GRK 4. dr Wojciech Palubicki

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "GRK 4. dr Wojciech Palubicki"

Transkrypt

1 GRK 4 dr Wojciech Palubicki

2 Uproszczony Potok Graficzny (Rendering) Model Matrix View Matrix Projection Matrix Viewport Transform Object Space World Space View Space Clip Space Screen Space

3 Projection Matrix View Space Clip Space

4 Potok graficzny Window space View Space Orthographic view Canonical view

5 Rzutowania Perspektywicznie rzutowanie Ortograficzne rzutowanie

6 Clipping Żeby zdecydować czy pociąć trójkąt musimy: Sprawdzić czy on przecina hiperpłaszczyznę Stworzyć nowy trójkąt(y)

7 Obliczenie punktów przecięcia Jak dwa punkty Ԧa i b są po różnych stronach hiperpłaszczyzny stwarzamy równanie krzywej która przez te punkty przechodzi: Ԧp t = Ԧa + t b Ԧa Podkładając te równanie pod nasze równanie hiperpłaszczyzny daje nam: n Ԧp Ԧq = 0 n Ԧa + t b Ԧa Ԧq = 0 t = n a+n q n (a b)

8 Stwarzanie nowych trójkątów Na podstawie dwóch punktów intersekcji możemy pociąć nasz trójkąt według naszej hiperpłaszczyzny w następujący sposób: Jak dwa wierzchołki są zewnątrz hiperpłaszczyzny dostajemy nowy trójkąt Jak jeden wierzchołek jest zewnątrz hiperpłaszczyzny dostajemy dwie nowe trójkąty

9 Culling Gdy jednak trójkąt leży poza bryłą widzenia usuwamy go całkowicie z dalszych obliczeń Testowanie wierzchołków jest ale jednak kosztowne

10 Bryły brzegowe (bounding volumes) Często kule są używane jako bryły brzegowe Jak płaszczyzna jest dana przez Ԧp Ԧa n = 0 i kula ma środek Ԧc i promień r, wtedy sprawdzamy nierówność Ԧc a n > r n n Ԧa Ԧc r

11 Backface culling Gdy modelujemy obiekty geometryczne za pomocy trójkątów to normalna trójkątów jest ustawiona na zewnątrz obiektu Odrzucanie trójkątów których normalna jest skierowana od punktu widzenia nazywamy to backface culling (usuwanie powierzchni tylnych)

12 v n = v n cos(θ) Skierowany do przodu gdy θ > π 2, dlatego cos θ < 0 i v n < 0

13 Przykład Bez backface culling Backface culling

14

15 Algorytm malarza (painter s algorithm)

16 Częściowe pokrywanie wielokątów

17 Z-bufor

18 CPU GPU Vertex shader Fragment shader

19 Oświetlenie Bez oświetlenia Z oświetleniem

20 Oświetlenie Bez oświetlenia Z oświetleniem

21 Światło Zwykły materiał Część światła jest odbita Część wnika w materiał Metal Część światła jest odbita Część wnikająca jest absorbowana

22 Nie-metalowe materiały Światło które wnika w materiał Jest absorbowane Lub wychodzi z powrotem z materiału na zewnątrz

23 Podpowierzchniowe rozpraszanie (subsurface scattering) Dystans pomiędzy punktem wejścia i wyjścia promieni światła jest wyznaczony przez materiał

24

25 Modelowanie za pomocy BRDF BRDF to Bidirectional Reflectance Distribution Function lub "dwukierunkowa funkcja rozkładu odbicia" Modelujemy światło ignorując różnice dystansu punktu wejścia i wyjścia światła (lustrzane) (rozproszone)

26 obserwator obiekt bezpośrednie oświetlenie pośrednie oświetlenie źródło światła obiekt obiekt źródło światła

27 obserwator obiekt bezpośrednie oświetlenie pośrednie oświetlenie źródło światła obiekt obiekt źródło światła

28 obserwator obiekt bezpośrednie oświetlenie pośrednie oświetlenie źródło światła obiekt obiekt źródło światła

29 promienie światła Obserwacja dl płaszczyzna

30 promienie światła Obserwacja dl da płaszczyzna

31 promienie światła Obserwacja dl = da dl da płaszczyzna

32 promienie światła Obserwacja dl = da dl > da dl dl da da

33 promienie światła Obserwacja dl = da dl > da dl > da dl dl dl da da da

34 promienie światła Obserwacja dl = da dl > da dl > da dl = dl dl dl da da da da

