POMIARY OPTYCZNE 1. Proste przyrządy optyczne. Damian Siedlecki

Wielkość: px
Rozpocząć pokaz od strony:

Download "POMIARY OPTYCZNE 1. Proste przyrządy optyczne. Damian Siedlecki"

Transkrypt

1 POMIARY OPTYCZNE 1 { Proste przyrządy optyczne Damian Siedlecki

2 Lupa to najprostszy przyrząd optyczny, dający obraz pozorny, powiększony i prosty. LUPA Aperturę lupy ogranicza źrenica oka. Pole widzenia zależy od położenia oka względem lupy.

3 Kąt, pod jakim widzimy przedmiot okiem nieuzbrojonym Odległość dobrego widzenia - odległość, dla której oko ludzkie widzi ostry obraz o maksymalnie dużym powiększeniu, ale nie musi akomodować ( przystosowywać się ) do widzenia w odległości innej, niż wynika z fizjologicznego ustawienia mięśni oka. D 25cm LUPA tgα = h D

4 Kąt, pod jakim widzimy przedmiot okiem uzbrojonym w lupę: tgα = h L LUPA

5 Powiększenie kątowe lupy: Γ = tgα tgα = h L h D = D L h h = D L s s 1 s + 1 s = 1 f D L s s = D L s 1 f 1 s = D L 1 s f LUPA

6 Powiększenie kątowe lupy: Dla oka umieszczonego zaraz za lupą (l = 0) Γ = D L + D f Dla przedmiotu umieszczonego w ognisku (L = ): LUPA Γ = D f Dla obrazu powstającego w odległości dobrego widzenia: Γ = D f + 1

7 Luneta to przyrząd, służący do obserwacji przedmiotów dużych, ale odległych luneta tworzy obraz tego przedmiotu pomniejszony, ale w bliższej odległości od oka. Składa się z obiektywu (układ o dużej ogniskowej i dużej średnicy) i okularu (układ o małej ogniskowej i małej średnicy). LUNETA

8 Układ lunety jest układem teleskopowym = bezogniskowym (ognisko obrazowe obiektywu pokrywa się (niemal) z ogniskiem przedmiotowym okularu. LUNETA

9 Powiększenie wizualne lunety: Γ = f ob f ok LUNETA

10 Bieg promieni aperturowego i polowego w lunecie Keplera: Powiększenie wizualne lunety równe jest stosunkowi średnic źrenic: wejściowej, którą tworzy zwykle przesłona aperturowa, będąca oprawą obiektywu i wyjściowej, którą jest źrenica oka. Wielkość źrenicy oka (2-8 mm) decyduje więc o aperturze i jasności lunety. LUNETA

11 Typy lunet: - astronomiczne refraktory (Keplera) dwa układy soczewkowe, zbierające; - astronomiczne reflektory układy zwierciadlane; - ziemskie (nieodwracające) z dodatkową soczewką pomocniczą, - odwracającą obraz (też: lornetki); - ziemskie (holenderskie) Galileusza z okularem rozpraszającym. Luneta ziemska typu Galileusza: Dwa układy: - skupiający obiektyw (jak w astronomicznej); - rozpraszający okular (dzięki temu obraz jest pozorny, ale nie odwrócony). LUNETA

12 Bieg promieni aperturowego i polowego w lunecie Galileusza: W lunecie tej nie można ograniczać apertury oprawą obiektywu. Obraz tej oprawy jest pozorny i powstaje pomiędzy obiektywem i okularem. Jedynym ograniczeniem jest więc zawsze źrenica oka! Oprawa obiektywu pełni teraz rolę przysłony polowej. Ze względów konstrukcyjnych (korekcja aberracji dla układów rozpraszających jest trudniejsza) lunety ziemskie mają zwykle dużo mniejsze powiększenia od astronomicznych. LUNETA

13 Mikroskop to przyrząd do obserwacji przedmiotów małych, znajdujących się blisko obserwatora. Składa się ze skupiającego obiektywu o krótkiej ogniskowej, który daje rzeczywisty, powiększony i odwrócony obraz przedmiotu i okularu, również skupiającego, który pełni rolę lupy, przez która oglądamy obraz dawany przez obiektyw. MIKROSKOP

14 Powiększenie mikroskopu: Γ = dd f ob f ok d - długość tubusu (ok. 17cm) MIKROSKOP

15 Obiektyw daje obraz rzeczywisty, odwrócony, powiększony: β ob = d + Δ Okular działa jak lupa. Jego powiększenie wizualne wynosi: Całkowite powiększenie typowego mikroskopu jest równe: Γ = β ob Γ ok = d + Δ f ob W typowym mikroskopie maksymalne powiększenia są nie większe niż 2000 (obiektyw x100, okular x16). Większe powiększenia uzyskać trudno ze względu na dyfrakcję światła na soczewkach. W przypadku dużych obiektywów (x100) stosuje się ciecze immersyjne w celu zwiększenia kąta aperturowego. Apertura numeryczna obiektywu: MIKROSKOP D dd f ok f ob f ok NA = n sin u f ob Γ ok = D f ok

16 Ważnym elementem mikroskopu jest jego układ oświetlający. Elementem odpowiedzialnym za geometrię wiązki oświetlającej jest kondensor. Stosowane są powszechnie dwa typy oświetlenia przedmiotu: przy oświetleniu krytycznym obraz źródła światła (włókno żarówki oświetlacza) odwzorowany jest w płaszczyźnie przedmiotu. Oświetlenie krytyczne umożliwia zmianę apertury mikroskopu poprzez zmianę apertury kondensora. Aby preparat był oświetlony równomiernie, włókno żarówki oświetlacza musi być rozciągłe i mieć stałą luminancję na całej powierzchni. MIKROSKOP

17 Przy oświetleniu typu Köhlera źródło światła odwzorowane jest w płaszczyźnie przysłony aperturowej obiektywu. Układ Köhlera pozwala na równomierne oświetlenie przedmiotu Dodatkowy kolektor K 1 odwzorowuje źródło światła na płaszczyznę aperturową kondensora. Obie przesłony aperturowa i polowa znajdują się w układzie kolektor-kondensor. MIKROSKOP

