PROGRAM KOŁA MATEMATYCZNEGO

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "PROGRAM KOŁA MATEMATYCZNEGO"

Transkrypt

1 GIMNAZJUM IM. RODZINY REMBIELIOSKICH W KROŚNIEWICACH PROGRAM WŁASNY PROGRAM KOŁA MATEMATYCZNEGO DLA KLASY PIERWSZEJ GIMNAZJUM HANNA SZCZYGIEŁ KROŚNIEWICE 2009

2 WSTĘP Nieustanny rozwój cywilizacyjny stwarza ogromne zapotrzebowanie na dobrych ekonomistów i informatyków, a więc osoby obdarzone umiejętnościami logicznego myślenia oraz innymi zdolnościami matematycznymi potrafiące w praktyce wykorzystad wiedzę i umiejętności zdobyte w czasie swej edukacji. Istnieje więc koniecznośd przygotowania uczniów do tej roli już od najwcześniejszych lat. Czasami wystarczy odkryd ukryte w nich zdolności, a czasem pogłębid zainteresowania matematyczne. Służyd temu mają zajęcia organizowane w ramach koła matematycznego w oparciu o przygotowany przeze mnie program. Znalazły się w nim treści nawiązujące do programu nauczania matematyki w gimnazjum, a także poza ten program wykraczające. Stopieo trudności zadao jest sprawą subiektywną, myślę jednak, że każdy znajdzie odpowiednie zadania dla siebie. Zajęcia powinny również przygotowad uczniów do egzaminu gimnazjalnego. Zatem koło matematyczne przeznaczone jest dla uczniów zdolnych, ambitnych i tych, którzy pragną poszerzyd wiadomości zdobyte na lekcjach matematyki. Założenia programu są następujące: rozwijanie uzdolnieo uczniów poszerzanie wiadomości i umiejętności motywacja do samodzielnego pogłębiania wiedzy przygotowanie do konkursów matematycznych. Zajęcia odbywad się będą raz w tygodniu w wymiarze jednej godziny. 2

3 CELE EDUKACYJNE : 1. Przygotowanie uczniów do wykorzystania wiedzy matematycznej do rozwiązywania problemów z różnych dziedzin kształcenia szkolnego oraz życia codziennego. 2. Przyswajanie przez uczniów języka matematycznego. 3. Rozwijanie umiejętności uczniów w zakresie wykorzystania poznanej wiedzy do rozwiązywania problemów. 4. Spostrzeganie w różny sposób tego samego problemu i szukanie różnych sposobów rozwiązywania go. 5. Poszerzanie zakresu swoich umiejętności poprzez realizację treści wykraczających poza program nauczania. 6. Rozwijanie pamięci, wyobraźni przestrzennej, myślenia logicznego, myślenia abstrakcyjnego. 7. Przyzwyczajanie uczniów do samodzielnego uczenia się, rozwijanie samodzielności poznawczej. 8. Kształtowanie osobowości poprzez rozwój własnych zainteresowao i uzdolnieo. ZAGADNIENIA DO REALIZACJI Zbiory Liczby i działania Wyrażenia algebraiczne Równania, nierówności i układy równao Figury geometryczne na płaszczyźnie i w przestrzeni Funkcje Zadania różne Ciekawostki matematyczne. 3

4 TREŚCI PROGRAMOWE I OCZEKIWANE OSIĄGNIĘCIA Hasło programowe Zbiory Liczby i działania Wyrażenia algebraiczne Równania, nierówności i układy równao Treści programowe Przykłady zbiorów i działania na zbiorach Rozwiązywanie zadao na dowodzenie Obliczanie wartości ułamków piętrowych Rozwiązywanie zadao tekstowych z zastosowaniem procentów Rozwiązywanie zadao metodą projektu Działania na wyrażeniach algebraicznych Zastosowanie równao i nierówności do rozwiązywania zadao z treścią Przekształcanie wzorów Wielkości wprost i odwrotnie proporcjonalne Złoty podział Oczekiwane osiągnięcia Znajomośd zależności pomiędzy zbiorami liczbowymi Wykonywanie działao na zbiorach Posługiwanie się symbolami zbiorów i działao na zbiorach Wykorzystanie cech podzielności liczb do rozwiązywania zadao na dowodzenie Umiejętnośd obliczania wartości ułamków piętrowych Analizowanie treści zadao Umiejętnośd wykonywania obliczeo procentowych Umiejętnośd przedstawiania danych w formie wykresów Umiejętnośd rozwiązywania kwadratów magicznych Analizowanie treści zadao Zapisywanie zależności za pomocą symboli Układanie równao i nierówności do treści zadao Umiejętnośd przekształcania wzorów 4

5 Figury geometryczne na płaszczyźnie i w przestrzeni Zadania różne Ciekawostki matematyczne Obliczanie pól i obwodów wielokątów Kąty w kole Rozwiązywanie zadao kąty w figurach płaskich Graniastosłupy Parkietaże Rozwiązywanie zadao z konkursów matematycznych Sito Erastotenesa Wstęga Möbiusa Butelka Kleina Paradoksy: kłamcy, fryzjera, skazaoca Spostrzeganie zależności pomiędzy elementami figur płaskich Wykorzystanie znajomości twierdzeo i własności figur do rozwiązywania zadao Zastosowanie własności figur w zadaniach praktycznych Wykorzystanie zdobytych umiejętności do rozwiązywania złożonych zadao Wykorzystanie zdobytych umiejętności do rozwiązywania złożonych i nietypowych zadao PROCEDURY OSIĄGANIA CELÓW Podstawowym celem kształcenia uczniów uzdolnionych matematycznie jest poszerzenie wiedzy matematycznej. Metody nauczania podporządkowane są celom kształcenia, gdyż są zamierzonymi sposobami pracy. Metody można podzielid na: a) oparte na przyswajaniu gotowych informacji (wykład, pokaz, obserwacja, opis, pogadanka, metoda algorytmiczna, praca z lekturą, nauczanie programowe) b) oparte na tworzeniu wiedzy matematycznej (analiza wyników obserwacji, projektowanie, sporządzanie planu rozumowania, nauczanie problemowe). Praca z uczniem zdolnym matematycznie wymaga stosowania na zajęciach różnych form: pracę w grupach, konkurs, pracę indywidualną, turniej, ligę zadaniową, krótki wykład, konkurs zadaniowy, konsultacje. 5

