Elektryczność i Magnetyzm

Wielkość: px
Rozpocząć pokaz od strony:

Download "Elektryczność i Magnetyzm"

Transkrypt

1 Elektryczność i Magnetyzm Reinhard Kulessa II semestr r. akademickiego 2006/2007 Literatura E.M. Purcell, Berkeley Physics Course, Elektryczność i Magnetyzm David J. Griffiths:, "Podstawy Eelektrodynamiki", PWN, Warszawa 2001). D. Halliday, R. Resnick, J. Walker: "Podstawy Fizyki 3", PWN, Warszawa 2003). Feynmana Wykłady z Fizyki, t.ii cz.1, Wróblewski i Zakrzewski, Wstęp do Fizyki, Andrzej Januszajtis, Fizyka dla Politechnik Szczepan Szczeniowski, Elektryczność i magnetyzm 1

2 Wykład 1 1. Wiadomości wstępne Wykład będzie dotyczył doświadczalnego opisu zjawisk elektromagnetycznych. Zjawiskom tym towarzyszą siły. Siły elektromagnetyczne są jednymi z czterech podstawowych sił w przyrodzie 2. Znaczenie elektromagnetyzmu Oddziaływania elektromagnetyczne są odpowiedzialne za: wiązanie elektronów i jąder atomowych w atomy, wiązanie atomów w molekuły, powstanie struktur uporządkowanych jak kryształy, stąd wniosek, że cała fizyka atomowa, molekularna, oraz fizyka ciała stałego ma związek oddziaływaniami elektromagnetycznymi i ich skutkami Reinhard Kulessa 2

3 Istnienie świata ( a więc i nas) jest uwarunkowane przez istnienie i własności oddziaływań elektromagnetycznych. Odgrywają one istotną rolę na poziomie cząstek elementarnych i jąder atomowych Reinhard Kulessa 3

4 Cząstki te oddziałują pomiędzy sobą również przez oddziaływanie elektromagnetyczne. Brak tych sił zmieniłby zupełnie obraz naszego świata. Nie zawsze znany jest fakt, że my ludzie poznajemy świat przez oddziaływanie elektromagnetyczne. Nasze zmysły -wzrok -słuch -węch -smak -dotyk korzystają z oddziaływania elektromagnetycznego. Oddziaływanie elektromagnetyczne jest jednym z czterech fundamentalnych oddziaływań w przyrodzie. Reinhard Kulessa 4

5 Cztery Oddzialywania Fundamentalne Grawitacja Silne Slabe Elektromagnetyczne Wszystkie siły z którymi możemy spotkać się na Ziemi mają swoje źródło w tych czterech oddziaływaniach Reinhard Kulessa 5

6 silne elektromagnetyczne słabe grawitacyjne siła Cząstka pośrednicząca Gluon G Foton γ W ±,Z 0 Grawiton g Reinhard Kulessa 6

7 Oddziaływania te mogą być przyciągające lub odpychające W opisie oddziaływań zastosować dwa podejścia. a) Klasyczne - przez siłę działającą pomiędzy dwoma obiektami, b) Teoriopolowe - istnieje pewne pole sił scharakteryzowane przez potencjał i natężenie pola. Reinhard Kulessa 7

8 3. Definicja pola Pole możemy zdefiniować na dwa sposoby: matematycznie jako przestrzenny rozkład liczb (pole skalarne), lub przestrzenny rozkład wektora, (pole wektorowe) fizycznie jako przestrzenny rozkład wielkości fizycznej Zajmijmy się w dalszym ciągu polami fizycznymi. Wiemy, że wielkości fizyczne mogą być skalarne, wektorowe, a nawet tensorowe. Zobaczmy poniższe przykłady. Reinhard Kulessa 8

9 Poziomice Granica lasu Zbocza gór Temperatura Kierunek wiatru Prędkość zmian Reinhard Kulessa 9

10 Na poprzednich rysunkach widać, że pole może mieć swoją geometrię. W danym punkcie przestrzeni pole opisane jest przez pewną funkcję:,, ) f = f ( x y z Pole może być płaskie lub przestrzenne. Stałe wartości pola są wyznaczone przez izopowierzchnie lub izolinie. Pole wektorowe scharakteryzowane jest przez wektor pola ). v (r Liniami pola wektorowego nazywamy linie wyznaczające kierunek pola. Wektor pola jest w każdym punkcie styczny do linii pola. Reinhard Kulessa 10

11 3.1 Pojęcia matematyczne przydatne do opisu pola Strumień wielkości wektorowej Strumień wielkości wektorowej v przez powierzchnię ds. reprezentowanej przez wektor ds. normalny skierowany na zewnątrz powierzchni zamkniętej powierzchni jest równy iloczynowi składowej normalnej wektora v przez pole powierzchni ds ds α v S Φ = v ds Reinhard Kulessa 11 S L (3.1)

12 v ds Φ = v S ds v ds Φ = 0 v 60 o Φ = ½ v S Reinhard Kulessa 12

13 3.1.2 Gradient pola ds Jeśli chcemy wyznaczyć przyrost funkcji pola skalarnego s(r ) położenia dr gdzie s = f ( x, y, z) przy zmianie to w układzie kartezjańskim, przyrost ten jest sumą iloczynów pochodnych funkcji f względem współrzędnych i różniczek współrzędnych. = f x dx + f y dy + f z dz (3.2) Reinhard Kulessa 13

