AERODYNAMIKA I WYKŁAD 3 TEORIA CIENKIEGO PROFILU LOTNICZEGO

Wielkość: px
Rozpocząć pokaz od strony:

Download "AERODYNAMIKA I WYKŁAD 3 TEORIA CIENKIEGO PROFILU LOTNICZEGO"

Transkrypt

1 WYKŁAD 3 TEORIA CIENKIEGO PROFILU LOTNICZEGO

2 TEMATYKA I CEL WYKŁADU: Przedstawić koncepcję modelowania dwuwymiarowego przepływu potencjalnego płynu nieściśliwego bazującego na wykorzystaniu rozłożonych nośników cyrkulacji Zastosować to podejście do przepływu w otoczeniu cienkiego proilu lotniczego Wyprowadzić i przedyskutować znaczenie ormuł opisujących siłę i moment aerodynamiczny oraz współczynniki aerodynamiczne Określić położenie środka parcia i środka aerodynamicznego Zademonstrować wykorzystanie teorii cienkiego proilu do proilu w klapą

3 . Pole prędkości indukowane przez linię wirową na płaszczyźnie Wyprowadziliśmy wcześniej prawo indukcji pola prędkości dla punktowego wiru potencjalnego. W zapisie zespolonym prawo to ma postać (środek wiru położony jest w punkcie z x iy) z z x x i( y y ) V ( z) i i i z z ( x x ) ( y y ) z z y y x x i u i ( x x ) ( y y ) ( x x ) ( y y ) Zatem, składowe kartezjańskie indukowanego pola prędkości wyrażają się następująco u y y, x x ( x x ) ( y y ) ( x x ) ( y y )

4 Rozważmy teraz pole prędkości indukowane przez cyrkulację rozłożoną w sposób ciągły na linii opisanej równaniami x X ( s), y Y( s). Liniowa gęstość cyrkulacji na tej linii opisana jest unkcją () s. Pole prędkości indukowane przez linię wirową zadane jest wzorami S ( s)[ y Y( s)] ( s)[ x X ( s)] u ds, ds [ ( )] [ ( )] [ ( )] [ ( )] x X s y Y s x X s y Y s S

5 Jeżeli prędkość indukowana przez linię wirową w pewnym punkcie leżącym na tej linii jest skończona to: Prędkość normalna obliczona wzdłuż dowolnego odcinka przecinającego linię wirową w tym punkcie zmienia się w sposób ciągły. Prędkość styczna obliczona wzdłuż dowolnego odcinka przecinającego linię wirową w tym punkcie zmienia się skokowo, przy czym wielkość skoku składowej stycznej jest równa wartości unkcji w tym punkcie linii. Uzasadnienie ostatniego stwierdzenia polega na wykorzystaniu Twierdzenia Stokesa zastosowanego do zacieniowanego obszaru na rysunku ABCD υds dxdy () s ds ABCD oraz ciągłości prędkości normalnej. Ćwiczenie: przeprowadź rozumowanie prowadzące do wniosku, że w punkcie na LW mamy lim υ lim υ ( s ) X P X P P P s s

6 Model proilu o niewielkiej grubości AERODYNAMIKA I Wariant Opływ proilu modelowany jest przez linię wirową o kształcie takim jak linia szkieletowa (LS) proilu. Rozkład cyrkulacji wzdłuż tej linii przyjmujemy tak, aby była ona linią prądu. Jeśli wygięcie LS jest małe to można przyjąć dalsze uproszczenia ułatwiające rachunki

7 Wariant (docelowy) Cyrkulacja rozłożona jest wzdłuż cięciwy proilu tj. na odcinku [, c ] położonym na osi Ox Z uwagi na małe wygięcie linii szkieletowej uznajemy że prędkość indukowana przez wirowość rozłożoną wzdłuż cięciwy w punkcie [ x, Y( x )] jest równa z przybliżeniu prędkości indukowanej w punkcie [ x,].

8 W konsekwencji przyjętych założeń upraszczających, prędkość indukowana normalna do linii szkieletowej w punkcie [ x, Y( x )] jest w przybliżeniu równa w, n[ x, Y( x)] u [ x,] nx[ x, Y( x)] [ x,] ny[ x, Y( x)] Jednostkowy wektor normalny w punkcie [ x, Y( x )] linii szkieletowej jest równy Y( x) nx Y ( x), n y [ Y( x)] [ Y( x)] Zatem w [ x, Y( x)] u [ x,] n [ x, Y( x)] [ x,] n [ x, Y( x)], n x y u [ x,] Y( x) [ x,] [ x,] c ( ) d x Warunek nieprzenikalności proilu szkieletowej, czyli - całkowity wektor prędkości jest styczny do linii V, n w, n

9 Z rysunku wynika, że V, n V sin( ) V ( ) V{ arctg[ Y( x)]} V[ Y( x)] Warunek nie przenikalności przyjmuje postać (r-nie podstawowe teorii cienkiego proilu) V ( ) d [ Y( x)] x c

10 Wprowadzimy sprytną zmianę współrzędnych c( cos ), x c( cos ) Wówczas d c oraz sin cos pkt. natarcia c cos pkt. splywu Rozważmy przypadek cienkiego proilu symetrycznego (w tej teorii jest nieodróżnialny od płaskiej płytki) tj. przyjmijmy, że Y( x). Podstawowe równanie teorii przyjmuje postać ( )sind V cos cos Z rozważań nt. prędkości indukowanej przez LW wynika, że musimy postawić warunek ( ) W przeciwnym razie prędkość styczna w punkcie wpływu ma skok czyli nie spełnia warunku Kutty-Żukowskiego!

