUT

Bardziej szczegółowo

Wykłady z Fizyki. Kwanty

Wykłady z Fizyki. Kwanty Wykłady z Fizyki 10 Kwanty Zbigniew Osiak OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K komentarz

Bardziej szczegółowo

Redefinicja jednostek układu SI

Redefinicja jednostek układu SI CENTRUM NAUK BIOLOGICZNO-CHEMICZNYCH / WYDZIAŁ CHEMII UNIWERSYTETU WARSZAWSKIEGO Redefinicja jednostek układu SI Ewa Bulska MIERZALNE WYZWANIA ŚWIATA MIERZALNE WYZWANIA ŚWIATA MIERZALNE WYZWANIA ŚWIATA

Bardziej szczegółowo

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy T_atom-All 1 Nazwisko i imię klasa Stałe : h=6,626 10 34 Js h= 4,14 10 15 evs 1eV=1.60217657 10-19 J Zaznacz zjawiska świadczące o falowej naturze światła a) zjawisko fotoelektryczne b) interferencja c)

Bardziej szczegółowo

Piotr Pokora. Politechnika Krakowska. Komputery kwantowe a problemy NP-zupełne.

Piotr Pokora. Politechnika Krakowska. Komputery kwantowe a problemy NP-zupełne. Piotr Pokora Politechnika Krakowska Komputery kwantowe a problemy NP-zupełne. 1. Teoria komputerów kwantowych. W dzisiejszych czasach ciężko wyobrazić sobie życie bez komputerów. Korzystamy z nich w codziennym

Bardziej szczegółowo

Internet kwantowy. (z krótkim wstępem do informatyki kwantowej) Jarosław Miszczak. Instytut Informatyki Teoretycznej i Stosowanej PAN

Internet kwantowy. (z krótkim wstępem do informatyki kwantowej) Jarosław Miszczak. Instytut Informatyki Teoretycznej i Stosowanej PAN Internet kwantowy (z krótkim wstępem do informatyki kwantowej) Jarosław Miszczak Instytut Informatyki Teoretycznej i Stosowanej PAN 16. stycznia 2012 Plan wystąpienia 1 Skąd się biorą stany kwantowe? Jak

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

Różne dziwne przewodniki

Różne dziwne przewodniki Różne dziwne przewodniki czyli trzy po trzy o mechanizmach przewodzenia prądu elektrycznego Przewodniki elektronowe Metale Metale (zwane również przewodnikami) charakteryzują się tym, że elektrony ich

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą

Bardziej szczegółowo

Plan Zajęć. Ćwiczenia rachunkowe

Plan Zajęć. Ćwiczenia rachunkowe Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin

Bardziej szczegółowo

Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego

Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Piotr Rybak Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 1 / 17 Spis

Bardziej szczegółowo

Grzegorz Wrochna Narodowe Centrum Badań Jądrowych Z czego składa się Wszechświat?

Grzegorz Wrochna Narodowe Centrum Badań Jądrowych  Z czego składa się Wszechświat? Narodowe Centrum Badań Jądrowych www.ncbj.gov.pl Z czego składa się Wszechświat? 1 Budowa materii ~ cała otaczająca nas materia składa się z atomów pierwiastek chemiczny = = zbiór jednakowych atomów Znamy

Bardziej szczegółowo

Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X

Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Oskar Gawlik, Jacek Grela 16 lutego 2009 1 Podstawy teoretyczne 1.1 Liczniki proporcjonalne Wydajność detekcji promieniowania elektromagnetycznego

Bardziej szczegółowo

Wstęp. Krystalografia geometryczna

Wstęp. Krystalografia geometryczna Wstęp Przedmiot badań krystalografii. Wprowadzenie do opisu struktury kryształów. Definicja sieci Bravais go i bazy atomowej, komórki prymitywnej i elementarnej. Podstawowe typy komórek elementarnych.

Bardziej szczegółowo

Spektroskopia modulacyjna

Spektroskopia modulacyjna Spektroskopia modulacyjna pozwala na otrzymanie energii przejść optycznych w strukturze z bardzo dużą dokładnością. Charakteryzuje się również wysoką czułością, co pozwala na obserwację słabych przejść,

Bardziej szczegółowo

k e = 2, Nm 2 JEDNOŚĆ TRZECH RODZAJÓW PÓL. STRESZCZENIE.

k e = 2, Nm 2 JEDNOŚĆ TRZECH RODZAJÓW PÓL. STRESZCZENIE. JEDNOŚĆ TRZECH RODZAJÓW PÓL. STRESZCZENIE. Pokazano na czym polega jedność pola elektrycznego, pola magnetycznego i pola grawitacyjnego. Po raz pierwszy w historii fizyki obiektywnie porównano ze sobą

Bardziej szczegółowo

Stara i nowa teoria kwantowa

Stara i nowa teoria kwantowa Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż

Bardziej szczegółowo

Teoria grawitacji. Grzegorz Hoppe (PhD)

Teoria grawitacji. Grzegorz Hoppe (PhD) Teoria grawitacji Grzegorz Hoppe (PhD) Oddziaływanie grawitacyjne nie zostało dotychczas poprawnie opisane i pozostaje jednym z nie odkrytych oddziaływań. Autor uważa, że oddziaływanie to jest w rzeczywistości

Bardziej szczegółowo

Technika mikroprocesorowa

Technika mikroprocesorowa Technika mikroprocesorowa zajmuje się przetwarzaniem danych w oparciu o cyfrowe programowalne układy scalone. Systemy przetwarzające dane w oparciu o takie układy nazywane są systemami mikroprocesorowymi

Bardziej szczegółowo

Budowa pamięci RAM Parametry: tcl, trcd, trp, tras, tcr występują w specyfikacjach poszczególnych pamięci DRAM. Czym mniejsze są wartości tych

Budowa pamięci RAM Parametry: tcl, trcd, trp, tras, tcr występują w specyfikacjach poszczególnych pamięci DRAM. Czym mniejsze są wartości tych Budowa pamięci RAM Parametry: tcl, trcd, trp, tras, tcr występują w specyfikacjach poszczególnych pamięci DRAM. Czym mniejsze są wartości tych parametrów, tym szybszy dostęp do komórek, co przekłada się

Bardziej szczegółowo

Efekty kształcenia dla kierunku studiów CHEMIA studia pierwszego stopnia profil ogólnoakademicki

Efekty kształcenia dla kierunku studiów CHEMIA studia pierwszego stopnia profil ogólnoakademicki Załącznik nr 1 Efekty kształcenia dla kierunku studiów CHEMIA studia pierwszego stopnia profil ogólnoakademicki Umiejscowienie kierunku w obszarze kształcenia Kierunek studiów chemia należy do obszaru

Bardziej szczegółowo

str. 1 d. elektron oraz dziura e.

str. 1 d. elektron oraz dziura e. 1. Półprzewodniki samoistne a. Niska temperatura b. Wzrost temperatury c. d. elektron oraz dziura e. f. zjawisko fotoelektryczne wewnętrzne g. Krzem i german 2. Półprzewodniki domieszkowe a. W półprzewodnikach

Bardziej szczegółowo