18 Teoria Abbego: teoria dyfrakcyjna używana do opisu sposobu powstawania obrazu w mikroskopie: Oświetlacz typu Köhlera tworzy równoległą wiązkę światła, padającą na obserwowany obiekt (płaszczyzna 0 ); Pole widzenia ograniczone jest przez przysłonę D P ; Przysłona D A ogranicza rozbieżność kątową wiązki oświetlającej. MIKROSKOP

19 Założenie: Obserwowanym przedmiotem jest sinusoidalna siatka o częstości przestrzennej ν = 1 X o której transmitancja (przepuszczalność) opisana jest wzorem: t x = A + B cos 2πνx Jak ZAPEWNE PAMIĘTACIE (???), płaska fala, padając na tak określoną strukturę, tworzy dwie wiązki ugięte pod kątami zależnymi od częstości przestrzennej przedmiotu: A B tan θ = ±νλ W płaszczyźnie ogniskowej obrazowej obiektywu 1 wiązki te skupiają się, tworząc obraz dyfrakcyjny przedmiotu. Obserwujemy trzy punkty (reprezentujące trzy fale): - środkowy, reprezentujący zerową częstość przestrzenną, czyli tło; - dwa boczne punkty, reprezentujące częstość przestrzenną. Te trzy fale tworzą następnie obraz podobny do przedmiotu w płaszczyźnie 0 MIKROSKOP

20 Uogólnienie: Jeśli nawet przedmiot nie jest sinusoidalną siatką, możemy przyjąć że jest periodyczny z okresem X 0 i zastosować rozkład Fouriera do jego transmitancji: t x = T 0 + T m cos 2πmx X 0 + m=1 Fala świetlna, padająca na taki przedmiot, ulega dyfrakcji i tworzy szereg fal płaskich, ugiętych pod kątami: Każda z tych wiązek po przejściu przez obiektyw skupia się w jego tylnej płaszczyźnie ogniskowej w innej odległości od osi: W płaszczyźnie tej tworzy się więc obraz dyfrakcyjny przedmiotu szereg punktów świecących o natężeniach zależnych od współczynników w rozwinięciu Fouriera. Z dodania (interferencji) tych fal powstaje obraz geometryczny (w płaszczyźnie 0 ). m=1 tan θ m = ±mλν, m = ±1, ±2, ξ m = f ob tan θ m = mf ob λν T m sin 2πmx X 0 MIKROSKOP

21 Nawet w przypadku przedmiotu nieperiodycznego możemy zastosować transformatę Fouriera. Fala płaska, padająca na przedmiot o dowolnej transmitancji amplitudowej t(x), ulega dyfrakcji i w płaszczyźnie ogniskowej obrazowej soczewki odwzorowującej otrzymujemy rozkład amplitudy świetlnej, opisany transformatą Fouriera: τ ν = + Przejście światła od płaszczyzny obrazu dyfrakcyjnego do płaszczyzny obrazu geometrycznego opisuje odwrotne przekształcenie Fouriera: + a więc obraz jest podobny do przedmiotu. t x exp 2πi λf xν t x ob = τ ν exp 2πi λz ob νx ob dx dν MIKROSKOP

22 Jak dotychczas, otrzymane wyniki (tworzenie obrazu) są analogiczne do tych, osiągniętych za pomocą teorii geometrycznej! Na czym więc polegają różnice (ograniczenia) teorii dyfrakcyjnej? Nawet wtedy, gdy apertura obiektywu jest bardzo duża, jest ona zawsze skończona. Nie wszystkie wiązki światła, ugięte na przedmiocie, trafią więc do obiektywu i zostaną skupione w płaszczyźnie obrazu dyfrakcyjnego. Oznacza to, że w drugiej części procesu tworzenia obrazu (transformata odwrotna) weźmie udział tylko skończona liczba fal składowych. Obliczanie odwrotnej transformaty Fouriera odbędzie się w skończonych granicach a więc otrzymany wynik musi się różnić od idealnego. Pewna część informacji o przedmiocie, zawarta w składowych harmonicznych o wysokich częstościach przestrzennych nie zostanie odtworzona w obrazie. MIKROSKOP

23 W szczególności, gdy przedmiotem będzie siatka periodyczna o jednej, stałej częstości przestrzennej 0, to wiązki światła ugięte na tej strukturze trafią do obiektywu a następnie wezmą udział w tworzeniu obrazu tylko wtedy, gdy apertura obiektywu będzie równa co najmniej: u 0 = arcsin(νλ) Ma ona związek ze zdolnością rozdzielczą obiektywu często wyrażaną przez najmniejszą odległość d między dwoma odwzorowanymi punktami: d = λ D 2 z gdzie D/2z jest połówkowym kątem aperturowym obiektywu. MIKROSKOP

24 Tak więc obraz dawany przez obiektyw o skończonych rozmiarach jest zawsze rozmyty. Rozmycie to powstaje jako wynik dyfrakcji światła na ograniczeniu, jakim jest przesłona aperturowa (źrenica wejściowa) tego obiektywu. Obrazem punktowego przedmiotu jest więc nie punkt, ale plamka o skończonych rozmiarach, zwana punktową funkcją rozmycia. W przypadku istnienia w układzie aberracji, wpływają one również na kształt tej plamki i dlatego nazywamy ją także plamką aberracyjną. Dyfrakcyjna teoria odwzorowania wyjaśnia oczywiście sposób powstawania obrazu nie tylko w mikroskopie. Na przykład obrazem dalekiej gwiazdy (punkt!) w lunecie jest punktowa funkcja rozmycia równa obrazowi dyfrakcyjnemu (dalekiego pola) źrenicy wejściowej. MIKROSKOP

25 Przykład: Dla źrenicy kołowej o średnicy D amplitudową punktową funkcją rozmycia jest krążek Airy ego: h x = J 1 πdx λf πdx λf Rozkład natężenia światła w obrazie punktu nazywamy natężeniową punktową funkcją rozmycia, np. (dla źrenicy kołowej): H x = h(x ) 2 = J 1 2 πdx λf πdx λf 2 MIKROSKOP

26 Dla niewielkich przesunięć możemy z dobrym przybliżeniem przyjąć, że obrazem dwóch punktów leżących w niewielkiej odległości od siebie jest suma dwóch identycznych punktowych funkcji rozmycia, przesuniętych względem siebie o wielkość zależną od i od powiększenia poprzecznego układu. Jeśli przedmiot jest oświetlony niekoherentnie, to dodają się natężeniowe funkcje rozmycia: H ξ = H ξ β Δ 2 + H ξ + β Δ 2 Gdy odległość między punktami jest zbyt mała, plamki aberracyjne nakładają się, uniemożliwiając rozróżnienie poszczególnych punktów. MIKROSKOP