11 Poszukiwanie rozwiązanie zaczniemy od wprowadzenia tzw. całek Glauerta W szczególności cosn sin n d cos cos sin sin nsin cos cos Rozważmy unkcję, n,,,... d cos n, n,,,... cos d cos cos ( ) K cos / sin Mamy ( )sin d K cos d K cos cos cos cos Jeśli dobrać stałą K tak, aby spełnia równanie! K V K V to unkcja ( ) V cos / sin V cot

12 Niestety, unkcja ( ) nie spełnia warunku K-Ż!!!! Ze względu na liniowość problemu, otrzymany rozkład można zmodyikować o dowolną unkcję ( ), byle spełniała ona równość Pierwszy typ całki Glauerta dla n daje ( )sin d cos cos cos cos d Wobec tego, poszukiwana unkcja to ( ) K. Pełny rozkład cyrkulacji ma postać sin cos ( ) V sin K sin Spełnienie warunku Kutty-Żukowskiego zapewnia wybór K V.

13 Ostatecznie, rozkład gęstości cyrkulacji zadany jest wzorem cos cos ( ) ( ) V V V cot( ) sin sin( )cos( ) Zauważmy, że na krawędzi natarcia gęstość cyrkulacji staje się nieograniczona!!! Obliczmy całkowity ładunek cyrkulacji. Mimo osobliwości, ładunek ten jest skończony c cos c ( ) d V sin sin d V c ( cos ) d V c

14 Siła i moment aerodynamiczny w teorii cienkiego proilu Ze wzoru Kutty-Żukowskiego wynika, że siła nośna równa jest L V ( sin e cos e ) L x y czyli wartość tej siły to L V c C V c C q c L L q Współczynnik siły nośnej równy jest C Nachylenie (liniowej) charakterystyki C C ( ) L L L dc L d UWAGA: w tradycji polskiej współczynnik siły nośnej oznaczany jest zazwyczaj symbolem C (a współczynnik oporu - C ). z x

15 Obliczymy moment aerodynamiczny względem krawędzi natarcia. Dla małych kątów natarcia mamy c c c c M xdl( x) x L( x) dx V x ( x) dx V x ( x) dx cos ( cos )( ) sin sin sin V c 4 cvc 4 c L V c V c d V c d Z przeprowadzonego rachunku wynika, że dla małych kątów natarcia punkt przyłożenia siły aerodynamicznej (tzw. środek parcia) na cienkim proilu symetrycznym jest położony w odległości ¼ cięciwy od noska proilu.

16 UWAGA: AERODYNAMIKA I W aerodynamice lotniczej przyjęła się umowa odnośnie znaku momentu moment obracający proil odwrotnie zegarowo (czyli opuszczający nosek, a więc zmniejszający kąt natarcia) uznaje się za ujemny. Wg tej umowy moment działający na proil symetryczny pod dodatnim kątem natarcia jest ujemny. Dostosowanie otrzymanej wcześniej ormuły do w/w umowy sprowadza się do zmiany znaku M 4 cl Współczynnik momentu aerodynamicznego deiniujemy następująco M cl L C m C q c q c 4qc 4 L 4, Moment względem innego punktu P o współrzędnej x x obliczamy następująco c c P P P 4 P M ( x x ) dl( x) xdl( x) x L ( c x ) L M P

17 W terminach współczynników aerodynamicznych W szczególności, dla ( c x ) L C x C C x C 4 P m, P ( ) P L m, P L qc 4 x, mamy oczywiście C, /4 P 4 Widzimy, że współczynnik momentu aerodynamicznego względem P 4 parcia) nie zależy (w zakresie małych kątów natarcia) od kąta natarcia czyli mc x (czyli środka dc mc, /4 d Wynika z tego, że środek parcia jest dla cienkiego proilu symetrycznego jednocześnie środkiem aerodynamicznym (SA), tj. takim punktem, że moment aerodynamiczny (względem SA) nie zależy od kąta natarcia.