6 Na zajęciach wykorzystane będą następujące środki dydaktyczne: podręczniki, zbiory zadao kalkulatory, komputer rzutnik okulary do oglądania anaglifów karty pracy plakaty, plansze bryły modele kolorowe kartki, klej, nożyczki testy i zadania konkursowe z ubiegłych lat. PRZEWIDYWANE OSIĄGNIĘCIA UCZNIÓW zainteresowanie matematyką rozwinięcie pamięci, wyobraźni przestrzennej, myślenia logicznego, myślenia abstrakcyjnego poszerzenie wiedzy na temat stosowania kalkulatora poprawienie sprawności rachunkowej rozwinięcie umiejętności wyszukiwania informacji z różnych źródeł (literatura, Internet) rozwinięcie umiejętności sprawnego posługiwania się pojęciami matematycznymi poznanie wielu ciekawostek matematycznych sprawne posługiwanie się pojęciami matematycznymi udział w konkursach matematycznych. 6

7 EWALUACJA Powstały program, aby prawidłowo funkcjonował i spełniał swoją rolę powinien podlegad monitoringowi. Najbardziej zainteresowanymi osobami są sami uczniowie, którzy będą poznawad zawarte w programie treści. To właśnie młodzież ma korzystad z edukacji matematycznej, więc ich opinia jest bardzo istotna dla autora i realizatora programu. Uczniowie są bezpośrednimi uczestnikami zajęd, i dlatego też obserwacja ich pracy i rozmowa z nimi dadzą odpowiedź na pytanie: czy i w jakim stopniu zamierzone cele zostały osiągnięte oraz czy metody i formy wykorzystywane do ich realizacji okazały się skuteczne? Jednakże, aby informacja zwrotna była pełna, uczniowie po zrealizowaniu programu wypełnią ankietę (załącznik). Pozwoli ona odpowiedzied na postawione pytanie w szerszym aspekcie. Analiza zgromadzonych informacji oraz wyniki uczniów biorących udział w konkursach matematycznych pozwolą na rzetelną i wnikliwą ocenę programu. BIBLIOGRAFIA 1. Z. Krawcewicz Zbiór zadao dla uczniów uzdolnionych matematycznie. 2. M. Pawłowicz, A. Cewe Kangur europejski i inne konkursy z matematyki w Polsce i na świecie. 3. Matematyka z wesołym Kangurem pod red. Z. Bobioski, P. Jarek. 4. H. Pawłowski Olimpiady i konkursy matematyczne. 7

8 ZAŁĄCZNIK ANKIETA DLA UCZNIA Przeczytaj uważnie, zastanów się i zaznacz x wybraną przez siebie odpowiedź. LP. PYTANIE 1. Czy chętnie uczestniczyłaś (-eś) w zajęciach koła matematycznego? 2. Czy byłaś (-eś) aktywna (y) na zajęciach? ODPOWIEDŹ tak nie 3. Czy przydała Ci się wiedza zdobyta na zajęciach? 4. Czy zajęcia były ciekawe? 5. Czy uważasz, że zajęcia rozwijały Twoje zainteresowania? 6. Czy zajęcia były prowadzone w przystępny sposób? 7. Czy zajęcia były pomocne w rozwijaniu Twojej samodzielności i samodyscypliny pracy? Dokoocz zdanie: Najbardziej zainteresowały mnie zagadnienia.... Dziękuję! 8

Rok szkolny 2013/2014 PLAN PRACY ZAJĘĆ PRZYGOTOWUJĄCYCH DO EGZAMINU GIMNAZJALNEGO DLA UCZNIÓW KLASY IIIB

Rok szkolny 2013/2014 PLAN PRACY ZAJĘĆ PRZYGOTOWUJĄCYCH DO EGZAMINU GIMNAZJALNEGO DLA UCZNIÓW KLASY IIIB Rok szkolny 2013/2014 PLAN PRACY ZAJĘĆ PRZYGOTOWUJĄCYCH DO EGZAMINU GIMNAZJALNEGO DLA UCZNIÓW KLASY IIIB Zajęcia realizowane w ramach godzin karcianych nauczyciela w wymiarze 2 godzin tygodniowo (środy

Bardziej szczegółowo

KLASA O PROFILU MATEMATYCZNO-INFORMATYCZNYM

KLASA O PROFILU MATEMATYCZNO-INFORMATYCZNYM KLASA O PROFILU MATEMATYCZNO-INFORMATYCZNYM COS SIN I. Część matematyczna Uczniowie, którzy będą uczyć się w tej klasie będą mieli możliwość rozwijać swoje talenty matematyczne, a pozyskaną wiedzę weryfikować

Bardziej szczegółowo

Dla uczniów Szkoły Podstawowej

Dla uczniów Szkoły Podstawowej GIMNAZJUM W ZESPOLE SZKÓŁ W RUSKU PROGRAM ZAJĘĆ POZALEKCYJNYCH Z MATEMATYKI Dla uczniów Szkoły Podstawowej Cele ogólne: CELE KSZTAŁCENIA 1. Rozbudzanie i kształtowanie zainteresowań matematycznych. 2.

Bardziej szczegółowo

SPIS TREŚCI 1 Założenia organizacyjne...3 2 Cele ogólne kształcenia matematycznego...3

SPIS TREŚCI 1 Założenia organizacyjne...3 2 Cele ogólne kształcenia matematycznego...3 PROGRAM KOŁA MATEMATYCZNEGO DLA UCZNIÓW KLASY I GIMNAZJUM UZDOLNIONYCH MATEMATYCZNIE I ZAINTERESOWANYCH MATEMATYKĄ Opracowanie: Małgorzata Kaczmarek Jedlnia Letnisko, wrzesień 2004 1 SPIS TREŚCI 1 Założenia

Bardziej szczegółowo

Program kółka matematycznego dla klas I - III gimnazjum

Program kółka matematycznego dla klas I - III gimnazjum Literka.pl Program kółka matematycznego dla klas I - III gimnazjum Data dodania: 2006-04-05 09:40:11 Dynamika przemian naukowo technicznych ispołeczno kulturowych spowodowała, że ludzi zdolnych,inteligentnych

Bardziej szczegółowo

egzaminu gimnazjalnego z matematyki dla uczniów klas IIIA

egzaminu gimnazjalnego z matematyki dla uczniów klas IIIA PROJEKT EDUKACYJNY ROK SZK. 2011/2012 Program zajęć przygotowujących do egzaminu gimnazjalnego z matematyki dla uczniów klas IIIA Opracowanie: Jadwiga Głazman Projekt zajęć przygotowujących do egzaminu

Bardziej szczegółowo

Koło matematyczne 2abc

Koło matematyczne 2abc Koło matematyczne 2abc Autor: W. Kamińska 17.09.2015. Zmieniony 08.12.2015. "TO CO MUSIAŁEŚ ODKRYĆ SAMODZIELNIE, ZOSTANIE W TWYM UMYŚLE ŚCIEŻKĄ, KTÓRĄ W RAZIE POTRZEBY MOŻESZ PÓJŚĆ RAZ JESZCZE" G. CH.

Bardziej szczegółowo

Renata Krzemińska. nauczyciel matematyki i informatyki

Renata Krzemińska. nauczyciel matematyki i informatyki Program zajęć wyrównawczych w Gimnazjum Matematyka J1 w ramach projektu pn. Czym skorupka za młodu nasiąknie - rozwój kompetencji kluczowych uczniów Zespołu Szkół w Nowej Wsi Lęborskiej Renata Krzemińska

Bardziej szczegółowo

Koło Matematyczne klasy 2-3 GIM

Koło Matematyczne klasy 2-3 GIM Koło Matematyczne klasy 2-3 GIM Autor: M.Prażuch 01.09.2011. Zmieniony 06.10.2017. Gminny Zespół Szkół w Bielanach Wrocławskich "TO CO MUSIAŁEŚ ODKRYĆ SAMODZIELNIE, ZOSTANIE W TWYM UMYŚLE ŚCIEŻKĄ, KTÓRĄ

Bardziej szczegółowo

Program zajęć wyrównawczych z matematyki dla grupy 5.3. zajęcia pozalekcyjne realizowane w ramach projektu

Program zajęć wyrównawczych z matematyki dla grupy 5.3. zajęcia pozalekcyjne realizowane w ramach projektu Program zajęć wyrównawczych z matematyki dla grupy 5.3 zajęcia pozalekcyjne realizowane w ramach projektu " One Two Three - eksperymentujemy z matematyką i językiem angielskim - program rozwijania kompetencji

Bardziej szczegółowo

Zajęcia wyrównawcze klasa III b, c gim.

Zajęcia wyrównawcze klasa III b, c gim. Zajęcia wyrównawcze klasa III b, c gim. Cele nauczania: Głównym celem zajęć jest wyrównanie braków z matematyki oraz poprawa wyników nauczania i kształcenia. Cele szczegółowe: 1. Rozwijanie umiejętności

Bardziej szczegółowo

Program zajęć wyrównawczych z matematyki dla grupy 4.2. Metoda projektu w nauczaniu matematyki. zajęcia pozalekcyjne realizowane w ramach projektu

Program zajęć wyrównawczych z matematyki dla grupy 4.2. Metoda projektu w nauczaniu matematyki. zajęcia pozalekcyjne realizowane w ramach projektu Program zajęć wyrównawczych z matematyki dla grupy 4. Metoda projektu w nauczaniu matematyki zajęcia pozalekcyjne realizowane w ramach projektu " One Two Three - eksperymentujemy z matematyką i językiem

Bardziej szczegółowo

Poziom wymagao edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena dobra)

Poziom wymagao edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena dobra) MATEMATYKA (wg programu Nie tylko wynik ) Wymagania programowe na poszczególne oceny Poziom wymagao edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena

Bardziej szczegółowo

Sprawozdanie Zajęcia pozalekcyjne dla uczniów klas I III Matematyka jest wszędzie Prowadzący: mgr Elżbieta Wójcik

Sprawozdanie Zajęcia pozalekcyjne dla uczniów klas I III Matematyka jest wszędzie Prowadzący: mgr Elżbieta Wójcik Bądź twórczy obserwuj, odkrywaj i działaj, Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki 2007 2013 Sprawozdanie

Bardziej szczegółowo

KONKURSY PRZEDMIOTOWE MKO DLA UCZNIÓW WOJEWÓDZTWA MAZOWIECKIEGO w roku szkolnym 2013/2014

KONKURSY PRZEDMIOTOWE MKO DLA UCZNIÓW WOJEWÓDZTWA MAZOWIECKIEGO w roku szkolnym 2013/2014 KONKURSY PRZEDMIOTOWE MKO DLA UCZNIÓW WOJEWÓDZTWA MAZOWIECKIEGO w roku szkolnym 2013/2014 Program merytoryczny konkursu z matematyki dla szkoły podstawowej I.CELE KONKURSU 1. Popularyzowanie wiedzy matematycznej

Bardziej szczegółowo

Szczecin - Gimnazjum NR X.2002 r. Program pracy z uczniem o specyficznych trudnościach w nauce matematyki dla I klasy gimnazjum.

Szczecin - Gimnazjum NR X.2002 r. Program pracy z uczniem o specyficznych trudnościach w nauce matematyki dla I klasy gimnazjum. Szczecin - Gimnazjum NR 24 12.X.2002 r. Program pracy z uczniem o specyficznych trudnościach w nauce matematyki dla I klasy gimnazjum. Wstęp Zapewne każdy nauczyciel z długim stażem pracy zawodowej, spotkał

Bardziej szczegółowo

PROGRAM KÓŁKA MATEMAETYCZNEGO

PROGRAM KÓŁKA MATEMAETYCZNEGO GIMNAZJUM NR 2 W KAMIENNEJ GÓRZE PROGRAM KÓŁKA MATEMAETYCZNEGO KLUB MIŁOŚNIKÓW MATEMATYKI Autor: mgr Wiesława Kurnyta Kamienna Góra, 2003 rok Cele edukacyjne: Matematyka jest jednym z najwaŝniejszych przedmiotów

Bardziej szczegółowo

MATEMATYKA to naprawdę nie jest trudne

MATEMATYKA to naprawdę nie jest trudne MATEMATYKA to naprawdę nie jest trudne Innowacja pedagogiczna o charakterze metodycznym z zakresu edukacji matematycznej realizowana w Szkole Podstawowej w Zamościu w 01.03.2016 30.06.2017 Wiedza jest

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA- MATEMATYKA KLASA 6. Rok szkolny 2012/2013. Tamara Kostencka

PRZEDMIOTOWY SYSTEM OCENIANIA- MATEMATYKA KLASA 6. Rok szkolny 2012/2013. Tamara Kostencka PRZEDMIOTOWY SYSTEM OCENIANIA- MATEMATYKA KLASA 6 Rok szkolny 2012/2013 Tamara Kostencka 1 LICZBY NA CO DZIEŃ LICZBY NATURALNE I UŁAMKI Wymagania programowe dla klasy VI szkoły podstawowej DZIAŁ WYMAGANIA

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Projektowanie rozwiązania prostych problemów w języku C++ obliczanie pola trójkąta

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Projektowanie rozwiązania prostych problemów w języku C++ obliczanie pola trójkąta SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

MATEMATYCZNY. CEL STRATEGICZNY: Prowadzenie zajęć na zasadzie kółka matematycznego, stosując innowacyjne i ciekawe metody pracy z uczniami.

MATEMATYCZNY. CEL STRATEGICZNY: Prowadzenie zajęć na zasadzie kółka matematycznego, stosując innowacyjne i ciekawe metody pracy z uczniami. MATEMATYCZNY PROJEKT EDUKACYJNY - *zarys ogólny TEMAT: Mozaika matematyczna zajęcia pozalekcyjne dla uczniów zdolnych i szczególnie zainteresowanych matematyką. CEL STRATEGICZNY: Prowadzenie zajęć na zasadzie

Bardziej szczegółowo

PROGRAM ZAJĘĆ MATEMATYCZNYCH DLA UCZNIÓW Z DYSLEKSJĄ V KLASA SZKOŁY PODSTAWOWEJ

PROGRAM ZAJĘĆ MATEMATYCZNYCH DLA UCZNIÓW Z DYSLEKSJĄ V KLASA SZKOŁY PODSTAWOWEJ PROGRAM ZAJĘĆ MATEMATYCZNYCH DLA UCZNIÓW Z DYSLEKSJĄ V KLASA SZKOŁY PODSTAWOWEJ Opracowała : Dorota Kochańska 1 WSTĘP Indywidualizacja procesu nauczania w pracy z uczniem o szczególnych potrzebach edukacyjnych

Bardziej szczegółowo

rozwiązuje - często przy pomocy nauczyciela - zadania typowe, o niewielkim stopniu trudności

rozwiązuje - często przy pomocy nauczyciela - zadania typowe, o niewielkim stopniu trudności KRYTERIA OCENIANIA Z MATEMATYKI Klasa I Gimnazjum Kryteria ocen i wymagań: Ocenę dopuszczającą otrzymuje uczeń, który: w ograniczonym zakresie opanował podstawowe wiadomości i umiejętności, a braki nie

Bardziej szczegółowo

Program kółka matematycznego kl. I III

Program kółka matematycznego kl. I III Literka.pl Program kółka matematycznego kl. I III Data dodania: 2011-01-12 18:28:44 Autor: Małgorzata Szumlak Program kółka matematycznego Mały mistrz matematyki dla klas I-III edukacji wczesnoszkolnej

Bardziej szczegółowo

Koło matematyczne 1abc

Koło matematyczne 1abc Koło matematyczne 1abc Autor: A. Warchoł 17.09.2015. Zmieniony 29.05.2016. KOŁO MATEMATYCZNE {jgxtimg title:=[kolo0] src:=[images/stories/foto/warchol/kolo/kołomatematyczne.jpg] width:=[450]} Prowadzący:

Bardziej szczegółowo

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - zamieniać procent/promil na liczbę i odwrotnie, - zamieniać procent na promil i odwrotnie, - obliczać

Bardziej szczegółowo

Egzamin gimnazjalny z matematyki 2016 analiza

Egzamin gimnazjalny z matematyki 2016 analiza Egzamin gimnazjalny z matematyki 2016 analiza Arkusz zawierał 23 zadania: 20 zamkniętych i 3 otwarte. Dominowały zadania wyboru wielokrotnego, w których uczeń wybierał jedną z podanych odpowiedzi. W pięciu

Bardziej szczegółowo

Pomyśl Policz - Pokaż, czyli eksperyment w matematyce

Pomyśl Policz - Pokaż, czyli eksperyment w matematyce Program dodatkowych zajęć z matematyki Pomyśl Policz - Pokaż, czyli eksperyment w matematyce Zajęcia realizowane w ramach projektu One Two Three - eksperymentujemy z matematyką i językiem angielskim -

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III Program nauczania matematyki w gimnazjum Matematyka dla przyszłości DKW 4014 162/99 Opracowała: mgr Mariola Bagińska 1. Liczby i działania Podaje rozwinięcia

Bardziej szczegółowo

Pomyśl Policz - Pokaż, czyli eksperyment w matematyce

Pomyśl Policz - Pokaż, czyli eksperyment w matematyce Program dodatkowych zajęć z matematyki Pomyśl Policz - Pokaż, czyli eksperyment w matematyce Zajęcia realizowane w ramach projektu One Two Three - eksperymentujemy z matematyką i językiem angielskim -

Bardziej szczegółowo

PLAN KIERUNKOWY. Klasa III Gimnazjum Matematyka. Liczba godzin: 144. Wstępne osiągnięcia ucznia

PLAN KIERUNKOWY. Klasa III Gimnazjum Matematyka. Liczba godzin: 144. Wstępne osiągnięcia ucznia Klasa III Gimnazjum Matematyka Liczba godzin: 144 PLAN KIERUNKOWY Wstępne osiągnięcia ucznia Posługuje się prostokątnym układem współrzędnych. Rozwiązuje równania i nierówności I stopnia z jedną niewiadomą