35 Model Phonga odbicia rozproszonego

36 Model Phonga odbicia rozproszonego

37 Model Phonga odbicia rozproszonego

38 Model Phonga odbicia rozproszonego

39 Model Phonga odbicia rozproszonego Model Phonga odbicia rozproszonego zależy od pozycji światła relatywnie do powierzchni D = I p k d max[cos θ, 0] Gdzie I p jest intensywność światła od punktowego źródła światła k d [0, 1] jest współczynnik rozproszonego światła θ jest kątem pomiędzy wektorem światła L i normalną powierzchni n max[cos θ, 0] jest używane żeby światło nie zostało odbite jak źródła światła znajduję się za powierzchnia

40 Model Phonga odbicia rozproszonego Model Phonga odbicia rozproszonego zależy od pozycji światła relatywnie do powierzchni D = I p k d max[cos θ, 0] Gdzie I p jest intensywność światła od punktowego źródła światła k d [0, 1] jest współczynnik rozproszonego światła θ jest kątem pomiędzy wektorem światła L i normalną powierzchni n max[cos θ, 0] jest używane żeby światło nie zostało odbite jak źródła światła znajduję się za powierzchnia

41 Model Phonga odbicia rozproszonego Model Phonga odbicia rozproszonego zależy od pozycji światła relatywnie do powierzchni D = I p k d max[cos θ, 0] Gdzie I p jest intensywność światła od punktowego źródła światła k d [0, 1] jest współczynnik rozproszonego światła θ jest kątem pomiędzy wektorem światła L i normalną powierzchni n Funkcja max[cos θ, 0] jest używana żeby światło nie zostało odbite wtedy gdy źródło światła znajduję się za powierzchnią

42 k d = 0.25 k d = 0.5 k d = 0.75 k d = 1

43 Definicja iloczynu skalarnego to: a b = a b cos(θ) Ale jak L i n są wektory jednostkowe to: L n = cos(θ) Czyli kosztowne obliczenie kosinusa da się zastąpić prostym iloczynem skalarnym D = I p k d max[l n, 0]

44 Definicja iloczynu skalarnego to: a b = a b cos(θ) Ale jak L i n są wektory jednostkowe to: L n = cos(θ) Czyli kosztowne obliczenie kosinusa da się zastąpić prostym iloczynem skalarnym D = I p k d max[l n, 0]

45 Odbicie lustrzane wpadające promienie odbite promienie

46 Odbicie lustrzane - wektory

47 Rzutowanie wektorów

48 Rzutowanie wektorów

49 Rzutowanie wektorów

50 Z definicji iloczynu skalarnego: a b = a b cos α = a b c a = b c c = a b b Gdy b jest wektorem jednostkowym to wtedy c = a b i c = a b b

51 Z definicji iloczynu skalarnego: a b = a b cos α = a b c = a b b Gdy b jest wektorem jednostkowym to wtedy c = a b i c = a b b c a

52 Z definicji iloczynu skalarnego: a b = a b cos α = a b c a = b c c = a b b Gdy b jest wektorem jednostkowym to wtedy c = a b i c = a b b

53 Z definicji iloczynu skalarnego: a b = a b cos α = a b c a = b c c = a b b Gdy b jest wektorem jednostkowym to wtedy c = a b i c = a b b

54 Z definicji iloczynu skalarnego: a b = a b cos α = a b c a = b c c = a b b Gdy b jest wektorem jednostkowym to wtedy c = a b i c = a b b

55

56

57

58

59

60

61

62 Odbicie geometryczne lustrzane - wektory Model Phonga odbicia geometrycznego lustrzanego jest S = I p k s cos n α = I p k s (V R) n Gdzie k s [0, 1] jest współczynnik geometryczny lustrzany n jest wykładnik geometryczny lustrzany α jest kątem pomiędzy R i V cos n (α) ustala ile światła odbija się

63 Odbicie geometryczne lustrzane - wektory Model Phonga odbicia geometrycznego lustrzanego jest S = I p k s cos n α = I p k s (V R) n Gdzie k s [0, 1] jest współczynnik geometryczny lustrzany n jest wykładnik geometryczny lustrzany α jest kątem pomiędzy R i V cos n (α) ustala ile światła odbija się

64 Odbicie geometryczne lustrzane - wektory Model Phonga odbicia geometrycznego lustrzanego jest S = I p k s cos n α = I p k s (V R) n Gdzie k s [0, 1] jest współczynnik geometryczny lustrzany n jest wykładnik geometryczny lustrzany α jest kątem pomiędzy R i V cos n (α) ustala ile światła odbija się

65 Wykładnik geometryczny lustrzany

66 n = 50 n = 20 n = 5 n = 1

67 Światło otoczenia Swiatlo otoczenia, to odbicie światła które nie przychodzi bezpośrednio od źródła światła Model Phonga jest modelem bezpośredniego oświetlenia, tzn. światło spada na wszystkie obiekty równo A = I a k a Gdzie I a jest intensywność światła i k a [0, 1] jest współczynnik otoczenia k a umożliwia dostarczać scenie odpowiedniego stopnia światła otoczenia, n.p. k a 1 dla jasnych scen a k a 0 dla ciemnych scen