18 Rozszerzmy rozważania rozważmy teraz opływ cienkiego proilu niesymetrycznego. Podstawowe równanie teorii ma teraz postać ( ) d V [ Y( x)] x a po zastosowaniu tej samej co poprzednio zamiany zmiennych ( )sind V V Y [ x( )] cos cos Rozwiązanie tego przypadku jest bardziej złożone. Poszukujemy rozkładu cyrkulacji w postaci szeregu cos ( ) V A A sinn sin n c n

19 Po podstawieniu do równania podstawowego otrzymujemy A cos sin n sin d A d Y [ x( )] n cos cos n cos cos Wykorzystując wprowadzone wcześniej całki Glauerta, otrzymujemy sin nsin cos cos d cos n cos cos d d d cos cos cos cos cos cos Równanie teorii cienkiego proilu sprowadza się do n pierwsza calka Glauerta dla n A An cos n Y[ x( )]

20 Równoważnie Y[ x( )] ( A ) A cosn n n Pomysł na wyznaczenie współczynników Aj, j,,,... jest prosty i sprowadza się do: wyrażenia unkcji Y Y( x) jako zależności od współrzędnej w przedziale [, ], obliczenia współczynników cosinusowego szeregu Fouriera tak otrzymanej unkcji. Oznaczmy zatem P( ) Y [ x( )]. Rozwijamy unkcję P( ) w szereg Z teorii szeregów Fouriera wynika, że P( ) B B cos n n n B P( ) d, B P( )cos n d n

21 Otrzymujemy zatem związki AERODYNAMIKA I A B ( ) P d A P( ) d A n Bn P( )cos n d W ten sposób wyznaczyliśmy rozkład cyrkulacji (warunek Kutty-Żukowskiego ( ) jest automatycznie spełniony!) Całkowita cyrkulacja związana z proilem to c c cos ( ) V A A sin n sin n ( ) d ( )sin d cv A ( cos ) d A sin n sind n n n

22 Ponieważ ( cos )d, to całkowita cyrkulacja zadana jest wzorem Stąd, siła nośna L i jej współczynnik AERODYNAMIKA I gdy n sin n sind gdy n cv ( A A ) C L są równe L V ( A A ) V c ( A A ) q c Konkretnie C ( A A ) L C L P( )(cos ) d

23 dc Jak widać, nachylenie charakterystyki L d szkieletowej., czyli nie zależy od wygięcia linii Komentarz: w Wykładzie pojawiło się zadanie polegające na wykazaniu, że nachylenie charakterystyki wsp. siły nośnej dla wygiętego proilu Żukowskiego o zerowej grubości (łuk dc okręgu) jest równe L ( ). Zauważmy, że poprawka jest proporcjonalna do d kwadratu względnego wygięcia proilu, czyli dla małych wartości tego wygięcia jest bardzo mała. Zaprezentowana teoria cienkiego proilu nie widzi tej poprawki (dlaczego?!) Otrzymana ormuła dla współczynnika siły nośnej może być zapisana w postaci C ( L gdzie ) P( )(cos ) d jest (ujemnym) kątem natarcia, przy którym wygięty proil nie wytwarza siły nośnej.

24 Obliczmy dalej moment aerodynamiczny względem punktu (krawędzi) natarcia c c ( ) ( ) 4 ( cos ) ( )sin cos V c ( cos ) A An sin n sind sin n M V x x dx V x x dx V c d n n V c A ( cos ) d A ( cos )sin n sin d Pojawiły się następujące całki ( cos ) d sin d gdy n ( cos )sin sin sin sin n d n d sin n sin d 4 gdy n gdy n{, }

25 Otrzymujemy wzór AERODYNAMIKA I M V c ( A A A ) 4 Ponownie, dostosowując konwencje znaków do zwyczajów aerodynamicznych mamy M V c ( A A A ) ( A A A ) q c 4 Współczynnik momentu aerodynamicznego jest zatem równy C ( A A A ) [ C ( A A )] m, 4 L Z wcześniejszych rozważań wynika, że C C C ( A A ) ( A A ), / mc m, L Otrzymana wartość momentu nie zależy od kąta natarcia. Wnioskujemy, że punkt 4 nie jest tym razem środkiem parcia (bo moment aerodynamiczny względem tego punktu nie jest na ogół równy zeru), ale jest środkiem aerodynamicznym. x c

26 Współrzędna środka parcia to taka wartość x P, że x P q c ( A A A ) c[ A A ( A A )] ( A A ) qc ( A A ) C L c c c ( A A ) ( A A ) 4 4 C 4 C L L

27 Cienki proil symetryczny z klapą Na koniec omówimy krótko prosty model cienkiego proilu symetrycznego z klapą (zakładamy, że wychylenie klapy jest niewielkie) Linia szkieletowa i jej pochodna Y( x) gdy x[, x ] tg ( x x ) gdy x ( x, c], x ( ) c gdy x[, x ) Y( x) tg gdy x [ x, c]

28 Stosujemy - jak poprzednio - zmianę współrzędnych x. Wyznaczamy wartość współrzędnej kątowej odpowiadającej punktowi obrotu (zawiasowi) klapy x ( ) c c( cos ) ( ) c Stąd cos Np. dla.5 mamy arccos(.7) Funkcja P( ) opisana jest następująco [, ) ( ) [ gdy P Y c( cos )] tg gdy [, ]

29 Obliczymy współczynniki Fouriera występujące we wzorach na siłę nośną i moment aerodynamiczny. Mamy P( ) d ( tg) d tg Zatem A ( ) tg I dalej A P( )cos d ( tg ) cos d ( tg )( sin ) sin tg A P( )cos d ( tg ) cos d ( tg )( sin ) sin tg