14 Przyrost ten możemy przedstawić jako iloczyn skalarny dwóch wektorów, gdzie a grad dr f ds = = dxx f x gradf + dr + 0 dy y0 dzz0 f y f z = x0 + y0 + z0 (3.3) Aby uzyskać gradient funkcji musimy na nią podziałać pewnym operatorem, który nazywamy - nabla. = x x + y + z 0 y0 z0 (3.4) Reinhard Kulessa 14

15 grad f = f (3.5) Dla przypomnienia zdefiniujmy sobie jeszcze dwie pozostałe wielkości przy pomocy których możemy scharakteryzować pole fizyczne. Są to: Diwergencja i rotacja Reinhard Kulessa 15

16 3.1.3 Dywergencja funkcji wektorowej Dywergencję wektora pola v(r) otrzymamy, jeśli dodamy dodamy do siebie pochodne składowych wektora względem odpowiednich współrzędnych. div v = v x x + v y y + v z z (3.6) Pamiętając, że wektor v = v x0 + v y0 + v z, 0 możemy napisać, że div v x y = v (3.7) Reinhard Kulessa 16 z

17 Strumień wektora powierzchnię zamkniętą jest powiązany z dywergencją tego wektora następującą zależnością: v v S Φ = v ds = S V div v dv dv (3.8) W oparciu o ten wzór możemy stwierdzić, że dywergencja jest przestrzenną gęstością strumienia pola wektorowego. Reinhard Kulessa 17

18 div 1 1 v = v ds = lim dv S V V 0 S v ds (3.9) Reinhard Kulessa 18

19 d s Cyrkulacja (krążenie) pola wektorowego. v t Niech v v v będzie dowolnym polem wektorowym, a Γ C = d s Γ v d s d s = v Γ v t ds d s niech będzie styczną do zaznaczonej krzywej Γ wtedy całkę krzywoliniową nazywamy cyrkulacją pola wektorowego po krzywej zamkniętej. (3.10) Reinhard Kulessa 19

20 3.1.5 Rotacja pola wektorowego. Rotacją pola wektorowego nazywamy iloczyn wektorowy Operatora wektorowego v i wektora pola v. v = rot v (3.11) Rotacja v jest wektorem, którego składowe są równe: v rotv = ( z y v z y ) x 0 v + ( z x v z x )y 0 v + ( y x v x y ) z 0 (3.12) Reinhard Kulessa 20

21 4. Ładunki elektryczne Czym są ładunki elektryczne? Odpowiedź na to pytanie jest tak trudne, jak odpowiedź na pytanie, czym jest masa. Istnienie ładunków w przyrodzie jest faktem, który musimy zaakceptować. Sens mają następujące pytania: 1. W jaki sposób uwidocznić istnienia ładunków? 2. Jakie mają one własności i czy i jak oddziałują pomiędzy sobą? Odpowiedź na te pytania musi nam dać doświadczenie. Reinhard Kulessa 21

22 Reinhard Kulessa 22

23 Reinhard Kulessa 23

24 Występujące w przyrodzie wyładowania elektryczne można sobie wytłumaczyć w następujący sposób: Reinhard Kulessa 24

25 Zjawisk, które potwierdzają istnienie ładunków jest wiele. Spotykamy się z nimi codziennie. Wróćmy więc do odpowiedzi, jakie daje nam doświadczenie na temat ładunków elektrycznych. Co wiemy z doświadczenia? Reinhard Kulessa 25

26 Z doświadczenia znamy następujące fakty: 1. Przyciąganie skrawków sukna przez bursztyn, czyli (Electrum) zauważone zostało przez Greków ok roku p.n.e. 2. Około roku 1600 Gilbert zauważa, że elektryzowanie jest powszechnie występującym zjawiskiem. 3. W roku 1730 C. Dufay stwierdza, że istnieje dwa rodzaje elektryczności. Obecnie jest dla nas oczywistością istnienie dwóch typów ładunków typu szklanego dodatnie, - typu ebonitowego ujemne. Istnienie ładunków dodatnich i ujemnych pokazał w roku 1750 Benjamin Franklin. Reinhard Kulessa 26

27 4. Materia w stanie równowagi jest neutralna, lecz wiemy, że składa się z ładunków, Ładunek należy do podstawowych własności atomu W atomach ładunek jest umieszczony w jądrze atomowym i na powłokach elektronowych. powłoka -- -Ze Z elektronów, każdy o ładunku e jądro -- +Ze Z protonów, każdy o ładunku +e Pomiędzy jądrem a elektronami działają siły. Reinhard Kulessa 27

28 Reinhard Kulessa 28

29 Ładunek występuje zawsze w ustalonych wielkościach. Podstawowym kwantem ładunku jest ±e Proton posiada ładunek +e Kwarki posiadają ładunki ułamkowe Elektron posiada ładunek -e Reinhard Kulessa 29

30 5. Ładunki zauważa się, gdy zaburzymy neutralność. Ładunki można rozdzielić i stwierdzić ich istnienie. Poruszać mogą się tylko elektrony ładunek dodatni deficyt elektronów ładunek ujemny - nadmiar elektronów Rozdział ładunku następuje np. przez kontakt różnych materiałów. + sierść kocia metal woda - twarda guma taśma klejąca teflon Reinhard Kulessa 30

31 Reinhard Kulessa 31

32 Ładunki jednego znaku odpychają się Ładunki różnych znaków przyciągają się Reinhard Kulessa 32