Bardziej szczegółowo

PRZEDMIOTOWE OCENIANIE Z MATEMATYKI I. CELE KSZTAŁCENIA I TREŚCI NAUCZANIA

PRZEDMIOTOWE OCENIANIE Z MATEMATYKI I. CELE KSZTAŁCENIA I TREŚCI NAUCZANIA PRZEDMIOTOWE OCENIANIE Z MATEMATYKI I. CELE KSZTAŁCENIA I TREŚCI NAUCZANIA Cele kształcenia i treści nauczania reguluje podstawa programowa przedmiotu, zatwierdzona przez właściwego ministra dla II etapu

Bardziej szczegółowo

Matematyka Szkoła podstawowa

Matematyka Szkoła podstawowa Matematyka Szkoła podstawowa Podstawowe założenia, filozofia zmiany i kierunki działania Autorzy: Maciej Borodzik, Regina Pruszyńska Założenia Dostosowanie treści nauczania do rozwoju dziecka. Zachowanie

Bardziej szczegółowo

Innowacja pedagogiczna Matematyka ciekawa i nie taka trudna

Innowacja pedagogiczna Matematyka ciekawa i nie taka trudna Innowacja pedagogiczna Matematyka ciekawa i nie taka trudna Temat: Matematyka ciekawa i nie taka trudna Rodzaj: Innowacja metodyczno organizacyjna Miejsce: Gimnazjum Gminne w Zespole Szkół w Dębem Wielkim

Bardziej szczegółowo

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach

Bardziej szczegółowo

Pomyśl Policz - Pokaż, czyli eksperyment w matematyce

Pomyśl Policz - Pokaż, czyli eksperyment w matematyce Program dodatkowych zajęć z matematyki Pomyśl Policz - Pokaż, czyli eksperyment w matematyce Zajęcia realizowane w ramach projektu One Two Three - eksperymentujemy z matematyką i językiem angielskim -

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W KLASIE III

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W KLASIE III PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W KLASIE III Przedmiotowe Zasady Oceniania z matematyki są zgodne z Wewnątrzszkolnym Ocenianiem GIMNAZJUM IM. JANA PAWŁA II W BOGUSZYCACH 1/8 ZASADY OCENIANIA:

Bardziej szczegółowo

PLAN KIERUNKOWY. Liczba godzin: 180

PLAN KIERUNKOWY. Liczba godzin: 180 Klasa V Matematyka Liczba godzin: 180 PLAN KIERUNKOWY Wstępne Wykonuje działania pamięciowo i pisemnie w zbiorze liczb naturalnych Zna i stosuje reguły kolejności wykonywania działań Posługuje się ułamkami

Bardziej szczegółowo

Scenariusz lekcji matematyki Równania pierwszego stopnia z jedną niewiadomą w zadaniach.

Scenariusz lekcji matematyki Równania pierwszego stopnia z jedną niewiadomą w zadaniach. Scenariusz lekcji matematyki Równania pierwszego stopnia z jedną niewiadomą w zadaniach. Opracowała: mgr inż. Monika Grzegorczyk 1. Temat lekcji: Równania pierwszego stopnia z jedną niewiadomą w zadaniach.

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie IV

Wymagania edukacyjne z matematyki w klasie IV Wymagania edukacyjne z matematyki w klasie IV Na ocenę dopuszczającą uczeń potrafi: Dodawać i odejmować w pamięci liczby dwucyfrowe. Obliczyć wartości wyrażeń arytmetycznych z zachowaniem kolejności wykonywania

Bardziej szczegółowo

Podstawą do uzyskania pozytywnego stopnia za I i II półrocze jest wykazanie się ( w formie pisemnej)

Podstawą do uzyskania pozytywnego stopnia za I i II półrocze jest wykazanie się ( w formie pisemnej) Wymagania programowe z matematyki - Klasa 3 obowiązujące w od roku szkolnego 2013/2014 UWAGA! Podstawą do uzyskania pozytywnego stopnia za I i II półrocze jest wykazanie się ( w formie pisemnej) znajomością

Bardziej szczegółowo

Regulamin Przedmiotowy I Konkursu Matematycznego dla uczniów szkół podstawowych województwa świętokrzyskiego w roku szkolnym 2016/2017

Regulamin Przedmiotowy I Konkursu Matematycznego dla uczniów szkół podstawowych województwa świętokrzyskiego w roku szkolnym 2016/2017 Regulamin Przedmiotowy I Konkursu Matematycznego dla uczniów szkół podstawowych województwa świętokrzyskiego w roku szkolnym 2016/2017 I. Informacje ogólne 1. Niniejszy Regulamin określa szczegółowe wymagania

Bardziej szczegółowo

Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132

Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Zestaw zadań z zakresu matematyki posłużył w dniu 24 kwietnia 2013 roku do sprawdzenia u uczniów

Bardziej szczegółowo

PROGRAM INNOWACJI PEDAGOGICZNEJ Z MATEMATYKI. Kreatywne myślenie i twórcze działanie na matematyce w gimnazjum

PROGRAM INNOWACJI PEDAGOGICZNEJ Z MATEMATYKI. Kreatywne myślenie i twórcze działanie na matematyce w gimnazjum PROGRAM INNOWACJI PEDAGOGICZNEJ Z MATEMATYKI Gimnazjum nr 2 im. Jana Pawła II w Piasecznie 05-500 Piaseczno ul. Aleja Kalin 30 1. Nazwa innowacji: Kreatywne myślenie i twórcze działanie na matematyce w

Bardziej szczegółowo

Pomyśl Policz - Pokaż, czyli eksperyment w matematyce

Pomyśl Policz - Pokaż, czyli eksperyment w matematyce Program dodatkowych zajęć z matematyki Pomyśl Policz - Pokaż, czyli eksperyment w matematyce Zajęcia realizowane w ramach projektu One Two Three - eksperymentujemy z matematyką i językiem angielskim -

Bardziej szczegółowo

Plan wynikowy do programu MATEMATYKA 2001 klasa 3 gimnazjum

Plan wynikowy do programu MATEMATYKA 2001 klasa 3 gimnazjum Plan wynikowy do programu MATEMATYKA 2001 klasa 3 gimnazjum Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Umiejętności podstawowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE

Bardziej szczegółowo

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM. Arytmetyka

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM. Arytmetyka KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne, - szacować wartości

Bardziej szczegółowo

Program zajęd komputerowych,

Program zajęd komputerowych, Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego 1) Wstęp Zajęcia komputerowe skierowane są dla 10 osobowej grupy uczniów z kl. IV VI. Komputer w życiu ucznia

Bardziej szczegółowo

promowanie koła jako atrakcyjnej formy spędzania czasu wolnego,

promowanie koła jako atrakcyjnej formy spędzania czasu wolnego, Program koła matematycznego dla uczniów klas III w ramach projektu Dolnośląska szkoła liderem projakościowych zmian w polskim systemie edukacji w Szkole Podstawowej nr 2 im. J. Korczaka w Nowej Rudzie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE

WYMAGANIA EDUKACYJNE GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie I gimnazjum str. 1 Wymagania edukacyjne niezbędne

Bardziej szczegółowo

GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym

GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym 2013-2014 Ocenę celującą otrzymuje uczeń, który: wykorzystuje na lekcjach matematyki wiadomości z innych

Bardziej szczegółowo

Przedmiotowy Regulamin Konkursowy II Wojewódzkiego Konkursu z Matematyki

Przedmiotowy Regulamin Konkursowy II Wojewódzkiego Konkursu z Matematyki Przedmiotowy Regulamin Konkursowy II Wojewódzkiego Konkursu z Matematyki dla uczniów szkół podstawowych województwa świętokrzyskiego w roku szkolnym 2017/2018 I. Informacje ogólne 1. Niniejszy Regulamin

Bardziej szczegółowo

Matematyka, kl. 6. Konieczne umiejętności

Matematyka, kl. 6. Konieczne umiejętności Matematyka, kl. 6 Liczby naturalne i ułamki Program Matematyka z plusem Odczytywanie liczb na osi liczbowej. Zapisywanie potęg w postaci iloczynu i obliczanie ich wartości. Sprawność rachunkowa w pisemnych

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA I KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna:

PLAN WYNIKOWY Z MATEMATYKI DLA I KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: Ewa Koralewska LP... OGÓLNA PODSTA- WA PROGRA MOWA b c PLAN WYNIKOWY Z MATEMATYKI DLA I KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem TEMATYKA LEKCJI LICZBA GODZIN Lekcja organizacyjna. Liczby.

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA DLA KLAS IV VI SZKOŁA PODSTAWOWA NR 10 W KOSZALINIE

PRZEDMIOTOWY SYSTEM OCENIANIA DLA KLAS IV VI SZKOŁA PODSTAWOWA NR 10 W KOSZALINIE PRZEDMIOTOWY SYSTEM OCENIANIA DLA KLAS IV VI SZKOŁA PODSTAWOWA NR 10 W KOSZALINIE (opracowali Janina Kurek, Henryk Zarach, Katarzyna Matusz) ZASADY PSO 1. PSO ma na celu czytelne przedstawienie wymagań

Bardziej szczegółowo

RAPORT. Komputerowe wspomaganie nauczania matematyki-innowacja z matematyki z elementami informatyki. Z realizacji innowacji pedagogicznej

RAPORT. Komputerowe wspomaganie nauczania matematyki-innowacja z matematyki z elementami informatyki. Z realizacji innowacji pedagogicznej RAPORT Z realizacji innowacji pedagogicznej Komputerowe wspomaganie nauczania matematyki-innowacja z matematyki z elementami informatyki Autor: mgr Renata Ziółkowska Miejsce realizacji innowacji pedagogicznej:

Bardziej szczegółowo

STRONA DO WSTAWIENIA: STR_TYT\MEPGI1_001tyt.pdf

STRONA DO WSTAWIENIA: STR_TYT\MEPGI1_001tyt.pdf STRONA DO WSTAWIENIA: STR_TYT\MEPGI1_001tyt.pdf STRONA DO WSTAWIENIA: STR_RED\MEPGI1_002red.pdf Spis treści Od autorek (s. 7) 1. Statystyka (s. 9) 1.1. Wędrówki po krajach Unii Europejskiej. Wyszukiwanie

Bardziej szczegółowo

WYMAGANIA PRZEDMIOTOWE Z MATEMATYKI

WYMAGANIA PRZEDMIOTOWE Z MATEMATYKI OCENĘ CELUJĄCĄ otrzymuje uczeń który: posiadł wiedzę i umiejętności znacznie wykraczające poza program nauczania; biegle posługuje się zdobytymi wiadomościami w rozwiązywaniu problemów teoretycznych lub

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla kl. 1a Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2015/2016

Wymagania edukacyjne z matematyki dla kl. 1a Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2015/2016 edukacyjne z matematyki dla kl. 1a Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2015/2016 NAUCZYCIEL: PODRĘCZNIK: mgr Marta Kamińska Liczy się matematyka wyd. WSiP Na lekcjach matematyki

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem pojęcie liczby naturalnej, całkowitej, wymiernej rozszerzenie osi liczbowej na liczby ujemne sposób i potrzebę zaokrąglania

Bardziej szczegółowo

Strona 1 z 9. prowadzić rozumowania matematyczne sprawnie posługiwać się językiem matematycznym

Strona 1 z 9. prowadzić rozumowania matematyczne sprawnie posługiwać się językiem matematycznym Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe KONIECZNE( 2) PODSTAWOWE (3) ROZSZERZAJĄCE (4) DOPEŁNIAJACE

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

PUBLIKACJA PODSUMOWUJACA ZAJĘCIA DODATKOWE Z MATEMATYKI. realizowane w ramach projektu Stąd do przyszłości. nr. POKL.09.01.