68 k a = 0.25 k a = 0.5 k a = 0.75 k a = 1.0

69 Tłumienność (attenuation) Tłumienność jest utrata energii światła w przestrzeni W modelu Phonga tłumienność jest wyrażona przez współczynnik f att Fizyczne modele światła proponują f att ~ 1 d 2 Bo powierzchnia kuli to 4πr 2

70 Ale z powodu że model Phonga jest modelem bezpośredniego oświetlenia w praktyce zostaje za dużo z intensywności światła usunięte dlatego model Phonga używa f att = 1 ( d r )2 Gdzie r jest promieniem kuli otaczającą źródło światła która określa przestrzeń w której światło może być wysyłane

71 Składając wszystkie części modelu Phonga do jednego równania daje cały model odbicia światła Phonga I = I a k a + f att I p k d max[l n, 0] + f att I p k s (V R) n Dla więcej niż jednego źródła światła, odpowiednie komponenty modelu odbicia światła Phonga są obliczone dla każdego źródła i sumowane I = I a k a + σ m i=1 f att I p,i [k d max(l i n, 0) + k s (V R i ) n ]

72 Składając wszystkie części modelu Phonga do jednego równania daje cały model odbicia światła Phonga I = I a k a + f att I p k d max[l n, 0] + f att I p k s (V R) n Dla więcej niż jednego źródła światła, odpowiednie komponenty modelu odbicia światła Phonga są obliczone dla każdego źródła i sumowane I = I a k a + σ m i=1 f att I p,i [k d max(l i n, 0) + k s (V R i ) n ]

73 Intensywność światła i kolory RGB Skalujemy wektory kolorów v new = v I Na przykład: kolor czerwony v =(1, 0, 0) z 50% intensywnością to v new = (0.5, 0, 0)

74 Wynik światło otoczenia (ambient) światło rozproszone (diffuse) światło odbite geometryczne lustrzane (specular) = model odbicia światła Phonga

75 Metody cieniowania (shading) Model odbicia światła Phonga oblicza oświetlenie jednego punktu na powierzchni (zależnie od normalnej powierzchni) Żeby cały wielokąt oświetlić potrzebujemy metodę cieniowania tego wielokąta Podstawowe metody cieniowania: Płaskie cieniowanie (cieniowanie Lamberta) Cieniowanie Gourauda Cieniowanie Phonga

76 Metody cieniowania (shading) Model odbicia światła Phonga oblicza oświetlenie jednego punktu na powierzchni (zależnie od normalnej powierzchni) Żeby cały wielokąt oświetlić potrzebujemy metodę cieniowania tego wielokąta Podstawowe metody cieniowania: Płaskie cieniowanie (cieniowanie Lamberta) Cieniowanie Gourauda Cieniowanie Phonga

77 Metody cieniowania (shading) Model odbicia światła Phonga oblicza oświetlenie jednego punktu na powierzchni (zależnie od normalnej powierzchni) Żeby cały wielokąt oświetlić potrzebujemy metodę cieniowania tego wielokąta Podstawowe metody cieniowania: Płaskie cieniowanie (cieniowanie Lamberta) Cieniowanie Gourauda Cieniowanie Phonga

78 Cieniowanie płaskie Cieniowanie płaskie zakłada ze wszystkie piksele wielokąta są oświetlone równomiernie Model odbicia światła oblicza oświetlenie dla wszystkich pikseli

79 Pasmo Macha

80 Luminancja Pasmo Macha wrażenie faktycznie

81 Rozwiązanie: więcej wielokątów

82 Cieniowanie Gourauda Cieniowanie Gourauda oblicza oświetlenie dla wierzchołków wielokąta i następnie liniowo interpoluje wartości oświetlenia we wszystkich pikseli wielokąta IP obliczany przez uśrednianie IA i IB powierzchnia piksel

83 Uśrednianie intensywności Gdy I jest intensywność oświetlenia w danym punkcie P: I A,i+1 = I A,i ΔI A I B,i+1 = I B,i ΔI B I C,i+1 = I C,i ΔI C Gdzie I A = I 3 I 1 y 3 y 1, I B = I 3 I 2 y 3 y 2, I C = x B x A I B I A

84 Cieniowanie Gourauda

85 Cieniowanie Phonga W cieniowaniu Phonga (nie pomylić z modelem odbicia światła Phonga) interpolujemy wektory normalne wszystkich pikseli wielokąta IP obliczany przez model Phonga (na podstawie normalnej NP) powierzchnia piksel

86 Uśrednianie normalnych Gdy n jest wektor normalny w danym punkcie: n A,i+1 = n A,i Δn A n B,i+1 = n B,i Δn B n C,i+1 = n C,i Δn C Gdzie n A = n 3 n 1 y 3 y 1, n B = n 3 n 2 y 3 y 2, n C = n B n A x B x A