33 guma guma szkło guma Reinhard Kulessa 33

34 Pomiędzy ładunkami oddziaływują więc siły. Badaniami sił działających pomiędzy spoczywającymi ładunkami zajmuje się ELEKTROSTATYKA W różnych ciałach ładunki mogą się przemieszczać w różnym stopniu. Ciała w których ładunki przemieszczają się swobodnie nazywamy przewodnikami Przewodnik Reinhard Kulessa 34

35 Ciała, w których ładunki nie poruszają się swobodnie, nazywamy izolatorami Izolator Ładunki mogą więc przemieszczać się pomiędzy różnymi ciałami, jeśli połączymy je przewodnikiem Reinhard Kulessa 35

36 Doświadczenie pokazuje, że ładunki gromadzą się tylko na powierzchni przewodnika. Klatka Faradaya ekranuje elektroskop od ładunku Nie da się zebrać ładunku z Z wewnętrznej powierzchni czaszy kulistej Reinhard Kulessa 36

37 ELEKTROSKOP Elektroskop jest przyrządem pozwalającym sprawdzić naładowanie dowolnego ciała Reinhard Kulessa 37

38 Jednym z podstawowych praw dotyczących ładunków jest Prawo Zachowania Ładunku. Sumaryczny ładunek układu odizolowanego elektryczznie pozostaje stały Nie można zniweczyć, ani wytworzyć odosobnionych ładunków jednego znaku. Przykładem może być rozpad alfa jądra uranu 238: Ładunek jest tutaj zawarty w protonach i widać, że liczba protonów przed i po rozpadzie jest taka sama. Ładunek został więc zachowany. Reinhard Kulessa 38

39 Reinhard Kulessa 39

Wykład 2. 4. Ładunki elektryczne

Wykład 2. 4. Ładunki elektryczne Wykład 2 4. Ładunki elektryczne Czym są ładunki elektryczne? Odpowiedź na to pytanie jest tak trudne, jak odpowiedź na pytanie, czym jest masa. Istnienie ładunków w przyrodzie jest faktem, który musimy

Bardziej szczegółowo

Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego

Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego Elektrostatyka Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego 1 Prawo Coulomba odpychanie naelektryzowane szkło nie-naelektryzowana miedź F 1 4 0 q 1 q 2 r 2 0 8.85

Bardziej szczegółowo

Kto nie zda egzaminu testowego (nie uzyska oceny dostatecznej), będzie zdawał poprawkowy. Reinhard Kulessa 1

Kto nie zda egzaminu testowego (nie uzyska oceny dostatecznej), będzie zdawał poprawkowy. Reinhard Kulessa 1 Wykład z mechaniki. Prof.. Dr hab. Reinhard Kulessa Warunki zaliczenia: 1. Zaliczenie ćwiczeń(minimalna ocena dostateczny) 2. Zdanie egzaminu z wykładu Egzamin z wykładu będzie składał się z egzaminu TESTOWEGO

Bardziej szczegółowo

Analiza wektorowa. Teoria pola.

Analiza wektorowa. Teoria pola. Analiza wektorowa. Teoria pola. Pole skalarne Pole wektorowe ϕ = ϕ(x, y, z) A = A x (x, y, z) i x + A y (x, y, z) i y + A z (x, y, z) i z Gradient grad ϕ = ϕ x i x + ϕ y i y + ϕ z i z Jeśli przemieścimy

Bardziej szczegółowo

Fizyka 2 Podstawy fizyki

Fizyka 2 Podstawy fizyki Fizyka Podstawy fizyki dr hab. inż. Wydział Fizyki e-mail: wrobel.studia@gmail.com konsultacje: Gmach Mechatroniki, pok. 34; środa 13-14 i po umówieniu mailowym http://www.if.pw.edu.pl/~wrobel/simr_f_17.html

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo

Bardziej szczegółowo

Linie sił pola elektrycznego

Linie sił pola elektrycznego Wykład 5 5.6. Linie sił pola elektrycznego Pamiętamy, że we wzorze (5.) określiliśmy natężenie pola elektrycznego przy pomocy ładunku próbnego q 0, którego wielkość dążyła do zera. Robiliśmy to po to,

Bardziej szczegółowo

Fale elektromagnetyczne

Fale elektromagnetyczne Fale elektromagnetyczne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Analiza pola 2 1.1. Rozkład pola...............................................

Bardziej szczegółowo

Kto nie zda egzaminu (nie uzyska oceny dostatecznej), będzie zdawał testowy egzamin poprawkowy Reinhard Kulessa 1

Kto nie zda egzaminu (nie uzyska oceny dostatecznej), będzie zdawał testowy egzamin poprawkowy Reinhard Kulessa 1 Wykład z mechaniki. Prof. Dr hab. Reinhard Kulessa Warunki zaliczenia: 1. Zaliczenie ćwiczeń(minimalna ocena dostateczny) 2. Zdanie egzaminu z wykładu Egzamin z wykładu będzie składał się z egzaminu testowego

Bardziej szczegółowo

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza

Bardziej szczegółowo

Fale elektromagnetyczne. Gradient pola. Gradient pola... Gradient pola... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek 2013/14

Fale elektromagnetyczne. Gradient pola. Gradient pola... Gradient pola... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek 2013/14 dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2013/14 1 dr inż. Ireneusz Owczarek Gradient pola Gradient funkcji pola skalarnego ϕ przypisuje każdemu punktowi

Bardziej szczegółowo

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku Fizyka w poprzednim odcinku Obliczanie natężenia pola Fizyka Wyróżniamy ładunek punktowy d Wektor natężenia pola d w punkcie P pochodzący od ładunku d Suma składowych x-owych wektorów d x IĄGŁY ROZKŁAD

Bardziej szczegółowo

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się Ładunki elektryczne Ładunki jednoimienne odpychają się Ładunki różnoimienne przyciągają się q = ne n - liczba naturalna e = 1,60 10-19 C ładunek elementarny Ładunek jest cechąciała i nie można go wydzielićz

Bardziej szczegółowo

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena

Bardziej szczegółowo

Potencjalne pole elektrostatyczne. Przypomnienie

Potencjalne pole elektrostatyczne. Przypomnienie Potencjalne pole elektrostatyczne Wszystkie rysunki i animacje zaczerpnięto ze strony http://webmitedu/802t/www/802teal3d/visualizations/electrostatics/indexhtm Tekst jest wolnym tłumaczeniem pliku guide03pdf

Bardziej szczegółowo

Różniczkowe prawo Gaussa i co z niego wynika...

Różniczkowe prawo Gaussa i co z niego wynika... Różniczkowe prawo Gaussa i co z niego wynika... Niech ładunek będzie rozłożony w objętości V z ciągłą gęstością ρ(x,y,z). Wytworzone przez ten ładunek pole elektryczne będzie również zmieniać się w przestrzeni

Bardziej szczegółowo

Część IV. Elektryczność i Magnetyzm

Część IV. Elektryczność i Magnetyzm Część IV. Elektryczność i Magnetyzm Uczyć się bez myślenia to zmarnowana praca, Myśleć bez uczenia się to pustka. Konfucjusz (właściwie K ung Ch iu, 551 479 p.n.e.) Dialogi, II/15 Wykład 10 Wprowadzenie

Bardziej szczegółowo

Wykład 8: Elektrostatyka Katarzyna Weron

Wykład 8: Elektrostatyka Katarzyna Weron Wykład 8: Elektrostatyka Katarzyna Weron Matematyka Stosowana Przewodniki i izolatory Przewodniki - niektóre ładunki ujemne mogą się dość swobodnie poruszać: metalach, wodzie, ciele ludzkim, Izolatory

Bardziej szczegółowo

Wszechświat cząstek elementarnych WYKŁAD 5

Wszechświat cząstek elementarnych WYKŁAD 5 Wszechświat cząstek elementarnych WYKŁAD 5 Maria Krawczyk, Wydział Fizyki UW 17.III.2010 Oddziaływania: elektromagnetyczne i grawitacyjne elektromagnetyczne i silne (kolorowe) Biegnące stałe sprzężenia:

Bardziej szczegółowo

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych Ładunek elektryczny Ładunek elektryczny jedna z własności cząstek elementarnych http://pl.wikipedia.org/wiki/%c5%81a dunek_elektryczny ładunki elektryczne o takich samych znakach się odpychają a o przeciwnych

Bardziej szczegółowo

Podstawy fizyki sezon 2 1. Elektrostatyka 1

Podstawy fizyki sezon 2 1. Elektrostatyka 1 Biblioteka AGH Podstawy fizyki sezon 2 1. Elektrostatyka 1 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha

Bardziej szczegółowo

Elektrostatyka. Już starożytni Grecy wiedzieli, że potarty o tkaninę bursztyn przyciąga drobne lekkie przedmioty.

Elektrostatyka. Już starożytni Grecy wiedzieli, że potarty o tkaninę bursztyn przyciąga drobne lekkie przedmioty. Elektrostatyka Już starożytni Grecy wiedzieli, że potarty o tkaninę bursztyn przyciąga drobne lekkie przedmioty. Pozostawało to odosobnioną ciekawostką aż do XVIw., kiedy Wlliam Gilbert wykazał, że podobną

Bardziej szczegółowo

1.6. Ruch po okręgu. ω =

1.6. Ruch po okręgu. ω = 1.6. Ruch po okręgu W przykładzie z wykładu 1 asteroida poruszała się po okręgu, wartość jej prędkości v=bω była stała, ale ruch odbywał się z przyspieszeniem a = ω 2 r. Przyspieszenie w tym ruchu związane

Bardziej szczegółowo

Pojęcie ładunku elektrycznego

Pojęcie ładunku elektrycznego Elektrostatyka Trochę historii Zjawisko elektryzowania się niektórych ciał było znane już w starożytności. O zjawisku przyciągania drobnych, lekkich ciał przez potarty suknem bursztyn wspomina Tales z

Bardziej szczegółowo

Podstawy fizyki sezon 1 III. Praca i energia

Podstawy fizyki sezon 1 III. Praca i energia Podstawy fizyki sezon 1 III. Praca i energia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha F.Żarnecki Praca Rozważamy

Bardziej szczegółowo

Pole elektromagnetyczne. Równania Maxwella

Pole elektromagnetyczne. Równania Maxwella Pole elektromagnetyczne (na podstawie Wikipedii) Pole elektromagnetyczne - pole fizyczne, za pośrednictwem którego następuje wzajemne oddziaływanie obiektów fizycznych o właściwościach elektrycznych i

Bardziej szczegółowo

Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa

Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa Elektrostatyka Potencjał pola elektrycznego Prawo Gaussa 1 Potencjał pola elektrycznego Energia potencjalna zależy od (ładunek próbny) i Q (ładunek który wytwarza pole), ale wielkość definiowana jako:

Bardziej szczegółowo

FALOWA I KWANTOWA HASŁO :. 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N

FALOWA I KWANTOWA HASŁO :. 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N OPTYKA FALOWA I KWANTOWA 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N 8 D Y F R A K C Y J N A 9 K W A N T O W A 10 M I R A Ż 11 P

Bardziej szczegółowo

MECHANIKA II. Praca i energia punktu materialnego

MECHANIKA II. Praca i energia punktu materialnego MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl

Bardziej szczegółowo

Podstawy fizyki sezon 2

Podstawy fizyki sezon 2 Podstawy fizyki sezon 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pole elektryczne i magnetyczne: Elektrostatyka.

Bardziej szczegółowo

ŁADUNEK I MATERIA Ładunki elektryczne są ściśle związane z atomową budową materii. Materia składa się z trzech rodzajów cząstek elementarnych:

ŁADUNEK I MATERIA Ładunki elektryczne są ściśle związane z atomową budową materii. Materia składa się z trzech rodzajów cząstek elementarnych: POLE ELEKTRYCZNE Ładunek i materia Ładunek elementarny. Zasada zachowania ładunku Prawo Coulomba Elektryzowanie ciał Pole elektryczne i pole zachowawcze Natężenie i strumień pola elektrycznego Prawo Gaussa

Bardziej szczegółowo

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra

Bardziej szczegółowo

Elektrostatyka Elektryczność nas otacza i tworzy...

Elektrostatyka Elektryczność nas otacza i tworzy... Elektrostatyka Elektryczność nas otacza i tworzy... Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Elektryczność

Bardziej szczegółowo

Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni.

Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. Pole magnetyczne Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. naładowane elektrycznie cząstki, poruszające się w przewodniku w postaci prądu elektrycznego,

Bardziej szczegółowo

Lekcja 40. Obraz graficzny pola elektrycznego.

Lekcja 40. Obraz graficzny pola elektrycznego. Lekcja 40. Obraz graficzny pola elektrycznego. Polem elektrycznym nazywamy obszar, w którym na wprowadzony doń ładunek próbny q działa siła. Pole elektryczne występuje wokół ładunków elektrycznych i ciał

Bardziej szczegółowo

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................

Bardziej szczegółowo

Wykład 8 ELEKTROMAGNETYZM

Wykład 8 ELEKTROMAGNETYZM Wykład 8 ELEKTROMAGNETYZM Równania Maxwella dive = ρ εε 0 prawo Gaussa dla pola elektrycznego divb = 0 rote = db dt prawo Gaussa dla pola magnetycznego prawo indukcji Faradaya rotb = μμ 0 j + εε 0 μμ 0

Bardziej szczegółowo

Odp.: F e /F g = 1 2,

Odp.: F e /F g = 1 2, Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego

Bardziej szczegółowo

cz. 2. dr inż. Zbigniew Szklarski

cz. 2. dr inż. Zbigniew Szklarski Wykład 14: Pole magnetyczne cz.. dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Prąd elektryczny jako źródło pola magnetycznego - doświadczenie Oersteda Kiedy przez

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................

Bardziej szczegółowo

Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych

Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych 6 czerwca 2013 Ładunek elektryczny Ciała fizyczne mogą być obdarzone (i w znacznej większości faktycznie są) ładunkiem elektrycznym. Ładunek ten może być dodatni lub ujemny. Kiedy na jednym ciele zgromadzonych

Bardziej szczegółowo

Teoria pola elektromagnetycznego

Teoria pola elektromagnetycznego Teoria pola elektromagnetycznego Odpowiedzialny za przedmiot (wykłady): prof. dr hab. inż. Stanisław Gratkowski Ćwiczenia i laboratoria: dr inż. Krzysztof Stawicki ks@zut.edu.pl e-mail: w temacie wiadomości

Bardziej szczegółowo

Witam na teście z działu ELEKTROSTATYKA

Witam na teście z działu ELEKTROSTATYKA Witam na teście z działu ELEKTROSTATYKA Masz do rozwiązania 22 zadania oto jaką ocenę możesz uzyskać: dopuszczająca jeśli rozwiążesz 6 zadań z zakresu pytań od 1 7 dostateczna jeśli rozwiążesz zadania

Bardziej szczegółowo

Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11

Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11 Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści Przedmowa 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce? 13 1. Analiza wektorowa 19

Bardziej szczegółowo

Potencjał pola elektrycznego

Potencjał pola elektrycznego Potencjał pola elektrycznego Pole elektryczne jest polem zachowawczym, czyli praca wykonana przy przesunięciu ładunku pomiędzy dwoma punktami nie zależy od tego po jakiej drodze przesuwamy ładunek. Spróbujemy

Bardziej szczegółowo

1. Dwa ładunki punktowe q znajdujące się w odległości 1 m od siebie odpychają się siłą o wartości F r

1. Dwa ładunki punktowe q znajdujące się w odległości 1 m od siebie odpychają się siłą o wartości F r 1. Dwa ładunki punktowe q znajdujące się w odległości 1 m od siebie odpychają się siłą o wartości F r. Sporządź wykres zależności F(r) dla tych ładunków. 2. Naelektryzowany płatek waty zbliża się do przeciwnie

Bardziej szczegółowo

Podstawy fizyki sezon 2

Podstawy fizyki sezon 2 Podstawy fizyki sezon 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pole elektryczne i magnetyczne: Elektrostatyka.

Bardziej szczegółowo

Pole elektryczne. Zjawiska elektryczne często opisujemy za pomocą pojęcia pola elektrycznego wytwarzanego przez ładunek w otaczającej go przestrzeni.