PUBLIKACJA PODSUMOWUJACA ZAJĘCIA DODATKOWE Z MATEMATYKI. realizowane w ramach projektu Stąd do przyszłości. nr. POKL.09.01. Mołodiatycze, 22.06.2012 PUBLIKACJA PODSUMOWUJACA ZAJĘCIA DODATKOWE Z MATEMATYKI realizowane w ramach projektu Stąd do przyszłości nr. POKL.09.01.02-06-090/11 Opracował: Zygmunt Krawiec 1 W ramach projektu

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla uczniów klasy trzeciej gimnazjum na podstawie programu MATEMATYKA 2001

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla uczniów klasy trzeciej gimnazjum na podstawie programu MATEMATYKA 2001 Osiągnięcia ponadprzedmiotowe WYMAGANIA EDUKACYJNE Z MATEMATYKI dla uczniów klasy trzeciej gimnazjum na podstawie programu MATEMATYKA 2001 W rezultacie kształcenia matematycznego uczeń potrafi: czytać

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie III gimnazjum

Wymagania edukacyjne z matematyki w klasie III gimnazjum Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum Semestr I Stopień Rozdział 1. Liczby Zamienia liczby dziesiętne na ułamki

Bardziej szczegółowo

nazwa zadania/ nr grupy realizowanych w Publicznym Gimnazjum w Janowcu Wielkopolskim nazwa i adres szkoły

nazwa zadania/ nr grupy realizowanych w Publicznym Gimnazjum w Janowcu Wielkopolskim nazwa i adres szkoły 88-430 Janowiec Wielkopolski, pokój nr, tel. 5 30 3 034 wew. 4 PROGRAM TEMATYCZNY ZAJĘĆ ZAJĘCIA ROZWIJAJĄCE Z MATEMATYKI/GRUPA nazwa zadania/ nr grupy realizowanych w Publicznym Gimnazjum w Janowcu Wielkopolskim

Bardziej szczegółowo

Wyniki sprawdzianu zewnętrznego klas szóstych uczniów SP10 w latach 2008-2012 na tle miasta, województwa, kraju:

Wyniki sprawdzianu zewnętrznego klas szóstych uczniów SP10 w latach 2008-2012 na tle miasta, województwa, kraju: Efekty różnorodnych działań przygotowujących uczniów do sprawdzianu zewnętrznego analiza oferty zajęć wspierających oraz materiałów przygotowywanych przez nauczycieli Dzięki zaangażowaniu nauczycieli,

Bardziej szczegółowo

Regulamin Przedmiotowy XII Konkursu Matematyczno-Przyrodniczego dla uczniów szkół podstawowych województwa świętokrzyskiego w roku szkolnym 2014/2015

Regulamin Przedmiotowy XII Konkursu Matematyczno-Przyrodniczego dla uczniów szkół podstawowych województwa świętokrzyskiego w roku szkolnym 2014/2015 Regulamin Przedmiotowy XII Konkursu Matematyczno-Przyrodniczego dla uczniów szkół podstawowych województwa świętokrzyskiego w roku szkolnym 2014/2015 I. Informacje ogólne 1. Niniejszy Regulamin określa

Bardziej szczegółowo

Katalog wymagań na poszczególne stopnie szkolne klasa 3

Katalog wymagań na poszczególne stopnie szkolne klasa 3 Katalog wymagań na poszczególne stopnie szkolne klasa 3 Katalog wymagań jest dostosowany do podręcznika, należącego do obudowy programu nauczania Gimnazjum. Materiał ten może ułatwić nauczycielowi planowanie

Bardziej szczegółowo

Konieczne Podstawowe Rozszerzające Dopełniające Wykraczające. tworzyć teksty w stylu matematycznym

Konieczne Podstawowe Rozszerzające Dopełniające Wykraczające. tworzyć teksty w stylu matematycznym 14 OSIĄGNIĘCIA PONADPRZEDMIOTOWE W rezultacie kształcenia matematycznego w klasie 3 uczeń potrafi: czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji nowych treści W rezultacie

Bardziej szczegółowo

Nie tylko wynik Plan wynikowy dla klasy 1 gimnazjum

Nie tylko wynik Plan wynikowy dla klasy 1 gimnazjum Poziomy wymagań edukacyjnych: K konieczny P podstawowy R rozszerzający D dopełniający W wykraczający Nie tylko wynik Plan wynikowy dla klasy 1 gimnazjum Ułamki i działania 20 h Nazwa modułu I. Ułamki zwykłe

Bardziej szczegółowo

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h) Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby

Bardziej szczegółowo

AUTORSKI PROGRAM ZAJĘĆ KOŁA MATEMATYCZNEGO DLA UCZNIÓW KLAS IV VI SZKOŁY PODSTAWOWEJ MŁODY MATEMATYK

AUTORSKI PROGRAM ZAJĘĆ KOŁA MATEMATYCZNEGO DLA UCZNIÓW KLAS IV VI SZKOŁY PODSTAWOWEJ MŁODY MATEMATYK Izabela Kasprzyk Szkoła Podstawowa nr 1 im. Tadeusza Kościuszki w Jaworznie AUTORSKI PROGRAM ZAJĘĆ KOŁA MATEMATYCZNEGO DLA UCZNIÓW KLAS IV VI SZKOŁY PODSTAWOWEJ MŁODY MATEMATYK I. WSTĘP Nauczając matematyki

Bardziej szczegółowo

Program pracy z uczniem uzdolnionym matematycznie

Program pracy z uczniem uzdolnionym matematycznie Program pracy z uczniem uzdolnionym matematycznie MŁODY MATEMATYK Opracowała: mgr Anna Marta Orzoł nauczyciel matematyki Szczytno, 2014r 1 WSTĘP Uczestnicząc w różnorodnych zajęciach uczeń powinien mieć

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu

Bardziej szczegółowo

Wymagania programowe na poszczególne stopnie szkolne klasa VI

Wymagania programowe na poszczególne stopnie szkolne klasa VI Wymagania programowe na poszczególne stopnie szkolne klasa VI Nauczyciel matematyki ocenia osiągnięcia ucznia, wykorzystując następujące formy: prace pisemne (prace klasowe, sprawdziany, kartkówki) odpowiedzi

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny

Wymagania edukacyjne na poszczególne oceny Wymaganiach edukacyjne niezbędne do otrzymania przez ucznia klasy I Gimnazjum poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki, wynikające z programu nauczania: praca zbiorowa

Bardziej szczegółowo

PROGRAM AUTORSKI ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI OPRACOWANY PRZEZ MGR ANNĘ JAKUBOWICZ

PROGRAM AUTORSKI ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI OPRACOWANY PRZEZ MGR ANNĘ JAKUBOWICZ PROGRAM AUTORSKI ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI OPRACOWANY PRZEZ MGR ANNĘ JAKUBOWICZ WPROWADZENIE W projekcie Kierunek zamawiany Informatyka stosowana zaplanowane są zajęcia wyrównawcze z matematyki.

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW KLASY I GIMNAZJUM. I Ty możesz zostać Pitagorasem

KONKURS MATEMATYCZNY DLA UCZNIÓW KLASY I GIMNAZJUM. I Ty możesz zostać Pitagorasem KONKURS MATEMATYCZNY DLA UCZNIÓW KLASY I GIMNAZJUM I Ty możesz zostać Pitagorasem Organizatorki: Beata Bąkała, Elżbieta Kaczorowska, Barbara Komsta, Iwona Mierzejewska Puławy, 2016/2017 REGULAMIN KONKURSU

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" LICZBY I DZIAŁANIA POZIOM KONIECZNY - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

Powtórka przed sprawdzianem program zajęć przygotowujących uczniów do sprawdzianu końcowego

Powtórka przed sprawdzianem program zajęć przygotowujących uczniów do sprawdzianu końcowego Powtórka przed sprawdzianem program zajęć przygotowujących uczniów do sprawdzianu końcowego Publiczna Szkoła Podstawowa nr 5 23-210 Kraśnik ul. Al. Niepodległości 54 I. Założenia programowe. Program został

Bardziej szczegółowo

klasa I Dział Główne wymagania edukacyjne Forma kontroli

klasa I Dział Główne wymagania edukacyjne Forma kontroli semestr I 2007 / 2008r. klasa I Liczby wymierne Dział Główne wymagania edukacyjne Forma Obliczenia procentowe Umiejętność rozpoznawania podzbiorów zbioru liczb wymiernych. Umiejętność przybliżania i zaokrąglania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej. rozumie rozszerzenie

Bardziej szczegółowo

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 1) Liczby - zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane, - zapisuje ułamek zwykły w postaci ułamka

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje

Bardziej szczegółowo

PUBLIKACJA PODSUMOWUJACA ZAJĘCIA DODATKOWE Z INFORMATYKI. realizowane w ramach projektu Stąd do przyszłości. nr. POKL

PUBLIKACJA PODSUMOWUJACA ZAJĘCIA DODATKOWE Z INFORMATYKI. realizowane w ramach projektu Stąd do przyszłości. nr. POKL Mołodiatycze, 22.06.2012 PUBLIKACJA PODSUMOWUJACA ZAJĘCIA DODATKOWE Z INFORMATYKI realizowane w ramach projektu Stąd do przyszłości nr. POKL.09.01.02-06-090/11 Opracował: Zygmunt Krawiec 1 Korzystanie

Bardziej szczegółowo

wymagania programowe z matematyki kl. III gimnazjum

wymagania programowe z matematyki kl. III gimnazjum wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny

Bardziej szczegółowo

Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych

Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych Poziomy wymagań edukacyjnych: K konieczny ocena dopuszczająca (2) P podstawowy ocena dostateczna (3) R rozszerzający ocena dobra

Bardziej szczegółowo

Od autorów... 7 Zamiast wstępu zrozumieć symbolikę... 9 Zdania Liczby rzeczywiste i ich zbiory... 15

Od autorów... 7 Zamiast wstępu zrozumieć symbolikę... 9 Zdania Liczby rzeczywiste i ich zbiory... 15 Spis treści Od autorów........................................... 7 Zamiast wstępu zrozumieć symbolikę................... 9 Zdania............................................... 10 1. Liczby rzeczywiste

Bardziej szczegółowo

Egzamin Gimnazjalny z WSiP STYCZEŃ Analiza wyników próbnego egzaminu gimnazjalnego. Część matematyczno-przyrodnicza MATEMATYKA

Egzamin Gimnazjalny z WSiP STYCZEŃ Analiza wyników próbnego egzaminu gimnazjalnego. Część matematyczno-przyrodnicza MATEMATYKA Egzamin Gimnazjalny z WSiP STYCZEŃ 2017 Analiza wyników próbnego egzaminu gimnazjalnego Część matematyczno-przyrodnicza MATEMATYKA Arkusz egzaminu próbnego składał się z 20 zadań zamkniętych różnego typu

Bardziej szczegółowo

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH. Sposoby sprawdzania wiedzy i umiejętności uczniów

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH. Sposoby sprawdzania wiedzy i umiejętności uczniów WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH Sposoby sprawdzania wiedzy i umiejętności uczniów 1. Odpowiedzi ustne. 2. Sprawdziany pisemne. 3. Kartkówki. 4. Testy.

Bardziej szczegółowo

SCENARIUSZ LEKCJI. kategoria B zrozumienie. Uczeń :

SCENARIUSZ LEKCJI. kategoria B zrozumienie. Uczeń : SCENARIUSZ LEKCJI 1. Informacje wstępne: Data : 01.10.2012 Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka z plusem. Program nauczania matematyki

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

OCENIAMY TO, CZEGO NAUCZYLIŚMY. PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI Klasy IV - VIII

OCENIAMY TO, CZEGO NAUCZYLIŚMY. PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI Klasy IV - VIII OCENIAMY TO, CZEGO NAUCZYLIŚMY PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI Klasy IV - VIII Celem przedmiotowego systemu oceniania jest: notowanie postępów i osiągnięć ucznia, ( funkcja informacyjna) wspomaganie

Bardziej szczegółowo

Wtorkowy maraton matematyczny

Wtorkowy maraton matematyczny Wtorkowy maraton matematyczny Innowacja pedagogiczna o charakterze programowym z zakresu edukacji matematycznej realizowana w Szkole Podstawowej nr 2 im. Jana Brzechwy w roku szkolnym 2013/2014 I. Autorki

Bardziej szczegółowo

Wymagania eduka cyjne z matematyki

Wymagania eduka cyjne z matematyki Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo

Bardziej szczegółowo

sposób wyliczania oceny śródrocznej/rocznej Średnia ważona

sposób wyliczania oceny śródrocznej/rocznej Średnia ważona PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI I INFORMATYKI I. Elementy oceny śródrocznej/rocznej. 1. Sprawdziany (prace klasowe, testy przekrojowe, próbne matury) 6 k kartkówki, odpowiedzi ustne 3 aktywność

Bardziej szczegółowo