30 Współczynnik siły nośnej symetrycznego cienkiego proilu z klapą jest zadany wzorem C ( A A ) ( sin ) tg L ( sin ) Współczynnik momentu aerodynamicznego jest równy Po podstawieniu otrzymujemy C ( A A A ) m, C m, [ ( cos )sin ] Obliczmy wartości współczynników przy kącie wychylenia klapy dla proilu w klapą 5% (czyli.5). Wiemy, że ( sin ) 3. [ (cos )sin ].36

31 Otrzymaliśmy następujące zależności C 3., L Cm,.36 Współczynnik momentu C mc, /4 C A A tg tg, /4 4 ( ) m c 4 ( sin sin ) 4 (sin sin ) Dla klapy 5% C, /4.395 mc Zadanie: Przeprowadź analogiczna analizę dla cienkiego proilu symetrycznego z klapą przednią (slotem). Przyjmij, że zawias klapy znajduje się w odległości c od noska proilu. Wyznacz wartość liczbową współczynników stojących w wyrażeniach na C L i C mc, /4 przy kącie wychylenia slotu (zakładamy, że jest on niewielki, zatem tg ). Porównaj wpływ slotu i klapy tylnej na charakterystyki aerodynamiczne.

Aerodynamika I. wykład 3: Ściśliwy opływ profilu. POLITECHNIKA WARSZAWSKA - wydz. Mechaniczny Energetyki i Lotnictwa A E R O D Y N A M I K A I

Aerodynamika I. wykład 3: Ściśliwy opływ profilu. POLITECHNIKA WARSZAWSKA - wydz. Mechaniczny Energetyki i Lotnictwa A E R O D Y N A M I K A I Aerodynamika I Ściśliwy opływ profilu transoniczny przepływ wokół RAE-8 M = 0.73, Re = 6.5 10 6, α = 3.19 Ściśliwe przepływy potencjalne Teoria pełnego potencjału Wprowadźmy potencjał prędkości (zakładamy

Bardziej szczegółowo

OPŁYW PROFILU. Ciała opływane. profile lotnicze łopatki. Rys. 1. Podział ciał opływanych pod względem aerodynamicznym

OPŁYW PROFILU. Ciała opływane. profile lotnicze łopatki. Rys. 1. Podział ciał opływanych pod względem aerodynamicznym OPŁYW PROFILU Ciała opływane Nieopływowe Opływowe walec kula profile lotnicze łopatki spoilery sprężarek wentylatorów turbin Rys. 1. Podział ciał opływanych pod względem aerodynamicznym Płaski np. z blachy

Bardziej szczegółowo

WYKŁAD 6 KINEMATYKA PRZEPŁYWÓW CZĘŚĆ 2 1/11

WYKŁAD 6 KINEMATYKA PRZEPŁYWÓW CZĘŚĆ 2 1/11 WYKŁAD 6 KINEMATYKA PRZEPŁYWÓW CZĘŚĆ 1/11 DEFORMACJA OŚRODKA CIĄGŁEGO Rozważmy dwa elementy płynu położone w pewnej chwili w bliskich sobie punktach A i B. Jak zmienia się ich względne położenie w krótkim

Bardziej szczegółowo

Siły wewnętrzne - związki różniczkowe

Siły wewnętrzne - związki różniczkowe Siły wewnętrzne - związki różniczkowe Weźmy dowolny fragment belki obciążony wzdłuż osi obciążeniem n(x) oraz poprzecznie obciążeniem q(x). Na powyższym rysunku zwroty obciążeń są zgodne z dodatnimi zwrotami

Bardziej szczegółowo

Elementy rachunku różniczkowego i całkowego

Elementy rachunku różniczkowego i całkowego Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j),

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j), ELEKTROTECHNIKA Semestr Rok akad. / 5 ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na płaszczyźnie: +j

Bardziej szczegółowo

Równania dla potencjałów zależnych od czasu

Równania dla potencjałów zależnych od czasu Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności

Bardziej szczegółowo

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Wstęp. Ruch po okręgu w kartezjańskim układzie współrzędnych

Wstęp. Ruch po okręgu w kartezjańskim układzie współrzędnych Wstęp Ruch po okręgu jest najprostszym przypadkiem płaskich ruchów krzywoliniowych. W ogólnym przypadku ruch po okręgu opisujemy równaniami: gdzie: dowolna funkcja czasu. Ruch odbywa się po okręgu o środku

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

22. CAŁKA KRZYWOLINIOWA SKIEROWANA

22. CAŁKA KRZYWOLINIOWA SKIEROWANA CAŁA RZYWOLINIOWA SIEROWANA Niech łuk o równaniach parametrycznych: x x(t), y y(t), a < t < b, będzie łukiem regularnym skierowanym, tzn łukiem w którym przyjęto punkt A(x(a), y(a)) za początek łuku, zaś

Bardziej szczegółowo

Kinematyka płynów - zadania

Kinematyka płynów - zadania Zadanie 1 Zadane jest prawo ruchu w zmiennych Lagrange a x = Xe y = Ye t 0 gdzie, X, Y oznaczają współrzędne materialne dla t = 0. Wyznaczyć opis ruchu w zmiennych Eulera. Znaleźć linię prądu. Pokazać,