Pole elektryczne. Zjawiska elektryczne często opisujemy za pomocą pojęcia pola elektrycznego wytwarzanego przez ładunek w otaczającej go przestrzeni. Pole elektryczne Zjawiska elektryczne często opisujemy za pomocą pojęcia pola elektrycznego wytwarzanego przez ładunek w otaczającej go przestrzeni. Załóżmy pewien rozkład nieruchomych ładunków 1,...,

Bardziej szczegółowo

Wymiana ciepła ELEKTROSTATYKA. Tales z Miletu. 600 p.n.e. czas

Wymiana ciepła ELEKTROSTATYKA. Tales z Miletu. 600 p.n.e. czas Wymiana ciepła -500 0 500 1000 1500 2000 Wymiana ciepła ELEKTROSTATYKA Tales z Miletu Grecki filozof zna zjawisko przyciągania przez potarty przez sukno bursztyn (grecka nazwa: elektron) słomek, piór,

Bardziej szczegółowo

POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo Biota-Savarta. Prawo Ampère a. Prawo Gaussa dla pola

POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo Biota-Savarta. Prawo Ampère a. Prawo Gaussa dla pola POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo iota-savarta. Prawo Ampère a. Prawo Gaussa a pola magnetycznego. Prawo indukcji Faradaya. Reguła Lenza. Równania

Bardziej szczegółowo

Elektrostatyka. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Elektrostatyka. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Elektrostatyka Projekt współfinansowany przez Unię Europejską w ramach Europejskiego unduszu Społecznego Ładunek elektryczny Materia zbudowana jest z atomów. Atom składa się z dodatnie naładowanego jądra

Bardziej szczegółowo

Imię i nazwisko ucznia Data... Klasa...

Imię i nazwisko ucznia Data... Klasa... Przygotowano za pomocą programu Ciekawa fizyka. Bank zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Między

Bardziej szczegółowo

Atomowa budowa materii

Atomowa budowa materii Atomowa budowa materii Wszystkie obiekty materialne zbudowane są z tych samych elementów cząstek elementarnych Cząstki elementarne oddziałują tylko kilkoma sposobami oddziaływania wymieniając kwanty pól

Bardziej szczegółowo

Fizyka 2, wykład 1. Kiedy? CZ(TN) ; 14.03; 11.04; 25.04; 9.05; 23.05;29.05(ŚR); 6.06 Gdzie? Sala 322 /A1 Z kim? dr inż. Janusz Andrzejewski

Fizyka 2, wykład 1. Kiedy? CZ(TN) ; 14.03; 11.04; 25.04; 9.05; 23.05;29.05(ŚR); 6.06 Gdzie? Sala 322 /A1 Z kim? dr inż. Janusz Andrzejewski Fizyka 2, wykład 1 Kiedy? CZ(TN) 15.15 28.02; 14.03; 11.04; 25.04; 9.05; 23.05;29.05(ŚR); 6.06 Gdzie? Sala 322 /A1 Z kim? dr inż. Podsumowanie wyników egzaminu 1 termin 04.02.2013 przystąpiło do egzaminu

Bardziej szczegółowo

Wykład FIZYKA II. 3. Magnetostatyka. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 3. Magnetostatyka.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 3. Magnetostatyka Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ POLE MAGNETYCZNE Elektryczność zaobserwowana została

Bardziej szczegółowo

Badanie rozkładu pola elektrycznego

Badanie rozkładu pola elektrycznego Ćwiczenie E1 Badanie rozkładu pola elektrycznego E1.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie rozkładu pola elektrycznego dla różnych układów elektrod i ciał nieprzewodzących i przewodzących umieszczonych

Bardziej szczegółowo

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane

Bardziej szczegółowo

Energia potencjalna pola elektrostatycznego ładunku punktowego

Energia potencjalna pola elektrostatycznego ładunku punktowego Energia potencjalna pola elektrostatycznego ładunku punktowego Wszystkie rysunki i animacje zaczerpnięto ze strony http://web.mit.edu/8.02t/www/802teal3d/visualizations/electrostatics/index.htm. Tekst

Bardziej szczegółowo

ELEKTRYZOWANIE CIAŁ ZASADA ZACHOWANIA ŁADUNKU

ELEKTRYZOWANIE CIAŁ ZASADA ZACHOWANIA ŁADUNKU ELEKTRYZOWANIE CIAŁ ZASADA ZACHOWANIA ŁADUNKU Autorzy: Gabriela Jaromin Martyna Andreew Justyna Kramarczyk Daria Chmiel Arkadiusz Koziarz KL. II BCH KILKA SŁÓW O HISTORII Elektrostatyka jest to dział fizyki

Bardziej szczegółowo

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Siły zachowawcze i energia potencjalna Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Polecana literatura John R Taylor, Mechanika klasyczna, tom1 Wydawnictwo Naukowe

Bardziej szczegółowo

Rozdział 5. Twierdzenia całkowe. 5.1 Twierdzenie o potencjale. Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej C w przestrzeni

Rozdział 5. Twierdzenia całkowe. 5.1 Twierdzenie o potencjale. Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej C w przestrzeni Rozdział 5 Twierdzenia całkowe 5.1 Twierdzenie o potencjale Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej w przestrzeni trójwymiarowej, I) = A d r, 5.1) gdzie A = A r) jest funkcją polem)

Bardziej szczegółowo

Podstawy fizyki sezon 2

Podstawy fizyki sezon 2 Podstawy fizyki sezon 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pole elektryczne i magnetyczne: Elektrostatyka.

Bardziej szczegółowo

Wykład FIZYKA II. 1. Elektrostatyka. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 1. Elektrostatyka.   Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II. Elektrostatyka Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ ELEKTROMAGNETYZM Już starożytni Grecy Potarty kawałek

Bardziej szczegółowo

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni

Bardziej szczegółowo

W rozdziale 11.1 wymieniono, jako główne, dwa rodzaje oddziaływań występujących w przyrodzie: oddziaływanie

W rozdziale 11.1 wymieniono, jako główne, dwa rodzaje oddziaływań występujących w przyrodzie: oddziaływanie 16. Ładunek elektryczny W rozdziale 11.1 wymieniono, jako główne, dwa rodzaje oddziaływań występujących w przyrodzie: oddziaływanie grawitacyjne oraz oddziaływanie elektromagnetyczne. Pierwsze z nich omówiono

Bardziej szczegółowo

Plan Zajęć. Ćwiczenia rachunkowe

Plan Zajęć. Ćwiczenia rachunkowe Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin

Bardziej szczegółowo

W. Np. pole prędkości cieczy lub gazu, pole grawitacyjne, pole elektrostatyczne, magnetyczne.

W. Np. pole prędkości cieczy lub gazu, pole grawitacyjne, pole elektrostatyczne, magnetyczne. Elementy teorii pola - Wydział Chemiczny - 1 Wielkości fizyczne można klasyfikować na podstawie różnych kryteriów. Istnieją wielkości, które przy wyznaczonej jednostce miary są w zupełności określone przez

Bardziej szczegółowo

Fizyka 3. Konsultacje: p. 329, Mechatronika

Fizyka 3. Konsultacje: p. 329, Mechatronika Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0

Bardziej szczegółowo

Fizyka - opis przedmiotu

Fizyka - opis przedmiotu Fizyka - opis przedmiotu Informacje ogólne Nazwa przedmiotu Fizyka Kod przedmiotu 13.2-WI-INFP-F Wydział Kierunek Wydział Informatyki, Elektrotechniki i Automatyki Informatyka / Sieciowe systemy informatyczne

Bardziej szczegółowo

Badanie własności hallotronu, wyznaczenie stałej Halla (E2)

Badanie własności hallotronu, wyznaczenie stałej Halla (E2) Badanie własności hallotronu, wyznaczenie stałej Halla (E2) 1. Wymagane zagadnienia - ruch ładunku w polu magnetycznym, siła Lorentza, pole elektryczne - omówić zjawisko Halla, wyprowadzić wzór na napięcie

Bardziej szczegółowo

Wykład Pole elektryczne na powierzchniach granicznych 8.10 Gęstość energii pola elektrycznego

Wykład Pole elektryczne na powierzchniach granicznych 8.10 Gęstość energii pola elektrycznego Wykład 7 8.9 Pole elektryczne na powierzchniach granicznych 8.0 Gęstość energii pola elektrycznego 9. Prąd elektryczny 9. Natężenie prądu, wektor gęstości prądu 9. Prawo zachowania ładunku 9.3 Model przewodnictwa

Bardziej szczegółowo

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE WIĄZANIA Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE Przyciąganie Wynika z elektrostatycznego oddziaływania między elektronami a dodatnimi jądrami atomowymi. Może to być

Bardziej szczegółowo

Wykład 17 Izolatory i przewodniki

Wykład 17 Izolatory i przewodniki Wykład 7 Izolatory i przewodniki Wszystkie ciała możemy podzielić na przewodniki i izolatory albo dielektryki. Przewodnikami są wszystkie metale, roztwory kwasów i zasad, roztopione soli, nagrzane gazy

Bardziej szczegółowo

Podstawy elektromagnetyzmu. Wykład 2. Równania Maxwella

Podstawy elektromagnetyzmu. Wykład 2. Równania Maxwella Podstawy elektromagnetyzmu Wykład 2 Równania Maxwella Prawa Maxwella opisują pola Pole elektryczne... to zjawisko występujące w otoczeniu naładowanych elektrycznie obiektów lub jest skutkiem zmiennego

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Fizyka dr Bohdan Bieg p. 36A wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Literatura Raymond A. Serway, John W. Jewett, Jr. Physics for Scientists and Engineers, Cengage Learning D. Halliday, D.

Bardziej szczegółowo

Podstawy Fizyki Jądrowej

Podstawy Fizyki Jądrowej Podstawy Fizyki Jądrowej III rok Fizyki Kurs WFAIS.IF-D008.0 Składnik egzaminu licencjackiego (sesja letnia)! OPCJA: Po uzyskaniu zaliczenia z ćwiczeń możliwość zorganizowania ustnego egzaminu (raczej

Bardziej szczegółowo

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),

Bardziej szczegółowo

Helena Stech: Scenariusz lekcji Elektrostatyka powtórzenie. Scenariusz lekcji fizyki w gimnazjum

Helena Stech: Scenariusz lekcji Elektrostatyka powtórzenie. Scenariusz lekcji fizyki w gimnazjum 1 Helena Stech: Scenariusz lekcji Elektrostatyka powtórzenie. Temat: Elektrostatyka powtórzenie. Scenariusz lekcji fizyki w gimnazjum Cele lekcji: powtórzenie wiadomości o rodzajach elektryzowania ciał

Bardziej szczegółowo

Elektrostatyka, cz. 1

Elektrostatyka, cz. 1 Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin

Bardziej szczegółowo

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor.

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. DKOS-5002-2\04 Anna Basza-Szuland FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA REALIZOWANYCH TREŚCI PROGRAMOWYCH Kinematyka

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

Całki krzywoliniowe skierowane

Całki krzywoliniowe skierowane Całki krzywoliniowe skierowane Zamiana całki krzywoliniowej skierowanej na całkę pojedyńcza. Twierdzenie Greena. Zastosowania całki krzywoliniowej skierowanej. Małgorzata Wyrwas Katedra Matematyki Wydział

Bardziej szczegółowo

Część IV. Elektryczność i Magnetyzm Uczyć się bez myślenia to zmarnowana praca, Myśleć bez uczenia się to pustka. Wykłady 10 i 11

Część IV. Elektryczność i Magnetyzm Uczyć się bez myślenia to zmarnowana praca, Myśleć bez uczenia się to pustka. Wykłady 10 i 11 Część IV. Elektryczność i Magnetyzm Uczyć się bez myślenia to zmarnowana praca, Myśleć bez uczenia się to pustka. Konfucjusz (właściwie K ung Ch iu, 55 479 p.n.e.) Dialogi, II/5 Wykłady 0 i 0.. Ładunek

Bardziej szczegółowo

Przewodniki w polu elektrycznym

Przewodniki w polu elektrycznym Przewodniki w polu elektrycznym Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Przewodniki to ciała takie, po

Bardziej szczegółowo

Spis treści. Tom 1 Przedmowa do wydania polskiego 13. Przedmowa 15. Wstęp 19

Spis treści. Tom 1 Przedmowa do wydania polskiego 13. Przedmowa 15. Wstęp 19 Spis treści Tom 1 Przedmowa do wydania polskiego 13 Przedmowa 15 1 Wstęp 19 1.1. Istota fizyki.......... 1 9 1.2. Jednostki........... 2 1 1.3. Analiza wymiarowa......... 2 3 1.4. Dokładność w fizyce.........

Bardziej szczegółowo

doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e)

doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) 1 doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) Ilość protonów w jądrze określa liczba atomowa Z Ilość

Bardziej szczegółowo

Pojemność elektryczna

Pojemność elektryczna Pojemność elektryczna Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Pojemność elektryczna Umieśćmy na pewnym

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

Wykłady z Fizyki. Magnetyzm

Wykłady z Fizyki. Magnetyzm Wykłady z Fizyki 07 Magnetyzm Zbigniew Osiak OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K komentarz

Bardziej szczegółowo

4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku

4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku Rozdział 4 Pole elektryczne 4.1 Ładunki elektryczne 4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku W niniejszym rozdziale zostaną przedstawione wybrane zagadnienia elektrostatyki. Elektrostatyka

Bardziej szczegółowo

Elektrostatyczna energia potencjalna U

Elektrostatyczna energia potencjalna U Elektrostatyczna energia potencjalna U Żeby zbliżyć do siebie dwa ładunki jednoimienne trzeba wykonać pracę przeciwko siłom pola nadając ładunkowi energię potencjalną. Podobnie trzeba wykonać pracę przeciwko

Bardziej szczegółowo

[ A i ' ]=[ D ][ A i ] (2.3)

[ A i ' ]=[ D ][ A i ] (2.3) . WSTĘP DO TEORII SPRĘŻYSTOŚCI 1.. WSTĘP DO TEORII SPRĘŻYSTOŚCI.1. Tensory macierzy Niech macierz [D] będzie macierzą cosinusów kierunkowych [ D ]=[ i ' j ] (.1) Macierz transformowana jest równa macierzy

Bardziej szczegółowo

Wykład 2 Prawo Coulomba i pole elektryczne

Wykład 2 Prawo Coulomba i pole elektryczne Wykład 2 Prawo Coulomba i pole elektryczne (oraz krew kozła i czosnek) Maciej J. Mrowiński mrow@if.pw.edu.pl Wydział Fizyki Politechnika Warszawska 1 marca 2017 Maciej J. Mrowiński (IF PW) Wykład 2 1 marca

Bardziej szczegółowo

POLE MAGNETYCZNE W PRÓŻNI

POLE MAGNETYCZNE W PRÓŻNI POLE MAGNETYCZNE W PRÓŻNI Oprócz omówionych już oddziaływań grawitacyjnych (prawo powszechnego ciążenia) i elektrostatycznych (prawo Couloma) dostrzega się inny rodzaj oddziaływań, które nazywa się magnetycznymi.

Bardziej szczegółowo

KARTA PRZEDMIOTU. Informacje ogólne WYDZIAŁ MATEMATYCZNO-PRZYRODNICZY. SZKOŁA NAUK ŚCISŁYCH UNIWERSYTET KARDYNAŁA STEFANA WYSZYŃSKIEGO W WARSZAWIE

KARTA PRZEDMIOTU. Informacje ogólne WYDZIAŁ MATEMATYCZNO-PRZYRODNICZY. SZKOŁA NAUK ŚCISŁYCH UNIWERSYTET KARDYNAŁA STEFANA WYSZYŃSKIEGO W WARSZAWIE 1 3 4 6 7 8 8.0 Kod przedmiotu Nazwa przedmiotu Jednostka Punkty ECTS 3 Język wykładowy polski Poziom przedmiotu podstawowy K_W01 3 wiedza Symbole efektów kształcenia K_U01 3 umiejętności K_K01 11 kompetencje

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo