Fe +III. Fe +II. elektroda powierzchnia metalu (lub innego przewodnika), na której zachodzi reakcja wymiany ładunku (utleniania, bądź redukcji)

Wielkość: px
Rozpocząć pokaz od strony:

Download "Fe +III. Fe +II. elektroda powierzchnia metalu (lub innego przewodnika), na której zachodzi reakcja wymiany ładunku (utleniania, bądź redukcji)"

Transkrypt

1 Elektrochemia przedmiotem badań są m.in. procesy chemiczne towarzyszące przepływowi prądu elektrycznego przez elektrolit, którym są stopy i roztwory związków chemicznych zdolnych do dysocjacji elektrolitycznej główne obszary badawcze elektrochemii: teorie elektrolitów (roztworów jonowych), procesy transportu w roztworach elektrolitów, różnice potencjałów elektrycznych na granicach faz (w tym potencjały elektrodowe), ogniwa elektrochemiczne (galwaniczne i elektrolityczne), mechanizmy i kinetyka procesów elektrodowych korozja (elektrochemiczne niszczenie materiałów) Fe +III Fe +II O R jeśli procesy utleniania i redukcji zachodzą w tym samym czasie i w tym samym miejscu mamy do czynienia z procesem chemicznym Fe +II O utlenianie Fe 2+ jako proces chemiczny 1

2 jeśli procesy utleniania i redukcji są rozdzielone w czasie i przestrzeni, a wymiana ładunku następuje poprzez przewodnik elektronów (np. drut metalowy) wówczas mówimy o procesie elektrochemicznym Fe +III Fe +II ē utlenianie Fe 2+ jako proces elektrochemiczny O R Elektrody elektroda powierzchnia metalu (lub innego przewodnika), na której zachodzi reakcja wymiany ładunku (utleniania, bądź redukcji) przez którą prąd elektryczny wpływa do urządzenia dopływ ładunku dodatniego wypływ ładunku ujemnego w odbiornikach prądu elektrycznego (np. lampach elektronowych) anoda jest elektrodą dodatnią w źródłach prądu (np. ogniwach galwanicznych) elektrodą ujemną utlenianie anoda elektroda redukcja katoda Zn 0-2ē Zn 2+ Cu ē Cu 0 przez którą z urządzenia wypływa prąd elektryczny wypływ ładunku dodatniego dopływ ładunku ujemnego w odbiornikach prądu elektrycznego (np. lampach elektronowych) katoda jest elektrodą ujemną w źródłach prądu (np. ogniwach galwanicznych) elektrodą dodatnią elektroda wraz z otaczającym ją elektrolitem stanowi półogniwo półogniwa mogą mieć wspólny elektrolit lub mogą być zanurzone w różnych elektrolitach 2

3 Elektrody I rodzaju elektroda odwracalna (równowagowa) z jedną granicą faz, na której zachodzi szybka, odwracalna reakcja potencjałotwórcza (reakcja utleniania lub redukcji) potencjał powstaje na granicy między metalem i elektrolitem, przy czym metal jest jednym z reagentów lub pełni tylko funkcję przenośnika elektronów między reagentami znajdującymi się w otoczeniu pierwiastek w równowadze ze swoimi jonami; elektrody te dzielimy na elektrody gazowe Me X X n- metal (najczęściej platyna), obmywany gazową postacią pierwiastka, zanurzony w roztworze jonów danego pierwiastka elektroda wodorowa: Pt H 2, H + elektroda chlorowa: Pt Cl 2, Cl - elektrody redoks (metal szlachetny w rozt., w którym zachodzi r. redoks: elektroda chinhydronowa elektroda Pt Mn 2+, MnO 4 - elektroda Pt Fe 2+, Fe 3+ metaliczne metale (np. drut, blaszka) zanurzone w roztworach, które zawierają ich jony: elektroda miedziana: Cu Cu 2+ elektroda cynkowa: Zn Zn 2+ elektroda srebrowa: Ag Ag + elektrody amalgamatowe, np. kadmowa: Cd(Hg) Cd 2+ normalna elektroda wodorowa (NEW) jeśli działa jako anoda H 2 zostaje utlenione Pt (s) H 2(g) H + (aq) platyna pokryta czernią platynową zanurzona w kwasie solnym (HCl) o aktywności a = 1, który jest nasycany gazowym wodorem (H 2 ) pod ciśnieniem 1 atm. (p = 1atm. = 101,325 Pa) w temp. 298 K E 0 = 0,000V jeśli działa jako katoda redukują się jony H + H + (aq) H 2(g) Pt (s 2012books.lardbucket.org 3

4 elektrody metaliczne Me Me n+ metal zanurzony w roztworze jonów własnych podwójna warstwa elektrochemiczna (powierzchniowa i dyfuzyjna) Cu CuSO 4 Elektrody II rodzaju Me 1 Me 1 A (s) Me 2 A metal pokryty swoją trudno rozpuszczalną solą w równowadze z roztworem soli innego metalu o takim samym anionie odwracalna (równowagowa) z dwoma granicami faz (na których zachodzą szybkie reakcje odwracalne): - pierwszą między metalem i pokrywającą metal warstwą jego trudno rozpuszczalnej soli - drugą między warstwą soli trudno rozpuszczalnej i roztworem soli dobrze rozpuszczalnej zawierającej ten sam anion nasycona elektroda kalomelowa (NEK) przewodnik elektronów (Pt) połączony z metaliczną rtęcią (Hg) pokrytą kalomelem chlorkiem rtęci(i) (Hg 2 Cl 2 ) w nasyconym roztworze KCl E 0 = 0,241V HgHg 2 Cl 2 Cl - (nas) korek nasycony KCl mały otwór Hg drut platynowy nasycony roztwór KCl/Hg 2 Cl 2 kalomel Hg 2 Cl books.lardbucket.org 4

5 elektroda chlorosrebrowa Ag pokryty chlorkiem srebra (AgCl) w nasyconym roztworze KCl E 0 = V H 2 + 2AgCl 2Ag + 2H + + 2Cl AgAgClCl - (nas) glossary.periodni.com Pomiar potencjału elektrodowego potencjał normalny (standardowy) elektrody metalowej (E 0 ) potencjał metalu zanurzonego w elektrolicie zawierającym jony tego metalu zmierzony względem elektrody odniesienia elektroda odniesienia elektroda wykazująca potencjał niezmienny w czasie normalna elektroda wodorowa (NEW) nasycona elektroda kalomelowa (NEK) nasycona elektroda chlorosrebrowa (AgAgClCl - (nas)) 5

6 Potencjały normalne (standardowe) układów redoksowych Reakcja E o [V] Reakcja E o [V] Li + /Li -3,045 Ni 2+ /Ni -0,236 K + /K -2,925 Pb 2+ /Pb -0,126 Ca 2+ /Ca -2,840 H + /H 0 Na + /Na -2,714 Cu 2+ /Cu Mg + /Mg -2,380 I 2 /I - 0,536 Al 3+ /Al Ag + /Ag 0,799 Zn 2+ /Zn O 2 /O 2-1,228 S/S 2- -0,510 Cl 2 /Cl - 1,359 Fe 2+ /Fe -0,440 Au + /Au 1,692 wyrażone względem normalnej elektrody wodorowej dla temperatury 25 C Potencjały normalne (standardowe) wybranych reakcji redoks reakcja elektrodowa zapis skrócony E 0 [V] S 2 O 8- / SO 2-4 2,050 ClO /Cl 1,640 MnO 4- /Mn 2+ 1,510 Cl 2 /2Cl 1,360 O 2 /O 2 1,228 Fe 3+ /Fe 2+ 0,771 O 2 /H 2 O 2 0,680 (CN) 2 /HCN 0,370 [Fe(CN) 6 ] 3- / [Fe(CN) 6 ] 4-0,363 Cu 2+ /Cu + 0,167 H + /H 2 0,000 SO 2-4 / SO 2-3 0,103 N 2 /N 2 0,333 S/S 2 0,510 Zn 2+ /Zn 0,763 6

7 Szereg napięciowy metali szereg napięciowy metale ułożone wg wzrastającego potencjału normalnego metale bardziej aktywne od wodoru wypierają go z wody i kwasów metale mniej aktywne od wodoru nie wypierają go z wody i kwasów E = 0 E 0 metal zwykły standardowa elektroda wodorowa E 0 metal szlachetny zadane.pl Ogniwa elektrochemiczne ogniwa elektrochemiczne galwaniczne źródłem różnicy potencjałów elektrod są reakcje chemiczne, zachodzące między elektrodami a elektrolitem energia wydzielona w wyniku spontanicznej reakcji redoks jest zamieniania na energię elektryczną gdy przez ogniwo nie płynie prąd (ogniwo otwarte) różnica potencjałów jest równa sile elektromotorycznej (SEM) elektrolityczne reakcja redoks w ogniwie jest wymuszana przez przepływ prądu z zewnętrznego źródła zasilania 7

8 Ogniwa elektrochemiczne anoda Cd katoda Cu katoda Cd anoda Cu 2012books.lardbucket.org Ogniwo składa się z dwóch elektrod, czyli metalicznych przewodników, które pozostają w kontakcie z elektrolitem, czyli przewodnikiem jonowym; połączone mostkiem elektrolitycznym mostek (klucz) elektrolityczny jest to najczęściej U rurka wypełniona neutralnym elektrolitem, pozwalającym na wymianę ładunku bez mieszania elektrolitów np. dwie elektrody w ogniwie Daniella Zn (s) Zn 2+ (aq) Cu 2+ (aq) Cu (s) substrat produkt zetknięcie faz Zn (s) Zn 2+ (aq) Cu 2+ (aq) Cu (s) 8

9 Schemat ogniwa galwanicznego (-) Zn (s Zn 2+ Cu 2+ Cu (+) atomy Zn 0 są utleniane do Zn 2+ Zn anoda mostek solny NaCl (aq) Cu katoda jony Cu 2+ są redukowane do Cu 0 roztwór Zn(NO 3 ) 2 (ag) roztwór Cu(NO 3 ) 2 (aq) Zn (s) + Cu 2+ (aq) Zn 2+ (aq) + Cu (s) 2012books.lardbucket.org Schemat ogniwa elektrolitycznego anoda katoda Zn anoda Cu katoda elektrody ZnSO 4 CuSO 4 tutors4you.com 9

10 Ogniwa stosowane w praktyce pręt grafitowy (katoda, redukcja MnO 2 ) ogniwo suche - nie można ponownie ładować gdy reakcja ogniwa osiągnie stan równowagi, ogniwo nadaje się do wyrzucenia (ogniwo pierwotne) Zn(s) ZnCl 2 (aq), NH 4 Cl(aq) MnO(OH)(s) MnO 2 (s) grafit (1,5 V) naczynie cynkowe (anoda) elektrolit (ZnCl 2 + NH 4 Cl) reakcja sumaryczna: Zn + 2MnO 2 Zn 2+ + Mn 2 O 4 2- ładowanie rozładowanie Ogniwa stosowane w praktyce akumulator kwasowy (ołowiowy) - stosowany w samochodach regenerowalne (ogniwo wtórne) Pb(s) PbSO 4 (s) H + (aq),hso 4 -I (aq) PbO 2 (s) PbSO 4 (s) Pb(s), 2 V

11 stos Volty pierwsza bateria (1880) H 2 SO 4 + 2H 2 O 2H 3 O + + SO 4 2- elektrolit Zn Cu akumulator niklowo-kadmowy stosowany do zasilania urządzeń elektronicznych Cd(s) Cd(OH) 2 (s) KOH(aq) Ni(OH) 3 (s) Ni(OH) 2 (s) Ni(s), 1,25 V pl.wikipedia.org metalowa zatyczka pręt węglowy osłona cynkowa bateria cynkowo węglowa ogniwo Leclanche go Zn Zn +2 NH 4 Cl MnO 2 C MnO 2 pasta NH 4 Cl metalowe dno ogniwo Daniell a (-) ZnZnSO 4 CuSO 4 Cu (+) anoda katoda porowata ścianka przepływ kationów przepływ anionów pl.wikipedia.org 11

12 Ogniwo paliwowe (wodorowo-tlenowe) elektrolit: NaOH, H 2 O reakcja sumaryczna: 2H 2 + O 2 2H 2 O Ogniwo paliwowe (węglowodorowe) reakcja sumaryczna, np.: CH 4 + 2O 2 CO 2 + 2H 2 O Elektroliza elektroliza proces, podczas którego prąd elektryczny z zewnętrznego źródła zasilania powoduje zachodzenie na elektrodach reakcji utleniania i redukcji zachodzi w układach, w których występują substancje zdolne do jonizacji, czyli do rozpadu na jony jonizacja na skutek przyłożonego napięcia elektrycznego, dysocjacji elektrolitycznej, autodysocjacji, wysokiej temperatury, czy w wyniku działania silnego promieniowania proces związany z wymuszoną wędrówką jonów do elektrod zanurzonych w substancji, po przyłożeniu do nich odpowiedniego napięcia prądu elektrycznego po dotarciu do elektrod jony przekazują im swój ładunek lub wchodzą z nimi w reakcję chemiczną, na skutek czego zamieniają się w obojętne elektrycznie związki chemiczne lub pierwiastki wędrujące przez substancję jony mogą ulegać rozmaitym r. chemicznym z innymi jonami lub substancjami, które nie uległy rozpadowi na jony; powstające w ten sposób substancje zwykle osadzają się na elektrodach lub wydzielają się z układu w postaci gazu 12

13 Elektroliza elektroliza wody w aparacie Hoffman a A: 2O 2- O 2 +4e C: 4H + +4e 2H 2 elektroliza stężonego roztworu NaCl A: 2Cl - Cl 2 +2e K: 2H + +2e H 2 elektroliza stopionego NaCl A: 2Cl - Cl 2 + 2e C: 2Na + + 2e 2Na elektropolerowanie srebra A: Ag Ag + + e K: Ag + + e Ag 13

14 elektrolityczne otrzymywanie aluminium A: 6O 2-3O 2 +12ē C+O 2 CO 2 K: 4Al ē 4Al Al 2 O 3 rozbijacz odprowadzenie gazów osad stały anoda (+) wykonana z C katoda (-) wykonana z Fe okładzina grafitowa stopiony kriolit (Na 3 AlF 6 ) stopiony Al 2 O 3 14

15 29 Szybkość reakcji elektrochemicznej n O Ox + n e ē n R Red n O i n R współczynniki stechiometryczne w stanie równowagi: wiedząc, że: oraz: v v dc v dt m c M v 15

16 szybkość reakcji można zdefiniować jako: zgodnie z prawem Faraday a: m - masa substancji k równoważnik elektrochemiczny I - prąd t - czas M - masa molowa n liczba wymienionych elektronów F stała Faraday a ( C/mol) dm v dt m k I t M I t n F łącząc poprzednie wzory otrzymujemy: v I dm dt M I n F n F v M I I 0 I prąd anodowy jest równy prądowi katodowemu i osiąga wartość I 0 zwaną prądem wymiany 16

17 wiedząc, że szybkość reakcji jest proporcjonalna do stężenia, to zaś jest powiązane z aktywnością wzorem: a c f można zdefiniować prąd anodowy i katodowy jako: I I n F k n F k k 0 stała szybkości reakcji a O, a R aktywności formy utlenionej i zredukowanej współczynnik symetrii bariery energetycznej E 0 potencjał normalny 0 0 a O e O R a R e 0 nf ( EE ) RT (1 ) nf ( EE ) RT 0 porównując do siebie prawe strony poprzednich równanie Nernst a : równań otrzymany E E 0 potencjał potencjał elektrody standardowy [mv] RT nf a ln a O O R R potencjał normalny potencjał elektrody mierzony względem NEW (normalnej elektrody wodorowej), której potencjał wynosi 0 17

18 Siła elektromotoryczna ogniwa galwanicznego reakcje o silnej dążności do wyciągania elektronów z katody i wpychania ich do anody generują dużą E siła elektromotoryczna ogniwa (SEM, E; napięcie ogniwa) jest miarą zdolności reakcji ogniwa do spowodowania przepływu elektronów przez obwód reakcje o słabej dążności do wyciągania elektronów z katody i wpychania ich do anody generują małą E reakcja w pobliżu stanu równowagi jednostka wolt [V] Samorzutność reakcji redoksowej SEM E W q J C E potencjał półogniwa, V W praca, J q całkowity ładunek elektronów, C W n liczba moli elektronów, mol q całkowity ładunek elektronów, C F stała Faradaya, C/mol q q n F E max F ładunek mola elektronów C mol 18

19 Samorzutność reakcji redoksowej pomiędzy siłą elektromotoryczną (E, SEM), a entalpią swobodną reakcji ogniwa (G r ) zachodzi związek maksymalna praca elektryczna, jaką może wykonać układ (ogniwo galwaniczne) określona jest wartością entalpii swobodnej (G) przy T i p = const. E (dla elektrody) max Wmax G G nf G nfsem równanie to oznacza, że jesteśmy w stanie policzyć wartość siły elektromotorycznej układu, gdy znamy wartość entalpii swobodnej reakcji ogniwa G 0 Emax 0 SEM 0 (dla ogniwa) ujemny znak oznacza, że gdy siła elektromotoryczna jest dodatnia to entalpia swobodna jest ujemna, a to natomiast odpowiada samorzutnemu przebiegowi reakcji ogniwa Samorzutność reakcji chemicznej czy reakcja Cu 2+ (aq) + Fe (s) Cu (s) + Fe 2+ (aq) jest spontaniczna? redukcja: Cu ē Cu utlenianie: Fe Fe ē zauważmy, że w szeregu napięciowym dla reakcji redukcji mamy: Fe ē Fe 0 E o = V E o = 0.34 V E o = 0.44 V E o G G o o 0.78V nfe 2mol mol J 0 o C mol C mol J 0.78 C 0.78V 19

20 Samorzutność reakcji chemicznej Czy HNO 3 rozpuści złoto? redukcja: NO H + + 3ē NO + H 2 O utlenianie: Au Au ē E o = 0.96 V E o = V E o 0.54V E o 0 G o 0 reakcja nie jest samorzutna Ogniwo redukcja Fe 3+ do Fe 2+ Pt Sn 4+, Sn 2+ Fe 3+, Fe 2+ Pt klucz elektrolityczny membrana elektrody kontaktowe Sn ē Sn 2+ Fe 3+ + ē Fe 2+ 20

21 f Fe III c Fe III f Sn II c Sn II 21

Karta pracy III/1a Elektrochemia: ogniwa galwaniczne

Karta pracy III/1a Elektrochemia: ogniwa galwaniczne Karta pracy III/1a Elektrochemia: ogniwa galwaniczne I. Elektroda, półogniwo, ogniowo Elektroda przewodnik elektryczny (blaszka metalowa lub pręcik grafitowy) który ma być zanurzony w roztworze elektrolitu

Bardziej szczegółowo

ELEKTRODY i OGNIWA. Elektrody I rodzaju - elektrody odwracalne wzgl dem kationu; metal zanurzony w elektrolicie zawieraj cym jony tego metalu.

ELEKTRODY i OGNIWA. Elektrody I rodzaju - elektrody odwracalne wzgl dem kationu; metal zanurzony w elektrolicie zawieraj cym jony tego metalu. ELEKTRODY i OGNIWA Elektrody I rodzaju - elektrody odwracalne wzgl dem kationu; metal zanurzony w elektrolicie zawieraj cym jony tego metalu. Me z+ + z e Me Utl + z e Red RÓWNANIE NERNSTA Walther H. Nernst

Bardziej szczegółowo

K, Na, Ca, Mg, Al, Zn, Fe, Sn, Pb, H, Cu, Ag, Hg, Pt, Au

K, Na, Ca, Mg, Al, Zn, Fe, Sn, Pb, H, Cu, Ag, Hg, Pt, Au WSTĘP DO ELEKTROCHEMII (opracowanie dr Katarzyna Makyła-Juzak Elektrochemia jest działem chemii fizycznej, który zajmuje się zarówno reakcjami chemicznymi stanowiącymi źródło prądu elektrycznego (ogniwa

Bardziej szczegółowo

PODSTAWY KOROZJI ELEKTROCHEMICZNEJ

PODSTAWY KOROZJI ELEKTROCHEMICZNEJ PODSTAWY KOROZJI ELEKTROCHEMICZNEJ PODZIAŁ KOROZJI ZE WZGLĘDU NA MECHANIZM Korozja elektrochemiczna zachodzi w środowiskach wilgotnych, w wodzie i roztworach wodnych, w glebie, w wilgotnej atmosferze oraz

Bardziej szczegółowo

TŻ Wykład 9-10 I 2018

TŻ Wykład 9-10 I 2018 TŻ Wykład 9-10 I 2018 Witold Bekas SGGW Elementy elektrochemii Wiele metod analitycznych stosowanych w analityce żywnościowej wykorzystuje metody elektrochemiczne. Podział metod elektrochemicznych: Prąd

Bardziej szczegółowo

OGNIWA GALWANICZNE I SZREG NAPIĘCIOWY METALI ELEKTROCHEMIA

OGNIWA GALWANICZNE I SZREG NAPIĘCIOWY METALI ELEKTROCHEMIA 1 OGNIWA GALWANICZNE I SZREG NAPIĘCIOWY METALI ELEKTROCHEMIA PRZEMIANY CHEMICZNE POWODUJĄCE PRZEPŁYW PRĄDU ELEKTRYCZNEGO. PRZEMIANY CHEMICZNE WYWOŁANE PRZEPŁYWEM PRĄDU. 2 ELEKTROCHEMIA ELEKTROCHEMIA dział

Bardziej szczegółowo

Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej. Część V

Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej. Część V Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej Część V Wydział Chemii UAM Poznań 2011 POJĘCIA PODSTAWOWE Reakcjami utleniania i redukcji (oksydacyjno-redukcyjnymi) nazywamy reakcje,

Bardziej szczegółowo

Schemat ogniwa:... Równanie reakcji:...

Schemat ogniwa:... Równanie reakcji:... Zadanie 1. Wykorzystując dane z szeregu elektrochemicznego metali napisz schemat ogniwa, w którym elektroda cynkowa pełni rolę anody. Zapisz równanie reakcji zachodzącej w półogniwie cynkowym. Schemat

Bardziej szczegółowo

wykład 6 elektorochemia

wykład 6 elektorochemia elektorochemia Ogniwa elektrochemiczne Ogniwo elektrochemiczne składa się z dwóch elektrod będących w kontakcie z elektrolitem, który może być roztworem, cieczą lub ciałem stałym. Elektrolit wraz z zanurzona

Bardziej szczegółowo

Elektrochemia - szereg elektrochemiczny metali. Zadania

Elektrochemia - szereg elektrochemiczny metali. Zadania Elektrochemia - szereg elektrochemiczny metali Zadania Czym jest szereg elektrochemiczny metali? Szereg elektrochemiczny metali jest to zestawienie metali według wzrastających potencjałów normalnych. Wartości

Bardziej szczegółowo

Podstawowe pojęcia 1

Podstawowe pojęcia 1 Tomasz Lubera Półogniwo Podstawowe pojęcia 1 układ złożony z min. dwóch faz pozostających ze sobą w kontakcie, w którym w wyniku zachodzących procesów utleniania lub redukcji ustala się stan równowagi,

Bardziej szczegółowo

Cel ogólny lekcji: Omówienie ogniwa jako źródła prądu oraz zapoznanie z budową ogniwa Daniella.

Cel ogólny lekcji: Omówienie ogniwa jako źródła prądu oraz zapoznanie z budową ogniwa Daniella. Piotr Chojnacki IV rok, informatyka chemiczna Liceum Ogólnokształcące Nr I we Wrocławiu Wrocław dn. 9 listopada 2005r Temat lekcji: Ogniwa jako źródła prądu. Budowa ogniwa Daniella. Cel ogólny lekcji:

Bardziej szczegółowo

Elektrochemia. Reakcje redoks (utlenienia-redukcji) Stopień utlenienia

Elektrochemia. Reakcje redoks (utlenienia-redukcji) Stopień utlenienia --6. Reakcje redoks (reakcje utlenienia-redukcji) - stopień utlenienia - bilansowanie równań reakcji. Ogniwa (galwaniczne) - elektrody (półogniwa) lektrochemia - schemat (zapis) ogniwa - siła elektromotoryczna

Bardziej szczegółowo

Fragmenty Działu 8 z Tomu 1 PODSTAWY ELEKTROCHEMII

Fragmenty Działu 8 z Tomu 1 PODSTAWY ELEKTROCHEMII Fragmenty Działu 8 z Tomu 1 PODSTAWY ELEKTROCHEMII O G N I W A Zadanie 867 (2 pkt.) Wskaż procesy, jakie zachodzą podczas pracy ogniwa niklowo-srebrowego. Katoda Anoda Zadanie 868* (4 pkt.) W wodnym roztworze

Bardziej szczegółowo

1. za pomocą pomiaru SEM (siła elektromotoryczna róŝnica potencjałów dwóch elektrod) i na podstawie wzoru wyznaczenie stęŝenia,

1. za pomocą pomiaru SEM (siła elektromotoryczna róŝnica potencjałów dwóch elektrod) i na podstawie wzoru wyznaczenie stęŝenia, Potencjometria Potencjometria instrumentalna metoda analityczna, wykorzystująca zaleŝność pomiędzy potencjałem elektrody wzorcowej, a aktywnością jonów lub cząstek w badanym roztworze (elektrody wskaźnikowej).

Bardziej szczegółowo

ELEKTROCHEMIA. Podstawy

ELEKTROCHEMIA. Podstawy ELEKTROCHEMIA Podstawy 1 Reakcje przenoszenia Przenoszenie atomu HCl (g) + H 2 OCl - (aq) + H 3 O + (aq) Przenoszenie elektronu Cu (s) +2Ag + (aq) Cu 2+ (aq) +2Ag (s) utlenianie -2e - +2e - redukcja 3

Bardziej szczegółowo

Elektrochemia - prawa elektrolizy Faraday a. Zadania

Elektrochemia - prawa elektrolizy Faraday a. Zadania Elektrochemia - prawa elektrolizy Faraday a Zadania I prawo Faraday a Masa substancji wydzielonej na elektrodach podczas elektrolizy jest proporcjonalna do natężenia prądu i czasu trwania elektrolizy q

Bardziej szczegółowo

SZEREG NAPIĘCIOWY METALI OGNIWA GALWANICZNE

SZEREG NAPIĘCIOWY METALI OGNIWA GALWANICZNE SZEREG NAPIĘCIOWY METALI OGNIWA GALWANICZNE Opracowanie: dr inż. Krystyna Moskwa, dr inż. Bogusław Mazurkiewicz CZĘŚĆ TEORETYCZNA. 1. Potencjał elektrochemiczny metali. Każdy metal zanurzony w elektrolicie

Bardziej szczegółowo

SZEREG NAPIĘCIOWY METALI OGNIWA GALWANICZNE

SZEREG NAPIĘCIOWY METALI OGNIWA GALWANICZNE SZEREG NAPIĘCIOWY METALI OGNIWA GALWANICZNE Opracowanie: dr inż. Krystyna Moskwa, dr inż. Bogusław Mazurkiewicz CZĘŚĆ TEORETYCZNA. 1. Potencjał elektrochemiczny metali. Każdy metal zanurzony w elektrolicie

Bardziej szczegółowo

Przetwarzanie energii: kondensatory

Przetwarzanie energii: kondensatory Przetwarzanie energii: kondensatory Ładując kondensator wykonujemy pracę nad ładunkiem. Przetwarzanie energii: ogniwa paliwowe W ogniwach paliwowych następuje elektrochemiczne spalanie paliwa. Energia

Bardziej szczegółowo

Przetwarzanie energii: kondensatory

Przetwarzanie energii: kondensatory Przetwarzanie energii: kondensatory Ładując kondensator wykonujemy pracę nad ładunkiem. Przetwarzanie energii: ogniwa paliwowe W ogniwach paliwowych następuje elektrochemiczne spalanie paliwa. Energia

Bardziej szczegółowo

10. OGNIWA GALWANICZNE

10. OGNIWA GALWANICZNE 10. OGNIWA GALWANICZNE Zagadnienia teoretyczne Teoria powstawania potencjału, czynniki wpływające na wielkość potencjału elektrod metalowych. Wzór Nernsta. Potencjał normalny elektrody, rodzaje elektrod

Bardziej szczegółowo

(1) Przewodnictwo roztworów elektrolitów

(1) Przewodnictwo roztworów elektrolitów (1) Przewodnictwo roztworów elektrolitów 1. Naczyńko konduktometryczne napełnione 0,1 mol. dm -3 roztworem KCl w temp. 298 K ma opór 420 Ω. Przewodnictwo właściwe 0,1 mol. dm -3 roztworu KCl w tej temp.

Bardziej szczegółowo

Elektrochemia elektroliza. Wykład z Chemii Fizycznej str. 4.3 / 1

Elektrochemia elektroliza. Wykład z Chemii Fizycznej str. 4.3 / 1 Elektrochemia elektroliza Wykład z Chemii Fizycznej str. 4.3 / 1 ELEKTROLIZA POLARYZACJA ELEKTROD Charakterystyka prądowo-napięciowa elektrolizy i sposób określenia napięcia rozkładu Wykład z Chemii Fizycznej

Bardziej szczegółowo

10. OGNIWA GALWANICZNE

10. OGNIWA GALWANICZNE 10. OGNIWA GALWANICZNE Zagadnienia teoretyczne Teoria powstawania potencjału, czynniki wpływające na wielkość potencjału elektrod metalowych. Wzór Nernsta. Potencjał normalny elektrody, rodzaje elektrod

Bardziej szczegółowo

Wykład z Chemii Ogólnej i Nieorganicznej

Wykład z Chemii Ogólnej i Nieorganicznej Wykład z Chemii Ogólnej i Nieorganicznej Część VI ELEMENTY ELEKTOCHEMII Katedra i Zakład Chemii Fizycznej Collegium Medicum w Bydgoszczy Uniwersytet Mikołaja Kopernika w Toruniu Prof. dr hab. n.chem. Piotr

Bardziej szczegółowo

Ć W I C Z E N I E 6. Nadnapięcie wydzielania wodoru na metalach

Ć W I C Z E N I E 6. Nadnapięcie wydzielania wodoru na metalach HYDROMETALURGIA METALI NIEŻELAZNYCH 1 Ć W I C Z E N I E 6 Nadnapięcie wydzielania wodoru na metalach WPROWADZENIE ażdej elektrodzie, na której przebiega reakcja elektrochemiczna typu: x Ox + ze y Red (6.1)

Bardziej szczegółowo

POWTÓRKA Z ELEKTROCHEMII

POWTÓRKA Z ELEKTROCHEMII POWTÓRKA Z ELEKTROCHEMII Podstawowe pojęcia Zanim sprawdzisz swoje umiejętności i wiadomości z elektrochemii, przypomnij sobie podstawowe pojęcia: Stopień utlenienia pierwiastka to liczba elektronów, jaką

Bardziej szczegółowo

Elektrochemia. Jak pozyskać energię z reakcji redoksowych?

Elektrochemia. Jak pozyskać energię z reakcji redoksowych? Elektrochemia Jak pozyskać energię z reakcji redoksowych? 1 Ogniwo galwaniczne to urządzenie, w którym wytwarzany jest prąd elektryczny strumień elektronów w przewodniku dzięki przebiegowi samorzutnej

Bardziej szczegółowo

POLITECHNIKA SZCZECIŃSKA INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA

POLITECHNIKA SZCZECIŃSKA INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA POLITECHNIKA SZCZECIŃSKA INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA PRZEDMIOT: KOROZJA I OCHRONA PRZED KOROZJĄ ĆWICZENIA LABORATORYJNE Temat ćwiczenia: OGNIWA GALWANICZNE Cel

Bardziej szczegółowo

Podstawy elektrochemii

Podstawy elektrochemii Podstawy elektrochemii Elektrochemia bada procesy zachodzące na granicy elektrolit - elektroda Elektrony można wyciągnąć z elektrody bądź budując celkę elektrochemiczną, bądź dodając akceptor (np. kwas).

Bardziej szczegółowo

ELEKTROGRAWIMETRIA. Zalety: - nie trzeba strącać, płukać, sączyć i ważyć; - osad czystszy. Wady: mnożnik analityczny F = 1.

ELEKTROGRAWIMETRIA. Zalety: - nie trzeba strącać, płukać, sączyć i ważyć; - osad czystszy. Wady: mnożnik analityczny F = 1. Zasada oznaczania polega na wydzieleniu analitu w procesie elektrolizy w postaci osadu na elektrodzie roboczej (katodzie lub anodzie) i wagowe oznaczenie masy osadu z przyrostu masy elektrody Zalety: -

Bardziej szczegółowo

Reakcje utleniania i redukcji

Reakcje utleniania i redukcji Reakcje utleniania i redukcji Stopień utlenienia Stopniem utlenienia pierwiastka, wchodzącego w skład określonej substancji, nazywamy liczbę dodatnich lub ujemnych ładunków elementarnych, jakie przypisalibyśmy

Bardziej szczegółowo

Wrocław dn. 22 listopada 2005 roku. Temat lekcji: Elektroliza roztworów wodnych.

Wrocław dn. 22 listopada 2005 roku. Temat lekcji: Elektroliza roztworów wodnych. Piotr Chojnacki IV rok, informatyka chemiczna Liceum Ogólnokształcące Nr I we Wrocławiu Wrocław dn. 22 listopada 2005 roku Temat lekcji: Elektroliza roztworów wodnych. Cel ogólny lekcji: Wprowadzenie pojęcia

Bardziej szczegółowo

NAPIĘCIE ROZKŁADOWE. Ćwiczenie nr 37. I. Cel ćwiczenia. II. Zagadnienia wprowadzające

NAPIĘCIE ROZKŁADOWE. Ćwiczenie nr 37. I. Cel ćwiczenia. II. Zagadnienia wprowadzające Ćwiczenie nr 37 NAPIĘCIE ROZKŁADOWE I. Cel ćwiczenia Celem ćwiczenia jest: przebadanie wpływu przemian chemicznych zachodzących na elektrodach w czasie elektrolizy na przebieg tego procesu dla układu:

Bardziej szczegółowo

Reakcje redoks polegają na przenoszeniu (wymianie) elektronów pomiędzy atomami.

Reakcje redoks polegają na przenoszeniu (wymianie) elektronów pomiędzy atomami. Ćwiczenie nr 1: Reakcje redoks Autorki: Katarzyna Kazimierczuk, Anna Dołęga 1. WSTĘP Reakcje redoks polegają na przenoszeniu (wymianie) elektronów pomiędzy atomami. Utlenianie jest to utrata elektronów,

Bardziej szczegółowo

Materiały elektrodowe

Materiały elektrodowe Materiały elektrodowe Potencjał (względem drugiej elektrody): różnica potencjałów pomiędzy elektrodami określa napięcie możliwe do uzyskania w ogniwie. Wpływa na ilość energii zgromadzonej w ogniwie. Pojemność

Bardziej szczegółowo

WYKŁAD 13 Przewodnictwo roztworów elektrolitów. Konduktometria nanotechnologia II rok 1

WYKŁAD 13 Przewodnictwo roztworów elektrolitów. Konduktometria nanotechnologia II rok 1 WYKŁAD 13 Przewodnictwo roztworów elektrolitów. Konduktometria 2013-06-03 nanotechnologia II rok 1 Przewodnictwo elektrolitów Skąd wiadomo, że w roztworach wodnych elektrolitów istnieją jony? Eksperymenty

Bardziej szczegółowo

MA M + + A - K S, s M + + A - MA

MA M + + A - K S, s M + + A - MA ROZPUSZCZANIE OSADU MA M + + A - K S, s X + ; Y - M + ; A - H + L - (A - ; OH - ) jony obce jony wspólne protonowanie A - kompleksowanie M + STRĄCANIE OSADU M + + A - MA IS > K S czy się strąci? przy jakim

Bardziej szczegółowo

Obwody prądu stałego. Materiały dydaktyczne dla kierunku Technik Optyk (W12)Kwalifikacyjnego kursu zawodowego.

Obwody prądu stałego. Materiały dydaktyczne dla kierunku Technik Optyk (W12)Kwalifikacyjnego kursu zawodowego. Obwody prądu stałego Materiały dydaktyczne dla kierunku Technik Optyk (W12)Kwalifikacyjnego kursu zawodowego. Podstawowe prawa elektrotechniki w zastosowaniu do obwodów elektrycznych: Obwód elektryczny

Bardziej szczegółowo

Elektrochemia. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny

Elektrochemia. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny Elektrochemia Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny Elektrochemia Dział chemii fizycznej zajmujący się procesami jakie zachodzą w roztworze elektrolitu, związanymi: 1. z powstawaniem potencjału

Bardziej szczegółowo

ELEKTROCHEMIA. Wykład I

ELEKTROCHEMIA. Wykład I LKTROCHMIA Wykład I 1 Prof. dr hab. inż. Marta Radecka, B-6, III p. 306, tel (12) (617) 25-26 e-mail: radecka@agh.edu.pl Strona www: http://galaxy.uci.agh.edu.pl/~radecka/ http://www.agh.edu.pl/ Pracownicy

Bardziej szczegółowo

Elektrochemia. potencjały elektrodowe. Wykład z Chemii Fizycznej str. 4.2 / 1. Elektrochemia potencjały elektrochemiczne

Elektrochemia. potencjały elektrodowe. Wykład z Chemii Fizycznej str. 4.2 / 1. Elektrochemia potencjały elektrochemiczne lektrochemia potencjały elektrodowe Wykład z Chemii Fizycznej str. 4. / 1 4..1. Ogniwa elektrochemiczne - wprowadzenie lektryczna warstwa podwójna przykład Wykład z Chemii Fizycznej str. 4. / 4..1. Ogniwa

Bardziej szczegółowo

Al 2 O 3 anodowe utlenianie folii Al. TiO 2 nanotubes deliver drugs HRSEM nanotechweb.org. a. kotarba Zakład Chemii Nieorganicznej

Al 2 O 3 anodowe utlenianie folii Al. TiO 2 nanotubes deliver drugs HRSEM nanotechweb.org. a. kotarba Zakład Chemii Nieorganicznej PODSTAWY PROCESÓW ELEKTROCHEMICZNYCH Al 2 O 3 anodowe utlenianie folii Al TiO 2 nanotubes deliver drugs HRSEM nanotechweb.org a. kotarba Zakład Chemii Nieorganicznej reakcje syntezy reakcje analizy reakcje

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Zarządzanie i Inżynieria Produkcji Chemia procesów pozyskiwania energii Chemistry of energy receiving processes Kod przedmiotu: ZIP.PK.O.4.4. Rodzaj przedmiotu: przedmiot z

Bardziej szczegółowo

Elementy Elektrochemii

Elementy Elektrochemii Elementy Elektrochemii IV.: Ogniwa galwaniczne przykłady Ogniwa Pierwotne - nieodwracalne - ogniwo Volty (A.G.A.A. Volta 1800r.) - ogniwo Daniela (John Daniell 1836 r.) - Ogniwo cynkowo-manganowe (Leclanche,

Bardziej szczegółowo

Ćwiczenie 25. Piotr Skołuda OGNIWA STĘŻENIOWE

Ćwiczenie 25. Piotr Skołuda OGNIWA STĘŻENIOWE Ćwiczenie 25 Piotr Skołuda OGNIWA STĘŻENIOWE Zagadnienia: Ogniwa stężeniowe z przenoszeniem i bez przenoszenia jonów. Ogniwa chemiczne, ze szczególnym uwzględnieniem ogniw wykorzystywanych w praktyce jako

Bardziej szczegółowo

Budowę ogniwa galwanicznego opiszemy na przykładzie ogniwa glinowo- -srebrowego, które przedstawiono na Rysunku 1.

Budowę ogniwa galwanicznego opiszemy na przykładzie ogniwa glinowo- -srebrowego, które przedstawiono na Rysunku 1. 2.1.1. Budowa ogniwa galwanicznego Budowę ogniwa galwanicznego opiszemy na przykładzie ogniwa glinowo- -srebrowego, które przedstawiono na Rysunku 1. Rysunek 1. Budowa ogniwa galwanicznego na przykładzie

Bardziej szczegółowo

Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali

Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali Wymagane wiadomości Podstawy korozji elektrochemicznej, wykresy E-pH. Wprowadzenie Główną przyczyną zniszczeń materiałów metalicznych

Bardziej szczegółowo

Reakcje utleniania i redukcji. Zakład Chemii Medycznej Pomorskiego Uniwersytetu Medycznego

Reakcje utleniania i redukcji. Zakład Chemii Medycznej Pomorskiego Uniwersytetu Medycznego Reakcje utleniania i redukcji Zakład Chemii Medycznej Pomorskiego Uniwersytetu Medycznego Utlenianie i redukcja Utlenianiem nazywamy wszystkie procesy chemiczne, w których atomy lub jony tracą elektrony.

Bardziej szczegółowo

Reakcje redoks polegają na przenoszeniu (wymianie) elektronów pomiędzy atomami.

Reakcje redoks polegają na przenoszeniu (wymianie) elektronów pomiędzy atomami. Ćwiczenie nr 1: Reakcje redoks Autorki: Katarzyna Kazimierczuk, Anna Dołęga 1. WSTĘP Reakcje redoks polegają na przenoszeniu (wymianie) elektronów pomiędzy atomami. Utlenianie jest to utrata elektronów,

Bardziej szczegółowo

ELEKTROCHEMIA ZAKŁAD CHEMII MEDYCZNEJ POMORSKI UNIWERSYTET MEDYCZNY

ELEKTROCHEMIA ZAKŁAD CHEMII MEDYCZNEJ POMORSKI UNIWERSYTET MEDYCZNY ELEKTROCHEMIA ZAKŁAD CHEMII MEDYCZNEJ POMORSKI UNIWERSYTET MEDYCZNY Co to jest elektrochemia? Dział chemii fizycznej zajmujący się procesami jakie zachodzą w roztworze elektrolitu, związanymi: 1. z powstawaniem

Bardziej szczegółowo

IV. Reakcje utleniania i redukcji. Metale i niemetale

IV. Reakcje utleniania i redukcji. Metale i niemetale IV-A Elektrochemia IV. Reakcje utleniania i redukcji. Metale i niemetale IV-A.1. Porównanie aktywności chemicznej metali IV-A.2. Ogniwo jako źródło prądu elektrycznego a) ogniwo Daniella b) ogniwo z produktów

Bardziej szczegółowo

ELEKTROCHEMIA CIAŁA STAŁEGO

ELEKTROCHEMIA CIAŁA STAŁEGO ELEKTROCHEMIA CIAŁA STAŁEGO Wykład Ogniwa galwaniczne 1 2015-04-25 HISTORIA Prawdopodobnie pierwsze ogniwa galwaniczne były znane już w III w p.n.e. Pierwszym odkrytym ogniwem było znalezisko z 1936 r.

Bardziej szczegółowo

ĆWICZENIE 16 Potencjały równowagowe elektrod siła elektromotoryczna ogniw.

ĆWICZENIE 16 Potencjały równowagowe elektrod siła elektromotoryczna ogniw. ĆWICZENIE 16 Potencjały równowagowe elektrod siła elektromotoryczna ogniw. Wprowadzenie: Przewodnik elektronowy (np. metal, grafit) zanurzony w elektrolicie (np. wodne roztwory soli, kwasów, zasad; stopiona

Bardziej szczegółowo

Katedra Inżynierii Materiałowej

Katedra Inżynierii Materiałowej Katedra Inżynierii Materiałowej Instrukcja do ćwiczenia z Biomateriałów Polaryzacyjne badania korozyjne mgr inż. Magdalena Jażdżewska Gdańsk 2010 Korozyjne charakterystyki stałoprądowe (zależności potencjał

Bardziej szczegółowo

BIOTECHNOLOGIA. Materiały do ćwiczeń rachunkowych z chemii fizycznej kinetyka chemiczna, 2014/15

BIOTECHNOLOGIA. Materiały do ćwiczeń rachunkowych z chemii fizycznej kinetyka chemiczna, 2014/15 Zadanie 1. BIOTECHNOLOGIA Materiały do ćwiczeń rachunkowych z chemii fizycznej kinetyka chemiczna, 014/15 W temperaturze 18 o C oporność naczyńka do pomiaru przewodności napełnionego 0,0 M wodnym roztworem

Bardziej szczegółowo

I 2 + H 2 S 2 HI + S Wielkością charakteryzującą właściwości redoksowe jest potencjał redoksowy E dany wzorem Nernsta. red

I 2 + H 2 S 2 HI + S Wielkością charakteryzującą właściwości redoksowe jest potencjał redoksowy E dany wzorem Nernsta. red 7. REAKCJE UTLENIANIA I REDUKCJI Reakcje redoksowe są to takie reakcje chemiczne, podczas których następuje zmiana stopni utlenienia atomów lub jonów w wyniku wymiany elektronów. Wymiana elektronów zachodzi

Bardziej szczegółowo

IV A. Reakcje utleniania i redukcji. Metale i niemetale

IV A. Reakcje utleniania i redukcji. Metale i niemetale IV A. Reakcje utleniania i redukcji. Metale i niemetale IV-A Elektrochemia IV-A.1. Porównanie aktywności chemicznej metali IV-A.2. Ogniwo jako źródło prądu elektrycznego a) ogniwo Daniella b) ogniwo z

Bardziej szczegółowo

MODUŁ. Elektrochemia

MODUŁ. Elektrochemia MODUŁ Warsztaty badawczo-naukowe: Elektrochemia 1. Zakładane efekty kształcenia modułu Poznanie podstawowych pojęć z zakresu elektrochemii takich jak: przewodnictwo, półogniwo (elektroda), ogniwo, elektroliza,

Bardziej szczegółowo

Elektrochemia. (opracowanie: Barbara Krajewska)

Elektrochemia. (opracowanie: Barbara Krajewska) Elektrochemia (opracowanie: Barbara Krajewska) 1. Wprowadzenie Elektrochemia to dział chemii zajmujący się przemianami chemicznymi zachodzącymi z udziałem prądu elektrycznego. Badane tu przemiany to zasadniczo:

Bardziej szczegółowo

Opracowała: mgr inż. Ewelina Nowak

Opracowała: mgr inż. Ewelina Nowak Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Opracowała: mgr

Bardziej szczegółowo

Akademickie Centrum Czystej Energii. Ogniwo paliwowe

Akademickie Centrum Czystej Energii. Ogniwo paliwowe Ogniwo paliwowe 1. Zagadnienia elektroliza, prawo Faraday a, pierwiastki galwaniczne, ogniwo paliwowe 2. Opis Główną częścią ogniwa paliwowego PEM (Proton Exchange Membrane) jest membrana złożona z katody

Bardziej szczegółowo

Ogniwa galwaniczne. Chem. Fiz. TCH II/15 1

Ogniwa galwaniczne. Chem. Fiz. TCH II/15 1 Ogniwa galwaniczne Ogniwa galwaniczne są to urządzenia umożliwiające bezpośrednią przemianę energii chemicznej (wiązań chemicznych) na energię (pracę) elektryczną. Jak widać, w definicji powyższej nie

Bardziej szczegółowo

PODSTAWY PROCESÓW ELEKTROCHEMICZNYCH

PODSTAWY PROCESÓW ELEKTROCHEMICZNYCH PODSTAWY PROCESÓW ELEKTROCHEMICZNYCH anodowe utlenianie folii tytanowej a. kotarba Zakład Chemii Nieorganicznej Nanoporous TiO 2 M. Golda-Cepa et al. Mat. Sci. Eng. C (2016) reakcje syntezy reakcje analizy

Bardziej szczegółowo

Fizykochemiczne podstawy elektrochemicznych metod analizy

Fizykochemiczne podstawy elektrochemicznych metod analizy Fizykochemiczne podstawy elektrochemicznych metod analizy Robert Piech Elektroanalityczne metody analizy stanowią liczną grupę metod instrumentalnych, przydatnych szczególnie w analizie próbek ciekłych

Bardziej szczegółowo

Jak pozyskać energię z reakcji redoksowych? Ogniwa galwaniczne

Jak pozyskać energię z reakcji redoksowych? Ogniwa galwaniczne Elektrchemia Jak pzyskać energię z reakcji redkswych? 1 Ogniw galwaniczne t urządzenie, w którym wytwarzany jest prąd elektryczny strumień elektrnów w przewdniku dzięki przebiegwi samrzutnej reakcji chemicznej.

Bardziej szczegółowo

Elektroliza: polaryzacja elektrod, nadnapięcie Jakościowy oraz ilościowy opis elektrolizy. Prawa Faraday a

Elektroliza: polaryzacja elektrod, nadnapięcie Jakościowy oraz ilościowy opis elektrolizy. Prawa Faraday a Elektrochemia elektroliza oraz korozja 5.3.1. Elektroliza: polaryzacja elektrod, nadnapięcie 5.3.2. Jakościowy oraz ilościowy opis elektrolizy. Prawa Faraday a 5.3.3. Zjawisko korozji elektrochemicznej

Bardziej szczegółowo

Ogniwa galwaniczne. Elektrolizery. Rafinacja. Elektroosadzanie.

Ogniwa galwaniczne. Elektrolizery. Rafinacja. Elektroosadzanie. Elektrochemia Wydział SiMR, kierunek IPEiH II rok I stopnia studiów, semestr IV dr inż. Leszek Niedzicki. Elektrolizery. Rafinacja. Elektroosadzanie. Szereg elektrochemiczny (standardowe potencjały półogniw

Bardziej szczegółowo

Pierwiastki bloku d w zadaniach maturalnych Zadanie 1. ( 3 pkt ) Zadanie 2. (4 pkt) Zadanie 3. (2 pkt) Zadanie 4. (2 pkt) Zadanie 5.

Pierwiastki bloku d w zadaniach maturalnych Zadanie 1. ( 3 pkt ) Zadanie 2. (4 pkt) Zadanie 3. (2 pkt) Zadanie 4. (2 pkt) Zadanie 5. Pierwiastki bloku d w zadaniach maturalnych Zadanie 1. (3 pkt) Uzupełnij podane równanie reakcji: dobierz odpowiednie środowisko oraz dobierz współczynniki, stosując metodę bilansu elektronowego. ClO 3

Bardziej szczegółowo

Chemia I Semestr I (1 )

Chemia I Semestr I (1 ) 1/ 6 Inżyniera Materiałowa Chemia I Semestr I (1 ) Osoba odpowiedzialna za przedmiot: dr inż. Maciej Walewski. 2/ 6 Wykład Program 1. Atomy i cząsteczki: Materia, masa, energia. Cząstki elementarne. Atom,

Bardziej szczegółowo

λ = Ćwiczenie 5K Wyznaczanie liczb przenoszenia oraz ruchliwości jonów w polu elektrycznym.

λ = Ćwiczenie 5K Wyznaczanie liczb przenoszenia oraz ruchliwości jonów w polu elektrycznym. 1 Ćwiczenie 5K Wyznaczanie liczb przenoszenia oraz ruchliwości jonów w polu elektrycznym. 1. Przewodnictwo elektryczne roztworów Elektrochemia zajmuje się relacjami między zjawiskami chemicznymi, a przepływem

Bardziej szczegółowo

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach 1 STECHIOMETRIA INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

Bardziej szczegółowo

Ćwiczenie III: WYZNACZENIE ENTALPII SWOBODNEJ, ENTALPII I ENTROPII REAKCJI W OGNIWIE CLARKA

Ćwiczenie III: WYZNACZENIE ENTALPII SWOBODNEJ, ENTALPII I ENTROPII REAKCJI W OGNIWIE CLARKA Ćwiczenie III: WYZNACZENIE ENTALPII SWOBODNEJ, ENTALPII I ENTROPII Wrowadzenie REAKCJI W OGNIWIE CLARKA oracowanie: Urszula Lelek-Borkowska Celem ćwiczenia jest wyznaczenie odstawowych funkcji termodynamicznych

Bardziej szczegółowo

VII Podkarpacki Konkurs Chemiczny 2014/2015

VII Podkarpacki Konkurs Chemiczny 2014/2015 II Podkarpacki Konkurs Chemiczny 2014/2015 ETAP I 12.11.2014 r. Godz. 10.00-12.00 KOPKCh Uwaga! Masy molowe pierwiastków podano na końcu zestawu. Zadanie 1 1. Który z podanych zestawów zawiera wyłącznie

Bardziej szczegółowo

Reakcje chemiczne. Typ reakcji Schemat Przykłady Reakcja syntezy

Reakcje chemiczne. Typ reakcji Schemat Przykłady Reakcja syntezy Reakcje chemiczne Literatura: L. Jones, P. Atkins Chemia ogólna. Cząsteczki, materia, reakcje. Lesław Huppenthal, Alicja Kościelecka, Zbigniew Wojtczak Chemia ogólna i analityczna dla studentów biologii.

Bardziej szczegółowo

Pytania przykładowe na kolokwium zaliczeniowe z Podstaw Elektrochemii i Korozji

Pytania przykładowe na kolokwium zaliczeniowe z Podstaw Elektrochemii i Korozji Pytania przykładowe na kolokwium zaliczeniowe z Podstaw Elektrochemii i Korozji Kolokwium obejmuje zakres materiału z wykładów oraz konwersatorium. Pytania na kolokwium mogą się różnić od pytań przedstawionych

Bardziej szczegółowo

Nazwy pierwiastków: ...

Nazwy pierwiastków: ... Zadanie 1. [ 3 pkt.] Na podstawie podanych informacji ustal nazwy pierwiastków X, Y, Z i zapisz je we wskazanych miejscach. I. Atom pierwiastka X w reakcjach chemicznych może tworzyć jon zawierający 20

Bardziej szczegółowo

Ćwiczenie 2. Charakteryzacja niskotemperaturowego czujnika tlenu. (na prawach rękopisu)

Ćwiczenie 2. Charakteryzacja niskotemperaturowego czujnika tlenu. (na prawach rękopisu) Ćwiczenie 2. Charakteryzacja niskotemperaturowego czujnika tlenu (na prawach rękopisu) W analityce procesowej istotne jest określenie stężeń rozpuszczonych w cieczach gazów. Gazy rozpuszczają się w cieczach

Bardziej szczegółowo

TYPY REAKCJI CHEMICZNYCH

TYPY REAKCJI CHEMICZNYCH TYPY REAKCJI CHEMICZNYCH Opracowanie: dr inż Krystyna Moskwa, dr hab. Barbara Stypuła, mgr Agnieszka Tąta Reakcje chemiczne to procesy, w czasie których substancje ulegają przemianom, prowadzącym do powstawania

Bardziej szczegółowo

To jest. Ocena bardzo dobra [ ] energetycznych. s p d f. Ocena dobra [ ] izotopowym. atomowych Z. ,, d oraz f.

To jest. Ocena bardzo dobra [ ] energetycznych. s p d f. Ocena dobra [ ] izotopowym. atomowych Z. ,, d oraz f. 34 Wymagania programowe To jest przyrodniczych,,,,, chemicznego na podstawie zapisu A Z E,,,, podaje masy atomowe pierwiastków chemicznych,, n,,,,, s, p, d oraz f przyrodniczych,,,,, oraz Z,,, d oraz f,,

Bardziej szczegółowo

Elektrolity wykazują przewodnictwo jonowe Elektrolity ciekłe substancje rozpadające się w roztworze na jony

Elektrolity wykazują przewodnictwo jonowe Elektrolity ciekłe substancje rozpadające się w roztworze na jony Elektrolity wykazują przewodnictwo jonowe Elektrolity ciekłe substancje rozpadające się w roztworze na jony Jony dodatnie - kationy: atomy pozbawione elektronów walencyjnych, np. Li +, Na +, Ag +, Ca 2+,

Bardziej szczegółowo

1. Kryształy jonowe omówić oddziaływania w kryształach jonowych oraz typy struktur jonowych.

1. Kryształy jonowe omówić oddziaływania w kryształach jonowych oraz typy struktur jonowych. Tematy opisowe 1. Kryształy jonowe omówić oddziaływania w kryształach jonowych oraz typy struktur jonowych. 2. Dlaczego do kadłubów statków, doków, falochronów i filarów mostów przymocowuje się płyty z

Bardziej szczegółowo

ĆWICZENIE 10. Szereg napięciowy metali

ĆWICZENIE 10. Szereg napięciowy metali ĆWICZENIE 10 Szereg napięciowy metali Szereg napięciowy metali (szereg elektrochemiczny, szereg aktywności metali) obrazuje tendencję metali do oddawania elektronów (ich zdolności redukujących) i tworzenia

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z CHEMII na poszczególne oceny dla uczniów klasy III a. chemia rozszerzona. mgr Adam Makówka

WYMAGANIA EDUKACYJNE Z CHEMII na poszczególne oceny dla uczniów klasy III a. chemia rozszerzona. mgr Adam Makówka WYMAGANIA EDUKACYJNE Z CHEMII na poszczególne oceny dla uczniów klasy III a chemia rozszerzona mgr Adam Makówka 1 Dział 1 Dysocjacja elektrolityczna. Reakcje w roztworach wodnych elektrolitów. Reakcje

Bardziej szczegółowo

10 k. OGNIWA GALWANICZNE

10 k. OGNIWA GALWANICZNE 10 k. OGNIWA GALWANICZNE Zagadnienia teoretyczne Teoria powstawania potencjału, czynniki wpływające na wielkość potencjału elektrod metalowych. Wzór Nernsta. Potencjał normalny elektrody, rodzaje elektrod

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Chemia Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Chemia Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Chemia Poziom rozszerzony Listopad 01 W niniejszym schemacie oceniania zadań otwartych są prezentowane przykładowe poprawne odpowiedzi. W tego typu

Bardziej szczegółowo

Badania elektrochemiczne. Analiza krzywych potencjodynamicznych.

Badania elektrochemiczne. Analiza krzywych potencjodynamicznych. Katedra Mechaniki i Inżynierii Materiałowej Badania elektrochemiczne. Analiza krzywych potencjodynamicznych. mgr inż. Anna Zięty promotor: dr hab. inż. Jerzy Detyna, prof. nadzw. Pwr Wrocław, dn. 25.11.2015r.

Bardziej szczegółowo

Celem ćwiczenia jest wyznaczenie charakterystyki prądowo- napięciowej elektrolizera typu PEM,

Celem ćwiczenia jest wyznaczenie charakterystyki prądowo- napięciowej elektrolizera typu PEM, Ćw.2 Elektroliza wody za pomocą ogniwa paliwowego typu PEM Celem ćwiczenia jest wyznaczenie charakterystyki prądowo- napięciowej elektrolizera typu PEM, A także określenie wydajności tego urządzenia, jeśli

Bardziej szczegółowo

Ogniwa galwaniczne. Chem. Fiz. TCH II/15 1

Ogniwa galwaniczne. Chem. Fiz. TCH II/15 1 Ogniwa galwaniczne Ogniwa galwaniczne są to urządzenia umożliwiające bezpośrednią przemianę energii chemicznej (wiązań chemicznych) na energię (pracę) elektryczną. Jak widać, w definicji powyższej nie

Bardziej szczegółowo

Zadanie 2. Przeprowadzono następujące doświadczenie: Wyjaśnij przebieg tego doświadczenia. Zadanie: 3. Zadanie: 4

Zadanie 2. Przeprowadzono następujące doświadczenie: Wyjaśnij przebieg tego doświadczenia. Zadanie: 3. Zadanie: 4 Zadanie: 1 Do niebieskiego, wodnego roztworu soli miedzi wrzucono żelazny gwóźdź i odstawiono na pewien czas. Opisz zmiany zachodzące w wyglądzie: roztworu żelaznego gwoździa Zadanie 2. Przeprowadzono

Bardziej szczegółowo

Sem nr. 10. Elektrochemia układów równowagowych. Zastosowanie

Sem nr. 10. Elektrochemia układów równowagowych. Zastosowanie Sem nr. 10. lektrochemia układów równowaowych. Zastosowanie Potencjometryczne wyznaczanie ph a utl + νe a red Substrat produkt a-aktywność formy utlenionej, b-aktywnośc ormy zredukowanej = o RT νf ln a

Bardziej szczegółowo

TYPY REAKCJI CHEMICZNYCH

TYPY REAKCJI CHEMICZNYCH 1 REAKCJA CHEMICZNA: TYPY REAKCJI CHEMICZNYCH REAKCJĄ CHEMICZNĄ NAZYWAMY PROCES, W WYNIKU KTÓREGO Z JEDNYCH SUBSTANCJI POWSTAJĄ NOWE (PRODUKTY) O INNYCH WŁAŚCIWOŚCIACH NIŻ SUBSTANCJE WYJŚCIOWE (SUBSTRATY)

Bardziej szczegółowo

Wyciskamy z cytryny... prąd elektryczny. Wpisany przez Administrator środa, 04 lipca :26 -

Wyciskamy z cytryny... prąd elektryczny. Wpisany przez Administrator środa, 04 lipca :26 - Jak nazwa działu wskazuje będę tu umieszczał różne rozwiązania umożliwiające pozyskiwanie energii elektrycznej z niekonwencjonalnych źródeł. Zaczniemy od eksperymentu, który każdy może wykonać sobie w

Bardziej szczegółowo

Elektrochemia. 2 Mg (s) + O 2 (g) 2MgO (s)

Elektrochemia. 2 Mg (s) + O 2 (g) 2MgO (s) Elektrochemia Takie nie mające na pozór nic wspólnego procesy jak spalanie, oddychanie, fotosynteza czy korozja, są w istocie blisko ze sobą powiązane. W każdym z nich można wyróżnić etap, w którym następuje

Bardziej szczegółowo

VI Podkarpacki Konkurs Chemiczny 2013/2014

VI Podkarpacki Konkurs Chemiczny 2013/2014 VI Podkarpacki Konkurs Chemiczny 01/01 ETAP I 1.11.01 r. Godz. 10.00-1.00 KOPKCh Uwaga! Masy molowe pierwiastków podano na końcu zestawu. Zadanie 1 1. Znając liczbę masową pierwiastka można określić liczbę:

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 2 Temat: Wyznaczenie współczynnika elektrochemicznego i stałej Faradaya.

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 2 Temat: Wyznaczenie współczynnika elektrochemicznego i stałej Faradaya. LABOATOIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr Temat: Wyznaczenie współczynnika elektrochemicznego i stałej Faradaya.. Wprowadzenie Proces rozpadu drobin związków chemicznych

Bardziej szczegółowo

CHEMIA. Wymagania szczegółowe. Wymagania ogólne

CHEMIA. Wymagania szczegółowe. Wymagania ogólne CHEMIA Wymagania ogólne Wymagania szczegółowe Uczeń: zapisuje konfiguracje elektronowe atomów pierwiastków do Z = 36 i jonów o podanym ładunku, uwzględniając rozmieszczenie elektronów na podpowłokach [

Bardziej szczegółowo

KOROZJA ELEKTROCHEMICZNA i OCHRONA PRZED KOROZJĄ.

KOROZJA ELEKTROCHEMICZNA i OCHRONA PRZED KOROZJĄ. KOROZJA ELEKTROCHEMICZNA i OCHRONA PRZED KOROZJĄ. Ćwiczenie 1. - korozja z depolaryzacją wodorową Sprzęt: - blaszki Zn - biureta - pompka gumowa - zlewki - waga analityczna Odczynniki: - 1M H 2 SO 4 Celem

Bardziej szczegółowo

Problemy do samodzielnego rozwiązania

Problemy do samodzielnego rozwiązania Problemy do samodzielnego rozwiązania 1. Napisz równania reakcji dysocjacji elektrolitycznej, uwzględniając w zapisie czy jest to dysocjacja mocnego elektrolitu, słabego elektrolitu, czy też dysocjacja

Bardziej szczegółowo