Analiza regresji część III. Agnieszka Nowak - Brzezińska

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Analiza regresji część III. Agnieszka Nowak - Brzezińska"

Transkrypt

1 Analiza regresji część III Agnieszka Nowak - Brzezińska

2 Są trzy typy obserwacji, które mogą ale nie muszą wywierać nadmiernego nacisku na wyniki regresji: Obserwacje oddalone (outlier) Obserwacje wysokiej dźwigni (laverage) Obserwacje wpływowe (influential).

3 Identyfikacja obserwacji odstających i obserwacji wpływowych Wykrycie wśród danych obserwacji nietypowych jest niezwykle istotne, gdyż mogą one utrudniać właściwą ich analizę, np. mogą (choć nie muszą) wywierać nadmierny nacisk na wyniki regresji. Szczególnej uwagi wymagają przypadki w których nietypowość danych nie wynika z błędu pomiaru.

4 przykład Nietypową obserwacją może być chociażby zawodnik o wzroście 165 cm w grupie koszykarzy ze średnią wartością wzrostu powyżej 190 cm. Wtedy możemy wyróżnić przynajmniej dwa warte uwagi przypadki: gdy ów niski koszykarz ma wagę zgodną ze średnią wagą całej grupy, lub gdy jego waga jest odpowiednio niższa w stosunku do wyższych kolegów w grupie. Nietypowość pierwszego przypadku będzie polegała na tym, że przy typowej wadze, ów zawodnik ma nietypowy wzrost, i w tym sensie będzie to obserwacja potencjalnie odstająca (być może także wpływowa). Drugi przypadek natomiast będzie dotyczył sytuacji gdy jeden zawodnik w grupie jest po prostu lżejszy i niższy niż reszta grupy - i nie oznacza to, że obserwację należy uznać za odstającą.

5 Należy rozróżnić: (i) nietypową wartość tylko zmiennej objaśnianej y podczas gdy zmienna objaśniająca x ma wartość typową od (ii) nietypowej wartości obu zmiennych: objaśniającej i objaśnianej.

6 Obserwacje odstające W analizie regresji, za odstające (ang. outlier), uznamy obserwacje posiadające nietypowe wartości zmiennej objaśnianej y dla ich wartości zmiennej (bądź zmiennych) objaśniającej x i w konsekwencji dostarczające dużych wartości tzw. rezyduów e. Obserwacja, dla której wartość zmiennej objaśniającej x znacząco odbiega od typowych wartości tej zmiennej jest potencjalną obserwacją wpływową. Dołączenie takich obserwacji do zbioru danych ma w rezultacie duży wpływ na przebieg prostej regresji (zmiany współczynników regresji).

7 Obserwacje odstające Obserwacja odstająca (ang. outlier) jest obserwacją, która nie spełnia równania regresji czyli nie należy do modelu regresji. Obserwacje odstające mogą znacząco wpływać na postać prostej regresji: dla której wartość sumy: ma być możliwie najmniejsza zgodnie z założeniami metody MNK. W przypadku modelu regresji, w którym tylko jedna zmienna objaśniająca określać ma wartość zmiennej objaśnianej, obserwacje odstające można identyfikować sporządzając dla obserwacji wykres rozproszenia. Oko ludzkie zwykle potrafi na nich wykrywać obserwacje nietypowe.

8 Najlepiej jednak (zwłaszcza dla modeli o więcej niż jednej zmiennej objaśniającej) badać tzw. rezydua lub rezydua studentyzowane i wśród nich szukać wartości odstających. Zakładając, że rezyduum e i przyjmuje dla i-tej obserwacji wartość różnicy: między wartością zmiennej objaśnianej a wartością przewidywaną, błąd standardowy (ang. standard error) takiego rezyduum e i jest równy: gdzie S = to przeciętne odchylenie wartości rzeczywistych od wartości przewidywanych zaś h i to wartość wpływu i-tej obserwacji wyrażana jako: Dla małych prób, wartości zmiennej objaśniającej nie są w miarę równomiernie rozłożone i niektóre błędy Se ei mogą znacznie odbiegać od błędu S. Wówczas dobrze jest analizować rezydua przy użyciu tzw. rezyduów studentyzowanych.

9 Wówczas dobrze jest analizować rezydua przy użyciu tzw. rezyduów studentyzowanych r i definiowanych jako: To pozwoli wykrywać obserwacje faktycznie odstające, pomijając te, które przy analizie rezyduów e i sugerowały, że są odstające mimo, że takimi nie były. Dla rezyduów studentyzowanych zakłada się, że przy poziomie ufności równym 0.95 uznaje się je za normalne (zachowujące własność rozkładu normalnego) gdy należą do przedziału [ 2, +2]. Wykres studentyzowanych rezyduów względem ich indeksu identyfikuje duże wartości, które przypuszczalnie odpowiadają obserwacjom odstającym. Metoda ta nie sprawdzi się w sytuacji, gdy mamy w analizowanym zbiorze obserwację wpływową o małej wartości e i. Wówczas bowiem nie określimy jej jako odstającej mimo, że taka w istocie jest.

10 Tutaj z ratunkiem przychodzą tzw. Modyfikowane studentyzowane rezydua d i, badające różnicę między wartością rzeczywistą Y i a wartością przewidywaną dla tej obserwacji, gdy pominiemy ją w analizie. Wartość d i określona jako modyfikowane rezyduum wyznaczana jest następująco: Gdzie to wartość przewidywana zmiennej objaśnianej w modelu regresji dla zbioru wszystkich obserwacji z pominięciem obserwacji i-tej. Studentyzowane modyfikowane rezyduum przyjmuje wartość:

11 Obserwacje wpływowe Obserwacja jest wpływowa (ang. influential), jeśli jej obecność wpływa na prostą regresji, w taki sposób, że zmienia się współczynnik kierunkowy tej prostej. Innymi słowy, usunięcie tej obserwacji ze zbioru danych powoduje dużą zmianę wektora współczynników regresji. Obserwacje odstające mogą, ale nie muszą być obserwacjami wpływowymi.

12 Obserwacje wpływowe Wpływ i-tej obserwacji będziemy określać jako odstępstwo obserwacji x i od. Im większa jest różnica (podnoszona do kwadratu) tym większa wartość wpływu. Dla modelu z jedną zmienną objaśniającą wystarczyłoby w zasadzie sporządzić wykres typu histogram dla tej zmiennej objaśniającej i za jego pomocą wykrywać obserwacje odbiegające od wartości typowej tej zmiennej. Jednak gdy w modelu mamy więcej zmiennych objaśniających, wówczas odbieganie wektora x od wektora średnich gdzie wcale nie oznacza, że któraś ze współrzędnych wektora x będzie odstawać znacznie od odpowiadającej współrzędnej wektora średnich.

13 Z pomocą przychodzi tutaj założenie, że pewna globalna miara odstępstwa obserwacji x i od określona jest przez i-ty diagonalny element macierzy H: hi = hii zwany wpływem obserwacji. Dla modelu o p parametrach (gdzie p to łączna liczba zmiennych objaśniających i objaśnianych) powiemy, że oraz dla każdego To oznacza, że typowa wartość wpływu hi nie powinna przekraczać wartości p/n. Jeśli zaś wartość ta dla analizowanej i-tej obserwacji przekracza wartość 2p/n (a dla małych prób 3p/n) wówczas taką zmienną uznamy za potencjalnie wpływową.

14 Na uwagę zasługuje tu fakt, że dla obserwacji o dużych wartościach wpływu rezydua ei mogą być małe. Dlatego, by upewnić się, że poprawnie zidentyfikowaliśmy obserwacje wpływowe stosując próg 2p/n powinniśmy każdą taką obserwację usunąć ze zbioru i sprawdzić jak bardzo dzięki temu zmienił się wektor spółczynników regresji w stosunku do modelu w którym tę obserwację ujęto w analizie.

15 Równie popularnymi miarami wpływu poszczególnych obserwacji na równanie regresji są:. DFFITS (autorzy: Belsley, Kuh & Welsch, 1980);. Odległość Cooka (autorzy: Cook, 1977);. DFBETAS (autorzy: Belsley, Kuh & Welsch, 1980);

16

17

18

19 Zupełnie innym typem obserwacji, o których raczej nie powiemy, że są odstającymi, są obserwacje dla których wektor zmiennych objaśniających jest znacznie oddalony od typowego wektora wartości objaśniających. Nie zakładamy dla takich obserwacji, że mając nietypowe wartości zmiennych objaśniających nie spełnią równania regresji. Z omawianym zagadnieniem wiąże się jeszcze pojęcie tzw. dźwigni (ang. leverage) obserwacji.

20 Obserwacja cechuje się wysoką dźwignią gdy przy nietypowej wartości zmiennej objaśniającej cechuje się typową wartością zmiennej objaśnianej. Wówczas bowiem rezyduum ei będzie małe a o obserwacji powiemy, że przyciąga linię regresji ˆ Yi blisko Yi. Możemy także powiedzieć, że miarą dźwigni dla i-tej obserwacji jest wartość jej wpływu hi. W regresji prostej mierzy ona odległość danej obserwacji od średniej wartości tej zmiennej. W regresji wielokrotnej zaś mierzy ona po prostu odległość od punktu średnich wartości wszystkich zmiennych objaśniających. Im bardziej różni się wartość zmiennej (bądź zmiennych) objaśniającej dla i-tej obserwacji od wartości średniej, tym większa jest wartość tzw. dźwigni dla tej obserwacji. Zwykle wartości dźwigni mieszczą się w przedziale [0, 1] zatem wartość dźwigni większa od wartości 4/n świadczy o tym, że obserwacja będzie traktowana jako nietypowa (mając tzw. wysoką wartość dźwigni).

21 Masking i Swamping Masking (nazywany maskowaniem odchyleń) zachodzi wówczas, gdy spodziewamy się w zbiorze jednej obserwacji będącej odchyleniem a w rzeczywistości takich odchyleń jest więcej. Wówczas test może nie wykryć odchyleń w ogóle gdyż te - dodatkowe - odchylenia mogą wpływać na wielkości różnych statystyk i w efekcie nie znajdować żadnych odchyleń w danych. Z kolei swamping jest nieuprawnionym dołączaniem obserwacji do zbioru obserwacji wpływowych i/lub odstających.

22 Wykrywanie obserwacji odstających, wpływowych i obserwacji wysokiej dźwigni w praktyce Dla przykładowego zbioru danych zawierających 20 obserwacji opisanych dwoma wartościami (po jednej zmiennej objaśniającej x i objaśnianej y) ta część rozdziału będzie przedstawiała krok po kroku procedury wyznaczania obserwacji wpływowych, odstających oraz obserwacji wysokiej dźwigni. Rozważymy trzy przypadki dodając za każdym razem po jednej nietypowej obserwacji do tego zbioru.

23

24

25

26 Dla tego zbioru rozważymy trzy różne przypadki: dodamy do niego za każdym razem po jednej obserwacji nietypowej: obserwacji odstającej, o niewielkim wpływie na regresję, i nie będącej obserwacją tzw. wysokiej dźwigni (o współrzędnych (4, 40)), obserwacji jednocześnie odstającej, wpływowej i z wysoką dźwignią (o współrzędnych (13, 15)), obserwacji wysokiej dźwigni, nie będącej obserwacją odstającą ani też wpływową (o współrzędnych (14, 68)).

27

28

29 Łatwo zauważyć, że dodanie nowej obserwacji (wyraźnie odstającej, o czym świadczą wartości 4, 40) nie wpłynęło na równanie regresji, zatem możemy wnioskować, że nie jest ona wpływową mimo, że jest odstająca. Dla oryginalnego zbioru danych równanie regresji miało postać: dane$y = dane$x podczas gdy teraz dla zbioru zawierającego obserwację (4, 40) równanie będzie następujące: dane$y = dane$x Dla takiego zbioru postaramy się sprawdzić wartości poszczególnych miar: rezyduów (lub rezyduów studentyzowanych), dźwigni, odległości Cooka czy DFFITS.

30

31 Szukamy obserwacji o dużej wartości rezyduów lub rezyduów studentyzowanych: Tylko nr 21 przekracza próg dopuszczalny równy 2. Obserwacjami wpływowymi są te, których wartość DFFITS przekracza wartość 1 (dla małych prób) bądź wartość odległości Cooka przekracza próg : taką obserwacją jest również tylko obserwacja nr 21 (choć należy zaznaczyć, że wpływ tej obserwacji na zmiany współczynników regresji nie jest znaczący, a i wartość miary DFFITS nieznacznie przekracza wartość progową).

32

33 Będzie to obserwacja wpływowa ale nie będzie obserwacją wysokiej dźwigni

34

35

36 Drugi analizowany przypadek zbioru zawiera obserwację wpływową ale nie odstającą. Do oryginalnego zbioru 20 obserwacji dodajemy obserwację nr 21 o współrzędnych (13, 15).

37

38

39 możemy zauważyć, jak bardzo zmieniły się wszystkie parametry tego modelu. Widać różnice we współczynnikach równania regresji, które teraz wygląda następująco: dane$y = dane$x Różnice widać także dla błędu standardowego rezyduów oraz chociażby wartości współczynnika determinacji R2.

40

41

42

43 Wniosek W tym zbiorze obserwacja nr 21 jest zarówno obserwacją o dużej wartości reszty i reszty studentyzowanej (jest więc obserwacją odstającą), obserwacją wpływową (wartość odległości Cooka jak i miary DFFITS przekraczają dopuszczalny próg) a także obserwacją wysokiej dźwigni.

44 ostatni analizowany przypadek danych nietypowych. Nietypowość jego polega na tym, że nowododana obserwacja nie jest ani odstająca, ani wyraźnie wpływowa, jest zaś obserwacją wysokiej dźwigni. Po dodaniu, do oryginalnego zbioru, obserwacji o współrzędnych (14, 68)

45 Równanie regresji dla tego zbioru jest następujące: dane$ y = dane$x Równanie różni się nieznacznie od równania regresji dla oryginalnego zbioru 20 obserwacji: dane$y = dane$x Zmiany są niewielkie także dla współczynnika determinacji, czy wartości rezyduów. To sugeruje, iż nowo dodana obserwacja nie jest obserwacją wpływową.

46

47

48

49 Ten zbiór jest o tyle interesujący, że obserwacja nr 21 nie jest obserwacją odstającą (umieszczona jest na linii regresji, wartość rezyduum studentyzowanego nie przekracza wartości ±2). Z pewnością obserwacja ta ma wysoką wartość dźwigni. W zbiorze tym zauważamy także inne obserwacje nietypowe. Obserwacje 4, 14, 18 cechują się dużą wartością rezyduów ale nie mają z kolei zbyt dużych wartości odległości Cooka czy miary DFFITS, które świadczyłyby o tym, że są to obserwacje zdecydowanie wpływowe. Owszem, przekraczają one progowe wartości tych miar, jednak odstępstwa nie są znaczące.

50 Obserwacje odstające w R Obserwacja jest odstająca (oddalona) czyli nietypowa gdy ma bardzo dużą bezwzględną wartość standaryzowanej reszty. Wartości resztowe mogą mieć różne wariancje, zatem preferuje się użycie standaryzowanych wartości resztowych w celu identyfikacji punktów oddalonych. Mówimy, że wartości resztowe są standaryzowane, jeśli są podzielone przez ich błąd standardowy, a więc mają wszystkie tę samą skalę.

51 Reszty

52 Wykres reszt Obserwujemy różnice między rzeczywistą wartością y a wartością oszacowaną ŷ.

53 Wykres standaryzowanych reszt

54 Wykres standaryzowanych reszt

55 Normalny wykres kwantylowy

56 W praktyce sporządzając wykres wartości studentyzowanych rezyduów r i względem ich indeksu będziemy potrafili rozpoznawać te duże wartości, które przypuszczalnie będą odstającymi. Podsumowując powiemy, że nowa obserwacja będzie punktem odstającym jeśli będzie się cechować dużą wartością studentyzowanej (standaryzowanej) reszty. W praktyce, obserwacje odstające to takie, których wartość bezwzględnych studentyzowanych reszt przekracza 2.

57 Studentyzowane reszty Studentyzowane reszty różnią się od standaryzowanych reszt tym, że standaryzując i-tą resztę, za ocenę wariancji wybiera się wariancję liczoną na próbie z pominięciem tej obserwacji (tzw. próbie One leave out) r stud i r i 2 ( i) (1 hi ) W środowisku R pomocna będzie funkcja rstudent z pakietu {stats} h i 1 n ( x n i 1 i ( x x) i 2 x) 2

58 reszty Zależności między oryginalnymi y i a ocenami mówią jak bardzo na ocenę y i wpływa wartość y i, a jak pozostałe wartości. Nazywamy je dźwigniami (ang. leverages). Wartości h i opisują wpływ obserwacji y i na Są bardzo użyteczne w diagnostyce modelu. y i h i 1 n ( x n i 1 i ( x x) i 2 x) 2

59 Standaryzowane reszty To reszty dzielone przez ocenę odchylenia standardowego reszt W środowisku R pomocna będzie funkcja rstandard z pakietu {stats} ) (1 2 i i std i h r r n i i i i x x x x n h ) ( ) ( 1

60 Jeśli przez s i,resid oznaczymy błąd standardowy i-tej reszty to Gdzie h i jest dźwignią i-tej obserwacji, a wówczas standardowa wartość resztowa (reszta) jest równa: i resid i h s s 1, resid i i i darized s i s y y reszta, tan, n i i i i x x x x n h ) ( ) ( 1

61 W praktyce oddalone obserwacje to te, których wartość bezwzględnych standaryzowanych reszt przekracza 2. si, resid s 1 hi Np. w naszym zbiorze obserwacje 1 i 4 są oddalone. Ogólnie, jeżeli reszta jest dodatnia, to mówimy że obserwowana wartość y jest większa od przewidywanej dla danej wartości x. Jeżeli reszta jest ujemna, mówimy, że obserwowana wartość y jest mniejsza od przewidywanej dla danej wartości x. reszta i, s tan darized yi s y i, resid i

62 R- wartości oddalone w zbiorze cereals Rozważmy wykres rozrzutu wartości odżywczej względem cukrów. Dwie obserwacje z największymi bezwzględnymi wartościami reszt to All-Bram Extra Fiber i 100% Bran. Zauważmy, że odległość od linii regresji jest większa dla tych dwóch obserwacji niż dla pozostałych rodzajów płatków śniadaniowych, co oznacza największe wartości resztowe.

63

64 Obserwacja wysokiej dźwigni Obserwacja wysokiej dźwigni (high leverage point) to obserwacja, która przyjmuje bardzo duże lub bardzo małe wartości w przestrzeni zmiennych objaśniających. Obserwacja wysokiej dźwigni przyjmuje wartości na skraju zakresu dla zmiennej (zmiennych) x, a wartość zmiennej y nie jest istotna. Więc dźwignia uwzględnia tylko wartości zmiennej x i ignoruje wartości zmiennej y. Pojęcie dźwigni wywodzi się od używanego w fizyce pojęcia dźwigni, za pomocą której można poruszyć Ziemię, gdyby tylko jej ramię było dostatecznie długie. Dźwignię hi dla i-tej obserwacji można obliczyć w następujący sposób: h i 1 n ( x n i 1 i ( x x) i 2 x) 2

65 h i 1 n ( x n i 1 i ( x x) i 2 x) 2 Dla danego zbioru danych wielkości: 1 n oraz ( x x) n i 1 i ( x x) i 2 2 można uważać za stałe. Zatem wartość dźwigni dla i-tej obserwacji zależy jedynie od kwadratu odległości między wartością zmiennej objaśniającej a średnią wartością zmiennych objaśniających. Im bardziej wartość obserwowana różni się od średniej wartości zmiennej x, tym większa jest wartość dźwigni. Kres dolny dla wartości dźwigni to 1/n, a kres górny to 1. Jeżeli wartość dźwigni jest większa od około 2(m+1)/n lub 3(m+1)/n, to uznaje się, że jest ona wysoka (m oznacza tu liczbę zmiennych objaśniających).

66 Obserwacja wpływowa Obserwacja jest wpływowa (ang. influential), jeśli jej obecność wpływa na prostą regresji, w taki sposób, że zmienia się współczynnik kierunkowy tej prostej. Inaczej powiemy, że jeśli obserwacja jest wpływowa to inaczej wygląda prosta regresji w zależności od tego czy ta obserwacja została ujęta w zbiorze, czy też nie (została usunięta). 1 n n ( x x) i 1 i ( x x) Obserwacja jest wpływowa (influential) jeżeli parametry regresji istotnie zmieniają się w zależności od obecności lub nieobecności tej obserwacji w zbiorze danych. i 2 2

67 Identyfikacja obserwacji wpływowych W praktyce, jeśli obserwowana wartość leży w Q1 to mówimy, że ma ona mały wpływ na regresję. Obserwacje leżące między Q1 a Q3 nazywamy wpływowymi. Mówimy także, że czynnik SEe i S 1 1 ( n ( x x) n i 1 i ( x x) i 2 2 we wzorze na SE ei to tzw. wpływ tej obserwacji (czasami nazywany w literaturze ''dźwignią''). Zwykle obserwacje cechujące się wysoką wartością dźwigni będą uznawane za wpływowe. Dodatkowo powiemy, że nawet jeśli obserwacja jest odstająca, ale ma małą wartość wpływu to uznamy, że nie jest ona wpływowa.

68 Wykrywanie odchyleń - metody 1. wysoka dźwignia (Leverages) 2. reszty (Jackknife residuals) 3. odległość Cook a (Cook s distance).

69 Jackknife residuals (Externally studentized residuals): is called a jackknife residual (or R-Student residual). MSE( i) is the residual variance computed with the ith observation deleted. Jackknife residuals have a mean near 0 and a variance that is slightly greater than 1. Jackknife residuals are usually the preferred residual for regression diagnostics.

70 Odległość Cook a Di: Odległość Cook a do pomiaru obs. wpływowych hi: dźwignia dla mierzenia nietypowości zmiennej (-ych) x ri: Studentyzowane reszty dla pomiaru odchylenia

71

72

73 Odległość Cook a ri = i-ta studentyzowana reszta; Wpływowość jest w relacji z dźwignią i tym, czy obserwacja jest odstająca: Odchylenia o wysokiej dźwigni są wpływowe Odchylenia o niskiej dźwigni są zdecydowanie mniej wpływowe Punkty wysokiej dźwigni które nie są odchyleniami są mniej wpływowe Wysoka wpływowość gdy Di > 1 w środowisku R: cooks.distance(y.lm) Lub plot(y.lm, which=4)

74

75 Metody: Szukając: 1. Odchyleń (na wykresie reszt) szukamy punktów które są wpływowe, czyli takie dla których model regresji nie jest adekwatny 2. Obserwacji wysokiej dźwigni (na wykresie hat diagonal) to punkty potencjalnie wpływowe 3. Obserwacji wpływowych (za pomocą odległości Cook a) szukamy punktów które mogą zaburzać model regresji Pamiętaj, że: 1. Odchylenia nie muszą być wpływowe. 2. Obserwacje wysokiej dźwigni też nie muszą być wpływowe. 3. Obserwacje wpływowe mogą nie być odchyleniami.

76 Odległość Cooka mierzy poziom wpływu obserwacji, uwzględniając zarówno wielkość reszty, jak i wysokość wpływu dla tej obserwacji. Dla i-tej obserwacji odległość Cooka jest obliczana jako: n 2 ( Yj Yj ) 2 Y j Gdzie (i) jest obserwacją przewidywaną dla j-tej obserwacji obliczoną na podstawie danych z usuniętą obserwacją i-tą, zaś będzie wartością przewidywaną dla j-tej obserwacji gdy i-tej obserwacji Y j nie usunięto. Duża wartość D i mówi o dużym wpływie usunięcia i-tej obserwacji, a tym samym obserwację i-tą uznajemy za wpływową. D i j 1 ps 2 ( i) ei ps 2 hi (1 h ) i 2

77 W praktyce obserwacja jest wpływowa jeżeli jej odległość Cooka przekracza wartość 1.

78 Najpierw należy załadować pakiet {car} I następnie wywołać komendę: Wykres obserwacji wpływowych z zaznaczeniem odległości Cooka

79 Wykres obserwacji wpływowych z zaznaczeniem odległości Cooka Teraz jeśli chcemy poznać obserwacje wpływowe możemy użyć komendy: > influenceplot(lm(b~a), main="influence Plot",sub="Rozmiar kółka jest proporcjonalny do odległości Cooka)

80

81 Wykres QQ powinien w przybliżeniu pokrywać się z linią prostą Na wykresie Cooka pokazany jest wpływ poszczególnych punktów na regresję wielokrotną interesują nas punkty (a) o wartościach w pobliżu 1, (b) odbiegające znacząco od innych

82 Do wykrycia obserwacji wpływowych możemy także użyć funkcji. > influence.measures(model.regresji) której efekty będzie następujący Jak widać, ostatnia kolumna wskazuje na obserwacje wpływowe zaznaczając przy nich symbol *. Z naszych danych wynika, że w zbiorze cereals mamy 2 wpływowe. Są to obserwacje 1 i 4.

83 Wyznaczenie obserwacji odstających w modelu z wieloma zmiennymi objaśniającymi Obserwacje odstające będziemy wykrywać przy użyciu znanego już pakietu car i funkcji outlier.test w ramach tego pakietu. library(car) > outlier.test(model) max rstudent = , degrees of freedom = 73, unadjusted p = , Bonferroni p = Observation: Golden_Crisp Wykryliśmy jedną obserwację odstającą (płatki o nazwie Golden_Crisp).

84 Wyznaczenie obserwacji wpływowych w modelu z wieloma zmiennymi objaśniającymi Wartości wpływowe będziemy wykrywać za pomocą fukcji influence.measures. Wyniki takiej analizy widzimy poniżej. influence.measures(model) Influence measures of lm(formula = rating ~ sugars + fiber, data = dane) : dfb.1_ dfb.sgrs dfb.fibr dffit 100\%_Bran e \%_Natural_Bran e All-Bran e All-Bran_with_Extra_Fiber e Frosted_Flakes e Frosted_Mini-Wheats e Golden_Crisp e Golden_Grahams e Grape_Nuts_Flakes e Grape-Nuts e Shredded_Wheat_'n'Bran e Shredded_Wheat_spoon_size e Wheaties_Honey_Gold e cov.r cook.d hat inf 100\%_Bran e * 100\%_Natural_Bran e All-Bran e * All-Bran_with_Extra_Fiber e *... Frosted_Flakes e Frosted_Mini-Wheats e *... Golden_Crisp e *... Post_Nat._Raisin_Bran e *

85 influence.measures(model) Influence measures of lm(formula = rating ~ sugars + fiber, data = dane) : dfb.1_ dfb.sgrs dfb.fibr dffit 100\%_Bran e \%_Natural_Bran e All-Bran e All-Bran_with_Extra_Fiber e Frosted_Flakes e Frosted_Mini-Wheats e Golden_Crisp e Golden_Grahams e Grape_Nuts_Flakes e Grape-Nuts e Shredded_Wheat_'n'Bran e Shredded_Wheat_spoon_size e Wheaties_Honey_Gold e cov.r cook.d hat inf 100\%_Bran e * 100\%_Natural_Bran e All-Bran e * All-Bran_with_Extra_Fiber e *... Frosted_Flakes e Frosted_Mini-Wheats e *... Golden_Crisp e *... Post_Nat._Raisin_Bran e *

86 Za wpływowe uznamy 6 obserwacji: 100%_Bran All-Bran All-Bran_with_Extra_Fiber Frosted_Mini-Wheats Golden_Crisp (które zresztą uznaliśmy za obserwację odstającą, outlier) oraz Post_Nat._Raisin_Bran.

87 Wyznaczenie obserwacji wpływowych w modelu z wieloma zmiennymi objaśniającymi Wartości wpływowe będziemy wykrywać za pomocą funkcji influence.measures. Wyniki takiej analizy widzimy poniżej. influence.measures(model) Influence measures of lm(formula = rating ~ sugars + fiber, data = dane) : dfb.1_ dfb.sgrs dfb.fibr dffit 100\%_Bran e \%_Natural_Bran e All-Bran e All-Bran_with_Extra_Fiber e Frosted_Flakes e Frosted_Mini-Wheats e Fruit_&_Fibre_Dates,_Walnuts,_and_Oats e Fruitful_Bran e Fruity_Pebbles e Golden_Crisp e Golden_Grahams e Post_Nat._Raisin_Bran e Product_ e Puffed_Rice e Wheaties e Wheaties_Honey_Gold e

88 Wyznaczenie obserwacji wpływowych w modelu z wieloma zmiennymi objaśniającymi cov.r cook.d hat inf 100\%_Bran e * 100\%_Natural_Bran e All-Bran e * All-Bran_with_Extra_Fiber e * Frosted_Mini-Wheats e * Fruit_&_Fibre_Dates,_Walnuts,_and_Oats e Fruitful_Bran e Fruity_Pebbles e Golden_Crisp e * Golden_Grahams e Post_Nat._Raisin_Bran e * Product_ e Puffed_Rice e Wheaties e Wheaties_Honey_Gold e >

89 A więc mamy zapewne 6 obserwacji wpływowych. Są to kolejno płatki: 100%_Bran All-Bran, All-Bran_with_Extra_Fiber Frosted_Mini-Wheats, Golden_Crisp (które zresztą uznaliśmy za obserwację odstającą, outlier) oraz Post_Nat._Raisin_Bran.

90 Wyznaczenie obserwacji odstających w modelu z wieloma zmiennymi objaśniającymi Chcąc przeprowadzić test na obserwacje odstające użyjemy znanego już pakietu car i funkcji outlier.test w ramach tego pakietu. library(car) > outlier.test(model) max rstudent = , degrees of freedom = 73, unadjusted p = , Bonferroni p = Observation: Golden_Crisp Wykryto więc jedną obserwację odstającą (płatki o nazwie Golden_Crisp).

91 obserwacje odstające Wysokiej dźwigni wpływowe definicja Mają dużą bezwzględną wartość standaryzowanej reszty (czyli reszty podzielonej przez błąd standardowy) Przyjmują wartości na skraju zakresu zmiennej (-ych) z a wartość y nie jest istotna. Im bardziej wartość obserwowana różni się od średniej wartości zmiennej x tym większa jest wartość dźwigni. Wpływają na prostą regresji, tak, że zmienia się współczynnik kierunkowy. Jak je wykrywamy? Gdy wartość > 2 Hi 2(m+1)/n Jeśli obserwacja leży między Q1 a Q3, lub jeśli si, resid s 1 hi odległość Cooka przekracza wartość 1

92 Wnioski!!! Punkt oddalony (odstający) może, ale nie musi być wpływowy. Podobnie punkt wysokiej dźwigni, może, ale nie musi być wpływowy. Zwykle wpływowe obserwacje łączą cechy dużej wartości reszty i dużej wartości dźwigni. Istnieje możliwość, że obserwacja nie będzie w pełni rozpoznana jako punkt oddalony ani jako punkt wysokiej dźwigni, ale nadal będzie wpływowa, ponieważ będzie łączyć w sobie obie te cechy.

Statystyczne metody analizy danych przy użyciu środowiska R

Statystyczne metody analizy danych przy użyciu środowiska R Statystyczne metody analizy danych przy użyciu środowiska R Agnieszka Nowak - Brzezińska Instytut Informatyki, Uniwersytet Śląski Wybrane zagadnienia Plan wystąpienia 1. Wprowadzenie. 2. Środowisko R.

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Analiza zależności cech ilościowych regresja liniowa (Wykład 13)

Analiza zależności cech ilościowych regresja liniowa (Wykład 13) Analiza zależności cech ilościowych regresja liniowa (Wykład 13) dr Mariusz Grządziel semestr letni 2012 Przykład wprowadzajacy W zbiorze danych homedata (z pakietu R-owskiego UsingR) można znaleźć ceny

Bardziej szczegółowo

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Analiza regresji - weryfikacja założeń

Analiza regresji - weryfikacja założeń Medycyna Praktyczna - portal dla lekarzy Analiza regresji - weryfikacja założeń mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie (Kierownik Zakładu: prof.

Bardziej szczegółowo

Analiza składowych głównych. Wprowadzenie

Analiza składowych głównych. Wprowadzenie Wprowadzenie jest techniką redukcji wymiaru. Składowe główne zostały po raz pierwszy zaproponowane przez Pearsona(1901), a następnie rozwinięte przez Hotellinga (1933). jest zaliczana do systemów uczących

Bardziej szczegółowo

PODSTAWY STATYSTYCZNEJ ANALIZY DANYCH. Wykład 2 Obserwacje nietypowe i wpływowe Regresja nieliniowa

PODSTAWY STATYSTYCZNEJ ANALIZY DANYCH. Wykład 2 Obserwacje nietypowe i wpływowe Regresja nieliniowa Wykład 2 Obserwacje nietypowe i wpływowe Regresja nieliniowa Obserwacje nietypowe i wpływowe Obserwacje nietypowe i wpływowe Obserwacje nietypowe w analizie regresji: nietypowe wartości zmiennej Y - prowadzące

Bardziej szczegółowo

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Zadanie 1: wiek 7 8 9 1 11 11,5 12 13 14 14 15 16 17 18 18,5 19 wzrost 12 122 125 131 135 14 142 145 15 1 154 159 162 164 168 17 Wykres

Bardziej szczegółowo

Agnieszka Nowak Brzezińska Wykład 2 z 5

Agnieszka Nowak Brzezińska Wykład 2 z 5 Agnieszka Nowak Brzezińska Wykład 2 z 5 metoda typ Zmienna niezależna Regresja liniowa Regresja Wszystkie ilościowe Zakłada liniową zależność, prosta w implementacji Analiza dyskryminacyjna klasyfikacja

Bardziej szczegółowo

Metody wykrywania odchyleo w danych. Metody wykrywania braków w danych. Korelacja. PED lab 4

Metody wykrywania odchyleo w danych. Metody wykrywania braków w danych. Korelacja. PED lab 4 Metody wykrywania odchyleo w danych. Metody wykrywania braków w danych. Korelacja. PED lab 4 Co z danymi oddalonymi? Błędne dane typu dochód z minusem na początku: to błąd we wprowadzaniu danych, czy faktyczny

Bardziej szczegółowo

Analiza regresji część II. Agnieszka Nowak - Brzezińska

Analiza regresji część II. Agnieszka Nowak - Brzezińska Analiza regresji część II Agnieszka Nowak - Brzezińska Niebezpieczeństwo ekstrapolacji Analitycy powinni ograniczyć predykcję i estymację, które są wykonywane za pomocą równania regresji dla wartości objaśniającej

Bardziej szczegółowo

Stosowana Analiza Regresji

Stosowana Analiza Regresji prostej Stosowana Wykład I 5 Października 2011 1 / 29 prostej Przykład Dane trees - wyniki pomiarów objętości (Volume), średnicy (Girth) i wysokości (Height) pni drzew. Interesuje nas zależność (o ile

Bardziej szczegółowo

Temat zajęć: ANALIZA DANYCH ZBIORU EKSPORT. Część I: analiza regresji

Temat zajęć: ANALIZA DANYCH ZBIORU EKSPORT. Część I: analiza regresji Temat zajęć: ANALIZA DANYCH ZBIORU EKSPORT Część I: analiza regresji Krok 1. Pod adresem http://zsi.tech.us.edu.pl/~nowak/adb/eksport.txt znajdziesz zbiór danych do analizy. Zapisz plik na dysku w dowolnej

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący

Bardziej szczegółowo

Zaawansowana eksploracja danych - sprawozdanie nr 1 Rafał Kwiatkowski 89777, Poznań

Zaawansowana eksploracja danych - sprawozdanie nr 1 Rafał Kwiatkowski 89777, Poznań Zaawansowana eksploracja danych - sprawozdanie nr 1 Rafał Kwiatkowski 89777, Poznań 6.11.1 1 Badanie współzależności atrybutów jakościowych w wielowymiarowych tabelach danych. 1.1 Analiza współzależności

Bardziej szczegółowo

Statystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31

Statystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31 Statystyka Wykład 8 Magdalena Alama-Bućko 10 kwietnia 2017 Magdalena Alama-Bućko Statystyka 10 kwietnia 2017 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

Statystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34

Statystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34 Statystyka Wykład 9 Magdalena Alama-Bućko 24 kwietnia 2017 Magdalena Alama-Bućko Statystyka 24 kwietnia 2017 1 / 34 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia

Bardziej szczegółowo

Regresja liniowa wprowadzenie

Regresja liniowa wprowadzenie Regresja liniowa wprowadzenie a) Model regresji liniowej ma postać: gdzie jest zmienną objaśnianą (zależną); są zmiennymi objaśniającymi (niezależnymi); natomiast są parametrami modelu. jest składnikiem

Bardziej szczegółowo

Outlier to dana (punkt, obiekt, wartośd w zbiorze) znacznie odstająca od reszty. prezentacji punktów odstających jest rysunek poniżej.

Outlier to dana (punkt, obiekt, wartośd w zbiorze) znacznie odstająca od reszty. prezentacji punktów odstających jest rysunek poniżej. Temat: WYKRYWANIE ODCHYLEO W DANYCH Outlier to dana (punkt, obiekt, wartośd w zbiorze) znacznie odstająca od reszty. prezentacji punktów odstających jest rysunek poniżej. Przykładem Box Plot wygodną metodą

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Wykład 5: Statystyki opisowe (część 2)

Wykład 5: Statystyki opisowe (część 2) Wykład 5: Statystyki opisowe (część 2) Wprowadzenie Na poprzednim wykładzie wprowadzone zostały statystyki opisowe nazywane miarami położenia (średnia, mediana, kwartyle, minimum i maksimum, modalna oraz

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

Regresja liniowa w R Piotr J. Sobczyk

Regresja liniowa w R Piotr J. Sobczyk Regresja liniowa w R Piotr J. Sobczyk Uwaga Poniższe notatki mają charakter roboczy. Mogą zawierać błędy. Za przesłanie mi informacji zwrotnej o zauważonych usterkach serdecznie dziękuję. Weźmy dane dotyczące

Bardziej szczegółowo

Regresja liniowa, klasyfikacja metodą k-nn. Agnieszka Nowak Brzezińska

Regresja liniowa, klasyfikacja metodą k-nn. Agnieszka Nowak Brzezińska Regresja liniowa, klasyfikacja metodą k-nn Agnieszka Nowak Brzezińska Analiza regresji Analiza regresji jest bardzo popularną i chętnie stosowaną techniką statystyczną pozwalającą opisywać związki zachodzące

Bardziej szczegółowo

Estymacja parametrów w modelu normalnym

Estymacja parametrów w modelu normalnym Estymacja parametrów w modelu normalnym dr Mariusz Grządziel 6 kwietnia 2009 Model normalny Przez model normalny będziemy rozumieć rodzine rozkładów normalnych N(µ, σ), µ R, σ > 0. Z Centralnego Twierdzenia

Bardziej szczegółowo

Oszacowanie i rozkład t

Oszacowanie i rozkład t Oszacowanie i rozkład t Marcin Zajenkowski Marcin Zajenkowski () Oszacowanie i rozkład t 1 / 31 Oszacowanie 1 Na podstawie danych z próby szacuje się wiele wartości w populacji, np.: jakie jest poparcie

Bardziej szczegółowo

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia

Bardziej szczegółowo

Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb

Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb Współzależność Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb (x i, y i ). Geometrycznie taką parę

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

3. Modele tendencji czasowej w prognozowaniu

3. Modele tendencji czasowej w prognozowaniu II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa

Bardziej szczegółowo

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych

Bardziej szczegółowo

Regresja wielokrotna. PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

Regresja wielokrotna. PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Regresja wielokrotna Model dla zależności liniowej: Y=a+b 1 X 1 +b 2 X 2 +...+b n X n Cząstkowe współczynniki regresji wielokrotnej: b 1,..., b n Zmienne niezależne (przyczynowe): X 1,..., X n Zmienna

Bardziej szczegółowo

Statystyka w przykładach

Statystyka w przykładach w przykładach Tomasz Mostowski Zajęcia 10.04.2008 Plan Estymatory 1 Estymatory 2 Plan Estymatory 1 Estymatory 2 Własności estymatorów Zazwyczaj w badaniach potrzebujemy oszacować pewne parametry na podstawie

Bardziej szczegółowo

Szkice rozwiązań z R:

Szkice rozwiązań z R: Szkice rozwiązań z R: Zadanie 1. Założono doświadczenie farmakologiczne. Obserwowano przyrost wagi ciała (przyrost [gram]) przy zadanych dawkach trzech preparatów (dawka.a, dawka.b, dawka.c). Obiektami

Bardziej szczegółowo

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp. Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.

Bardziej szczegółowo

Regresja liniowa oraz regresja wielokrotna w zastosowaniu zadania predykcji danych. Agnieszka Nowak Brzezińska Wykład III-VI

Regresja liniowa oraz regresja wielokrotna w zastosowaniu zadania predykcji danych. Agnieszka Nowak Brzezińska Wykład III-VI Regresja liniowa oraz regresja wielokrotna w zastosowaniu zadania predykcji danych. Agnieszka Nowak Brzezińska Wykład III-VI Analiza regresji Analiza regresji jest bardzo popularną i chętnie stosowaną

Bardziej szczegółowo

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N = HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki

Bardziej szczegółowo

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, 诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów

Bardziej szczegółowo

ANALIZA WYNIKÓW NAUCZANIA W GIMNAZJUM NR 3 Z ZASTOSOWANIEM KALKULATORA EWD 100 ROK 2012

ANALIZA WYNIKÓW NAUCZANIA W GIMNAZJUM NR 3 Z ZASTOSOWANIEM KALKULATORA EWD 100 ROK 2012 ANALIZA WYNIKÓW NAUCZANIA W GIMNAZJUM NR 3 Z ZASTOSOWANIEM KALKULATORA EWD 100 ROK 2012 OPRACOWAŁY: ANNA ANWAJLER MARZENA KACZOR DOROTA LIS 1 WSTĘP W analizie wykorzystywany będzie model szacowania EWD.

Bardziej szczegółowo

Analizy wariancji ANOVA (analysis of variance)

Analizy wariancji ANOVA (analysis of variance) ANOVA Analizy wariancji ANOVA (analysis of variance) jest to metoda równoczesnego badania istotności różnic między wieloma średnimi z prób pochodzących z wielu populacji (grup). Model jednoczynnikowy analiza

Bardziej szczegółowo

Monte Carlo, bootstrap, jacknife

Monte Carlo, bootstrap, jacknife Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział

Bardziej szczegółowo

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

LINIOWOŚĆ METODY OZNACZANIA ZAWARTOŚCI SUBSTANCJI NA PRZYKŁADZIE CHROMATOGRAFU

LINIOWOŚĆ METODY OZNACZANIA ZAWARTOŚCI SUBSTANCJI NA PRZYKŁADZIE CHROMATOGRAFU LINIOWOŚĆ METODY OZNACZANIA ZAWARTOŚCI SUBSTANCJI NA PRZYKŁADZIE CHROMATOGRAFU Tomasz Demski, StatSoft Polska Sp. z o.o. Wprowadzenie Jednym z elementów walidacji metod pomiarowych jest sprawdzenie liniowości

Bardziej szczegółowo

Eksploracja Danych. wykład 3. Sebastian Zając. 5 kwietnia 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 5 kwietnia / 21

Eksploracja Danych. wykład 3. Sebastian Zając. 5 kwietnia 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 5 kwietnia / 21 Eksploracja Danych wykład 3 Sebastian Zając WMP.SNŚ UKSW 5 kwietnia 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 5 kwietnia 2017 1 / 21 Struktura Danych Rozpatrzmy zbiór danych: Sebastian Zając

Bardziej szczegółowo

Wykład 4: Statystyki opisowe (część 1)

Wykład 4: Statystyki opisowe (część 1) Wykład 4: Statystyki opisowe (część 1) Wprowadzenie W przypadku danych mających charakter liczbowy do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą statystyk opisowych można

Bardziej szczegółowo

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe

Bardziej szczegółowo

Zadania ze statystyki cz.8. Zadanie 1.

Zadania ze statystyki cz.8. Zadanie 1. Zadania ze statystyki cz.8. Zadanie 1. Wykonano pewien eksperyment skuteczności działania pewnej reklamy na zmianę postawy. Wylosowano 10 osobową próbę studentów, których poproszono o ocenę pewnego produktu,

Bardziej szczegółowo

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)

Bardziej szczegółowo

Estymacja przedziałowa. Przedział ufności

Estymacja przedziałowa. Przedział ufności Estymacja przedziałowa Przedział ufności Estymacja przedziałowa jest to szacowanie wartości danego parametru populacji, ρ za pomocą tak zwanego przedziału ufności. Przedziałem ufności nazywamy taki przedział

Bardziej szczegółowo

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć: Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).

Bardziej szczegółowo

Typy zmiennych. Zmienne i rekordy. Rodzaje zmiennych. Graficzne reprezentacje danych Statystyki opisowe

Typy zmiennych. Zmienne i rekordy. Rodzaje zmiennych. Graficzne reprezentacje danych Statystyki opisowe Typy zmiennych Graficzne reprezentacje danych Statystyki opisowe Jakościowe charakterystyka przyjmuje kilka możliwych wartości, które definiują klasy Porządkowe: odpowiedzi na pytania w ankiecie ; nigdy,

Bardziej szczegółowo

ANALIZA WYNIKÓW NAUCZANIA W GIMNAZJUM NR 3 Z ZASTOSOWANIEM KALKULATORA EWD 100 ROK 2013

ANALIZA WYNIKÓW NAUCZANIA W GIMNAZJUM NR 3 Z ZASTOSOWANIEM KALKULATORA EWD 100 ROK 2013 ANALIZA WYNIKÓW NAUCZANIA W GIMNAZJUM NR 3 Z ZASTOSOWANIEM KALKULATORA EWD 100 ROK 2013 OPRACOWAŁY: ANNA ANWAJLER MARZENA KACZOR DOROTA LIS 1 WSTĘP W analizie wykorzystywany będzie model szacowania EWD.

Bardziej szczegółowo

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe

Bardziej szczegółowo

Lepiej zapobiegać niż leczyć Diagnostyka regresji

Lepiej zapobiegać niż leczyć Diagnostyka regresji Anceps remedium melius quam nullum Lepiej zapobiegać niż leczyć Diagnostyka regresji Na tych zajęciach nauczymy się identyfikować zagrożenia dla naszej analizy regresji. Jednym elementem jest oczywiście

Bardziej szczegółowo

Publiczne Gimnazjum im. Jana Pawła II w Wilczej Woli ANALIZA EGZAMINU GIMNAZJALNEGO 2013 Z UWZGLĘDNIENIEM EWD

Publiczne Gimnazjum im. Jana Pawła II w Wilczej Woli ANALIZA EGZAMINU GIMNAZJALNEGO 2013 Z UWZGLĘDNIENIEM EWD Publiczne Gimnazjum im. Jana Pawła II w Wilczej Woli ANALIZA EGZAMINU GIMNAZJALNEGO 2013 Z UWZGLĘDNIENIEM EWD EDUKACYJNA WARTOŚĆ DODANA JAKO JEDNA Z MIAR JAKOŚCI NAUCZANIA Zasoby na wejściu Szkoła Jakość

Bardziej szczegółowo

Zagadnienia regresji. Cz ± III Regresja wielokrotna Konspekt do zaj : Statystyczne metody analizy danych

Zagadnienia regresji. Cz ± III Regresja wielokrotna Konspekt do zaj : Statystyczne metody analizy danych Zagadnienia regresji. Cz ± III Regresja wielokrotna Konspekt do zaj : Statystyczne metody analizy danych 1 Wprowadzenie Agnieszka Nowak-Brzezi«ska 17 listopada 2009 Niech ogólne równanie regresji ma posta

Bardziej szczegółowo

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy MODEL REGRESJI LINIOWEJ. METODA NAJMNIEJSZYCH KWADRATÓW Analiza regresji zajmuje się badaniem zależności pomiędzy interesującymi nas wielkościami (zmiennymi), mające na celu konstrukcję modelu, który dobrze

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY

JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY Będziemy zapisywać wektory w postaci (,, ) albo traktując go jak macierz jednokolumnową (dzięki temu nie będzie kontrowersji przy transponowaniu wektora ) Model

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

ANALIZA REGRESJI SPSS

ANALIZA REGRESJI SPSS NLIZ REGRESJI SPSS Metody badań geografii społeczno-ekonomicznej KORELCJ REGRESJ O ile celem korelacji jest zmierzenie siły związku liniowego między (najczęściej dwoma) zmiennymi, o tyle w regresji związek

Bardziej szczegółowo

Inteligentna analiza danych

Inteligentna analiza danych Numer indeksu 150946 Michał Moroz Imię i nazwisko Numer indeksu 150875 Grzegorz Graczyk Imię i nazwisko kierunek: Informatyka rok akademicki: 2010/2011 Inteligentna analiza danych Ćwiczenie I Wskaźniki

Bardziej szczegółowo

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007 Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

Regresja i Korelacja

Regresja i Korelacja Regresja i Korelacja Regresja i Korelacja W przyrodzie często obserwujemy związek między kilkoma cechami, np.: drzewa grubsze są z reguły wyższe, drewno iglaste o węższych słojach ma większą gęstość, impregnowane

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna

Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna Badanie współzależności zmiennych Uwzględniając ilość zmiennych otrzymamy 4 odmiany zależności: Zmienna zależna jednowymiarowa oraz jedna

Bardziej szczegółowo

Elementy statystyki wielowymiarowej

Elementy statystyki wielowymiarowej Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Elementy statystyki wielowymiarowej 1.1 Kowariancja i współczynnik korelacji 1.2 Macierz kowariancji 1.3 Dwumianowy rozkład normalny 1.4 Analiza składowych

Bardziej szczegółowo

Analiza Współzależności

Analiza Współzależności Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Współzależności Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka

Bardziej szczegółowo

RAPORT WSKAŹNIK EDUKACYJNEJ WARTOŚCI DODANEJ PO EGZAMINIE GIMNAZJALNYM W ROKU SZKOLNYM 2012/2013

RAPORT WSKAŹNIK EDUKACYJNEJ WARTOŚCI DODANEJ PO EGZAMINIE GIMNAZJALNYM W ROKU SZKOLNYM 2012/2013 RAPORT WSKAŹNIK EDUKACYJNEJ WARTOŚCI DODANEJ PO EGZAMINIE GIMNAZJALNYM W ROKU SZKOLNYM 2012/2013 ZESPÓŁ SZKÓŁ NR 14 W BYDGOSZCZY GIMNAZJUM NR 37 INTEGRACYJNE Opracowanie A. Tarczyńska- Pajor na podstawie

Bardziej szczegółowo

Analiza korespondencji

Analiza korespondencji Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia

Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia Doświadczenie: Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia Cele doświadczenia Celem doświadczenia jest zbadanie zależności drogi przebytej w ruchu przyspieszonym od czasu dla kuli bilardowej

Bardziej szczegółowo

Dlaczego należy uwzględniać zarówno wynik maturalny jak i wskaźnik EWD?

Dlaczego należy uwzględniać zarówno wynik maturalny jak i wskaźnik EWD? EWD co to jest? Metoda EWD to zestaw technik statystycznych pozwalających oszacować wkład szkoły w końcowe wyniki egzaminacyjne. Wkład ten nazywamy właśnie edukacyjną wartością dodaną. EWD jest egzaminacyjnym

Bardziej szczegółowo

Stosowana Analiza Regresji

Stosowana Analiza Regresji Stosowana Analiza Regresji Wykład VIII 30 Listopada 2011 1 / 18 gdzie: X : n p Q : n n R : n p Zał.: n p. X = QR, - macierz eksperymentu, - ortogonalna, - ma zera poniżej głównej diagonali. [ R1 X = Q

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki

Bardziej szczegółowo

Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 9 marca 2007

Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 9 marca 2007 , transformacja liniowa i estymacja modelu KMNK Paweł Cibis pawel@cibis.pl 9 marca 2007 1 Miary dopasowania modelu do danych empirycznych Współczynnik determinacji Współczynnik zbieżności Skorygowany R

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)

Bardziej szczegółowo

Rozstęp Pozycyjne Odchylenie ćwiartkowe Współczynnik zmienności

Rozstęp Pozycyjne Odchylenie ćwiartkowe Współczynnik zmienności Miary zmienności: Miary zmienności Klasyczne Wariancja Odchylenie standardowe Odchylenie przeciętne Współczynnik zmienności Rozstęp Pozycyjne Odchylenie ćwiartkowe Współczynnik zmienności 2 Spróbujmy zastanowić

Bardziej szczegółowo

6.4 Podstawowe metody statystyczne

6.4 Podstawowe metody statystyczne 156 Wstęp do statystyki matematycznej 6.4 Podstawowe metody statystyczne Spóbujemy teraz w dopuszczalnym uproszczeniu przedstawić istotę analizy statystycznej. W szczególności udzielimy odpowiedzi na postawione

Bardziej szczegółowo

Analiza regresji wielokrotnej - hierarchiczna

Analiza regresji wielokrotnej - hierarchiczna Analiza regresji wielokrotnej - hierarchiczna Poniżej prezentujemy przykładowe pytania z rozwiązaniami dotyczącymi analizy regresji wielokrotnej wykonanej metodą hierarchiczną. Wszystkie rozwiązania są

Bardziej szczegółowo

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów:

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów: Na dzisiejszym wykładzie omówimy najważniejsze charakterystyki liczbowe występujące w statystyce opisowej. Poszczególne wzory będziemy podawać w miarę potrzeby w trzech postaciach: dla szeregu szczegółowego,

Bardziej szczegółowo

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Michał Łasica klasa IIId nr 13 22 grudnia 2006 1 1 Doświadczalne wyznaczanie ogniskowej soczewki 1.1

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów

LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów LISTA 4 1.Na pewnym obszarze dokonano 40 pomiarów grubości warstwy piasku otrzymując w m.: 54, 58, 64, 69, 61, 56, 41, 48, 56, 61, 70, 55, 46, 57, 70, 55, 47, 62, 55, 60, 54,57,65,60,53,54, 49,58,62,59,55,50,58,

Bardziej szczegółowo

ESTYMACJA PRZEDZIAŁOWA WYBRANYCH PARAMETRÓW

ESTYMACJA PRZEDZIAŁOWA WYBRANYCH PARAMETRÓW ESTYMACJA PRZEDZIAŁOWA WYBRANYCH PARAMETRÓW POPULACJI Szkic wykładu Wprowadzenie 1 Wprowadzenie 2 3 4 Przypomnienie dotychczasowych rozważań Przedziałem ufności nazywamy przedział losowy, o którym przypuszczamy

Bardziej szczegółowo

7.4 Automatyczne stawianie prognoz

7.4 Automatyczne stawianie prognoz szeregów czasowych za pomocą pakietu SPSS Następnie korzystamy z menu DANE WYBIERZ OBSERWACJE i wybieramy opcję WSZYSTKIE OBSERWACJE (wówczas wszystkie obserwacje są aktywne). Wreszcie wybieramy z menu

Bardziej szczegółowo

Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi

Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi technicznej. 1. Wstęp Celem ćwiczenia jest wyznaczenie

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Agenda Instytut Matematyki Politechniki Łódzkiej 2 stycznia 2012 Agenda Agenda 1 Wprowadzenie Agenda 2 Hipoteza oraz błędy I i II rodzaju Hipoteza alternatywna Statystyka testowa Zbiór krytyczny Poziom

Bardziej szczegółowo

Modelowanie Ekonometryczne i Prognozowanie

Modelowanie Ekonometryczne i Prognozowanie Modelowanie Ekonometryczne i Prognozowanie David Ramsey e-mail: david.ramsey@pwr.edu.pl strona domowa: www.ioz.pwr.edu.pl/pracownicy/ramsey 27 lutego 2015 1 / 77 Opis Kursu 1. Podstawy oraz Cele Modelowania

Bardziej szczegółowo