Sprawozdanie z zad. nr 4 Wahadło Matematyczne z Fizyki Komputerowej. Szymon Wawrzyniak / Artur Angiel / Gr. 5 / Poniedziałek 12:15

Wielkość: px
Rozpocząć pokaz od strony:

Download "Sprawozdanie z zad. nr 4 Wahadło Matematyczne z Fizyki Komputerowej. Szymon Wawrzyniak / Artur Angiel / Gr. 5 / Poniedziałek 12:15"

Transkrypt

1 Sprawozdanie z zad. nr 4 Wahadło Matematyczne z Fizyki Komputerowej Szymon Wawrzyniak / Artur Angiel / Gr. 5 / Poniedziałek 12:15 =============================================== ========================= Zadanie Sztywne wahadło o długości l i masie m może się wahać bez ograniczeń amplitudy. Współczynnik tłumienia wynosi α. Przeanalizować ruch wahadła w sytuacji drgań swobodnych (z wychyleniem początkowym φ(0)=φ 0 i prędkość ω 0 ) oraz w obecności harmonicznej siły wymuszającej. Wykonać wykres fazowy, wykres zależności położenia i prędkości od czasu a także przeanalizować zmiany energii w układzie. Równanie ruchu wahadła:

2 Wykresy dla ruchu bez tłumienia oraz bez obecności harmonicznej siły wymuszającej: Dane dla poniższych wykresów: Φ 0 = 10 o m = 5 l = 10 α = 0 ω w = 1 F 0 = 0 Na poniższych wykresach wyraźnie widzimy, że układ wahadła porusza się bez żadnych oporów oraz bez żadnych wymuszeń. Wykresy zależności położenia oraz prędkości od czasu są idealnymi sinusoidami, przesuniętymi względem siebie w fazie o połowę okresu, co świadczy o tym, co zostało napisane powyżej. Wykres fazowy jest okręgiem, co dodatkowo potwierdza powyższe obserwacje. Tak samo zachowują się wykresy zmian energii. Również są przesunięte względem siebie w fazie o połowę okresu, a suma ich energii jest stała w każdym momencie czasu.

3

4

5 Wykresy dla ruchu bez harmonicznej siły wymuszającej Dane dla poniższych wykresów: Φ 0 = 10 o m = 5 l = 10 α = 0,4 ω w = 1 F 0 = 0 Na poniższych wykresach widzimy wyraźnie, że ruch wahadła matematycznego jest tłumiony i z każdym okresem jego amplituda stopniowo się zmniejsza. Zmiana wychylenia w czasie jest łagodna. Wykres zależności prędkości od czasu wygląda bardzo podobnie do wykresu wychylenia w czasie, lecz jest on przesunięty w fazie o pół okresu względem wykresu położenia. Ponieważ wahadło waha się w dwie strony, więc zwrot wektora prędkości ulega zmianie tak samo jak wektora położenia. Tak samo jak w poprzednim przypadku amplituda łagodnie się zmniejsza wraz z upływem czasu. Można stąd łatwo wywnioskować, że po upływie określonego czasu wahadło po prostu się zatrzyma. Wykres fazowy jest spiralą stopniowo zbliżającą się do początku układu współrzędnych, co oznacza, że prędkość i wychylenie zbliżają się do zera, co wiąże się z zatrzymaniem wahadła. Energie kinetyczna i potencjalna również zmieniają się okresowo, tak samo są przesunięte w stosunku do siebie w fazie o połowę okresu oraz zmniejszają się wraz z upływem czasu. Suma tych energii zmniejsza się w czasie wykładniczo. Niestety dyskretyzacja liczb deformuje wykres sumy energii kinetycznej i potencjalnej.

6

7

8 Wykresy dla ruchu z obecnością harmonicznej siły wymuszającej: Dane dla poniższych wykresów: Φ 0 = 10 o m = 5 l = 10 α = 0,4 ω w = 1 F 0 = 0,5 Powyższe dane różnią się od danych dla drgań swobodnych tylko i wyłącznie wartością F 0, która odpowiada za wymuszenie drgań. Przedstawione wykresy ukazują ruch wahadła po upływie 30s. Początkowo wykres położenia od czasu zachowuje się jak w pierwszym przypadku, czyli amplituda się zmniejsza, ale już po upływie 20s występuje rezonans spowodowany wymuszeniem drgań. Zwroty wahadła oraz siły wymuszającej nie są w tym momencie sobie zgodne, więc wychylenie gwałtownie słabnie po to, aby następnie stopniowo zwiększać swoją wartość wraz z upływem czasu. Podobnie zachowuje się wykres zależności prędkości od czasu, z tym że również jest przesunięty o połowę okresu w stosunku do wykresu prędkości od czasu. Wektory prędkości i siły wymuszającej znów mają w pewnym momencie przeciwne zwroty, więc prędkość gwałtownie spada, aby później stopniowo rosnąć. Wzrost tej prędkości, podobnie jak wyżej wychylenia, spowodowany jest przez siłę wymuszającą. Wykres fazowy przypomina spiralę, do tego lekko chaotyczną, ale od spirali różni go to, że początkowo dąży do początku układu współrzędnych, ale jak zauważono powyżej, siła wymuszająca zaburza jej przebieg i spirala zaczyna biec do zewnątrz i bardzo prawdopodobne, że w pewnym momencie znalazłaby się ona w punkcie początkowym, a następnie rozszerzałaby się jeszcze bardziej. Wykresy energii kinetycznej i potencjalnej są, tak samo jak we wszystkich przypadkach, przesunięte względem siebie w fazie o połowę okresu. Siła wymuszająca wraz z upływem czasu powoduje stopniowe zwiększanie amplitud tych wykresów. Suma energii rośnie logarytmicznie i jakby opiera się na wierzchołkach wykresów tych energii. Niestety dyskretyzacja wartości deformuje wykres sum energii.