Bardziej szczegółowo

Całki krzywoliniowe skierowane

Całki krzywoliniowe skierowane Całki krzywoliniowe skierowane Zamiana całki krzywoliniowej skierowanej na całkę pojedyńcza. Twierdzenie Greena. Zastosowania całki krzywoliniowej skierowanej. Małgorzata Wyrwas Katedra Matematyki Wydział

Bardziej szczegółowo

Obliczanie długości łuku krzywych. Autorzy: Witold Majdak

Obliczanie długości łuku krzywych. Autorzy: Witold Majdak Obliczanie długości łuku krzywych Autorzy: Witold Majdak 7 Obliczanie długości łuku krzywych Autor: Witold Majdak DEFINICJA Definicja : Długość łuku krzywej zadanej parametrycznie Rozważmy krzywą Γ zadaną

Bardziej szczegółowo

J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1

J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1 J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1 Warstwa przyścienna jest to część obszaru przepływu bezpośrednio sąsiadująca z powierzchnią opływanego ciała. W warstwie przyściennej znaczącą rolę

Bardziej szczegółowo

AERODYNAMIKA I WYKŁAD 2 PRZEPŁYWY POTENCJALNE CZĘŚĆ 2

AERODYNAMIKA I WYKŁAD 2 PRZEPŁYWY POTENCJALNE CZĘŚĆ 2 AERODYNAMIKA I WYKŁAD PRZEPŁYWY POTENCJALNE CZĘŚĆ Ogólne sformułowanie zagadnienia przepływu potencjalnego Klasyczny problem aerodynamiki (zewnętrznej) polega na wyznaczeniu stacjonarnego opływu ciała

Bardziej szczegółowo

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3

Bardziej szczegółowo

Przykład Łuk ze ściągiem, obciążenie styczne. D A

Przykład Łuk ze ściągiem, obciążenie styczne. D A Przykład 1.4. Łuk ze ściągiem, obciążenie styczne. Rysunek przedstawia łuk trójprzegubowy, kołowy, ze ściągiem. Łuk obciążony jest obciążeniem stycznym do łuku, o stałej gęstości na jednostkę długości

Bardziej szczegółowo

Analiza wektorowa. Teoria pola.

Analiza wektorowa. Teoria pola. Analiza wektorowa. Teoria pola. Pole skalarne Pole wektorowe ϕ = ϕ(x, y, z) A = A x (x, y, z) i x + A y (x, y, z) i y + A z (x, y, z) i z Gradient grad ϕ = ϕ x i x + ϕ y i y + ϕ z i z Jeśli przemieścimy

Bardziej szczegółowo

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 2. CAŁKA PODWÓJNA Całka podwójna po prostokącie

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 2. CAŁKA PODWÓJNA Całka podwójna po prostokącie Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem..1. Całka podwójna po prostokącie.. CAŁKA POWÓJNA.. Całka podwójna po obszarach normalnych..3. Całka podwójna po obszarach regularnych..4.

Bardziej szczegółowo

Całka podwójna po prostokącie

Całka podwójna po prostokącie Całka podwójna po prostokącie Rozważmy prostokąt = {(x, y) R : a x b, c y d}, gdzie a, b, c, d R, oraz funkcję dwóch zmiennych f : R ograniczoną w tym prostokącie. rostokąt dzielimy na n prostokątów i

Bardziej szczegółowo

6. FUNKCJE. f: X Y, y = f(x).

6. FUNKCJE. f: X Y, y = f(x). 6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco

Bardziej szczegółowo

Rozdział 8. Analiza fourierowska. 8.1 Rozwinięcie w szereg Fouriera

Rozdział 8. Analiza fourierowska. 8.1 Rozwinięcie w szereg Fouriera Rozdział 8 Analiza fourierowska 8.1 Rozwinięcie w szereg Fouriera Rozważmy funkcję rzeczywistą f określoną na okręgu o promieniu jednostkowym. Parametryzując okrąg przy pomocy kąta φ [, π] otrzymujemy

Bardziej szczegółowo

J. Szantyr Wykład nr 18 Podstawy teorii płatów nośnych Płaty nośne są ważnymi elementami wielu wytworów współczesnej techniki.

J. Szantyr Wykład nr 18 Podstawy teorii płatów nośnych Płaty nośne są ważnymi elementami wielu wytworów współczesnej techniki. J. Szantyr Wykład nr 18 Podstawy teorii płatów nośnych Płaty nośne są ważnymi elementami wielu wytworów współczesnej techniki. < Helikoptery Samoloty Lotnie Żagle > < Kile i stery Wodoloty Śruby okrętowe

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

Aerodynamika I. wykład 2: 2: Skośne fale uderzeniowe iifale rozrzedzeniowe. POLITECHNIKA WARSZAWSKA - wydz. Mechaniczny Energetyki i Lotnictwa

Aerodynamika I. wykład 2: 2: Skośne fale uderzeniowe iifale rozrzedzeniowe. POLITECHNIKA WARSZAWSKA - wydz. Mechaniczny Energetyki i Lotnictwa Aerodynamika I Skośne fale uderzeniowe i fale rozrzedzeniowe naddźwiękowy przepływ w kanale dla M = 2 (rozkład liczby Macha) 19 maja 2014 Linie Macha Do tej pory, rozważaliśmy problemy dynamiki gazu, które

Bardziej szczegółowo

FUNKCJE ZESPOLONE Lista zadań 2005/2006

FUNKCJE ZESPOLONE Lista zadań 2005/2006 FUNKJE ZESPOLONE Lista zadań 25/26 Opracowanie: dr Jolanta Długosz Liczby zespolone. Obliczyć wartości podanych wyrażeń: (2 + ) ( ) 2 4 i (5 + i); b) (3 i)( 4 + 2i); c) 4 + i ; d) ( + i) 4 ; e) ( 2 + 3i)

Bardziej szczegółowo

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności

Bardziej szczegółowo

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja) Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),

Bardziej szczegółowo

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych Wykresy i warstwice funkcji wielu zmiennych. Granice i ciagłość funkcji wielu zmiennych. Pochodne czastkowe funkcji wielu zmiennych. Gradient. Pochodna kierunkowa. Różniczka zupełna.

Bardziej szczegółowo

y(t) = y 0 + R sin t, t R. z(t) = h 2π t

y(t) = y 0 + R sin t, t R. z(t) = h 2π t SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy

Bardziej szczegółowo

Statyka płynów - zadania

Statyka płynów - zadania Zadanie 1 Wyznaczyć rozkład ciśnień w cieczy znajdującej się w stanie spoczynku w polu sił ciężkości. Ponieważ na cząsteczki cieczy działa wyłącznie siła ciężkości, więc składowe wektora jednostkowej siły

Bardziej szczegółowo

Przykład 4.2. Sprawdzenie naprężeń normalnych

Przykład 4.2. Sprawdzenie naprężeń normalnych Przykład 4.. Sprawdzenie naprężeń normalnych Sprawdzić warunki nośności przekroju ze względu na naprężenia normalne jeśli naprężenia dopuszczalne są równe: k c = 0 MPa k r = 80 MPa 0, kn 0 kn m 0,5 kn/m

Bardziej szczegółowo

MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ

MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. SUMY ALGEBRAICZNE DLA KLASY DRUGIEJ 1. Rozpoznawanie jednomianów i sum algebraicznych Obliczanie wartości liczbowych wyrażeń algebraicznych

Bardziej szczegółowo

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 3 Specjalne metody elektrostatyki 3 3.1 Równanie Laplace

Bardziej szczegółowo

Całka oznaczona zastosowania (wykład 9; ) Definicja całki oznaczonej dla funkcji ciagłej

Całka oznaczona zastosowania (wykład 9; ) Definicja całki oznaczonej dla funkcji ciagłej Całka oznaczona zastosowania (wykład 9;26.11.7) Definicja całki oznaczonej dla funkcji ciagłej Definicja 1 Załózmy, że funkcja f jest ciagła na przedziale [a, b]. Całkę oznaczona z funkcji ci b a f(x)dx

Bardziej szczegółowo

AERODYNAMIKA I WYKŁAD 7 WYBRANE ZAGADNIENIA AERODYNAMIKI MAŁYCH PRĘDKOŚCI

AERODYNAMIKA I WYKŁAD 7 WYBRANE ZAGADNIENIA AERODYNAMIKI MAŁYCH PRĘDKOŚCI WYKŁAD 7 WYBRANE ZAGADNIENIA AERODYNAMIKI MAŁYCH PRĘDKOŚCI W wykładzie wykorzystano ilustracje pochodzące z: [UA] D. McLean, Understanding Aerodynamics. Arguing from the Real Physics. Wiley, 2013. [AES]

Bardziej szczegółowo

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym Przykład 4.1. Ściag stalowy Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym rysunku jeśli naprężenie dopuszczalne wynosi 15 MPa. Szukana siła P przyłożona jest

Bardziej szczegółowo

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach

Bardziej szczegółowo

Układy współrzędnych

Układy współrzędnych Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych

Bardziej szczegółowo

WYKŁAD 12 ENTROPIA I NIERÓWNOŚĆ THERMODYNAMICZNA 1/10

WYKŁAD 12 ENTROPIA I NIERÓWNOŚĆ THERMODYNAMICZNA 1/10 WYKŁAD 12 ENROPIA I NIERÓWNOŚĆ HERMODYNAMICZNA 1/10 ENROPIA PŁYNU IDEALNEGO W PRZEPŁYWIE BEZ NIECIĄGŁOŚCI Załóżmy, że przepływ płynu idealnego jest gładki, tj. wszystkie pola wielkości kinematycznych i

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

Karta (sylabus) przedmiotu Mechanika i Budowa Maszyn Studia II stopnia

Karta (sylabus) przedmiotu Mechanika i Budowa Maszyn Studia II stopnia Karta (sylabus) przedmiotu Mechanika i Budowa Maszyn Studia II stopnia Przedmiot: Aerodynamika Rodzaj przedmiotu: Podstawowy Kod przedmiotu: MBM S 1 17-0_1 Rok: 1 Semestr: Forma studiów: Studia stacjonarne

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (I)

Równanie przewodnictwa cieplnego (I) Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca

Bardziej szczegółowo

J. Szantyr - Wykład 3 Równowaga płynu

J. Szantyr - Wykład 3 Równowaga płynu J. Szantyr - Wykład 3 Równowaga płynu Siły wewnętrzne wzajemne oddziaływania elementów mas wydzielonego obszaru płynu, siły o charakterze powierzchniowym, znoszące się parami. Siły zewnętrzne wynik oddziaływania

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1 SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

Rachunek całkowy - całka oznaczona

Rachunek całkowy - całka oznaczona SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej

Bardziej szczegółowo

lim Np. lim jest wyrażeniem typu /, a

lim Np. lim jest wyrażeniem typu /, a Wykład 3 Pochodna funkcji złożonej, pochodne wyższych rzędów, reguła de l Hospitala, różniczka funkcji i jej zastosowanie, pochodna jako prędkość zmian 3. Pochodna funkcji złożonej. Jeżeli funkcja złożona

Bardziej szczegółowo

W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1

W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1 W. Guzicki Próbna matura, grudzień 01 r. poziom rozszerzony 1 Próbna matura rozszerzona (jesień 01 r.) Zadanie 18 kilka innych rozwiązań Wojciech Guzicki Zadanie 18. Okno na poddaszu ma mieć kształt trapezu

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo

Definicje i przykłady

Definicje i przykłady Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest

Bardziej szczegółowo

MECHANIKA 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Prowadzący: dr Krzysztof Polko PLAN WYKŁADÓW 1. Podstawy kinematyki 2. Ruch postępowy i obrotowy bryły 3. Ruch płaski bryły 4. Ruch złożony i ruch względny 5. Ruch kulisty i ruch ogólny bryły

Bardziej szczegółowo

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo

1 Pochodne wyższych rzędów

1 Pochodne wyższych rzędów Pochodne wyższych rzędów Pochodną rzędu drugiego lub drugą pochodną funkcji y = f(x) nazywamy pochodną pierwszej pochodnej tej funkcji. Analogicznie definiujemy pochodne wyższych rzędów, jako pochodne

Bardziej szczegółowo

Indukcja elektromagnetyczna Faradaya

Indukcja elektromagnetyczna Faradaya Indukcja elektromagnetyczna Faradaya Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Po odkryciu Oersteda zjawiska

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,

Bardziej szczegółowo

Metoda rozdzielania zmiennych

Metoda rozdzielania zmiennych Rozdział 12 Metoda rozdzielania zmiennych W tym rozdziale zajmiemy się metodą rozdzielania zmiennych, którą można zastosować, aby wyrazić jawnymi wzorami rozwiązania pewnych konkretnych równań różniczkowych

Bardziej szczegółowo

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na

Bardziej szczegółowo

========================= Zapisujemy naszą funkcję kwadratową w postaci kanonicznej: 2

========================= Zapisujemy naszą funkcję kwadratową w postaci kanonicznej: 2 Leszek Sochański Arkusz przykładowy, poziom podstawowy (A1) Zadanie 1. Wykresem funkcji kwadratowej f jest parabola o wierzchołku 5,7 Wówczas prawdziwa jest równość W. A. f 1 f 9 B. f 1 f 11 C. f 1 f 1

Bardziej szczegółowo

Całki krzywoliniowe wiadomości wstępne

Całki krzywoliniowe wiadomości wstępne Całki krzywoliniowe wiadomości wstępne Łuk na płaszczyźnie to zbiór punktów (x, y o współrzędnych x = x(t, y = y(t, gdzie (x(t, y(t są funkcjami ciągłymi określonymi na przedziale bez punktów wielokrotnych.

Bardziej szczegółowo

LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA

LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie 1. przedmiot. Gdzie znajduje się obraz i jakie jest jego powiększenie? Dla jakich

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 6 Temat ćwiczenia:

Bardziej szczegółowo

Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił.

Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił. Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy Obliczyć wektor główny i moment główny tego układu sił. Wektor główny układu sił jest równy Moment główny układu wynosi Przykład

Bardziej szczegółowo

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU Agata Boratyńska Zadania z matematyki Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU. Korzystając z definicji granicy ciągu udowodnić: a) n + n+ = 0 b) n + n n+ = c) n + n a =, gdzie a

Bardziej szczegółowo

Geometria. Hiperbola

Geometria. Hiperbola Geometria. Hiperbola Definicja 1 Dano dwa punkty na płaszczyźnie: F 1 i F 2 oraz taką liczbę d, że F 1 F 2 > d > 0. Zbiór punktów płaszczyzny będących rozwiązaniami równania: XF 1 XF 2 = ±d. nazywamy hiperbolą.

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 155104 WYGENEROWANY AUTOMATYCZNIE W SERWISIE ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Objętość stożka o

Bardziej szczegółowo

OCENIANIE ARKUSZA POZIOM ROZSZERZONY

OCENIANIE ARKUSZA POZIOM ROZSZERZONY Numer zadania... Etapy rozwiązania zadania Przekształcenie wzoru funkcji do żądanej postaci f( x) = + lub f( x) x = x. I sposób rozwiązania podpunktu b). Zapisanie wzoru funkcji w postaci sumy OCENIANIE

Bardziej szczegółowo

Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/

Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro

Bardziej szczegółowo

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2 Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy LUELSK PRÓ PRZE MTURĄ 07 poziom podstawowy Schemat oceniania Uwaga: kceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania (podajemy kartotekę zadań, gdyż łatwiej będzie

Bardziej szczegółowo

Energia potencjalna pola elektrostatycznego ładunku punktowego

Energia potencjalna pola elektrostatycznego ładunku punktowego Energia potencjalna pola elektrostatycznego ładunku punktowego Wszystkie rysunki i animacje zaczerpnięto ze strony http://web.mit.edu/8.02t/www/802teal3d/visualizations/electrostatics/index.htm. Tekst

Bardziej szczegółowo

Elementy geometrii analitycznej w R 3

Elementy geometrii analitycznej w R 3 Rozdział 12 Elementy geometrii analitycznej w R 3 Elementy trójwymiarowej przestrzeni rzeczywistej R 3 = {(x,y,z) : x,y,z R} możemy interpretować co najmniej na trzy sposoby, tzn. jako: zbiór punktów (x,

Bardziej szczegółowo

V. WYMAGANIA EGZAMINACYJNE

V. WYMAGANIA EGZAMINACYJNE V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny

Bardziej szczegółowo

OCENIANIE ARKUSZA POZIOM ROZSZERZONY

OCENIANIE ARKUSZA POZIOM ROZSZERZONY OCENIANIE ARKUSZA POZIOM ROZSZERZONY Numer zadania... Etapy rozwiązania zadania Przekształcenie wzoru funkcji do żądanej postaci f( x) = + lub f( x) =. x x I sposób rozwiązania podpunktu b). Zapisanie

Bardziej szczegółowo

III. Funkcje rzeczywiste

III. Funkcje rzeczywiste . Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja

Bardziej szczegółowo

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi

Bardziej szczegółowo

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. 1 Wahadło matematyczne. Wahadłem matematycznym nazywamy punkt materialny o masie m zawieszony na długiej, cienkiej

Bardziej szczegółowo

Następnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień.

Następnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień. Zadanie Należy zacząć od sprawdzenia, co studenci pamiętają ze szkoły średniej na temat funkcji jednej zmiennej. Na początek można narysować kilka krzywych na tle układu współrzędnych (funkcja gładka,

Bardziej szczegółowo

Rachunek różniczkowy i całkowy 2016/17

Rachunek różniczkowy i całkowy 2016/17 Rachunek różniczkowy i całkowy 26/7 Zadania domowe w pakietach tygodniowych Tydzień 3-7..26 Zadanie O. Czy dla wszelkich zbiorów A, B i C zachodzą następujące równości: (A B)\C = (A\C) (B\C), A\(B\C) =

Bardziej szczegółowo

Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych

Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych 6 czerwca 2013 Ładunek elektryczny Ciała fizyczne mogą być obdarzone (i w znacznej większości faktycznie są) ładunkiem elektrycznym. Ładunek ten może być dodatni lub ujemny. Kiedy na jednym ciele zgromadzonych

Bardziej szczegółowo

Liczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych.

Liczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych. Jarosław Wróblewski Analiza Matematyczna, lato 016/17 Kolokwium nr 10: wtorek 6.06.017, godz. 1:15-1:45, materiał zad. 1 40. Liczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych.

Bardziej szczegółowo

Nieskończona jednowymiarowa studnia potencjału

Nieskończona jednowymiarowa studnia potencjału Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH. Doświadczalne sprawdzenie zasady superpozycji

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH. Doświadczalne sprawdzenie zasady superpozycji Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Doświadczalne sprawdzenie zasady superpozycji Numer ćwiczenia: 8 Laboratorium

Bardziej szczegółowo

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013 Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne

Bardziej szczegółowo

Zad.3. Jakub Trojgo i Jakub Wieczorek. 14 grudnia 2013

Zad.3. Jakub Trojgo i Jakub Wieczorek. 14 grudnia 2013 Zad.3 Jakub Trojgo i Jakub Wieczorek 14 grudnia 2013 W pierwszej części naszej pracy będziemy chcieli zbadać ciągłość funkcji f(x, y) w przypadku gdy płaszczyzna wyposażona jest w jedną z topologii: a)

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

Analiza matematyczna 2 zadania z odpowiedziami

Analiza matematyczna 2 zadania z odpowiedziami Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści I Całki niewłaściwe pierwszego rodzaju II Całki niewłaściwe drugiego rodzaju 5 III Szeregi liczbowe 6 IV Szeregi potęgowe

Bardziej szczegółowo

WYKŁAD 8 RÓWNANIE NAVIERA-STOKESA 1/17

WYKŁAD 8 RÓWNANIE NAVIERA-STOKESA 1/17 WYKŁAD 8 RÓWNANIE NAVIERA-STOKESA /7 Zaczniemy od wyprowadzenia równania ruchu dla płynu newtonowskiego. Wcześniej wyprowadziliśmy z -ej Zasady Dynamiki ogólne równanie ruchu, którego postać indeksowa

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo