Geometria odwzorowań inżynierskich powierzchnie Wyk lad 05B

Wielkość: px
Rozpocząć pokaz od strony:

Download "Geometria odwzorowań inżynierskich powierzchnie Wyk lad 05B"

Transkrypt

1 Scriptiones Geometrica Volumen I (2014), No. 5B, Geometria odwzorowań inżynierskich powierzchnie Wyk lad 05B Edwin Koźniewski Zak lad Informacji Przestrzennej 1. O powierzchniach maj acych zastosowanie w budownictwie i architekturze Wnȩtrza, korytarze, tunele, wiadukty, wejścia s a od góry ograniczone p laskim sufitem lub sklepieniem wspieraj acym siȩ na ścianach lub kolumnach. Sklepienia s a utworzone z fragmentów powierzchni. Zwykle s a to: sfera, elipsoida, walec obrotowy i nieobrotowy, stożek obrotowy i nieobrotowy, torus, konoidy, cylindroidy, konusoidy. Niektóre z nich s a powierzchniami stopnia drugiego Powierzchnie stopnia drugiego Powierzchni a stopnia drugiego nazywamy każd a powierzchniȩ, któr a we wspó lrzȩdnych jednorodnych można przedstawić w postaci: Σ 4 i,j=1 a ijx i x j = 0, (1) gdzie a ij = a ji. Geometrycznie fakt, że powierzchnia jest stopnia drugiego wyraża siȩ tym, że prosta ma z powierzchni a dwa punkty wspólne, jeden punkt wspólny lub nie ma punktów wspólnych. Powierzchnia stożka obrotowego, sfera, omawiana wcześniej hiperboloida obrotowa jednopow lokowa s a powierzchniami stopnia drugiego. Natomiast powierzchnia torusa jest powierzchni a stopnia czwartego. Czȩść wspólna powierzchni stopnia drugiego jest krzyw a stopnia czwartego, na ogó l przestrzenn a. W zastosowaniach technicznych interesuj acy jest przypadek, w którym linia przenikania rozpada siȩ na dwie stożkowe, czyli dwie krzywe p laskie stopnia drugiego, których równania podobne s a do równań (1), w których indeksy zmieniaj a siȩ od 1 do Twierdzenia o rozpadzie linii przenikania powierzchni stopnia drugiego Twierdzenia te s a nastȩpuj ace: Edwin Koźniewski c 2014 Politechnika Bia lostocka, Bia lystok

2 2 E. Koźniewski: Geometria odwzorowań inżynierskich, Wyk lad 05B Twierdzenie 1 Jeżeli linia przenikania dwu powierzchni stopnia drugiego rozpada siȩ na dwie czȩści, z których jedna jest stożkow a, to druga jest też stożkow a. Twierdzenie 2 Linia przenikania dwu powierzchni stopnia drugiego opisanych na wspólnej sferze rozpada siȩ na dwie stożkowe. Rys. 5B-01: Elementy sklepień krzyzowego i klasztornego: a) fragmenty walca obrotowego; a11) kozuba (rzut poziomy); a12) rzut poziomy sklepienia krzyzowego; a21) koleba (rzut poziomy); a22) rzut poziomy sklepienia klasztornego Rys. 5B-02: Konstrukcja rzutów prostok atnych sklepienia krzyżowego: a) przyjmujemy rzut poziomy tworzcej kozuby; a1) konstruujemy jej rzut pionowy; a2) rzuty prostok atne sklepienia krzyzowego odwzorowanego przez wybrane tworz ace Wezźmy pod uwagȩ dwie powierzchnie walców obrotowych o jednakowych promieniach, o osiach prostopad lych i przecinaj acych siȩ. Istnieje sfera na której walce te s a opisane. Ich linia przenikania rozpada siȩ na dwie stożkowe, czyli na dwie elipsy (spośród krzywych

3 E. Koźniewski: Geometria odwzorowań inżynierskich, Wyk lad 05B 3 Rys. 5B-03: Aksnonometria sklepienia krzyzowego. Wybrane tworz ace przechodz a przez punkty elipsy i s a konstruowane z wykorzystaniem powinowactwa osiowego Rys. 5B-04: Przyk lady konstrukcji sklepień kolebkowych (krzyżowych) z podniesionym kluczem, powsta lych: a) na bazie walca nieobrotowego, którego kierownic a jest pó lokr ag a tworz ace s a nachylone pod sta lym k atem do p laszczyzny okrȩgu; b) o osiach lukowych o profilu ko lowym: pó lokr ag przesuwany jest wzd luż luku innego okrȩgu, b1 b3) każdy punkt przesuwanego okrȩgu zakreśla luk równoleg ly do luku krzywej prowadz acej p laskich na powierzchni walca leż a tylko elipsy i okrȩgi). Rozważmy czȩść obu powierzchni, której rzutem prostok atnym jest kwadrat (Rys. 5B-01a). Wyróżnijmy czȩści powierzchni, których rzutami s a trójk aty równoramienne. Trójk at równoramienny, w którym tworz ace s a prostopad le do podstawy jest rzutem czȩści powierzchni zwanej kozub a (Rys. 5B-01a11),

4 4 E. Koźniewski: Geometria odwzorowań inżynierskich, Wyk lad 05B Rys. 5B-05: Sklepienia krzyżowe rozpiȩte nad sześciok atem: z podniesionym kluczem (lewy górny róg); z obniżonym kluczem (na dole) wykonane w AutoCADzie za pomoc a funkcji, specjalnie napisanych w jȩzyku AutoLISP. Krzywymi prowadz acymi s a odcinki Rys. 5B-06: Konstrukcja sklepienia klasztornego: a a2) wybrane tworz ace (konstrukcja dyskretna) skonstruowano przy użyciu transformacji uk ladu rzutni; a21) konstrukcja sklepienia klsztornego otwartego poprzez odciȩcie p laszczyznami pionowymi (linie) przekroju s a elipsami równoleg lymi do elips - linii żebrowych

5 E. Koźniewski: Geometria odwzorowań inżynierskich, Wyk lad 05B 5 Rys. 5-07: Konstrukcja wybranych tworz acych sklepienia klasztornego przy pomocy powinowactwa osiowego trójk at równoramienny, w którym tworz ace s a równoleg le do podstawy jest rzutem czȩści powierzchni walca zwanej koleb a (Rys. 5B-01a21). Figura z lożona z czterech przylegaj acych do siebie (wzd luż luków elips - tzw. linii żebrowych) kozub zwana jest sklepieniem krzyżowym (Rys. 5B-01a12), zaś figura z lożona z czterech podobnie przylegaj acych do siebie koleb nazywa siȩ sklepieniem klasztornym (Rys. 5B-01a22). Sklepienia krzyżowe mog a mieć podniesiony zwornik (klucz). W praktyce s a murowane na przesuwanej kr ażynie (geometrycznie: jest to czȩsto pó lokr ag) Kr ażyna jest szablonem wykonanym zazwyczaj z desek i tworzy ż adany profil sklepienia. Aby ukszta ltować sklepienie kr ażynȩ przesuwamy równolegle do ustalonej p laszczyzny pionowej wzd luż prostej (rys. 5B-04a a3) lub luku okrȩgu (rys. 5B-04b b3). Każdy punkt przesuwanego okrȩgu zakreśla luk równoleg ly do luku krzywej prowadz acej. 2. O powierzchniach prostokreślnych Wiele z omawianych wcześniej powierzchni - to powierzchnie prostokreślne. Jeżeli przez każdy punkt powierzchni Ω przechodzi prosta t, której wszystkie punkty należ a do tej powierzchni, to tak a powierzchniȩ nazywamy powierzchni a prostokreśln a a prost a t nazywamy tworz ac a powierzchni Ω. Każd a powierzchniȩ prostokreśln a można utworzyć przez ruch prostej (w przestrzeni) przecinaj acej trzy krzywe c 1, c 2, c 3. Przyz za lożeniu, że przez krzyw a można rozumieć także punkt dla c 1 = c 2 = W otrzymujemy powierzchniȩ stożkow a - gdy punkt W jest w laściwy i powierzchniȩ walcow a - gdy punkt W jest niew laściwy. Powierzchnie te nie musz a być ani powierzchniami stożka (obrotowego), ani walca, ponieważ krzywa c 3 jest zupe lnie dowolna). Dodajmy, że co innego oznaczaj a w tym wyk ladzie określenia powierzchnia walcowa i używana kilkakrotnie wcześniej powierzchnia walca. To samo dotyczy powierzchni stożkowej. Przytoczymy kilka typów powierzchni maj acych zastosowania techniczne (zw laszcza jeśli idzie o przekrycia budowlane). W przypadku, gdy c 1 jest jest prost a

6 6 E. Koźniewski: Geometria odwzorowań inżynierskich, Wyk lad 05B w laściw a, c 2 - prost a niew laściw a, c 3 - dowoln a krzyw a, otrzymujemy powierzchniȩ zwan a konoid a. Rysunek 5B-08 przedstawia konoidȩ, gdzie krzyw a jest pó lokr ag. W przypadku, gdy c 1 jest jest prost a w laściw a, c 2 - prost a niew laściw a, c 3 - dowoln a krzyw a, otrzymujemy powierzchniȩ zwan a powierzchni a siod low a lub paraboloid a hiperboliczn a (rys. 5B-09). Jest to powierzchnia stopnia drugiego. W przypadku, gdy jedna z krzywych, np. c 1 jest prost a w laściw a otrzymujemy powierzchniȩ zwan a konusoid a. W przypadku, gdy jedna z krzywych jest prost a niew laściw a otrzymujemy cylindroidȩ. Rysunki 5B-14, 5B-15 przedstawiaj a cylindroidy, gdzie krzywymi s a pó lokrȩgi. W pierwszym przypadku jest to sklepienie skośne, w drugim sklepienie marsylijskie. Wreszcie w przypadku, gdy wszystkie krzywe s a prostymi w laściwymi skośnymi otrzymujemy hiperboloidȩ jednopow lokow a. Jest to powierzchnia stopnia drugiego. Powierzchniȩ tȩ (o szczególnych parametrach) można otrzymać w wyniku obrotu prostej doko la innej prostej, gdy obie s a skośne. Rys. 5B-08: Aksonometria konoidy rozpiȩtej na pó lokrȩgu, odcinku i prostej niew laściwej. Konoidȩ tȩ AutoCADzie otrzymano za pomoc a polecenia POWPROST(RULESURF), zrealizowan a za pośrednictwem dwukonoidy (por. rys. 5B-10) 3. O powierzchniach powsta lych na bazie sfery Sfera może pos lużyć nam do kszta ltowania takich sklepie jak: bania, która jest modelem pó lsfery pokrywaj acej okr ag le wnȩtrze. Czȩsto spotykanym sklepieniem jest sklepienie czeskie. Jest to czȩść pó lsfery pozostaj aca po obciȩciu jej czterema p laszczyznami murów kwadratowego wnȩtrza, przy czym przek atna kwadratu jest równa średnicy pó lsfery (rys. 5B- 10b). Owe cztery p laszczyzny przecinaj a sferȩ w czterech przystaj acych pó lokrȩgach. Czȩść powierzchni pó lsfery, która leży nad kwadratem tworzy powierzchniȩ sklepienia czeskiego. Jej linia nasadowa sk lada siȩ ze wspomnianych czterech pó lokrȩgów. Na rys. 5B-10c przedstawiono rzuty prostok atne sklepienia czeskiego ściȩtego p laszczyzn a styczn a do pó lokrȩgów linii nasadowej tego sklepienia, zamkniȩtego pó lsfer a - tzw. bania na żagielkach. Czȩść sfery z lożona z czterech narożników (ściȩta piȩcioma p laszczyznami) tworzy żagielki. Sklepienie czeskie jest szczególnym przypadkiem sklepienia żaglowego - fragmentu sfery rozpiȩtego nad kwadratowym wnȩtrzem, gdzie przek atna kwadratu jest mniejsza od średnicy sfery lub jej

7 E. Koźniewski: Geometria odwzorowań inżynierskich, Wyk lad 05B 7 Rys. 5B-09: Aksonometria powierzchni siod lowej zraelizowanej w AutoCADzie za pomoc a polecenia POWPROST(RULESURF), kierownicami s a skośne przek atne ścian przeciwleg lych sześcianu i prosta niew laściwa pozosta lych dwu równoleg lych ścian sześcianu Rys. 5B-10: Rzuty prostok atne dwukonoidy zrealizowane (w 2D w AutoCADzie) za pośrednictwem rzutu trzeciego równa (rys. 5B-10c). Na żagielkach może spoczywać także kopu la ukszta ltowana przez powierzchniȩ pierścieniow a, powsta l a w wyniku obrotu luku okrȩgu doko la prostej nie przechodz acej przez środek tego okrȩgu (rys. 5B-10e). Kopu la taka może być zamkniȩta świetlikiem w kszta lcie walca zwieńczonego kolejn a kopu l a. Sklepienie czeskie (potraktowane ogójniej) możemy utworzyć z pó lelipsoidy obrotowej, rozpinaj ac je nad prostok atem wpisanym w elipsȩ podstawy ( równikow a ) tej pó lelipsoidy. Linia nasadowa sklepienia sk lada siȩ wówczas z czterech lȩków o jednakowo wzniesionych zwornikach; dwa lȩki s a pó lokrȩgami (równoleżnikami elipsoidy), a dwa s a pó lelipsami (przeciȩciami p laszczyznami równoleg lymi do p lazczyzny symetrii elipsoidy, zawieraj acymi boki prostok ata) (Dlaczego zworniki tych lȩków s a jed-

8 8 E. Koźniewski: Geometria odwzorowań inżynierskich, Wyk lad 05B Rys. 5-11: Dwukonoida zrealizowana automatycznie (3D) w AutoCADzie za pomoc a polecenia POWPROST(RULESURF) Rys. 5B-12: Za lożenia do sklepień lupinowych: a) z obniżonym kluczem; b) z podniesionym kluczem; c) za lożenie do modelu przekrycia konusoidonalnego (krzywe: odcinek c 1, pó lokr ag c 2, prosta c 3 ) nakowo wzniesione?).

9 E. Koźniewski: Geometria odwzorowań inżynierskich, Wyk lad 05B 9 Rys. 5B-13: Za lożenie i rozpoczȩte rozwi azanie modelu przekrycia konusoidonalnego (krzywe: prosta c 1, odcinek c 2, pó lokr ag c 3 ) Rys. 5B-14: Dwa rzuty sklepienia skośnego (krzywe: pó lokr ag c 1, pó lokr ag c 2, prosta c 3 ) Literatura [Fol95] J. D. Foley i inni: Wprowadzenie do grafiki komputerowej (Introduction to Com-

10 10 E. Koźniewski: Geometria odwzorowań inżynierskich, Wyk lad 05B Rys. 5B-15: Dwa rzuty sklepienia marsylijskiego (krzywe: luk okrȩgu c 1, pó lokr ag c 2, prosta c 3 ) Rys. 5B-16: Realizacja sklepień na bazie sfey: a) sklepienie czeskie; a ) aksonometria prostok atna sklepienia czeskiego; b) sklepienie żaglowe; c) bania na żagielkach; c ) aksonometria prostok atna bani na żagielkach puter Graphics). Wydawnictwa Naukowo-Techniczne. Warszawa [Gro95] B. Grochowski: Geometria wykreślna z perspektyw a stosowan a. Wydawnictwo Naukowe PWN. Warszawa [Jan90] M. Jankowski: Elementy grafiki komputerowej. Wydawnictwa Naukowo-Techniczne. Warszawa [Ott94] F. Otto, E. Otto: Podrȩcznik geometrii wykreślnej. Wydawnictwo Naukowe PWN.

11 E. Koźniewski: Geometria odwzorowań inżynierskich, Wyk lad 05B 11 Rys. 5B-17: a a1) Sklepienie krzyżowe rozpiȩte nad prostok atem zrealizowane za pomoc a transformacji do trzeciego rzutu. Jeden z walców - prostopad ly do rzutni pionowej jest eliptyczny; b) kopu la na żagielkach zrealizowana na bazie powierzchni pierścieniowej niebȩd acej klasycznym torusem, zamkniȩta cylindryczn a latarni a (świetlikiem) zwieńczon a kopu l a z powierzchni pierścieniowej Warszawa [Pik97] A. Pikoń: AutoCAD, wersje 10, 11, 12 i 12PL, 14 i 14PL i wyższe. Wydawnictwo HELION. Gliwice 1991, 1992, 1994, [Prz82] S. Przew locki: Geometria wykreślna w budownictwie. Arkady. Warszawa [Prz00] S. Przew locki: Geometria wykreślna w zastosowaniach dla budownictwa i architektury. Wydawnictwo Uniwersytetu Warmińsko-Mazurskiego. Olsztyn 2000.

Geometria odwzorowań inżynierskich. Zadania 10A

Geometria odwzorowań inżynierskich. Zadania 10A Scriptiones Geometrica Volumen I (2014), No. Z10A, 1 7. Geometria odwzorowań inżynierskich. Zadania 10A Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Twierdzenia o rozpadzie linii przenikania W

Bardziej szczegółowo

Geometria odwzorowań inżynierskich. 1. Perspektywa odbić w zwierciad lach p laskich 06F

Geometria odwzorowań inżynierskich. 1. Perspektywa odbić w zwierciad lach p laskich 06F Scriptiones Geometrica Volumen I (2014), No. 6F, 1 10. Geometria odwzorowań inżynierskich Perspektywa odbić w zwierciad lach p laskich 06F Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Perspektywa

Bardziej szczegółowo

Geometria odwzorowań inżynierskich perspektywa wnȩtrza 06C

Geometria odwzorowań inżynierskich perspektywa wnȩtrza 06C Scriptiones Geometrica Volumen I (2014), No. 6C, 1 8. Geometria odwzorowań inżynierskich perspektywa wnȩtrza 06C Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Perspektywa czo lowa wnȩtrza Rys. 6C-01:

Bardziej szczegółowo

Geometria odwzorowań inżynierskich Zadania 02

Geometria odwzorowań inżynierskich Zadania 02 Scriptiones Geometrica Volumen I (2007), No. Z2, 1 3. Geometria odwzorowań inżynierskich Zadania 02 1. Odwzorowania w rzucie równoleg lym. Przekroje cd. Konstrukcje p laskie 1.1. Przekszat lcenia na p

Bardziej szczegółowo

Geometria odwzorowań inżynierskich. Zadania 10

Geometria odwzorowań inżynierskich. Zadania 10 Scriptiones Geometrica Volumen I (2014), No. Z10, 1 12. Geometria odwzorowań inżynierskich. Zadania 10 Edwin Koźniewski Zak lad Infoemacji Przestrzennej 1. Cień sfery na p lszczyznȩ 1.1. Jeszcze o kolineacji

Bardziej szczegółowo

Geometria odwzorowań inżynierskich rzut środkowy 06A

Geometria odwzorowań inżynierskich rzut środkowy 06A Scriptiones Geometrica Volumen I (2014), No. 6A, 1 10. Geometria odwzorowań inżynierskich rzut środkowy 06A Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Rzut środkowy i jego niezmienniki Przyjmijmy

Bardziej szczegółowo

Geometria odwzorowań inżynierskich Wyk lad 03B

Geometria odwzorowań inżynierskich Wyk lad 03B Scriptionis Geometrica Volumen I (2014), No. 3B, 1 9. Geometria odwzorowań inżynierskich Wyk lad 03B Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Cienie wzajemne w aksonometrii Przyk lad 1 Wyznaczyć

Bardziej szczegółowo

Geometria odwzorowań inżynierskich Zadania 01

Geometria odwzorowań inżynierskich Zadania 01 Scriptiones Geometrica Volumen I (2007), No. Z1, 1 4. Geometria odwzorowań inżynierskich Zadania 01 Edwin Koźniewski Instytut Inżynierii Budowlanej, Politechnika Bia lostocka 1. Twierdzenie o punkcie wȩz

Bardziej szczegółowo

Geometria odwzorowań inżynierskich Zadania Przekroje stożka. Twierdzenie Dandelina

Geometria odwzorowań inżynierskich Zadania Przekroje stożka. Twierdzenie Dandelina Scriptiones Geometrica Volumen I (2014), No. Z9, 1 12. Geometria odwzorowań inżynierskich Zadania 09 Przekroje stożka. Twierdzenie Dandelina Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Przekroje

Bardziej szczegółowo

Geometria odwzorowań inżynierskich cienie w rzucie środkowym 06D

Geometria odwzorowań inżynierskich cienie w rzucie środkowym 06D Scriptiones Geometrica Volumen I (2014), No. 6D, 1 9. Geometria odwzorowań inżynierskich cienie w rzucie środkowym 06D Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Cienie w perspektywie i perspektywie

Bardziej szczegółowo

Geometria odwzorowań inżynierskich Zadania 04

Geometria odwzorowań inżynierskich Zadania 04 Scriptiones Geometrica Volumen I (2014), No. Z4, 1 3. Geometria odwzorowań inżynierskich Zadania 04 Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Punkt przebicia p laszczyzny prost a w aksonometrii

Bardziej szczegółowo

Geometria odwzorowań inżynierskich Zadania 06

Geometria odwzorowań inżynierskich Zadania 06 Scriptiones Geometrica Volumen I (2014), No. Z6, 1 9. Geometria odwzorowań inżynierskich Zadania 06 Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Przenikanie siȩ figur (bry l) w rzutach Monge a

Bardziej szczegółowo

Geometria odwzorowań inżynierskich rzut środkowy 06B

Geometria odwzorowań inżynierskich rzut środkowy 06B Scriptiones Geometrica Volumen I (2014), No. 6B, 1 17. Geometria odwzorowań inżynierskich rzut środkowy 06B Edwin Koźniewski Zak lad Informacji Przestrzennej 1. K lad p laszczyzny Rys. 6B-01: Konstrukcja

Bardziej szczegółowo

Geometria odwzorowań inżynierskich perspektywa boczna wnȩtrza 06E

Geometria odwzorowań inżynierskich perspektywa boczna wnȩtrza 06E Scriptiones Geometrica Volumen I (2014), No. 6E, 1 14. Geometria odwzorowań inżynierskich perspektywa boczna wnȩtrza 06E Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Perspektywa boczna wnȩtrza

Bardziej szczegółowo

Geometria przestrzenna. Stereometria

Geometria przestrzenna. Stereometria 1 Geometria przestrzenna. Stereometria 0.1 Graniastos lupy Graniastos lup to wielościan, którego dwie ściany, zwane podstawami, s a przystaj cymi wielok atami leż acymi w p laszczyznach równoleg lych,

Bardziej szczegółowo

SZKO LA PODSTAWOWA HELIANTUS WARSZAWA ul. BAŻANCIA 16. Szeṡcian w uk ladzie wspȯ lrzȩdnych x, y, z GEOMETRIA PRZESTRZENNA STEREOMETRIA

SZKO LA PODSTAWOWA HELIANTUS WARSZAWA ul. BAŻANCIA 16. Szeṡcian w uk ladzie wspȯ lrzȩdnych x, y, z GEOMETRIA PRZESTRZENNA STEREOMETRIA SZKO LA PODSTAWOWA HELIANTUS 02-892 WARSZAWA ul. BAŻANCIA 16 z y 0 x Szeṡcian w uk ladzie wspȯ lrzȩdnych x, y, z GEOMETRIA PRZESTRZENNA STEREOMETRIA Prof. dr. Tadeusz STYŠ Warszawa 2018 1 1 Projekt trzynasty

Bardziej szczegółowo

Geometria odwzorowań inżynierskich powierzchnie 05A

Geometria odwzorowań inżynierskich powierzchnie 05A Scriptiones Geometrica Volumen I (2014), No. 5A, 1 17. Geometria odwzorowań inżynierskich powierzchnie 05A E. Koźniewski Zak lad Informacji Przestrzennej 1. O krzywych i powierzchniach Dotychczas zajmowaliśmy

Bardziej szczegółowo

Geometria odwzorowań inżynierskich w aspekcie CAD

Geometria odwzorowań inżynierskich w aspekcie CAD Scriptiones Geometrica Volumen I (2014), No. 8, 1 11. Geometria odwzorowań inżynierskich w aspekcie CAD Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Odwzorowanie obiektu geometrycznego w aspekcie

Bardziej szczegółowo

Geometria odwzorowań inżynierskich Wyk lad 03A

Geometria odwzorowań inżynierskich Wyk lad 03A Scriptionis Geometrica Volumen I (2014), No. 3A, 1 17. Geometria odwzorowań inżynierskich Wyk lad 03A Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Elementy wspólne prostej i p laszczyzny (okrȩgu

Bardziej szczegółowo

KWADRYKI PARABOLOIDA HIPERBOLICZNA ELIPSOIDA HIPERBOLOIDA DWUPOWŁOKOWA HIPERBOLOIDA JEDNOPOWŁOKOWA PARABOLOIDA ELIPTYCZNA

KWADRYKI PARABOLOIDA HIPERBOLICZNA ELIPSOIDA HIPERBOLOIDA DWUPOWŁOKOWA HIPERBOLOIDA JEDNOPOWŁOKOWA PARABOLOIDA ELIPTYCZNA POWIERZCHNIE 1. Powierzchnia jedno z podstawowych pojęć geometrii. 1.1. W geometrii elementarnej powierzchnię opisuje się jako pewne zbiory punktów lub prostych o określonych własnościach np.: - sfera

Bardziej szczegółowo

Spis treści. Słowo wstępne 7

Spis treści. Słowo wstępne 7 Geometria wykreślna : podstawowe metody odwzorowań stosowane w projektowaniu inżynierskim : podręcznik dla studentów Wydziału Inżynierii Lądowej / Renata A. Górska. Kraków, 2015 Spis treści Słowo wstępne

Bardziej szczegółowo

Geometria odwzorowań inżynierskich Wyk lad 01

Geometria odwzorowań inżynierskich Wyk lad 01 Scriptionis Geometrica Volumen I (2014), No. 1, 1 21. Geometria odwzorowań inżynierskich Wyk lad 01 Edwin Koźniewski Zak lad Informacji Przestrzennej 1. O rzutach i elementach niew laściwych w geometrii

Bardziej szczegółowo

Geometria odwzorowań inżynierskich rzut cechowany 07

Geometria odwzorowań inżynierskich rzut cechowany 07 Scriptiones Geometrica Volumen I (2014), No. 7, 1 18. Geometria odwzorowań inżynierskich rzut cechowany 07 Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Definicja rzutu cechowanego Rys. 07-01: Definicja

Bardziej szczegółowo

Geometria odwzorowań inżynierskich dachy 04

Geometria odwzorowań inżynierskich dachy 04 Scriptiones Geometrica Volumen I (2014), No. 4, 1 23. Geometria odwzorowań inżynierskich dachy 04 Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Obroty i k lady Wykorzystywaliśmy już pojȩcie obrotu

Bardziej szczegółowo

ROZWINIĘCIA POWIERZCHNI STOPNIA DRUGIEGO W OPARCIU O MIEJSCA GEOMETRYCZNE Z ZA- STOSOWANIEM PROGRAMU CABRI II PLUS.

ROZWINIĘCIA POWIERZCHNI STOPNIA DRUGIEGO W OPARCIU O MIEJSCA GEOMETRYCZNE Z ZA- STOSOWANIEM PROGRAMU CABRI II PLUS. Anna BŁACH, Piotr DUDZIK, Anita PAWLAK Politechnika Śląska Ośrodek Geometrii i Grafiki Inżynierskiej ul. Krzywoustego 7 44-100 Gliwice tel./ fax: 0-32 237 26 58, e-mail: anna.blach@polsl.pl, piotr.dudzik@polsl.pl,

Bardziej szczegółowo

WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3

WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 Definicja 1 Przestrzenia R 3 nazywamy zbiór uporzadkowanych trójek (x, y, z), czyli R 3 = {(x, y, z) : x, y, z R} Przestrzeń

Bardziej szczegółowo

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Lądowej obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015 Kierunek studiów: Budownictwo Forma

Bardziej szczegółowo

Zamiast ogólnych wzorów w przestrzeni euklidesowej o dwolnym wymiarze, rozważmy przestrzeń trójwymiarow a. Przypuśćmy, że ktoś podaje nam równanie

Zamiast ogólnych wzorów w przestrzeni euklidesowej o dwolnym wymiarze, rozważmy przestrzeń trójwymiarow a. Przypuśćmy, że ktoś podaje nam równanie S. D. G lazek, www.fuw.edu.pl/ stglazek, 4.IV.005 I. ROZMAITOŚCI STOPNIA W PRZESTRZENI EUKLIDESOWEJ Rozmaitość drugiego stopnia w przestrzeni euklidesowej to hiperpowierzchnia opisana warunkiem, który

Bardziej szczegółowo

Niesimpleksowe metody rozwia zywania zadań PL. Seminarium Szkoleniowe Edyta Mrówka

Niesimpleksowe metody rozwia zywania zadań PL. Seminarium Szkoleniowe Edyta Mrówka Niesimpleksowe metody rozwia zywania zadań PL Seminarium Szkoleniowe Metoda Simplex: wady i zalety Algorytm SIMPLEX jest szeroko znany i stosowany do rozwi azywania zadań programowania liniowego w praktyce.

Bardziej szczegółowo

Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt): F x E' E''

Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt): F x E' E'' GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2012/2013 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni

Bardziej szczegółowo

Rok akademicki 2005/2006

Rok akademicki 2005/2006 GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2005/2006 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni

Bardziej szczegółowo

Zestaw Obliczyć objętość równoległościanu zbudowanego na wektorach m, n, p jeśli wiadomo, że objętość równoległościanu zbudowanego na wektorach:

Zestaw Obliczyć objętość równoległościanu zbudowanego na wektorach m, n, p jeśli wiadomo, że objętość równoległościanu zbudowanego na wektorach: Zestaw 9. Wykazać, że objętość równoległościanu zbudowanego na przekątnych ścian danego równoległościanu jest dwa razy większa od objętości równoległościanu danego.. Obliczyć objętość równoległościanu

Bardziej szczegółowo

(a) (b) (c) o1" o2" o3" o1'=o2'=o3'

(a) (b) (c) o1 o2 o3 o1'=o2'=o3' Zad.0. Odwzorowanie powierzchni stożka, walca, sfery oraz punktów leżących na tych powierzchniach. Przy odwzorowaniu powierzchni stożka, walca, sfery przyjmiemy reprezentację konturową, co oznacza, że

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna. 9. Aksonometria

Grafika inżynierska geometria wykreślna. 9. Aksonometria Grafika inżynierska geometria wykreślna 9. Aksonometria dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna, semestr I 9. Aksonometria

Bardziej szczegółowo

GEOMETRIA PRZESTRZENNA (STEREOMETRIA)

GEOMETRIA PRZESTRZENNA (STEREOMETRIA) GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy

Bardziej szczegółowo

Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas

Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas Ćwiczenie 1. Dowieść, że jeśli U i V s a podprzestrzeniami n-wymiarowej przestrzeni wektorowej oraz dim U = r i dim V = s, to max(0,

Bardziej szczegółowo

Obroty w zadaniach geometrycznych

Obroty w zadaniach geometrycznych Obroty w zadaniach geometrycznych Piotr Grzeszczuk piotrgr@pb.bialystok.pl Wydzia l Informatyki Politechnika Bia lostocka Spotkania z matematyka SIGNUM, Centrum Popularyzacji Matematyki Bia lystok, 15

Bardziej szczegółowo

MiNI Akademia Matematyki na Politechnice Warszawskiej

MiNI Akademia Matematyki na Politechnice Warszawskiej MiNI Akademia Matematyki na Politechnice Warszawskiej Krzysztof Che lmiński Okr egi i styczne MiNI PW, 14.10.2017 Podstawowe twierdzenia wykorzystywane w zadaniach z ćwiczeń Twierdzenie 1 (najmocniesze

Bardziej szczegółowo

Trigonometria. Funkcje trygonometryczne

Trigonometria. Funkcje trygonometryczne 1 Trigonometria. Funkcje trygonometryczne Trigonometria to wiedza o zwi azkach miarowych pomiedzy bokami i k atami trójk atów. Takie znaczenie s lowa Trigonometria by lo używane w czasach starożytnych

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2017/2018

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2017/2018 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Lądowej obowiązuje studentów rozpoczynających studia w roku akademickim 07/08 Kierunek studiów: Budownictwo Forma sudiów:

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna. 3. Elementy wspólne. Cień jako rzut środkowy i równoległy. Transformacja celowa.

Grafika inżynierska geometria wykreślna. 3. Elementy wspólne. Cień jako rzut środkowy i równoległy. Transformacja celowa. Grafika inżynierska geometria wykreślna 3. Elementy wspólne. Cień jako rzut środkowy i równoległy. Transformacja celowa. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie,

Bardziej szczegółowo

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) =

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) = Uk lady równań różniczkowych Pojȩcia wsȩpne Uk ladem równań różniczkowych nazywamy uk lad posaci y = f (, y, y 2,, y n ) y 2 = f 2 (, y, y 2,, y n ) y n = f n (, y, y 2,, y n ) () funkcje f j, j =, 2,,

Bardziej szczegółowo

Po co nam geometria? Monika Sroka-Bizoń OŚRODEK GEOMETRII I GRAFIKI INŻYNIERSKIEJ

Po co nam geometria? Monika Sroka-Bizoń OŚRODEK GEOMETRII I GRAFIKI INŻYNIERSKIEJ Po co nam geometria? Monika Sroka-Bizoń OŚRODEK GEOMETRII I GRAFIKI INŻYNIERSKIEJ Sesja Naukowa objęta honorowym patronatem przez Jego Magnificencję Rektora Politechniki Śląskiej prof. dr hab. inż. Andrzeja

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna. 4. Wielościany. Budowa. Przekroje.

Grafika inżynierska geometria wykreślna. 4. Wielościany. Budowa. Przekroje. Grafika inżynierska geometria wykreślna 4. Wielościany. Budowa. Przekroje. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna, semestr

Bardziej szczegółowo

Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala

Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala November 12, 2009 Przyk ladowe zadania z rozwi azaniami Zadanie 1. Oblicz pochodne nastȩpuj

Bardziej szczegółowo

Geometria odwzorowań inżynierskich Wyk lad 02

Geometria odwzorowań inżynierskich Wyk lad 02 Scriptionis Geometrica Volumen I (2014), No. 2, 1 21. Geometria odwzorowań inżynierskich Wyk lad 02 Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Rzuty prostok atne na dwie rzutnie - Monge a Rys.

Bardziej szczegółowo

Wstęp do grafiki inżynierskiej

Wstęp do grafiki inżynierskiej Akademia Górniczo-Hutnicza Wstęp do grafiki inżynierskiej Rzuty prostokątne Prokop ŚRODA Marcin KOT Wydawnictwo Naukowe AKAPIT Recenzenci: prof. dr hab. inż. Wiesław Rakowski dr hab. inż. Jerzy Zych Rozdziały

Bardziej szczegółowo

Krzywe i powierzchnie stopnia drugiego

Krzywe i powierzchnie stopnia drugiego Krzywe i powierzchnie stopnia drugiego Iwona Malinowska, Zbigniew Šagodowski 25 maja 2015 I. Malinowska, Z. Lagodowski Geometria 25 maja 2015 1 / 30 Rozwa»my dwie proste przecinaj ce si pod k tem α, 0

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna. 2. Przynależność. Równoległość.

Grafika inżynierska geometria wykreślna. 2. Przynależność. Równoległość. Grafika inżynierska geometria wykreślna 2. Przynależność. Równoległość. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna, semestr

Bardziej szczegółowo

Sterowalność liniowych uk ladów sterowania

Sterowalność liniowych uk ladów sterowania Sterowalność liniowych uk ladów sterowania W zadaniach sterowania docelowego należy przeprowadzić obiekt opisywany za pomoc a równania stanu z zadanego stanu pocz atkowego ẋ(t) = f(x(t), u(t), t), t [t,

Bardziej szczegółowo

Pierwsze kolokwium z Matematyki I 4. listopada 2013 r. J. de Lucas

Pierwsze kolokwium z Matematyki I 4. listopada 2013 r. J. de Lucas Pierwsze kolokwium z Matematyki I 4. listopada 03 r. J. de Lucas Uwagi organizacyjne: Każde zadanie rozwi azujemy na osobnej kartce, opatrzonej imieniem i nazwiskiem w lasnym oraz osoby prowadz acej ćwiczenia,

Bardziej szczegółowo

POCHODNA KIERUNKOWA. DEFINICJA Jeśli istnieje granica lim. to granica ta nazywa siȩ pochodn a kierunkow a funkcji f(m) w kierunku osi l i oznaczamy

POCHODNA KIERUNKOWA. DEFINICJA Jeśli istnieje granica lim. to granica ta nazywa siȩ pochodn a kierunkow a funkcji f(m) w kierunku osi l i oznaczamy POCHODNA KIERUNKOWA Pochodne cz astkowe funkcji f(m) = f(x, y, z) wzglȩdem x, wzglȩdem y i wzglȩdem z wyrażaj a prȩdkość zmiany funkcji w kierunku osi wspó lrzȩdnych; np. f x jest prȩdkości a zmiany funkcji

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna. 5a. Obroty i kłady. Rozwinięcie wielościanu.

Grafika inżynierska geometria wykreślna. 5a. Obroty i kłady. Rozwinięcie wielościanu. Grafika inżynierska geometria wykreślna 5a. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna,

Bardziej szczegółowo

Geometria. Hiperbola

Geometria. Hiperbola Geometria. Hiperbola Definicja 1 Dano dwa punkty na płaszczyźnie: F 1 i F 2 oraz taką liczbę d, że F 1 F 2 > d > 0. Zbiór punktów płaszczyzny będących rozwiązaniami równania: XF 1 XF 2 = ±d. nazywamy hiperbolą.

Bardziej szczegółowo

Suma i przeciȩcie podprzestrzeń, suma prosta, przestrzeń ilorazowa Javier de Lucas

Suma i przeciȩcie podprzestrzeń, suma prosta, przestrzeń ilorazowa Javier de Lucas Suma i przeciȩcie podprzestrzeń suma prosta przestrzeń ilorazowa Javier de Lucas Ćwiczenie 1 W zależności od wartości parametru p podaj wymiar przestrzeni W = v 1 v v 3 gdzie p 0 v 1 = 1 + p 3 v = 5 3

Bardziej szczegółowo

Geometria wykreślna 7. Aksonometria

Geometria wykreślna 7. Aksonometria Geometria wykreślna 7. Aksonometria dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I SANDRO DEL PRETE,, The quadrature of the

Bardziej szczegółowo

Geometria wykreślna. 5. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury

Geometria wykreślna. 5. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury Geometria wykreślna 5. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 5. Obroty i

Bardziej szczegółowo

STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1

STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1 1 STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1 Klasyczny Rachunek Prawdopodobieństwa. 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany. Posiadamy

Bardziej szczegółowo

Podhalańska Państwowa Wyższa Szkoła Zawodowa w Nowym Targu

Podhalańska Państwowa Wyższa Szkoła Zawodowa w Nowym Targu Wygenerowano: 2017-10-02 16:54:58.414135, A-1-16-17 Podhalańska Państwowa Wyższa Szkoła Zawodowa w Nowym Targu Informacje ogólne Nazwa Geometria wykreślna Status Obowiązkowy Wydział / Instytut Instytut

Bardziej szczegółowo

przecięcie graniastosłupa płaszczyzną, przenikanie graniastosłupa z ostrosłupem

przecięcie graniastosłupa płaszczyzną, przenikanie graniastosłupa z ostrosłupem przebicie ostrosłupa prostą, przecięcie graniastosłupa płaszczyzną, przenikanie graniastosłupa z ostrosłupem WSA - wykład VII w dn. 12. I. 2014 r: Przenikanie wzajemne brył nieobrotowych (graniastosłupów,

Bardziej szczegółowo

Geometria wykreślna. 1. Rysunek inżynierski historia. Metody rzutowania. Rzut prostokątny na dwie rzutnie. dr inż. arch.

Geometria wykreślna. 1. Rysunek inżynierski historia. Metody rzutowania. Rzut prostokątny na dwie rzutnie. dr inż. arch. Geometria wykreślna 1. Rysunek inżynierski historia. Metody rzutowania. Rzut prostokątny na dwie rzutnie. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek

Bardziej szczegółowo

Geometria wykreślna. 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury

Geometria wykreślna. 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury Geometria wykreślna 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 3.

Bardziej szczegółowo

- Wydział Fizyki Zestaw nr 5. Powierzchnie 2-go stopnia

- Wydział Fizyki Zestaw nr 5. Powierzchnie 2-go stopnia 1 Algebr Liniow z Geometri - Wydził Fizyki Zestw nr 5 Powierzchnie -go stopni 1 N sferze 1 + + 3 = 4 znleźć punkt, którego odległość od punktu p = (, 6, 3) byłby njmniejsz Wyznczyć osie elipsy powstłej

Bardziej szczegółowo

Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012 r.

Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012 r. Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012 r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Geometria wykreślna i grafika komputerowa CAD Nazwa modułu w języku angielskim

Bardziej szczegółowo

Przyk³adowe zdania. Wydawnictwo Szkolne OMEGA. Zadanie 1. Zadanie 2. Zadanie 3. Zadanie 4. Zadanie 5. Zadanie 6. Zadanie 7. Zadanie 8. Zadanie 9.

Przyk³adowe zdania. Wydawnictwo Szkolne OMEGA. Zadanie 1. Zadanie 2. Zadanie 3. Zadanie 4. Zadanie 5. Zadanie 6. Zadanie 7. Zadanie 8. Zadanie 9. Zadanie. Przyk³adowe zdania Napisz równanie prostej przechodz¹cej przez punkty A (, ) i B (, 4 ). Zadanie. Napisz równanie prostej, której wspó³czynnik kierunkowy równy jest, wiedz¹c, e przechodzi ona

Bardziej szczegółowo

Stereometria (geometria przestrzenna)

Stereometria (geometria przestrzenna) Stereometria (geometria przestrzenna) Wzajemne poªo»enie prostych w przestrzeni Stereometria jest dziaªem geometrii, którego przedmiotem bada«s bryªy przestrzenne oraz ich wªa±ciwo±ci. Na pocz tek omówimy

Bardziej szczegółowo

Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)

Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3) Pytania zamknięte / TEST : Wybierz 1 odp prawidłową. 1. Punkt: A) jest aksjomatem in. pewnikiem; B) nie jest aksjomatem, bo można go zdefiniować. 2. Prosta: A) to zbiór punktów; B) to zbiór punktów współliniowych.

Bardziej szczegółowo

FUNKCJE LICZBOWE. x 1

FUNKCJE LICZBOWE. x 1 FUNKCJE LICZBOWE Zbiory postaci {x R: x a}, {x R: x a}, {x R: x < a}, {x R: x > a} oznaczane sa symbolami (,a], [a, ), (,a) i (a, ). Nazywamy pó lprostymi domknie tymi lub otwartymi o końcu a. Symbol odczytujemy

Bardziej szczegółowo

Ćwiczenia z Geometrii I, czerwiec 2006 r.

Ćwiczenia z Geometrii I, czerwiec 2006 r. Waldemar ompe echy przystawania trójkątów 1. unkt leży na przekątnej kwadratu (rys. 1). unkty i R są rzutami prostokątnymi punktu odpowiednio na proste i. Wykazać, że = R. R 2. any jest trójkąt ostrokątny,

Bardziej szczegółowo

na p laszczyźnie kartezjaṅskiej prowadzimy prost a o rȯwnaniu s 1. (1.1) s 0 + t 1 t 0

na p laszczyźnie kartezjaṅskiej prowadzimy prost a o rȯwnaniu s 1. (1.1) s 0 + t 1 t 0 Chapter 1 Interpolacja 1.1 Interpolacja liniowa Zacznijmy opis pojȩcia inter-polacji od prostego przyk ladu. Przyk lad 1.1 Oblicz ile kilometrȯw przejecha l samochȯd po 3 godzinach jazdy, jeżeli po jednej

Bardziej szczegółowo

z n n=1 S n nazywamy sum a szeregu. Szereg, który nie jest zbieżny, nazywamy rozbieżnym. n=1

z n n=1 S n nazywamy sum a szeregu. Szereg, który nie jest zbieżny, nazywamy rozbieżnym. n=1 3 Szeregi zespolone 3. Szeregi liczbowe Mówimy, że szereg o wyrazach zespolonych jest zbieżny, jeżeli ci ag jego sum czȩściowych {S n }, gdzie S n = z + z +... + jest zbieżny do granicy w laściwej. Granicȩ

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna

Grafika inżynierska geometria wykreślna Grafika inżynierska geometria wykreślna 1. Rysunek inżynierski historia. Metody rzutowania. Rzut prostokątny na dwie rzutnie. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA W PRZESTRZENI

GEOMETRIA ANALITYCZNA W PRZESTRZENI GEOMETRIA ANALITYCZNA W PRZESTRZENI Położenie punktu w przestrzeni określamy za pomocą trzech liczb (x, y, z). Liczby te odpowiadają rzutom na osie układu współrzędnych: każdy rzut wzdłuż płaszczyzny równoległej

Bardziej szczegółowo

ANALIZA II 15 marca 2014 Semestr letni. Ćwiczenie 1. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la?

ANALIZA II 15 marca 2014 Semestr letni. Ćwiczenie 1. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la? Ci ag lość i norma Ćwiczenie. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la? f (x, y) = x2 y 2 x 2 + y 2, f 2(x, y) = x2 y x 2 + y 2 f 3 (x, y) = x2 y

Bardziej szczegółowo

c a = a x + gdzie = b 2 4ac. Ta postać wielomianu drugiego stopnia zwana jest kanoniczna, a wyrażenie = b 2 4ac wyróżnikiem tego wielomianu.

c a = a x + gdzie = b 2 4ac. Ta postać wielomianu drugiego stopnia zwana jest kanoniczna, a wyrażenie = b 2 4ac wyróżnikiem tego wielomianu. y = ax 2 + bx + c WIELOMIANY KWADRATOWE Zajmiemy sie teraz wielomianami stopnia drugiego, zwanymi kwadratowymi. Symbol w be dzie w tym rozdziale oznaczać wielomian kwadratowy, tj. w(x) = ax 2 + bx + c

Bardziej szczegółowo

aksonometrie trójosiowe odmierzalne odwzorowania na płaszczyźnie

aksonometrie trójosiowe odmierzalne odwzorowania na płaszczyźnie aksonometrie trójosiowe odmierzalne odwzorowania na płaszczyźnie Przykładowy rzut (od lewej) izometryczny, dimetryczny ukośny i dimetryczny prostokątny Podział aksonometrii ze względu na kierunek rzutowania:

Bardziej szczegółowo

Rzuty aksonometryczne służą do poglądowego przedstawiania przedmiotów.

Rzuty aksonometryczne służą do poglądowego przedstawiania przedmiotów. RZUTOWANIE AKSONOMETRYCZNE Rzuty aksonometryczne służą do poglądowego przedstawiania przedmiotów. W metodzie aksonometrycznej rzutnią jest płaszczyzna dowolnie ustawiona względem trzech osi,, układu prostokątnego

Bardziej szczegółowo

Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka

Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka Zagadnienie Dualne Zadania Programowania Liniowego Seminarium Szkoleniowe Edyta Mrówka Ogólne zagadnienie PL Znajdź taki wektor X = (x 1, x 2,..., x n ), który minimalizuje kombinacje liniow a przy ograniczeniach

Bardziej szczegółowo

Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu

Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu Oznaczenia A, B, 1, 2, I, II, punkty a, b, proste α, β, płaszczyzny π 1, π 2, rzutnie k kierunek rzutowania d(a,m) odległość punktu od prostej m(a,b) prosta przechodząca przez punkty A i B α(1,2,3) płaszczyzna

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych Zbiory na p laszczyźnie Przestrzeni a dwuwymiarow a (p laszczyzn a) nazywamy zbiór wszystkich par uporz adkowanych (x, y), gdzie x, y R. Przestrzeń tȩ oznaczamy symbolem R 2 : R

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA

STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1 STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany.

Bardziej szczegółowo

Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu

Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu Wyk lad 4 1. Zbiory otwarte i domkniȩte Pojȩcia które teraz wprowadzimy można rozpatrywać w każdej przestrzeni metrycznej

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Lądowej obowiązuje studentów rozpoczynających studia w roku akademickim 014/015 Kierunek studiów: Budownictwo Forma sudiów:

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna. 5. Wielościany. Punkty przebicia. Przenikanie wielościanów.

Grafika inżynierska geometria wykreślna. 5. Wielościany. Punkty przebicia. Przenikanie wielościanów. Grafika inżynierska geometria wykreślna 5. Wielościany. Punkty przebicia. Przenikanie wielościanów. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka

Bardziej szczegółowo

Metody obliczeniowe chemii kwantowej oparte na funkcji falowej. Dla uk ladu N elektronów i K j ader atomowych hamiltonian przyjmuje postać:

Metody obliczeniowe chemii kwantowej oparte na funkcji falowej. Dla uk ladu N elektronów i K j ader atomowych hamiltonian przyjmuje postać: Metody obliczeniowe chemii kwantowej oparte na funkcji falowej Równanie Schrödingera: ĤΨ = EΨ Dla uk ladu N elektronów i K j ader atomowych hamiltonian przyjmuje postać: Ĥ = h 2 K α=1 1 2M α 2 α h2 2m

Bardziej szczegółowo

Analiza zrekonstruowanych śladów w danych pp 13 TeV

Analiza zrekonstruowanych śladów w danych pp 13 TeV Analiza zrekonstruowanych śladów w danych pp 13 TeV Odtwarzanie rozk ladów za pomoc a danych Monte Carlo Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka 31 lipca 2015 r. Jakub Cholewiński, pod

Bardziej szczegółowo

PRZEKROJE POWIERZCHNI ORAZ PRZENIKANIA SIĘ POWIERZCHNI I WIELOŚCIANÓW REALIZOWANE ZA POMOCĄ PROGRAMU AUTOCAD W PRZESTRZENI E3

PRZEKROJE POWIERZCHNI ORAZ PRZENIKANIA SIĘ POWIERZCHNI I WIELOŚCIANÓW REALIZOWANE ZA POMOCĄ PROGRAMU AUTOCAD W PRZESTRZENI E3 Andrzej KOCH, Krzysztof PAŁAC, Tomasz SULIMA SAMUJŁŁO Wydział Matematyki Stosowanej, Pracownia Geometrii Wykreślnej Akademia Górniczo Hutnicza PRZEKROJE POWIERZCHNI ORAZ PRZENIKANIA SIĘ POWIERZCHNI I WIELOŚCIANÓW

Bardziej szczegółowo

Plan wykładu. Wykład 3. Rzutowanie prostokątne, widoki, przekroje, kłady. Rzutowanie prostokątne - geneza. Rzutowanie prostokątne - geneza

Plan wykładu. Wykład 3. Rzutowanie prostokątne, widoki, przekroje, kłady. Rzutowanie prostokątne - geneza. Rzutowanie prostokątne - geneza Plan wykładu Wykład 3 Rzutowanie prostokątne, widoki, przekroje, kłady 1. Rzutowanie prostokątne - geneza 2. Dwa sposoby wzajemnego położenia rzutni, obiektu i obserwatora, metoda europejska i amerykańska

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna. 11. Rzut cechowany.

Grafika inżynierska geometria wykreślna. 11. Rzut cechowany. Grafika inżynierska geometria wykreślna 11. Rzut cechowany. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 11. Rzut cechowany.

Bardziej szczegółowo

Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym

Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Sprowadzanie zadań sterowania optymalnego do zadań wariacyjnych metod a funkcji kary i mnożników Lagrange a - zadania sterowania optymalnego

Bardziej szczegółowo

Test numer xxx EGZAMIN PISEMNY Z MATEMATYKI DLA KANDYDATÓW NA KIERUNEK MATEMATYKA 5 LIPCA 2001 ROKU. Czas trwania egzaminu: 180 min.

Test numer xxx EGZAMIN PISEMNY Z MATEMATYKI DLA KANDYDATÓW NA KIERUNEK MATEMATYKA 5 LIPCA 2001 ROKU. Czas trwania egzaminu: 180 min. Test numer xxx EGZAMIN PISEMNY Z MATEMATYKI DLA KANDYDATÓW NA KIERUNEK MATEMATYKA 5 LIPCA 001 ROKU Czas trwania egzaminu: 180 min Liczba zadań: 30 Każde zadanie sk lada sie z trzech cześci Odpowiedź do

Bardziej szczegółowo

Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania

Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania 1 Przekszta lcenia liniowe i ich w lasności Definicja 9.1. Niech V i W bed przestrzeniami liniowymi. Przekszta lcenie f : V W spe lniajace warunki:

Bardziej szczegółowo

ELEMENTARZ MATEMATYKA ARYTMETYKA I GEOMETRIA

ELEMENTARZ MATEMATYKA ARYTMETYKA I GEOMETRIA i SZKO LA PODSTAWOWA HELIANTUS 02-892 Warszawa ul. Bażancia 16 ELEMENTARZ MATEMATYKA ARYTMETYKA I GEOMETRIA KLASA I, II, III TADEUSZ STYŠ Warszawa, Październik 2017 ii Contents 0.1 Wstȩp............................

Bardziej szczegółowo

LOGIKA ALGORYTMICZNA

LOGIKA ALGORYTMICZNA LOGIKA ALGORYTMICZNA 0.0. Relacje. Iloczyn kartezjański: A B := (a, b) : a A i b B} (zak ladamy, że (x, y) i (u, v) s a równe wtedy i tylko wtedy gdy x = u i y = v); A n := (x 1,..., x n ) : x i A}; R

Bardziej szczegółowo

RYSUNEK TECHNICZNY I GEOMETRIA WYKREŚLNA INSTRUKCJA DOM Z DRABINĄ I KOMINEM W 2D

RYSUNEK TECHNICZNY I GEOMETRIA WYKREŚLNA INSTRUKCJA DOM Z DRABINĄ I KOMINEM W 2D Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska Zakład Informacji Przestrzennej Inżynieria Środowiska INSTRUKCJA KOMPUTEROWA z Rysunku technicznego i geometrii wykreślnej RYSUNEK TECHNICZNY

Bardziej szczegółowo

w jednym kwadrat ziemia powietrze równoboczny pięciobok

w jednym kwadrat ziemia powietrze równoboczny pięciobok Wielościany Definicja 1: Wielościanem nazywamy zbiór skończonej ilości wielokątów płaskich spełniających następujące warunki: 1. każde dwa wielokąty mają bok lub wierzchołek wspólny albo nie mają żadnego

Bardziej szczegółowo

Geometria i grafika komputerowa

Geometria i grafika komputerowa Geometria i grafika komputerowa Anna Franczyk Katedra Geoinformatyki i Informatyki Stosowanej Wydział Geologii, Geofizyki i Ochrony Środowiska Akademia Górniczo Hutnicza Kraków Podstawowe informacje gdzie

Bardziej szczegółowo

Wyk lad 7 Baza i wymiar przestrzeni liniowej

Wyk lad 7 Baza i wymiar przestrzeni liniowej Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem

Bardziej szczegółowo

Aproksymacja kraw. Od wielu lokalnych cech (edge elements) do spójnej, jednowymiarowej. epnej aproksymacji

Aproksymacja kraw. Od wielu lokalnych cech (edge elements) do spójnej, jednowymiarowej. epnej aproksymacji Aproksymacja kraw edzi Od wielu lokalnych cech (edge elements) do spójnej, jednowymiarowej cechy (edge). Różne podejścia: szukanie w pobliżu wst epnej aproksymacji transformacja Hough a. Wiedza o obiektach:

Bardziej szczegółowo