9

10

11 Wykresy dla ruchu chaotycznego: Dane dla poniższych wykresów: Φ 0 = 10 o m = 5 l = 10 α = 15 ω w = 1 F 0 = 60 Poniższe wykresy przedstawiają sytuację kiedy ruch tego wahadła jest chaotyczny. Pierwsza ich seria przedstawia ruch przez pierwsze 10s, a druga seria, w czasie 100s. Na wykresach położenia od czasu widać wyraźne zniekształcenia sinusoidy, co jednoznacznie świadczy o chaosie, który wdarł się do ruchu wahadła. Wyraźnie widać to na wykresach prędkości od czasu, gdzie zaburzenia tej sinusoidy są o wiele bardziej widocznie. W tych przypadkach nie możemy mówić o tym, że wykresy te są przesunięte w względem siebie w fazie, ponieważ nie są one okresowe, na co wskazują wykresy fazowe ruchów tego wahadła. Zwiększając czas, w którym wahadło się porusza, wykres fazowy robi się coraz bardziej pogmatwany i aktualny punkt położenia i prędkości, nigdy nie znajdzie się w tym samym miejscu co punkt początkowy, co ewidentnie mówi nam o chaotycznym ruchu tego wahadła. Wykresy zmian energii w ogóle nie posiadają porządku tak jak to było w poprzednich przypadkach, co dodatkowo potwierdza to, co zostało zauważone powyżej.

12

13

14

15

16 Wnioski: Na powyższych wykresach widać wyraźnie, że prędkości i wychylenia mają niemalże identyczny charakter. Różnią się jedynie tym, że są w stosunku do siebie przesunięte w fazie o połowę okresu. Różnią się też oczywiście wymiarem. Wykresy fazowe przypominają spirale, a to czy aktualnie ta spirala się powiększa czy pomniejsza, związane jest z tym, czy amplitudy na poprzednich dwóch wykresach odpowiednio się zwiększają czy zmniejszają. To samo dzieje się z wykresami energii. Powyższe wnioski nie dotyczą oczywiście sytuacji, w której ruch jest chaotyczny, ponieważ wtedy nie możemy mówić o okresowości takiego ruchu, czy charakterze sum energii. Wykres fazowy takiego ruchu wraz ze zwiększaniem czasu, w którym obserwujemy ruch wahadła, będzie coraz bardziej chaotyczny, co nie pozostawia żadnych wątpliwości co do chaotyczności takiego ruchu. Wyniki działania programu są zatem zgodne z naszymi oczekiwaniami, ogólnie przyjętymi prawami fizyki, które zostały na przestrzeni dziejów oczywiście udowodnione, oraz z zasadami logiki jak i intuicją.

Ć W I C Z E N I E N R M-2

Ć W I C Z E N I E N R M-2 INSYU FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I ECHNOLOGII MAERIAŁÓW POLIECHNIKA CZĘSOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M- ZALEŻNOŚĆ OKRESU DRGAŃ WAHADŁA OD AMPLIUDY Ćwiczenie M-: Zależność

Bardziej szczegółowo

36P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do optyki geometrycznej)

36P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do optyki geometrycznej) Włodzimierz Wolczyński 36P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (od początku do optyki geometrycznej) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod

Bardziej szczegółowo

Rozdział 8. Analiza fourierowska. 8.1 Rozwinięcie w szereg Fouriera

Rozdział 8. Analiza fourierowska. 8.1 Rozwinięcie w szereg Fouriera Rozdział 8 Analiza fourierowska 8.1 Rozwinięcie w szereg Fouriera Rozważmy funkcję rzeczywistą f określoną na okręgu o promieniu jednostkowym. Parametryzując okrąg przy pomocy kąta φ [, π] otrzymujemy

Bardziej szczegółowo

Czytanie wykresów to ważna umiejętność, jeden wykres zawiera więcej informacji, niż strona tekstu. Dlatego musisz umieć to robić.

Czytanie wykresów to ważna umiejętność, jeden wykres zawiera więcej informacji, niż strona tekstu. Dlatego musisz umieć to robić. Analiza i czytanie wykresów Czytanie wykresów to ważna umiejętność, jeden wykres zawiera więcej informacji, niż strona tekstu. Dlatego musisz umieć to robić. Aby dobrze odczytać wykres zaczynamy od opisu

Bardziej szczegółowo

KOOF Szczecin: www.of.szc.pl

KOOF Szczecin: www.of.szc.pl 3OF_III_D KOOF Szczecin: www.of.szc.pl XXXII OLIMPIADA FIZYCZNA (198/1983). Stopień III, zadanie doświadczalne D Źródło: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej; Waldemar

Bardziej szczegółowo

Test sprawdzający wiedzę z fizyki z zakresu gimnazjum autor: Dorota Jeziorek-Knioła

Test sprawdzający wiedzę z fizyki z zakresu gimnazjum autor: Dorota Jeziorek-Knioła Test. ( p.) Wzdłuż wiszących swobodnie drutów telefonicznych przesuwa się fala z prędkością 4 s m. Odległość dwóch najbliższych grzbietów fali wynosi 00 cm. Okres i częstotliwość drgań wynoszą: A. 4 s;

Bardziej szczegółowo

ZBIÓR ZADAŃ STRUKTURALNYCH

ZBIÓR ZADAŃ STRUKTURALNYCH ZBIÓR ZADAŃ STRUKTURALNYCH Zgodnie z zaleceniami metodyki nauki fizyki we współczesnej szkole zadania prezentowane uczniom mają odnosić się do rzeczywistości i być tak sformułowane, aby każdy nawet najsłabszy

Bardziej szczegółowo

Efekt motyla i dziwne atraktory

Efekt motyla i dziwne atraktory O układzie Lorenza Wydział Matematyki i Informatyki Uniwersytet Mikołaja kopernika Toruń, 3 grudnia 2009 Spis treści 1 Wprowadzenie Wyjaśnienie pojęć 2 O dziwnych atraktorach 3 Wyjaśnienie pojęć Dowolny

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03 METODY OBLICZENIOWE Projekt nr 3.4 Dariusz Ostrowski, Wojciech Muła 2FD/L03 Zadanie Nasze zadanie składało się z dwóch części: 1. Sformułowanie, przy użyciu metody Lagrange a II rodzaju, równania różniczkowego

Bardziej szczegółowo

Zbigniew Osiak ZADA IA PROBLEMOWE Z FIZYKI

Zbigniew Osiak ZADA IA PROBLEMOWE Z FIZYKI Zbigniew Osiak ZADA IA PROBLEMOWE Z FIZYKI 3 Copyright by Zbigniew Osiak Wszelkie prawa zastrzeżone. Rozpowszechnianie i kopiowanie całości lub części publikacji zabronione bez pisemnej zgody autora. Portret

Bardziej szczegółowo

Wstęp. System pomiarowy. Przemysław Słota I Liceum Ogólnokształcące Bytom, Grupa Twórcza Quark Pałac Młodzieży w Katowicach

Wstęp. System pomiarowy. Przemysław Słota I Liceum Ogólnokształcące Bytom, Grupa Twórcza Quark Pałac Młodzieży w Katowicach Przemysław Słota I Liceum Ogólnokształcące Bytom, Grupa Twórcza Quark Pałac Młodzieży w Katowicach 1. Wymyśl sam Wiadomo, że niektóre obwody elektryczne wykazują zachowanie chaotyczne. Zbuduj prosty układ

Bardziej szczegółowo

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH

Bardziej szczegółowo

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r.

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r. V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r. 1. Po wirującej płycie gramofonowej idzie wzdłuż promienia mrówka ze stałą prędkością względem płyty. Torem ruchu mrówki

Bardziej szczegółowo

WOJEWÓDZKI KONKURS FIZYCZNY [ETAP WOJEWÓDZKI CZĘŚĆ I] ROK SZKOLNY 2010/2011 Czas trwania: 90 minut

WOJEWÓDZKI KONKURS FIZYCZNY [ETAP WOJEWÓDZKI CZĘŚĆ I] ROK SZKOLNY 2010/2011 Czas trwania: 90 minut MIEJSCE NA KOD UCZESNIKA KONKURSU WOJEWÓDZKI KONKURS FIZYCZNY [ETAP WOJEWÓDZKI CZĘŚĆ I] ROK SZKOLNY 2010/2011 Czas trwania: 90 minut Część pierwsza zawiera 6 zadań otwartych, za które możesz otrzymać maksymalnie

Bardziej szczegółowo

I N S T Y T U T F I Z Y K I U N I W E R S Y T E T U G D AŃSKIEGO I N S T Y T U T K S Z T A Ł C E N I A N A U C Z Y C I E L I

I N S T Y T U T F I Z Y K I U N I W E R S Y T E T U G D AŃSKIEGO I N S T Y T U T K S Z T A Ł C E N I A N A U C Z Y C I E L I I N S T Y T U T F I Z Y K I U N I W E R S Y T E T U G D AŃSKIEGO I N S T Y T U T K S Z T A Ł C E N I A N A U C Z Y C I E L I C ZĘŚĆ I I I Podręcznik dla nauczycieli klas III liceum ogólnokształcącego i

Bardziej szczegółowo

Wymagania na poszczególne oceny z fizyki w klasie drugiej i trzeciej liceum zakres rozszerzony.

Wymagania na poszczególne oceny z fizyki w klasie drugiej i trzeciej liceum zakres rozszerzony. Wymagania na poszczególne oceny z fizyki w klasie drugiej i trzeciej liceum zakres rozszerzony. Zasady ogólne 1. Wymagania na każdy stopień wyższy niż dopuszczający obejmują również wymagania na stopień

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

ZESTAW ZADAŃ KONKURSOWYCH Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2013/2014 ETAP OKRĘGOWY

ZESTAW ZADAŃ KONKURSOWYCH Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2013/2014 ETAP OKRĘGOWY Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2013/2014 ETAP OKRĘGOWY KOD UCZNIA Instrukcja dla ucznia 1. Arkusz liczy 12 stron (z brudnopisem) i zawiera

Bardziej szczegółowo

- podaje warunki konieczne do tego, by w sensie fizycznym była wykonywana praca

- podaje warunki konieczne do tego, by w sensie fizycznym była wykonywana praca Fizyka, klasa II Podręcznik: Świat fizyki, cz.2 pod red. Barbary Sagnowskiej 6. Praca. Moc. Energia. Lp. Temat lekcji Wymagania konieczne i podstawowe 1 Praca mechaniczna - podaje przykłady wykonania pracy

Bardziej szczegółowo

Zasady oceniania do programu nauczania Z fizyką w przyszłość. Zakres rozszerzony

Zasady oceniania do programu nauczania Z fizyką w przyszłość. Zakres rozszerzony Zasady oceniania do programu nauczania Z fizyką w przyszłość Zakres rozszerzony Zasady ogólne: 1. Wymagania na każdy stopień wyższy niż dopuszczający obejmują również wymagania na stopień poprzedni. 2.

Bardziej szczegółowo

KONCEPCJA TESTU. Test sprawdza bieżące wiadomości i umiejętności z zakresu kinematyki i dynamiki w klasie I LO.

KONCEPCJA TESTU. Test sprawdza bieżące wiadomości i umiejętności z zakresu kinematyki i dynamiki w klasie I LO. JOLANTA SUCHAŃSKA. CEL POMIARU: KONCEPCJA TESTU Test sprawdza bieżące wiadomości i umiejętności z zakresu kinematyki i dynamiki w klasie I LO. 2. RODZAJ TESTU: Jest to test sprawdzający, wielostopniowy,

Bardziej szczegółowo

Wykład 7: Układy cząstek. WPPT, Matematyka Stosowana

Wykład 7: Układy cząstek. WPPT, Matematyka Stosowana Wykład 7: Układy cząstek WPPT, Matematyka Stosowana Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał wypadek? Uderzasz kijem w kule bilardowe czy to uda ci się trafić w kieszeń?

Bardziej szczegółowo

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające. Plan wynikowy lasa III Technik pojazdów samochodowych/ Technik urządzeń

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub

Bardziej szczegółowo

Inwestor musi wybrać następujące parametry: instrument bazowy, rodzaj opcji (kupna lub sprzedaży, kurs wykonania i termin wygaśnięcia.

Inwestor musi wybrać następujące parametry: instrument bazowy, rodzaj opcji (kupna lub sprzedaży, kurs wykonania i termin wygaśnięcia. Opcje na GPW (II) Wbrew ogólnej opinii, inwestowanie w opcje nie musi być trudne. Na rynku tym można tworzyć strategie dla doświadczonych inwestorów, ale również dla początkujących. Najprostszym sposobem

Bardziej szczegółowo

PF11- Dynamika bryły sztywnej.

PF11- Dynamika bryły sztywnej. Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych

Bardziej szczegółowo

8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT)

8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) 8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) Ćwiczenie polega na wykonaniu analizy widmowej zadanych sygnałów metodą FFT, a następnie określeniu amplitud i częstotliwości głównych składowych

Bardziej szczegółowo

Matura próbna 2014 z matematyki-poziom podstawowy

Matura próbna 2014 z matematyki-poziom podstawowy Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B

Bardziej szczegółowo

Studenckie Koło Naukowe Rynków Kapitałowych Zbieżność i rozbieżność średnich kroczących - MACD (Moving Average Convergence Divergence).

Studenckie Koło Naukowe Rynków Kapitałowych Zbieżność i rozbieżność średnich kroczących - MACD (Moving Average Convergence Divergence). Zbieżność i rozbieżność średnich kroczących - MACD (Moving Average Convergence Divergence). MACD (zbieżność i rozbieżność średnich kroczących) - jest jednym z najczęściej używanych wskaźników. Jego popularność

Bardziej szczegółowo

XII WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów województwa kujawsko-pomorskiego 2014/2015 Etap rejonowy czas rozwiązania 90 minut

XII WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów województwa kujawsko-pomorskiego 2014/2015 Etap rejonowy czas rozwiązania 90 minut XII WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów województwa kujawsko-pomorskiego 2014/2015 Etap rejonowy czas rozwiązania 90 minut Na karcie odpowiedzi należy umieścić swój kod (numer).

Bardziej szczegółowo

Przedmiotowy system oceniania z fizyki dla klas szkół ponadgimnazjalnych (poziom rozrzerzony) rok szkolny 2015/2016 (KLASY: 3LA,3LB,3LC) I.

Przedmiotowy system oceniania z fizyki dla klas szkół ponadgimnazjalnych (poziom rozrzerzony) rok szkolny 2015/2016 (KLASY: 3LA,3LB,3LC) I. Przedmiotowy system oceniania z fizyki dla klas szkół ponadgimnazjalnych (poziom rozrzerzony) rok szkolny 2015/2016 Poziomie rozszerzonym Zrozumieć fizykę wydawnictwa Nowa Era, autorzy: M.Braun, K. Byczuk,

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU II. Zadanie 28. Kołowrót

SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU II. Zadanie 28. Kołowrót SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU II Zadanie 8. Kołowrót Numer dania Narysowanie sił działających na układ. czynność danie N N Q 8. Zapisanie równania ruchu obrotowego kołowrotu.

Bardziej szczegółowo

Analiza sygnału mowy pod kątem rozpoznania mówcy chorego. Anna Kosiek, Dominik Fert

Analiza sygnału mowy pod kątem rozpoznania mówcy chorego. Anna Kosiek, Dominik Fert Analiza sygnału mowy pod kątem rozpoznania mówcy chorego Anna Kosiek, Dominik Fert Wstęp: Analiza sygnału akustycznego była wykorzystywana w medycynie jeszcze przed wykorzystaniem jej w technice. Sygnał

Bardziej szczegółowo

EGZAMIN MATURALNY Z FIZYKI Z ASTRONOMIĄ

EGZAMIN MATURALNY Z FIZYKI Z ASTRONOMIĄ KOD ZDAJĄCEGO WPISUJE PISZĄCY PO OTRZYMANIU PRACY EGZAMIN MATURALNY Z FIZYKI Z ASTRONOMIĄ ARKUSZ II STYCZEŃ ROK 2002 Czas pracy 120 minut Informacje 1. Proszę sprawdzić, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

Fizyka I dla ZFBM-FMiNI+ Projektowanie Molek. i Bioinformatyka 2015/2016

Fizyka I dla ZFBM-FMiNI+ Projektowanie Molek. i Bioinformatyka 2015/2016 Fizyka I dla ZFBM-FMiNI+ Projektowanie Molek. i Bioinformatyka 2015/2016 Streszczenie Wykład przedstawia podstawowe zagadnienia mechaniki klasycznej od kinematyki punktu materialnego, przez prawa Newtona

Bardziej szczegółowo

Wzmacniacz jako generator. Warunki generacji

Wzmacniacz jako generator. Warunki generacji Generatory napięcia sinusoidalnego Drgania sinusoidalne można uzyskać Poprzez utworzenie wzmacniacza, który dla jednej częstotliwości miałby wzmocnienie równe nieskończoności. Poprzez odtłumienie rzeczywistego

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się

Bardziej szczegółowo

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor.

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. DKOS-5002-2\04 Anna Basza-Szuland FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA REALIZOWANYCH TREŚCI PROGRAMOWYCH Kinematyka

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

FIZYKA I ASTRONOMIA. Matura z Kwazarem. Życzymy powodzenia!

FIZYKA I ASTRONOMIA. Matura z Kwazarem. Życzymy powodzenia! FIZYKA I ASTRONOMIA Matura z Kwazarem ARKUSZ PRÓBNEJ MATURY FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY Instrukcje dla zdającego: 1. Sprawdź, czy arkusz egzaminacyjny zawiera 12 stron (zadania 1 6). Ewentualny

Bardziej szczegółowo

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne. Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować

Bardziej szczegółowo

Badanie roli pudła rezonansowego za pomocą konsoli pomiarowej CoachLab II

Badanie roli pudła rezonansowego za pomocą konsoli pomiarowej CoachLab II 52 FOTON 99, Zima 27 Badanie roli pudła rezonansowego za pomocą konsoli pomiarowej CoachLab II Bogdan Bogacz Pracownia Technicznych Środków Nauczania Zakład Metodyki Nauczania i Metodologii Fizyki Instytut

Bardziej szczegółowo

Analiza zależności liniowych

Analiza zależności liniowych Narzędzie do ustalenia, które zmienne są ważne dla Inwestora Analiza zależności liniowych Identyfikuje siłę i kierunek powiązania pomiędzy zmiennymi Umożliwia wybór zmiennych wpływających na giełdę Ustala

Bardziej szczegółowo

Test sprawdzający wiedzę z fizyki z zakresu gimnazjum autor: Dorota Jeziorek-Knioła

Test sprawdzający wiedzę z fizyki z zakresu gimnazjum autor: Dorota Jeziorek-Knioła Spotkania z fizyką, część 4 Test 1 1. (1 p.) Na lekcji fizyki uczniowie demonstrowali zjawisko załamania światła na granicy wody i powietrza, po czym sporządzili rysunek przedstawiający bieg promienia

Bardziej szczegółowo

Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 2013

Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 2013 Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 013 3.4.1 Inwersja względem okręgu. Inwersja względem okręgu jest przekształceniem płaszczyzny

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

Wojewódzki Konkurs Fizyczny dla uczniów gimnazjów województwa wielkopolskiego ETAP WOJEWÓDZKI

Wojewódzki Konkurs Fizyczny dla uczniów gimnazjów województwa wielkopolskiego ETAP WOJEWÓDZKI Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Fizyczny dla uczniów gimnazjów ETAP WOJEWÓDZKI Rok szkolny 2012/2013 CZĘŚĆ I Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 8 stron.

Bardziej szczegółowo

Wolumen, obrót, LOP kluczowe czynniki, o których często się zapomina

Wolumen, obrót, LOP kluczowe czynniki, o których często się zapomina Wolumen, obrót, LOP kluczowe czynniki, o których często się zapomina Wolumen obok ceny stanowi podstawową daną badaną przez analizę techniczną. Pokazuje on aktywność Inwestorów na rynku wielkość wolumenu

Bardziej szczegółowo

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla.

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla. rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 03 WPISUJE ZJĄY KO PESEL Miejsce na naklejkę z kodem dysleksja EGZMIN MTURLNY Z MTEMTYKI POZIOM POSTWOWY MJ

Bardziej szczegółowo

PRACA. MOC. ENERGIA. 1/20

PRACA. MOC. ENERGIA. 1/20 PRACA. MOC. ENERGIA. 1/20 Czym jest energia? Większość zjawisk w przyrodzie związana jest z przemianami energii. Energia może zostać przekazana od jednego ciała do drugiego lub ulec przemianie z jednej

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

Waluty to nie wszystko Wykres 1. Korelacja między S&P500 i dolarem w latach 2001-2011 (6 miesięcy krocząco). Źródło:Bespoke Investment Group

Waluty to nie wszystko Wykres 1. Korelacja między S&P500 i dolarem w latach 2001-2011 (6 miesięcy krocząco). Źródło:Bespoke Investment Group ANALIZA NOBLE SECURITIES, 01.04.2011 r. Banki centralne popsuły rynki W ostatnim czasie zupełnie zaniknęła korelacja między kursem dolara a zachowaniem rynków akcji. Jednocześnie korelacja obligacje akcje

Bardziej szczegółowo

Przekształcenia wykresu funkcji wykładniczej - scenariusz lekcji. ( czas realizacji: 2- wie godziny lekcyjne)

Przekształcenia wykresu funkcji wykładniczej - scenariusz lekcji. ( czas realizacji: 2- wie godziny lekcyjne) Przekształcenia wykresu funkcji wykładniczej - scenariusz lekcji. ( czas realizacji: 2- wie godziny lekcyjne) Opracowała: Marlena Lisiecka Cele realizowane podczas lekcji: - znajdowanie potrzebnych informacji

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów

Metody numeryczne. materiały do wykładu dla studentów Metody numeryczne materiały do wykładu dla studentów 4. Wartości własne i wektory własne 4.1. Podstawowe definicje, własności i twierdzenia 4.2. Lokalizacja wartości własnych 4.3. Metoda potęgowa znajdowania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 GIMNAZJUM KL. IA, ID ROK SZK. 2010/2011. Osiągnięcia ponadprzedmiotowe

WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 GIMNAZJUM KL. IA, ID ROK SZK. 2010/2011. Osiągnięcia ponadprzedmiotowe WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 GIMNAZJUM KL. IA, ID ROK SZK. 2010/2011 W rezultacie kształcenia matematycznego uczeń potrafi: Umiejętności konieczne i podstawowe Osiągnięcia ponadprzedmiotowe

Bardziej szczegółowo

Ruch harmoniczny i fale mechaniczne

Ruch harmoniczny i fale mechaniczne WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA INNOWACYJNY PROGRAM NAUCZANIA FIZYKI W SZKOŁACH PONADGIMNAZJALNYCH Moduł dydaktyczny: fizyka - informatyka Ruch harmoniczny i fale mechaniczne

Bardziej szczegółowo

SPEKTROSKOPIA RAMANA. Laboratorium Laserowej Spektroskopii Molekularnej PŁ

SPEKTROSKOPIA RAMANA. Laboratorium Laserowej Spektroskopii Molekularnej PŁ SPEKTROSKOPIA RAMANA Laboratorium Laserowej Spektroskopii Molekularnej PŁ WIDMO OSCYLACYJNE Zręby atomowe w molekule wykonują oscylacje wokół położenia równowagi. Ruch ten można rozłożyć na 3n-6 w przypadku

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania

Bardziej szczegółowo

GIMNAZJADA 2014 03.04.2014 Część chemia V edycja konkursu Nieprawdą nie mogło

GIMNAZJADA 2014 03.04.2014 Część chemia V edycja konkursu Nieprawdą nie mogło GIMNAZJADA 2014 03.04.2014 Część chemia V edycja konkursu Zad.1. Zdecyduj, który z niżej wymienionych roztworów mógłbyś służyć w roli okładu na miejsce ukąszenia przez mrówkę. Jako roztworu neutralizującego

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I Geometria analityczna 1. Równanie prostej w postaci ogólnej i kierunkowej powtórzenie 2. Wzajemne położenie dwóch prostych powtórzenie

Bardziej szczegółowo

MACD wskaźnik trendu

MACD wskaźnik trendu MACD wskaźnik trendu Opracowany przez Geralda Appela oscylator MACD (Moving Average Convergence/Divergence) to jeden z najpopularniejszych wskaźników analizy technicznej. Jest on połączeniem funkcji oscylatora

Bardziej szczegółowo

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA Z ZAKRESU NAUK PRZYRODNICZYCH (BIOLOGIA, CHEMIA, FIZYKA, GEOGRAFIA)

PRZEDMIOTOWE ZASADY OCENIANIA Z ZAKRESU NAUK PRZYRODNICZYCH (BIOLOGIA, CHEMIA, FIZYKA, GEOGRAFIA) PRZEDMIOTOWE ZASADY OCENIANIA Z ZAKRESU NAUK PRZYRODNICZYCH (BIOLOGIA, CHEMIA, FIZYKA, GEOGRAFIA) W I LICEUM OGÓLNOKSZTAŁCĄCYM IM. WOJCIECHA KĘTRZYŃSKIEGO W GIŻYCKU ROK SZKOLNY 2015-2016 Opracowany na

Bardziej szczegółowo

Osiągnięcia przedmiotowe

Osiągnięcia przedmiotowe 1. Zbieranie, porządkowanie i prezentowanie danych przedstawione w tabelach przedstawione na przedstawiać dane w tabelach przedstawiać dane na przedstawione w tabelach przedstawione na porównywać informacje

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1.1 Narysowanie toru ruchu ciała w rzucie ukośnym. Narysowanie wektora siły działającej na ciało w

Bardziej szczegółowo

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008 Zajęcia fakultatywne z matematyki 008 WYRAŻENIA ARYTMETYCZNE I ALGEBRAICZNE. Wylicz b z równania a) ba + a = + b; b) a = b ; b+a c) a b = b ; d) a +ab =. a b. Oblicz a) [ 4 (0, 5) ] + ; b) 5 5 5 5+ 5 5

Bardziej szczegółowo

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m.

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m. Segment B.XIV Prądy zmienne Przygotowała: dr Anna Zawadzka Zad. 1 Obwód drgający składa się z pojemności C = 4 nf oraz samoindukcji L = 90 µh. Jaki jest okres, częstotliwość, częstość kątowa drgań oraz

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI We współpracy z POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

P. R. Bevington and D. K. Robinson, Data reduction and error analysis for the physical sciences. McGraw-Hill, Inc., 1992. ISBN 0-07- 911243-9.

P. R. Bevington and D. K. Robinson, Data reduction and error analysis for the physical sciences. McGraw-Hill, Inc., 1992. ISBN 0-07- 911243-9. Literatura: P. R. Bevington and D. K. Robinson, Data reduction and error analysis for the physical sciences. McGraw-Hill, Inc., 1992. ISBN 0-07- 911243-9. A. Zięba, 2001, Natura rachunku niepewności a

Bardziej szczegółowo

Autonomiczne składniki popytu globalnego Efekt wypierania i tłumienia Krzywa IS Krzywa LM Model IS-LM

Autonomiczne składniki popytu globalnego Efekt wypierania i tłumienia Krzywa IS Krzywa LM Model IS-LM Autonomiczne składniki popytu globalnego Efekt wypierania i tłumienia Krzywa IS Krzywa LM Model IS-LM Konsumpcja, inwestycje Utrzymujemy założenie o stałości cen w gospodarce. Stopa procentowa wiąże ze

Bardziej szczegółowo

Egzamin gimnazjalny 2015 część matematyczna

Egzamin gimnazjalny 2015 część matematyczna Egzamin gimnazjalny 2015 część matematyczna imię i nazwisko Kalendarz gimnazjalisty Tydz. Dział start 22.09 29 26.09 Przygotowanie do pracy zapoznanie się z informacjami na temat egzaminu gimnazjalnego

Bardziej szczegółowo

Systemy akwizycji i przesyłania informacji

Systemy akwizycji i przesyłania informacji Politechnika Rzeszowska im. Ignacego Łukasiewicza w Rzeszowie Wydział Elektryczny Kierunek: Informatyka Systemy akwizycji i przesyłania informacji Projekt zaliczeniowy Temat pracy: Okna wygładzania ZUMFL

Bardziej szczegółowo

KLASA II (nacobezu) Rozdział I. PRACA, MOC, ENERGIA. Ciepło jako forma przekazywania energii. Wymagania rozszerzające (PP) (oceny:4,5) (oceny:2,3)

KLASA II (nacobezu) Rozdział I. PRACA, MOC, ENERGIA. Ciepło jako forma przekazywania energii. Wymagania rozszerzające (PP) (oceny:4,5) (oceny:2,3) KLASA II (nacobezu) Rozdział I. PRACA, MOC, ENERGIA Temat lekcji Wymagania podstawowe (P) (oceny:2,3) Wymagania rozszerzające (PP) (oceny:4,5) 1. Praca praca jest wykonywana wtedy, gdy pod działaniem siły

Bardziej szczegółowo

Rozkłady statyczne Maxwella Boltzmana. Konrad Jachyra I IM gr V lab

Rozkłady statyczne Maxwella Boltzmana. Konrad Jachyra I IM gr V lab Rozkłady statyczne Maxwella Boltzmana Konrad Jachyra I IM gr V lab MODEL STATYCZNY Model statystyczny hipoteza lub układ hipotez, sformułowanych w sposób matematyczny (odpowiednio w postaci równania lub

Bardziej szczegółowo

Budowa stopów. (układy równowagi fazowej)

Budowa stopów. (układy równowagi fazowej) Budowa stopów (układy równowagi fazowej) Równowaga termodynamiczna Stopy metali są trwałe w stanie równowagi termodynamicznej. Równowaga jest osiągnięta, gdy energia swobodna układu uzyska minimum lub

Bardziej szczegółowo

WYKRESY FUNKCJI LINIOWEJ

WYKRESY FUNKCJI LINIOWEJ GIMNAZJUM NR 2 W KAMIENNEJ GÓRZE WYKRESY FUNKCJI LINIOWEJ Oprcowała Wiesława Kurnyta Kamienna Góra, 2006 Oto wypisy z Podstawy programowej o nauczaniu matematyki w gimnazjum Cele edukacyjne 1. E Przyswajanie

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

Fizyka Program nauczania dla szkół ponadgimnazjalnych Zakres rozszerzony Ewa Przysiecka

Fizyka Program nauczania dla szkół ponadgimnazjalnych Zakres rozszerzony Ewa Przysiecka Fizyka Program nauczania dla szkół ponadgimnazjalnych Zakres rozszerzony Ewa Przysiecka Spis treści 1. Wstęp 3 2. Cele kształcenia i wychowania 4 3. Treści edukacyjne 5 4. Sposoby osiągania celów kształcenia

Bardziej szczegółowo

TEST. str. 1. Punktacja testu: odpowiedź poprawna 2 punkty, odpowiedź błędna 0 punktów. Na rozwiązanie testu i krzyżówki masz 70 minut. POWODZENIA!

TEST. str. 1. Punktacja testu: odpowiedź poprawna 2 punkty, odpowiedź błędna 0 punktów. Na rozwiązanie testu i krzyżówki masz 70 minut. POWODZENIA! Przed Tobą test zadań zamkniętych i krzyżówka. W każdym zadaniu zamkniętym tylko jedna odpowiedź jest poprawna. Swoje odpowiedzi do testu zaznacz w karcie odpowiedzi. Krzyżówkę rozwiąż na kartce, na której

Bardziej szczegółowo

OKREŚLENIE PRĘDKOŚCI PORUSZANIA SIĘ SZKODNIKÓW Z WYKORZYSTANIEM KOMPUTEROWEJ ANALIZY OBRAZU

OKREŚLENIE PRĘDKOŚCI PORUSZANIA SIĘ SZKODNIKÓW Z WYKORZYSTANIEM KOMPUTEROWEJ ANALIZY OBRAZU Inżynieria Rolnicza 2(90)/2007 OKREŚLENIE PRĘDKOŚCI PORUSZANIA SIĘ SZKODNIKÓW Z WYKORZYSTANIEM KOMPUTEROWEJ ANALIZY OBRAZU Joanna Rut, Katarzyna Szwedziak, Marek Tukiendorf Zakład Techniki Rolniczej i

Bardziej szczegółowo

1.Wymyśl Sam. Staszic 14 Autorzy: Tymoteusz Miara, Radost Waszkiewicz, Paweł Czyż, Anna Wald, Łukasz Popek, Jan Marucha

1.Wymyśl Sam. Staszic 14 Autorzy: Tymoteusz Miara, Radost Waszkiewicz, Paweł Czyż, Anna Wald, Łukasz Popek, Jan Marucha 1.Wymyśl Sam Staszic 14 Autorzy: Tymoteusz Miara, Radost Waszkiewicz, Paweł Czyż, Anna Wald, Łukasz Popek, Jan Marucha 1. Wstęp Wiadomo, że niektóre obwody wykazują działanie chaotyczne. Zbuduj prosty

Bardziej szczegółowo

KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 27 stycznia 2012 r. zawody II stopnia (rejonowe)

KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 27 stycznia 2012 r. zawody II stopnia (rejonowe) Pieczęć KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 27 stycznia 2012 r. zawody II stopnia (rejonowe) Witamy Cię na drugim etapie Konkursu Fizycznego i życzymy powodzenia. Maksymalna liczba

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

Statystyczną ideę szacowania wskaźników EWD dobrze ilustrują dwa poniższe wykresy:

Statystyczną ideę szacowania wskaźników EWD dobrze ilustrują dwa poniższe wykresy: 1 Metoda EWD (edukacyjna wartość dodana) to zestaw technik statystycznych pozwalających zmierzyć wkład szkoły w wyniki nauczania. By można ją zastosować, potrzebujemy wyników przynajmniej dwóch pomiarów

Bardziej szczegółowo

ANALIZA SPÓŁEK 21.08.2006. Witam.

ANALIZA SPÓŁEK 21.08.2006. Witam. ANALIZA SPÓŁEK 21.08.2006 Witam. DWORY Spółka zadebiutowała na GPW w grudniu 2004 roku. Przez pierwszych dziesięć miesięcy notowania przebiegały w bardzo wąskiej stabilizacji. Cena akcji wahała się pomiędzy

Bardziej szczegółowo

L ABORATORIUM UKŁADÓW ANALOGOWYCH

L ABORATORIUM UKŁADÓW ANALOGOWYCH WOJSKOWA AKADEMIA TECHNICZNA W YDZIAŁ ELEKTRONIKI zima L ABORATORIUM UKŁADÓW ANALOGOWYCH Grupa:... Data wykonania ćwiczenia: Ćwiczenie prowadził: Imię:......... Data oddania sprawozdania: Podpis: Nazwisko:......

Bardziej szczegółowo

Zadanie 3. Na prostej o równaniu y = 2x 3 znajdź punkt P, którego odległość od punktu A = ( 2, -1 ) jest najmniejsza. Oblicz AP

Zadanie 3. Na prostej o równaniu y = 2x 3 znajdź punkt P, którego odległość od punktu A = ( 2, -1 ) jest najmniejsza. Oblicz AP Zadania do samodzielnego rozwiązania: II dział Funkcja liniowa, własności funkcji Zadanie. Liczba x = - 7 jest miejscem zerowym funkcji liniowej f ( x) ( a) x 7 dla A. a = - 7 B. a = C. a = D. a = - 1

Bardziej szczegółowo

K. Rochowicz, M. Sadowska, G. Karwasz i inni, Toruński poręcznik do fizyki Gimnazjum I klasa Całość: http://dydaktyka.fizyka.umk.

K. Rochowicz, M. Sadowska, G. Karwasz i inni, Toruński poręcznik do fizyki Gimnazjum I klasa Całość: http://dydaktyka.fizyka.umk. 3.2 Ruch prostoliniowy jednostajny Kiedy obserwujemy ruch samochodu po drodze między dwoma tunelami, albo ruch bąbelka powietrza ku górze w szklance wody mineralnej, jest to ruch po linii prostej. W przypadku

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa

SCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

Przedmiotowy system oceniania (propozycja)

Przedmiotowy system oceniania (propozycja) Przedmiotowy system oceniania (propozycja) Wymagania na poszczególne oceny konieczne podstawowe rozszerzające dopełniające ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra 1 2 3 4 wymienia

Bardziej szczegółowo

Cechy podzielności liczb. Autor: Szymon Stolarczyk

Cechy podzielności liczb. Autor: Szymon Stolarczyk Cechy podzielności liczb Autor: Szymon Stolarczyk Podzielnośd liczb Podzielnośd przez 2 Podzielnośd przez 3 Podzielnośd przez 4 Podzielnośd przez 5 Podzielnośd przez 9 Podzielnośd przez 10 Podzielnośd

Bardziej szczegółowo

FIZYKA IV etap edukacyjny zakres rozszerzony

FIZYKA IV etap edukacyjny zakres rozszerzony FIZYKA IV etap edukacyjny zakres rozszerzony Cele kształcenia wymagania ogólne I. Znajomość i umiejętność wykorzystania pojęć i praw fizyki do wyjaśniania procesów i zjawisk w przyrodzie. II. Analiza tekstów

Bardziej szczegółowo

Koszty manipulacyjne funduszy inwestycyjnych

Koszty manipulacyjne funduszy inwestycyjnych 2010 Koszty manipulacyjne funduszy inwestycyjnych Szymon Wieloch Niniejszy dokument opisuje zjawiska mikroekonomiczne, które występują na polskim rynku funduszy inwestycyjnych. W szczególności rozpatrywane

Bardziej szczegółowo