27 Kryterium rozdzielczości Rayleigha orzeka, że bezaberracyjny układ optyczny umożliwi rozróżnienie dwóch punktów, jeżeli maksimum punktowej funkcji rozmycia jednego punktu przypadnie na pierwsze minimum dyfrakcyjne punktowej funkcji rozmycia drugiego punktu. Kryterium rozdzielczości

28 Przykład I: dla źrenicy kwadratowej o boku a odległość ta wynosi: θ gr = λ a Zwana jest ona dwupunktową zdolnością rozdzielczą. Przykład II: dla źrenicy kołowej o średnicy D odległość ta wynosi: θ gr = 1.22 λ D (liczba 1.22 wynika z warunku na minimum funkcji Bessela). W praktyce, granicę zdolności rozdzielczej wyznacza się, obserwując testy kreskowe, składające się z pól pokrytych układami równoległych i równoodległych linii. Kryterium rozdzielczości

29 Aparat fotograficzny służy do odwzorowania przedmiotu na kliszy fotograficznej za pomocą obiektywu. Przedmiot zwykle znajduje się daleko (tzn. odległość przedmiotowa jest dużo mniejsza niż ogniskowa obiektywu) więc obraz powstaje tuż za ogniskiem obrazowym. Aperturę obiektywu fotograficznego ogranicza regulowana przesłona irysowa w obiektywie. O polu widzenia decyduje wielkość kliszy. Aparat fotograficzny

30 W procesie rejestracji obrazu ważna jest wielkość oświetlenia w płaszczyźnie kliszy. Oświetlenie to jest proporcjonalne do kwadratu odwrotności liczby otworowej N=f/D: E~ D f Odwrotność liczby otworowej nazywana jest otworem względnym (jasnością) i zapisywana w postaci: 1: f D Obiektyw fotograficzny powinien charakteryzować się dużym polem widzenia. Ważna jest też tzw. głębia ostrości. 2 Im krótsza ogniskowa obiektywu, tym większa głębia ostrości. Aparat fotograficzny

POMIARY OPTYCZNE 1. Wykład 2. Proste przyrządy optyczne. Oko. Dr hab. inż. Władysław Artur Woźniak

POMIARY OPTYCZNE 1. Wykład 2. Proste przyrządy optyczne. Oko. Dr hab. inż. Władysław Artur Woźniak POMIARY OPTYCZNE 1 Wykład 2 Proste przyrządy optyczne. Oko. Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 18/11 bud. A-1 http://www.if.pwr.wroc.pl/~wozniak/ PRZYRZĄDY

Bardziej szczegółowo

Mikroskopy uniwersalne

Mikroskopy uniwersalne Mikroskopy uniwersalne Źródło światła Kolektor Kondensor Stolik mikroskopowy Obiektyw Okular Inne Przesłony Pryzmaty Płytki półprzepuszczalne Zwierciadła Nasadki okularowe Zasada działania mikroskopu z

Bardziej szczegółowo

1100-1BO15, rok akademicki 2016/17

1100-1BO15, rok akademicki 2016/17 1100-1BO15, rok akademicki 2016/17 M. Pagliaro, G. Palmisano, and R. Ciriminna,Flexible Solar Cells, John Wiley, New York (2008). m z m 2a Zgodnie z zasadą Huygensa każdy punkt wewnątrz szczeliny staje

Bardziej szczegółowo

OPTYKA TECHNICZNA DR INŻ. MARCIN LEŚNIEWSKI OPTYKA TECHNICZNA

OPTYKA TECHNICZNA DR INŻ. MARCIN LEŚNIEWSKI OPTYKA TECHNICZNA DR INŻ. MARCIN LEŚNIEWSKI Obrazy w różnych zakresach spektralnych Układ optyczny jako skokowa zmiana współczynnika załamania w przestrzeni aberracje układu opt. aberracje układu opt. Rzeczywisty bieg promieni

Bardziej szczegółowo

POMIARY OPTYCZNE 1. Wykład 1. Dr hab. inż. Władysław Artur Woźniak

POMIARY OPTYCZNE 1. Wykład 1.  Dr hab. inż. Władysław Artur Woźniak POMIARY OPTYCZNE Wykład Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 8/ bud. A- http://www.if.pwr.wroc.pl/~wozniak/ OPTYKA GEOMETRYCZNA Codzienne obserwacje: światło

Bardziej szczegółowo

Optyka OPTYKA dział fizyki, zajmujący się ŚWIATŁEM.

Optyka OPTYKA dział fizyki, zajmujący się ŚWIATŁEM. Optyka OPTYKA dział fizyki, zajmujący się ŚWIATŁEM. - Źródła światła; - Propagacja (rozchodzenie się) światła; - Tworzenie obrazu (odwzorowanie); - Oddziaływanie światła z materią; - Detekcja (wykrywanie,

Bardziej szczegółowo

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK ĆWICZENIE 77 POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK Cel ćwiczenia: 1. Poznanie zasad optyki geometrycznej, zasad powstawania i konstrukcji obrazów w soczewkach cienkich. 2. Wyznaczanie odległości ogniskowych

Bardziej szczegółowo

Lupa Łupa jest najprostszym przyrządem optycznym współpracującym z okiem (Rys. 6.1). F' F

Lupa Łupa jest najprostszym przyrządem optycznym współpracującym z okiem (Rys. 6.1). F' F Temat 6: Układy optyczne Ilość godzin na temat wykładu: Zagadnienia: Łupa. Mikroskop. Luneta Keplera. Luneta Galileusza. Aparat fotograficzny. Aparat projekcyjny. Oko. W trakcie obserwacji wizualnej przedmiotów

Bardziej szczegółowo

Rys. 1 Schemat układu obrazującego 2f-2f

Rys. 1 Schemat układu obrazującego 2f-2f Ćwiczenie 15 Obrazowanie. Celem ćwiczenia jest zbudowanie układów obrazujących w świetle monochromatycznym oraz zaobserwowanie różnic w przypadku obrazowania za pomocą różnych elementów optycznych, zwracając

Bardziej szczegółowo

Rejestracja i rekonstrukcja fal optycznych. Hologram zawiera pełny zapis informacji o fali optycznej jej amplitudzie i fazie.

Rejestracja i rekonstrukcja fal optycznych. Hologram zawiera pełny zapis informacji o fali optycznej jej amplitudzie i fazie. HOLOGRAFIA prof dr hab inŝ Krzysztof Patorski Krzysztof Rejestracja i rekonstrukcja fal optycznych Hologram zawiera pełny zapis informacji o fali optycznej jej amplitudzie i fazie a) Laser b) odniesienia

Bardziej szczegółowo

Najprostszą soczewkę stanowi powierzchnia sferyczna stanowiąca granicę dwóch ośr.: powietrza, o wsp. załamania n 1. sin θ 1. sin θ 2.

Najprostszą soczewkę stanowi powierzchnia sferyczna stanowiąca granicę dwóch ośr.: powietrza, o wsp. załamania n 1. sin θ 1. sin θ 2. Ia. OPTYKA GEOMETRYCZNA wprowadzenie Niemal każdy system optoelektroniczny zawiera oprócz źródła światła i detektora - co najmniej jeden element optyczny, najczęściej soczewkę gdy system służy do analizy

Bardziej szczegółowo

LABORATORIUM OPTYKI GEOMETRYCZNEJ

LABORATORIUM OPTYKI GEOMETRYCZNEJ LABORATORIUM OPTYKI GEOMETRYCZNEJ MIKROSKOP 1. Cel dwiczenia Zapoznanie się z budową i podstawową obsługo mikroskopu biologicznego. 2. Zakres wymaganych zagadnieo: Budowa mikroskopu. Powstawanie obrazu

Bardziej szczegółowo

OPTYKA W INSTRUMENTACH GEODEZYJNYCH

OPTYKA W INSTRUMENTACH GEODEZYJNYCH OPTYKA W INSTRUMENTACH GEODEZYJNYCH Prawa Euklidesa: 1. Promień padający i odbity znajdują się w jednej płaszczyźnie przechodzącej przez prostopadłą wystawioną do powierzchni zwierciadła w punkcie odbicia.

Bardziej szczegółowo

Optyka instrumentalna

Optyka instrumentalna Optyka instrumentalna wykład 7 20 kwietnia 2017 Wykład 6 Optyka geometryczna cd. Przybliżenie przyosiowe Soczewka, zwierciadło Ogniskowanie, obrazowanie Macierze ABCD Punkty kardynalne układu optycznego

Bardziej szczegółowo

Optyka instrumentalna

Optyka instrumentalna Optyka instrumentalna wykład 9 4 maja 2017 Wykład 8 Przyrządy optyczne Oko ludzkie Lupa Okular Luneta, lornetka Teleskopy zwierciadlane Mikroskop Parametry obiektywów, rozdzielczość Oświetlenie (dia, epi,

Bardziej szczegółowo

Wstęp do fotografii. piątek, 15 października 2010. ggoralski.com

Wstęp do fotografii. piątek, 15 października 2010. ggoralski.com Wstęp do fotografii ggoralski.com element światłoczuły soczewki migawka przesłona oś optyczna f (ogniskowa) oś optyczna 1/2 f Ogniskowa - odległość od środka układu optycznego do ogniska (miejsca w którym

Bardziej szczegółowo

POMIARY OPTYCZNE Pomiary ogniskowych. Damian Siedlecki

POMIARY OPTYCZNE Pomiary ogniskowych. Damian Siedlecki POMIARY OPTYCZNE 1 { 11. Damian Siedlecki POMIARY OPTYCZNE 1 { 3. Proste przyrządy optyczne Damian Siedlecki POMIARY OPTYCZNE 1 { 4. Oko Damian Siedlecki POMIARY OPTYCZNE 1 { 5. Lunety. Mikroskopy. Inne

Bardziej szczegółowo

6. Badania mikroskopowe proszków i spieków

6. Badania mikroskopowe proszków i spieków 6. Badania mikroskopowe proszków i spieków Najprostszy układ optyczny stanowią dwie współosiowe soczewki umieszczone na końcach tubusu (rysunek 42). Odwzorowanie mikroskopowe jest dwustopniowe: obiektyw

Bardziej szczegółowo

Laboratorium Optyki Geometrycznej i Instrumentalnej

Laboratorium Optyki Geometrycznej i Instrumentalnej aboratorium Optyki Geometrycznej i Instrumentalnej Budowa układów optycznych 1. Cel aboratorium Celem ćwiczenia jest zapoznanie studentów z budowa podstawowych układów optycznych lupy, lunety Keplera i

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 5 Tomasz Kwiatkowski 3 listopad 2010 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 5 1/41 Plan wykładu Podstawy optyki geometrycznej Załamanie światła, soczewki Odbicie

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 5 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I,

Bardziej szczegółowo

Wykład XI. Optyka geometryczna

Wykład XI. Optyka geometryczna Wykład XI Optyka geometryczna Jak widzimy? Aby przedmiot był widoczny, musi wysyłać światło w wielu kierunkach. Na podstawie światła zebranego przez oko mózg lokalizuje położenie obiektu. Niekiedy promienie

Bardziej szczegółowo

Ćwiczenie 53. Soczewki

Ćwiczenie 53. Soczewki Ćwiczenie 53. Soczewki Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Pomiar ogniskowych soczewki skupiającej i układu soczewek (skupiająca i rozpraszająca), obliczenie ogniskowej soczewki rozpraszającej.

Bardziej szczegółowo

PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE

PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE prof. dr hab. inż. Krzysztof Patorski Przedmiotem tej części wykładu są podstawowe transformacje fazowe

Bardziej szczegółowo

f = -50 cm ma zdolność skupiającą

f = -50 cm ma zdolność skupiającą 19. KIAKOPIA 1. Wstęp W oku miarowym wymiary struktur oka, ich wzajemne odległości, promienie krzywizn powierzchni załamujących światło oraz wartości współczynników załamania ośrodków, przez które światło

Bardziej szczegółowo

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ ĆWICZENIE 84 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ Cel ćwiczenia: Wyznaczenie długości fali emisji lasera lub innego źródła światła monochromatycznego, wyznaczenie stałej siatki

Bardziej szczegółowo

Uniwersytet Warszawski, Wydział Fizyki Rafał Kasztelanic Uniwersytet Warszawski, Wydział Fizyki Rafał Kasztelanic

Uniwersytet Warszawski, Wydział Fizyki Rafał Kasztelanic Uniwersytet Warszawski, Wydział Fizyki Rafał Kasztelanic TELEDETEKCJA A źródło B oddziaływanie z atmosferą C obiekt, oddziaływanie z obiektem D detektor E zbieranie danych F analiza G zastosowania A D TELEDETEKCJA UKŁADY OPTYCZNE Najprostszym elementem optycznym

Bardziej szczegółowo

+OPTYKA 3.stacjapogody.waw.pl K.M.

+OPTYKA 3.stacjapogody.waw.pl K.M. Zwierciadło płaskie, prawo odbicia. +OPTYKA.stacjapogody.waw.pl K.M. Promień padający, odbity i normalna leżą w jednej płaszczyźnie, prostopadłej do płaszczyzny zwierciadła Obszar widzialności punktu w

Bardziej szczegółowo

Ćwiczenie 4. Część teoretyczna

Ćwiczenie 4. Część teoretyczna Ćwiczenie 4 Badanie aberracji chromatycznej soczewki refrakcyjnej i dyfrakcyjnej. Badanie odpowiedzi impulsowej oraz obrazowania przy użyciu soczewki sferycznej. Zbadanie głębi ostrości przy oświetleniu

Bardziej szczegółowo

Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje.

Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Działanie obrazujące soczewek lub układu soczewek wygodnie

Bardziej szczegółowo

Zjawiska dyfrakcji. Propagacja dowolnych fal w przestrzeni

Zjawiska dyfrakcji. Propagacja dowolnych fal w przestrzeni Zjawiska dyfrakcji Propagacja dowolnych fal w przestrzeni W przestrzeni mogą się znajdować różne elementy siatki dyfrakcyjne układy optyczne przysłony filtry i inne Analizy dyfrakcyjne należą do najważniejszych

Bardziej szczegółowo

POMIARY OPTYCZNE 1. Wykład 9. Metody sprawdzania instrumentów optycznych. http://www.if.pwr.wroc.pl/~wozniak/ Dr hab. inż. Władysław Artur Woźniak

POMIARY OPTYCZNE 1. Wykład 9. Metody sprawdzania instrumentów optycznych. http://www.if.pwr.wroc.pl/~wozniak/ Dr hab. inż. Władysław Artur Woźniak POMIARY OPTYCZNE 1 Wykład 9 Metody sprawdzania instrumentów optycznych Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 18/11 bud. A-1 http://www.if.pwr.wroc.pl/~wozniak/

Bardziej szczegółowo

GWIEZDNE INTERFEROMETRY MICHELSONA I ANDERSONA

GWIEZDNE INTERFEROMETRY MICHELSONA I ANDERSONA GWIEZNE INTERFEROMETRY MICHELSONA I ANERSONA Cel ćwiczenia Celem ćwiczenia jest zestawienie i demonstracja modelu gwiezdnego interferometru Andersona oraz laboratoryjny pomiar wymiaru sztucznej gwiazdy.

Bardziej szczegółowo

KATEDRA INŻYNIERII BIOMEDYCZNEJ OPTYCZNA DIAGNOSTYKA MEDYCZNA

KATEDRA INŻYNIERII BIOMEDYCZNEJ OPTYCZNA DIAGNOSTYKA MEDYCZNA Wydział PPT Laboratorium Ćwiczenie nr 4 KATEDRA INŻYNIERII BIOMEDYCZNEJ OPTYCZNA DIAGNOSTYKA MEDYCZNA Podstawowe konfiguracje mikroskopu optycznego CEL ĆWICZENIA: zapoznanie z budową i obsługą mikroskopu

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 8, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 8, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 8, 09.03.0 wykład: pokazy: ćwiczenia: zesław Radzewicz Radosław hrapkiewicz, Filip Ozimek Ernest Grodner Wykład 7 - przypomnienie eikonał

Bardziej szczegółowo

Laboratorium Informatyki Optycznej ĆWICZENIE 2. Koherentne korelatory optyczne i hologram Fouriera

Laboratorium Informatyki Optycznej ĆWICZENIE 2. Koherentne korelatory optyczne i hologram Fouriera ĆWICZENIE 2 Koherentne korelatory optyczne i hologram Fouriera 1. Wprowadzenie Historycznie jednym z ważniejszych zastosowań korelatorów optycznych było rozpoznawanie obrazów, pozwalały np. na analizę

Bardziej szczegółowo

Ćwiczenie: "Zagadnienia optyki"

Ćwiczenie: Zagadnienia optyki Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.

Bardziej szczegółowo

SCENARIUSZ LEKCJI Temat lekcji: Soczewki i obrazy otrzymywane w soczewkach

SCENARIUSZ LEKCJI Temat lekcji: Soczewki i obrazy otrzymywane w soczewkach Scenariusz lekcji : Soczewki i obrazy otrzymywane w soczewkach Autorski konspekt lekcyjny Słowa kluczowe: soczewki, obrazy Joachim Hurek, Publiczne Liceum Ogólnokształcące z Oddziałami Dwujęzycznymi w

Bardziej szczegółowo

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D.

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D. OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C. 60 o

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

Dodatek 1. C f. A x. h 1 ( 2) y h x. powrót. xyf

Dodatek 1. C f. A x. h 1 ( 2) y h x. powrót. xyf B Dodatek C f h A x D y E G h Z podobieństwa trójkątów ABD i DEG wynika z h x a z trójkątów DC i EG ' ' h h y ' ' to P ( ) h h h y f to ( 2) y h x y x y f ( ) i ( 2) otrzymamy to yf xy xf f f y f h f yf

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej. LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone

Bardziej szczegółowo

WYZNACZANIE ROZMIARÓW KRWINEK METODĄ MIKROSKOPOWĄ

WYZNACZANIE ROZMIARÓW KRWINEK METODĄ MIKROSKOPOWĄ WYZNACZANIE ROZMIARÓW KRWINEK METODĄ MIKROSKOPOWĄ 1. Wstęp Miarowe oko ludzkie może rozróżnić strukturę przedmiotu z odległości dobrego widzenia d = 0,25 m tylko wtedy, gdy składa się ona z elementów oddalonych

Bardziej szczegółowo

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Podstawy Działanie obrazujące soczewek lub układu soczewek

Bardziej szczegółowo

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Podstawy Działanie obrazujące soczewek lub układu soczewek

Bardziej szczegółowo

POMIARY OPTYCZNE 1. Wykład 8. Pomiar ogniskowej układu optycznego. Dr hab. inż. Władysław Artur Woźniak

POMIARY OPTYCZNE 1. Wykład 8. Pomiar ogniskowej układu optycznego. Dr hab. inż. Władysław Artur Woźniak POMIARY OPTYCZNE 1 Wykład 8 Pomiar ogniskowej układu optycznego Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 18/11 bud. A-1 http://www.if.pwr.wroc.pl/~wozniak/ PRZYPOMNIENIE:

Bardziej szczegółowo

Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 6. Badanie właściwości hologramów

Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 6. Badanie właściwości hologramów Laboratorium optycznego przetwarzania informacji i holografii Ćwiczenie 6. Badanie właściwości hologramów Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdańska Gdańsk 2006 1. Cel

Bardziej szczegółowo

Sprzęt do obserwacji astronomicznych

Sprzęt do obserwacji astronomicznych Sprzęt do obserwacji astronomicznych Spis treści: 1. Teleskopy 2. Montaże 3. Inne przyrządy 1. Teleskop - jest to przyrząd optyczny zbudowany z obiektywu i okularu bądź też ze zwierciadła i okularu. W

Bardziej szczegółowo

Fig. 2 PL B1 (13) B1 G02B 23/02 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) (21) Numer zgłoszenia:

Fig. 2 PL B1 (13) B1 G02B 23/02 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) (21) Numer zgłoszenia: RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 167356 (13) B1 (21) Numer zgłoszenia: 293293 Urząd Patentowy (22) Data zgłoszenia: 24.01.1992 Rzeczypospolitej Polskiej (51) IntCl6: G02B 23/12 G02B

Bardziej szczegółowo

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki.

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. 1. Równanie soczewki i zwierciadła kulistego. Z podobieństwa trójkątów ABF i LFD (patrz rysunek powyżej) wynika,

Bardziej szczegółowo

Ćw.6. Badanie własności soczewek elektronowych

Ćw.6. Badanie własności soczewek elektronowych Pracownia Molekularne Ciało Stałe Ćw.6. Badanie własności soczewek elektronowych Brygida Mielewska, Tomasz Neumann Zagadnienia do przygotowania: 1. Budowa mikroskopu elektronowego 2. Wytwarzanie wiązki

Bardziej szczegółowo

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne. Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować

Bardziej szczegółowo

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi

Bardziej szczegółowo

Ćw. 16. Skalowanie mikroskopu i pomiar małych przedmiotów

Ćw. 16. Skalowanie mikroskopu i pomiar małych przedmiotów 16 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 16. Skalowanie mikroskopu i pomiar małych przedmiotów Wprowadzenie Mikroskop jest przyrządem optycznym dającym znaczne powiększenia małych przedmiotów

Bardziej szczegółowo

Materiały pomocnicze 14 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 14 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 4 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej. Zwierciadło płaskie. Zwierciadło płaskie jest najprostszym przyrządem optycznym. Jest to wypolerowana płaska powierzchnia

Bardziej szczegółowo

Ćwiczenie 361 Badanie układu dwóch soczewek

Ćwiczenie 361 Badanie układu dwóch soczewek Nazwisko... Data... Wdział... Imię... Dzień tg.... Godzina... Ćwiczenie 36 Badanie układu dwóch soczewek Wznaczenie ogniskowch soczewek metodą Bessela Odległość przedmiotu od ekranu (60 cm 0 cm) l Soczewka

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 9, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 9, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 9, 12.03.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 8 - przypomnienie

Bardziej szczegółowo

Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste:

Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste: Fale świetlne Światło jest falą elektromagnetyczną, czyli rozchodzącymi się w przestrzeni zmiennymi i wzajemnie przenikającymi się polami: elektrycznym i magnetycznym. Szybkość światła w próżni jest największa

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 17, 0.04.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 16 - przypomnienie dyfrakcja

Bardziej szczegółowo

Metody badania kosmosu

Metody badania kosmosu Metody badania kosmosu Zakres widzialny Fale radiowe i mikrofale Promieniowanie wysokoenergetyczne Detektory cząstek Pomiar sił grawitacyjnych Obserwacje prehistoryczne Obserwatorium słoneczne w Goseck

Bardziej szczegółowo

Ć W I C Z E N I E N R O-4

Ć W I C Z E N I E N R O-4 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-4 BADANIE WAD SOCZEWEK I Zagadnienia do opracowania Równanie soewki,

Bardziej szczegółowo

POMIAR WIELKOŚCI KOMÓREK

POMIAR WIELKOŚCI KOMÓREK POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 4 POMIAR WIELKOŚCI KOMÓREK PRZY UŻYCIU MIKROSKOPU ŚWIETLNEGO I. WSTĘP TEORETYCZNY Do obserwacji bardzo małych obiektów, np.

Bardziej szczegółowo

Optyka w fotografii Ciemnia optyczna camera obscura wykorzystuje zjawisko prostoliniowego rozchodzenia się światła skrzynka (pudełko) z małym okrągłym otworkiem na jednej ściance i przeciwległą ścianką

Bardziej szczegółowo

Wykład XIV. wiatła. Younga. Younga. Doświadczenie. Younga

Wykład XIV. wiatła. Younga. Younga. Doświadczenie. Younga Wykład XIV Poglądy na naturęświat wiatła Dyfrakcja i interferencja światła rozwój poglądów na naturę światła doświadczenie spójność światła interferencja w cienkich warstwach interferometr Michelsona dyfrakcja

Bardziej szczegółowo

PDF stworzony przez wersję demonstracyjną pdffactory www.pdffactory.pl/ Agata Miłaszewska 3gB

PDF stworzony przez wersję demonstracyjną pdffactory www.pdffactory.pl/ Agata Miłaszewska 3gB Agata Miłaszewska 3gB rogówka- w części centralnej ma grubość około 0,5 mm, na obwodzie do 1 mm, zbudowana jest z pięciu warstw, brak naczyń krwionośnych i limfatycznych, obfite unerwienie, bezwzględny

Bardziej szczegółowo

Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 4. Badanie optycznej transformaty Fouriera

Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 4. Badanie optycznej transformaty Fouriera Laboratorium optycznego przetwarzania informacji i holografii Ćwiczenie 4. Badanie optycznej transformaty Fouriera Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdańska Gdańsk

Bardziej szczegółowo

BADANIE MIKROSKOPU. POMIARY MAŁYCH DŁUGOŚCI

BADANIE MIKROSKOPU. POMIARY MAŁYCH DŁUGOŚCI ĆWICZENIE 43 BADANIE MIKROSKOPU. POMIARY MAŁYCH DŁUGOŚCI Układ optyczny mikroskopu składa się z obiektywu i okularu rozmieszczonych na końcach rury zwanej tubusem. Przedmiot ustawia się w odległości większej

Bardziej szczegółowo

ODWZOROWANIE I PRZETWARZANIE SYGNAŁU OPTYCZNEGO W OŚWIETLENIU KOHERENTNYM

ODWZOROWANIE I PRZETWARZANIE SYGNAŁU OPTYCZNEGO W OŚWIETLENIU KOHERENTNYM Podstawy Inżynierii Fotonicznej - Laboratorium Ćwiczenie 2 ODWZOROWANIE I PRZETWARZANIE SYGNAŁU OPTYCZNEGO W OŚWIETLENIU KOHERENTNYM 2.1 Cel ćwiczenia Celem ćwiczenia jest zapoznanie z teorią dwustopniowego

Bardziej szczegółowo

Fizyka elektryczność i magnetyzm

Fizyka elektryczność i magnetyzm Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać

Bardziej szczegółowo

OPTYKA GEOMETRYCZNA Własności układu soczewek

OPTYKA GEOMETRYCZNA Własności układu soczewek OPTYKA GEOMETRYCZNA Własności układu soczewek opracował: Dariusz Wardecki Wstęp Soczewką optyczną nazywamy bryłę z przezroczystego materiału, ograniczoną (przynajmniej z jednej strony) zakrzywioną powierzchnią

Bardziej szczegółowo

BADANIE INTERFEROMETRU YOUNGA

BADANIE INTERFEROMETRU YOUNGA Celem ćwiczenia jest: BADANIE INTERFEROMETRU YOUNGA 1. poznanie podstawowych właściwości interferometru z podziałem czoła fali w oświetleniu monochromatycznym i świetle białym, 2. demonstracja możliwości

Bardziej szczegółowo

C29. Na rysunku zaznaczono cztery łódki. Jeśli któraś z nich znajduje się pod mostem, to jest to łódka numer:

C29. Na rysunku zaznaczono cztery łódki. Jeśli któraś z nich znajduje się pod mostem, to jest to łódka numer: Przyjazne testy Fizyka dla gimnazjum Wojciech Dindorf, Elżbieta Krawczyk Informacje, dźwięki, światło, oko, ucho C27. Fale poprzeczne tym się różnią od fal podłużnych, że: (A) rozchodzą się w poprzek zamiast

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 7 Temat: Pomiar kąta załamania i kąta odbicia światła. Sposoby korekcji wad wzroku. 1. Wprowadzenie Zestaw ćwiczeniowy został

Bardziej szczegółowo

Metody Optyczne w Technice. Wykład 5 Interferometria laserowa

Metody Optyczne w Technice. Wykład 5 Interferometria laserowa Metody Optyczne w Technice Wykład 5 nterferometria laserowa Promieniowanie laserowe Wiązka monochromatyczna Duża koherencja przestrzenna i czasowa Niewielka rozbieżność wiązki Duża moc Największa możliwa

Bardziej szczegółowo

Fizyczne Metody Badań Materiałów 2

Fizyczne Metody Badań Materiałów 2 Fizyczne Metody Badań Materiałów 2 Dr inż. Marek Chmielewski G.G. np.p.7-8 www.mif.pg.gda.pl/homepages/bzyk Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Bardziej szczegółowo

BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA

BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA Celem ćwiczenia jest: 1. demonstracja dużej liczby prążków w interferometrze Lloyda z oświetleniem monochromatycznym,

Bardziej szczegółowo

Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej

Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej 1. Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wstęp Pomiar profilu wiązki

Bardziej szczegółowo

Ćw. 16. Skalowanie mikroskopu i pomiar małych przedmiotów

Ćw. 16. Skalowanie mikroskopu i pomiar małych przedmiotów 16 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 16. Skalowanie mikroskopu i pomiar małych przedmiotów Wprowadzenie Mikroskop jest przyrządem optycznym dającym znaczne powiększenia

Bardziej szczegółowo

LABORATORIUM OPTYKI GEOMETRYCZNEJ

LABORATORIUM OPTYKI GEOMETRYCZNEJ LABORATORIUM OPTYKI GEOMETRYCZNEJ POMIAR OGNISKOWYCH SOCZEWEK CIENKICH 1. Cel dwiczenia Zapoznanie z niektórymi metodami badania ogniskowych soczewek cienkich. 2. Zakres wymaganych zagadnieo: Prawa odbicia

Bardziej szczegółowo

Soczewkami nazywamy ciała przeźroczyste ograniczone dwoma powierzchniami o promieniach krzywizn R 1 i R 2.

Soczewkami nazywamy ciała przeźroczyste ograniczone dwoma powierzchniami o promieniach krzywizn R 1 i R 2. Optyka geometryczna dla soczewek Autorzy: Zbigniew Kąkol, Piotr Morawski Soczewkami nazywamy ciała przeźroczyste ograniczone dwoma powierzchniami o promieniach krzywizn R i R 2. Nasze rozważania własności

Bardziej szczegółowo

- pozorny, czyli został utworzony przez przedłużenia promieni świetlnych.

- pozorny, czyli został utworzony przez przedłużenia promieni świetlnych. Zjawisko odbicia Zgodnie z zasadą Fermata światło zawsze wybiera taką drogę między dwoma punktami, aby czas potrzebny na jej przebycie był najkrótszy (dla ścisłości: lub najdłuższy). Konsekwencją tego

Bardziej szczegółowo

Prawo Bragga. Różnica dróg promieni 1 i 2 wynosi: s = CB + BD: CB = BD = d sinθ

Prawo Bragga. Różnica dróg promieni 1 i 2 wynosi: s = CB + BD: CB = BD = d sinθ Prawo Bragga Prawo Bragga Prawo Bragga Różnica dróg promieni 1 i 2 wynosi: s = CB + BD: CB = BD = d sinθ d - odległość najbliższych płaszczyzn, w których są ułożone atomy, równoległych do powierzchni kryształu,

Bardziej szczegółowo

ĆWICZENIE 6. Hologram gruby

ĆWICZENIE 6. Hologram gruby ĆWICZENIE 6 Hologram gruby 1. Wprowadzenie Na jednym z poprzednich ćwiczeń zapoznaliśmy się z cienkim (powierzchniowo zapisanym) hologramem Fresnela, który daje nam możliwość zapisu obiektu przestrzennego.

Bardziej szczegółowo

Ćwiczenie 12/13. Komputerowy hologram Fouriera. Wprowadzenie teoretyczne

Ćwiczenie 12/13. Komputerowy hologram Fouriera. Wprowadzenie teoretyczne Ćwiczenie 12/13 Komputerowy hologram Fouriera. Wprowadzenie teoretyczne W klasycznej holografii w wyniku interferencji dwóch wiązek: wiązki światła zmodyfikowanej przez pewien przedmiot i spójnej z nią

Bardziej szczegółowo

Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów optycznych.

Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów optycznych. msg O 7 - - Temat: Badanie soczewek, wyznaczanie odległości ogniskowej. Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów

Bardziej szczegółowo

Laboratorium Informatyki Optycznej ĆWICZENIE 1. Optyczna filtracja sygnałów informatycznych

Laboratorium Informatyki Optycznej ĆWICZENIE 1. Optyczna filtracja sygnałów informatycznych ĆWICZENIE 1 Optyczna filtracja sygnałów informatycznych 1. Wprowadzenie Przyjmijmy że znamy pole świetlne w płaszczyźnie ( ) czyli że znamy rozkład jego amplitudy i fazy we wszystkich punktach gdzie określony

Bardziej szczegółowo

POMIARY OPTYCZNE Lunety. Mikroskopy. Inne. Damian Siedlecki

POMIARY OPTYCZNE Lunety. Mikroskopy. Inne. Damian Siedlecki POMIARY OPTYCZNE 1 { 5. Lunety. Mikroskopy. Inne Damian Siedlecki Podstawowa konfiguracja lunet używanych w pomiarach: Keplera. Czasami zaopatruje się ją w układ odwracający ale w praktyce rzadko. Lunety

Bardziej szczegółowo

Optyka instrumentalna

Optyka instrumentalna Optyka instrumentalna wykład 8 27 kwietnia 2017 Wykład 7 Optyka geometryczna cd. Aberracje geometryczne Sferyczna Koma Astygmatyzm Krzywizna pola, dystorsja (polowe) Aberracja chromatyczna Miary jakości

Bardziej szczegółowo

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK. Instrukcja wykonawcza

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK. Instrukcja wykonawcza ĆWICZENIE 77 POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK Instrukcja wykonawcza 1. Wykaz przyrządów Ława optyczna z podziałką, oświetlacz z zasilaczem i płytka z wyciętym wzorkiem, ekran Komplet soczewek z oprawkami

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 10, 30.10.2015. Radosław Łapkiewicz, Michał Nawrot

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 10, 30.10.2015. Radosław Łapkiewicz, Michał Nawrot Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 10, 30.10.2015 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Łapkiewicz, Michał Nawrot Łukasz Zinkiewicz Wykład 9 - przypomnienie

Bardziej szczegółowo

OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę

OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę OPTYKA FALOWA W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę falową. W roku 8 Thomas Young wykonał doświadczenie, które pozwoliło wyznaczyć długość fali światła.

Bardziej szczegółowo

WYZNACZANIE PROMIENIA KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA

WYZNACZANIE PROMIENIA KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA Ćwiczenie 81 A. ubica WYZNACZANIE PROMIENIA RZYWIZNY SOCZEWI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA Cel ćwiczenia: poznanie prążków interferencyjnych równej grubości, wykorzystanie tego

Bardziej szczegółowo

Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka).

Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Optyka geometryczna Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Założeniem optyki geometrycznej jest, że światło rozchodzi się jako

Bardziej szczegółowo

Soczewki konstrukcja obrazu. Krótkowzroczność i dalekowzroczność.

Soczewki konstrukcja obrazu. Krótkowzroczność i dalekowzroczność. Soczewki konstrukcja obrazu Krótkowzroczność i dalekowzroczność. SOCZEWKA jest to przezroczyste ciało ograniczone powierzchniami kulistymi Soczewki mogą być Wypukłe Wklęsłe i są najczęściej skupiające

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo

Projektory oświetleniowe

Projektory oświetleniowe Projektory oświetleniowe Do podstawowego sprzętu oświetleniowego o małym kącie rozwarcia wiązki świetlnej należą projektory. Wykorzystywane są w halach zdjęciowych, wnętrzach naturalnych i w plenerze jako

Bardziej szczegółowo

Obrazowanie w świetle quasi-monochromatycznym, niekoherentnym przestrzennie dodają się natężenia.

Obrazowanie w świetle quasi-monochromatycznym, niekoherentnym przestrzennie dodają się natężenia. Obrazowanie w świetle quasi-monochromatycznym, niekoherentnym przestrzennie dodają się natężenia. Przy wprowadzonych oznaczeniach mamy: h u,v 2 - natężeniowa odpowiedź impulsowa (natężeniowy obraz z punktu

Bardziej szczegółowo

Wydział PPT Laboratorium PODSTAWY BIOFOTONIKI. Ćwiczenie nr 5 Zastosowania mikroskopii optycznej

Wydział PPT Laboratorium PODSTAWY BIOFOTONIKI. Ćwiczenie nr 5 Zastosowania mikroskopii optycznej Wydział PPT Laboratorium PODSTAWY BIOFOTONIKI Ćwiczenie nr 5 Zastosowania mikroskopii optycznej Cel ćwiczenia: Celem ćwiczenia jest zapoznanie z budową i obsługą mikroskopu optycznego oraz dokonanie przy

Bardziej szczegółowo

Pomiar ogniskowych soczewek metodą Bessela

Pomiar ogniskowych soczewek metodą Bessela Ćwiczenie O4 Pomiar ogniskowych soczewek metodą Bessela O4.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie ogniskowych soczewek skupiających oraz rozpraszających z zastosowaniem o metody Bessela. O4.2.

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 10, 16.03.2012. Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 10, 16.03.2012. Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 10, 16.03.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 9 - przypomnienie

Bardziej szczegółowo