87 OpenGL Interpolacja normalnych

88

89 płaskie Gouraud Phong

GRK 5. dr Wojciech Palubicki

GRK 5. dr Wojciech Palubicki GRK 5 dr Wojciech Palubicki Projekty (dwu-osobowe) Napisać symulacje lotu kosmicznego w OpenGLu: Korzystając tylko z bibliotek które na ćwiczeniach zostały omówione Interaktywna symulacja Wszystkie wielokąty

Bardziej szczegółowo

Model oświetlenia. Radosław Mantiuk. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Model oświetlenia. Radosław Mantiuk. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Model oświetlenia Radosław Mantiuk Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Obliczenie koloru powierzchni (ang. Lighting) Światło biegnie od źródła światła, odbija

Bardziej szczegółowo

Grafika komputerowa. Model oświetlenia. emisja światła przez źródła światła. interakcja światła z powierzchnią. absorbcja światła przez sensor

Grafika komputerowa. Model oświetlenia. emisja światła przez źródła światła. interakcja światła z powierzchnią. absorbcja światła przez sensor Model oświetlenia emisja światła przez źródła światła interakcja światła z powierzchnią absorbcja światła przez sensor Radiancja radiancja miara światła wychodzącego z powierzchni w danym kącie bryłowym

Bardziej szczegółowo

Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania.

Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania. Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania. Chcąc osiągnąć realizm renderowanego obrazu, należy rozwiązać problem świetlenia. Barwy, faktury i inne właściwości przedmiotów postrzegamy

Bardziej szczegółowo

Oświetlenie obiektów 3D

Oświetlenie obiektów 3D Synteza i obróbka obrazu Oświetlenie obiektów 3D Opracowanie: dr inż. Grzegorz Szwoch Politechnika Gdańska Katedra Systemów Multimedialnych Rasteryzacja Spłaszczony po rzutowaniu obraz siatek wielokątowych

Bardziej szczegółowo

Animowana grafika 3D. Opracowanie: J. Kęsik.

Animowana grafika 3D. Opracowanie: J. Kęsik. Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollub.pl Powierzchnia obiektu 3D jest renderowana jako czarna jeżeli nie jest oświetlana żadnym światłem (wyjątkiem są obiekty samoświecące) Oświetlenie

Bardziej szczegółowo

Scena 3D. Cieniowanie (ang. Shading) Scena 3D - Materia" Obliczenie koloru powierzchni (ang. Lighting)

Scena 3D. Cieniowanie (ang. Shading) Scena 3D - Materia Obliczenie koloru powierzchni (ang. Lighting) Zbiór trójwymiarowych danych wej$ciowych wykorzystywanych do wygenerowania obrazu wyj$ciowego 2D. Cieniowanie (ang. Shading) Rados"aw Mantiuk Wydzia" Informatyki Zachodniopomorski Uniwersytet Technologiczny

Bardziej szczegółowo

Zjawisko widzenia obrazów

Zjawisko widzenia obrazów Zjawisko widzenia obrazów emisja światła przez źródła światła interakcja światła z powierzchnią absorbcja światła przez sensor Źródła światła światło energia elektromagnetyczna podróżująca w przestrzeni

Bardziej szczegółowo

GRAKO: ŚWIATŁO I CIENIE. Modele barw. Trochę fizyki percepcji światła. OŚWIETLENIE: elementy istotne w projektowaniu

GRAKO: ŚWIATŁO I CIENIE. Modele barw. Trochę fizyki percepcji światła. OŚWIETLENIE: elementy istotne w projektowaniu GRAKO: ŚWIATŁO I CIENIE Metody oświetlania Metody cieniowania Przykłady OŚWIETLENIE: elementy istotne w projektowaniu Rozumienie fizyki światła w realnym świecie Rozumienie procesu percepcji światła Opracowanie

Bardziej szczegółowo

Grafika komputerowa i wizualizacja. dr Wojciech Pałubicki

Grafika komputerowa i wizualizacja. dr Wojciech Pałubicki Grafika komputerowa i wizualizacja dr Wojciech Pałubicki Grafika komputerowa Obrazy wygenerowane za pomocy komputera Na tych zajęciach skupiamy się na obrazach wygenerowanych ze scen 3D do interaktywnych

Bardziej szczegółowo

Programowanie gier komputerowych Tomasz Martyn Wykład 6. Materiały informacje podstawowe

Programowanie gier komputerowych Tomasz Martyn Wykład 6. Materiały informacje podstawowe Programowanie gier komputerowych Tomasz Martyn Wykład 6. Materiały informacje podstawowe Czym są tekstury? Tekstury są tablicowymi strukturami danych o wymiarze od 1 do 3, których elementami są tzw. teksele.

Bardziej szczegółowo

Synteza i obróbka obrazu. Tekstury. Opracowanie: dr inż. Grzegorz Szwoch Politechnika Gdańska Katedra Systemów Multimedialnych

Synteza i obróbka obrazu. Tekstury. Opracowanie: dr inż. Grzegorz Szwoch Politechnika Gdańska Katedra Systemów Multimedialnych Synteza i obróbka obrazu Tekstury Opracowanie: dr inż. Grzegorz Szwoch Politechnika Gdańska Katedra Systemów Multimedialnych Tekstura Tekstura (texture) obraz rastrowy (mapa bitowa, bitmap) nakładany na

Bardziej szczegółowo

1. Oświetlenie Materiały i powierzchnie

1. Oświetlenie Materiały i powierzchnie 1. Oświetlenie Rzeczywiste światło emitowane przez określone źródło, odbijane jest na milionach powierzchni obiektów, po czym dociera do naszych oczu powodując, że widzimy dane przedmioty. Światło padające

Bardziej szczegółowo

Transformacje obiektów 3D

Transformacje obiektów 3D Synteza i obróbka obrazu Transformacje obiektów 3D Opracowanie: dr inż. Grzegorz Szwoch Politechnika Gdańska Katedra Systemów Multimedialnych Lokalny układ współrzędnych Tworząc model obiektu, zapisujemy

Bardziej szczegółowo

OpenGL oświetlenie. Bogdan Kreczmer. Katedra Cybernetyki i Robotyki Wydziału Elektroniki Politechnika Wrocławska

OpenGL oświetlenie. Bogdan Kreczmer. Katedra Cybernetyki i Robotyki Wydziału Elektroniki Politechnika Wrocławska OpenGL oświetlenie Bogdan Kreczmer bogdan.kreczmer@pwr.wroc.pl Katedra Cybernetyki i Robotyki Wydziału Elektroniki Politechnika Wrocławska Kurs: Copyright c 2017 Bogdan Kreczmer Niniejszy dokument zawiera

Bardziej szczegółowo

Grafika realistyczna. Oświetlenie globalne ang. global illumination. Radosław Mantiuk

Grafika realistyczna. Oświetlenie globalne ang. global illumination. Radosław Mantiuk Oświetlenie globalne ang. global illumination Radosław Mantiuk Generowanie obrazów z uwzględnieniem oświetlenia globalnego Cel oświetlenia globalnego obliczenie drogi promieni światła od źródeł światła

Bardziej szczegółowo

Synteza i obróbka obrazu. Algorytmy oświetlenia globalnego

Synteza i obróbka obrazu. Algorytmy oświetlenia globalnego Synteza i obróbka obrazu Algorytmy oświetlenia globalnego Algorytmy oświetlenia Algorytmy oświetlenia bezpośredniego (direct illumination) tylko światło poadające bezpośrednio na obiekty, mniejszy realizm,

Bardziej szczegółowo

6 Przygotował: mgr inż. Maciej Lasota

6 Przygotował: mgr inż. Maciej Lasota Laboratorium nr 6 1/7 Grafika Komputerowa 3D Instrukcja laboratoryjna Temat: Materiały i oświetlenie 6 Przygotował: mgr inż. Maciej Lasota 1) Wprowadzenie Specyfikacja biblioteki OpenGL rozróżnia trzy

Bardziej szczegółowo

Plan wykładu. Akcelerator 3D Potok graficzny

Plan wykładu. Akcelerator 3D Potok graficzny Plan wykładu Akcelerator 3D Potok graficzny Akcelerator 3D W 1996 r. opracowana została specjalna karta rozszerzeń o nazwie marketingowej Voodoo, którą z racji wspomagania procesu generowania grafiki 3D

Bardziej szczegółowo

Gry komputerowe: efekty specjalne cz. 2

Gry komputerowe: efekty specjalne cz. 2 1/43 Gry komputerowe: efekty specjalne cz. 2 Przygotowała: Anna Tomaszewska 2/43 Mapowanie środowiska - definicja aproksymacje odbić na powierzchnie prosto- i krzywoliniowej," oświetlanie sceny." obserwator

Bardziej szczegółowo

Światło. W OpenGL można rozróżnić 3 rodzaje światła

Światło. W OpenGL można rozróżnić 3 rodzaje światła Wizualizacja 3D Światło W OpenGL można rozróżnić 3 rodzaje światła Światło otaczające (ambient light) równomiernie oświetla wszystkie elementy sceny, nie pochodzi z żadnego konkretnego kierunku Światło

Bardziej szczegółowo

Julia 4D - raytracing

Julia 4D - raytracing i przykładowa implementacja w asemblerze Politechnika Śląska Instytut Informatyki 27 sierpnia 2009 A teraz... 1 Fraktale Julia Przykłady Wstęp teoretyczny Rendering za pomocą śledzenia promieni 2 Implementacja

Bardziej szczegółowo

WSTĘP DO GRAFIKI KOMPUTEROWEJ

WSTĘP DO GRAFIKI KOMPUTEROWEJ WSTĘP DO GRAFIKI KOMPUTEROWEJ Miłosz Michalski Institute of Physics Nicolaus Copernicus University Październik 2015 1 / 15 Plan wykładu Światło, kolor, zmysł wzroku. Obraz: fotgrafia, grafika cyfrowa,

Bardziej szczegółowo

Animowana grafika 3D. Opracowanie: J. Kęsik.

Animowana grafika 3D. Opracowanie: J. Kęsik. Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollub.pl Rzutowanie Równoległe Perspektywiczne Rzutowanie równoległe Rzutowanie równoległe jest powszechnie używane w rysunku technicznym - umożliwienie

Bardziej szczegółowo

Efekty dodatkowe w rasteryzacji

Efekty dodatkowe w rasteryzacji Synteza i obróbka obrazu Efekty dodatkowe w rasteryzacji Opracowanie: dr inż. Grzegorz Szwoch Politechnika Gdańska Katedra Systemów Multimedialnych Efekty dodatkowe Cieniowanie i teksturowanie pozwala

Bardziej szczegółowo

Ustawienia materiałów i tekstur w programie KD Max. MTPARTNER S.C.

Ustawienia materiałów i tekstur w programie KD Max. MTPARTNER S.C. Ustawienia materiałów i tekstur w programie KD Max. 1. Dwa tryby własności materiału Materiał możemy ustawić w dwóch trybach: czysty kolor tekstura 2 2. Podstawowe parametry materiału 2.1 Większość właściwości

Bardziej szczegółowo

Grafika komputerowa Tekstury

Grafika komputerowa Tekstury . Tekstury Tekstury są dwuwymiarowymi obrazkami nakładanymi na obiekty lub ich części, w celu poprawienia realizmu rysowanych brył oraz dodatkowego określenia cech ich powierzchni np. przez nałożenie obrazka

Bardziej szczegółowo

Grafika komputerowa Wykład 10 Modelowanie oświetlenia

Grafika komputerowa Wykład 10 Modelowanie oświetlenia Grafika komputerowa Wykład 10 Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1 2 3 Spis treści Spis treści 1 2 3 Spis

Bardziej szczegółowo

Grafika Komputerowa. Metoda śledzenia promieni

Grafika Komputerowa. Metoda śledzenia promieni Grafika Komputerowa. Metoda śledzenia promieni Aleksander Denisiuk Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Ò Ù Ô º ÙºÔÐ 1 / 30 Metoda śledzenia

Bardziej szczegółowo

SYNTEZA OBRAZU. Rendering obrazu 3D

SYNTEZA OBRAZU. Rendering obrazu 3D Synteza dźwięku i obrazu SYNTEZA OBRAZU Rendering obrazu 3D Rendering Proces tworzenia dwuwymiarowego obrazu (np. na ekranie) na podstawie trójwymiarowego opisu nazywa się renderingiem. Na podstawie informacji

Bardziej szczegółowo

Wykład 4. Rendering (1) Informacje podstawowe

Wykład 4. Rendering (1) Informacje podstawowe Wykład 4. Rendering (1) Informacje podstawowe Z punktu widzenia dzisiejszego programowania gier: Direct3D jest najczęściej wykorzystywanym przez profesjonalnych deweloperów gier API graficznym na platformie

Bardziej szczegółowo

Rendering obrazu 3D. Rendering. Synteza i obróbka obrazu

Rendering obrazu 3D. Rendering. Synteza i obróbka obrazu Synteza i obróbka obrazu Rendering obrazu 3D Rendering Proces tworzenia dwuwymiarowego obrazu (np. na ekranie) na podstawie trójwymiarowego opisu nazywa się renderingiem. Na podstawie informacji wejściowych:

Bardziej szczegółowo

System graficzny. Potok graficzny 3D. Scena 3D Zbiór trójwymiarowych danych wejściowych wykorzystywanych do wygenerowania obrazu wyjściowego 2D.

System graficzny. Potok graficzny 3D. Scena 3D Zbiór trójwymiarowych danych wejściowych wykorzystywanych do wygenerowania obrazu wyjściowego 2D. System graficzny scena 3D algorytm graficzny obraz 2D Potok graficzny 3D Radosław Mantiuk Dane wejściowe Algorytm tworzący obraz wyjściowy na podstawie sceny 3D Dane wyjściowe Wydział Informatyki Zachodniopomorski

Bardziej szczegółowo

Obliczenie punktu przecięcia półprostej i płaszczyzny w przestrzeni 3-D wymaga rozwiązania równania liniowego.

Obliczenie punktu przecięcia półprostej i płaszczyzny w przestrzeni 3-D wymaga rozwiązania równania liniowego. RÓWNANIA, PRAWA, WZORY Obliczenie punktu przecięcia półprostej i płaszczyzny w przestrzeni 3-D wymaga rozwiązania równania liniowego. Znalezienie punktu przecięcia powierzchni kwadryki i półprostej wymaga

Bardziej szczegółowo

Grafika 3D program POV-Ray - 36 -

Grafika 3D program POV-Ray - 36 - Temat 7: Rodzaje oświetlenia. Rzucanie cieni przez obiekty. Sposób rozchodzenia się, odbijania i przyjmowania światła na obiekcie. Ważną umiejętnością przy ray-tracingu jest opanowanie oświetlenia. Tym

Bardziej szczegółowo

RENDERING W CZASIE RZECZYWISTYM. Michał Radziszewski

RENDERING W CZASIE RZECZYWISTYM. Michał Radziszewski RENDERING W CZASIE RZECZYWISTYM Michał Radziszewski Plan wykładu Oświetlenie w grafice czasu rzeczywistego Modele koloru Modele źródeł światła Światła punktowe, kierunkowe i powierzchniowe Model nieba,

Bardziej szczegółowo

RENDERING W CZASIE RZECZYWISTYM. Michał Radziszewski

RENDERING W CZASIE RZECZYWISTYM. Michał Radziszewski RENDERING W CZASIE RZECZYWISTYM Michał Radziszewski Plan wykładu Opóźnione cieniowanie wprowadzenie Koszt obliczeniowy cieniowania Cieniowanie jedno- i wieloprzebiegowe Cieniowanie opóźnione Schemat opóźnionego

Bardziej szczegółowo

1. Prymitywy graficzne

1. Prymitywy graficzne 1. Prymitywy graficzne Prymitywy graficzne są elementarnymi obiektami jakie potrafi bezpośrednio rysować, określony system graficzny (DirectX, OpenGL itp.) są to: punkty, listy linii, serie linii, listy

Bardziej szczegółowo

GRAFIKA KOMPUTEROWA. Plan wykładu. 1. Początki grafiki komputerowej. 2. Grafika komputerowa a dziedziny pokrewne. 3. Omówienie programu przedmiotu

GRAFIKA KOMPUTEROWA. Plan wykładu. 1. Początki grafiki komputerowej. 2. Grafika komputerowa a dziedziny pokrewne. 3. Omówienie programu przedmiotu GRAFIKA KOMPUTEROWA 1. Układ przedmiotu semestr VI - 20000 semestr VII - 00200 Dr inż. Jacek Jarnicki Instytut Cybernetyki Technicznej p. 226 C-C 3, tel. 320-28-2323 jacek@ict.pwr.wroc.pl www.zsk.ict.pwr.wroc.pl

Bardziej szczegółowo

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory

Bardziej szczegółowo

WPROWADZENIE DO GRAFIKI KOMPUTEROWEJ

WPROWADZENIE DO GRAFIKI KOMPUTEROWEJ WPROWADZENIE DO GRAFIKI KOMPUTEROWEJ Dr inż.. Jacek Jarnicki Doc. PWr. Instytut Cybernetyki Technicznej p. 226 C-C 3, tel. 320-28-2323 jacek@ict.pwr.wroc.pl www.zsk.ict.pwr.wroc.pl 1. Układ przedmiotu

Bardziej szczegółowo

8.5. Algorytm kolejnego dzielenia

8.5. Algorytm kolejnego dzielenia 8.5. Algorytm kolejnego dzielenia 157 2. Znajdź wszystkie wielokąty Q (poprzedzające wielokąt P w liście), których z-rozpiętości mają części wspólne z z-rozpiętością wielokąta P (test 0). Jeśli takie wielokąty

Bardziej szczegółowo

Przestrzenie 3D (algorytmy renderingu)

Przestrzenie 3D (algorytmy renderingu) Rendering Przestrzenie 3D (algorytmy renderingu) Rendering proces przekształcania opisu świata, uzyskanego po modelowaniu, w pełnokolorowy obraz. Wejściem do renderingu jest model świata, położenie oka,

Bardziej szczegółowo

Materiały. Dorota Smorawa

Materiały. Dorota Smorawa Materiały Dorota Smorawa Materiały Materiały, podobnie jak światła, opisywane są za pomocą trzech składowych. Opisują zdolności refleksyjno-emisyjne danej powierzchni. Do tworzenia materiału służy funkcja:

Bardziej szczegółowo

Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II

Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1

Bardziej szczegółowo

Animowana grafika 3D. Opracowanie: J. Kęsik.

Animowana grafika 3D. Opracowanie: J. Kęsik. Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollub.pl Śledzenie promieni Ray tracing jest techniką renderowania będącą obecnie podstawą wielu algorytmów fotorealistycznych Po raz pierwszy wykorzystana

Bardziej szczegółowo

OpenGL model oświetlenia

OpenGL model oświetlenia Składowe światła OpenGL Światło otaczające (ambient) OpenGL model oświetlenia Nie pochodzi z żadnego określonego kierunku. Powoduje równomierne oświetlenie obiektów na wszystkich powierzchniach i wszystkich

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy Matematyka dla klasy poziom podstawowy LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA 06 Kartoteka testu Nr zad Wymaganie ogólne. II. Wykorzystanie i interpretowanie reprezentacji.. II. Wykorzystanie i interpretowanie

Bardziej szczegółowo

Grafika trójwymiarowa. Grafika trójwymiarowa. Pojęcie kamery. Źródła światła - przykłady. Rzutowanie trójwymiarowych obiektów. Grafika trójwymiarowa

Grafika trójwymiarowa. Grafika trójwymiarowa. Pojęcie kamery. Źródła światła - przykłady. Rzutowanie trójwymiarowych obiektów. Grafika trójwymiarowa Z. Postawa, "Podstawy Informatyki II" Strona: 1 z 13 Grafika trójwymiarowa Komputer śledzi promienie wychodzące z oka Grafika 3D Darmowe programy do grafiki 3D: gopenmol PovRay vmd Oszczędność czasowa

Bardziej szczegółowo

Grafika 3D program POV-Ray - 1 -

Grafika 3D program POV-Ray - 1 - Temat 1: Ogólne informacje o programie POV-Ray. Interfejs programu. Ustawienie kamery i świateł. Podstawowe obiekty 3D, ich położenie, kolory i tekstura oraz przezroczystość. Skrót POV-Ray to rozwinięcie

Bardziej szczegółowo

1. Podstawowe algorytmy techniki rastrowe a) dwa przecinające się odcinki mogą nie mieć wspólnego piksela (T) b) odcinek o współrzędnych końcowych

1. Podstawowe algorytmy techniki rastrowe a) dwa przecinające się odcinki mogą nie mieć wspólnego piksela (T) b) odcinek o współrzędnych końcowych 1. Podstawowe algorytmy techniki rastrowe a) dwa przecinające się odcinki mogą nie mieć wspólnego piksela (T) b) odcinek o współrzędnych końcowych (2,0), (5,6) narysowany przy wykorzystaniu algorytmu Bresenhama

Bardziej szczegółowo

Architektura Procesorów Graficznych

Architektura Procesorów Graficznych Architektura Procesorów Graficznych Referat: Rendering 3D: potok 3D, możliwości wsparcia sprzętowego, możliwości przyspieszenia obliczeń. Grupa wyrównawcza Cezary Sosnowski 1. Renderowanie Renderowanie

Bardziej szczegółowo

Karty graficzne możemy podzielić na:

Karty graficzne możemy podzielić na: KARTY GRAFICZNE Karta graficzna karta rozszerzeo odpowiedzialna generowanie sygnału graficznego dla ekranu monitora. Podstawowym zadaniem karty graficznej jest odbiór i przetwarzanie otrzymywanych od komputera

Bardziej szczegółowo

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych

Bardziej szczegółowo

Bartosz Bazyluk SYNTEZA GRAFIKI 3D Grafika realistyczna i czasu rzeczywistego. Pojęcie sceny i kamery. Grafika Komputerowa, Informatyka, I Rok

Bartosz Bazyluk SYNTEZA GRAFIKI 3D Grafika realistyczna i czasu rzeczywistego. Pojęcie sceny i kamery. Grafika Komputerowa, Informatyka, I Rok SYNTEZA GRAFIKI 3D Grafika realistyczna i czasu rzeczywistego. Pojęcie sceny i kamery. Grafika Komputerowa, Informatyka, I Rok Synteza grafiki 3D Pod pojęciem syntezy grafiki rozumiemy stworzenie grafiki

Bardziej szczegółowo

Z ostatniego wzoru i zależności (3.20) można obliczyć n6. Otrzymujemy (3.23) 3.5. Transformacje geometryczne

Z ostatniego wzoru i zależności (3.20) można obliczyć n6. Otrzymujemy (3.23) 3.5. Transformacje geometryczne 46 III. Przekształcenia w przestrzeni trójwymiarowej Z ostatniego wzoru i zależności (3.20) można obliczyć n6. Otrzymujemy (3.23) 3.5. Transformacje geometryczne Złożone obiekty trójwymiarowe można uważać,

Bardziej szczegółowo

Programowanie Procesorów Graficznych

Programowanie Procesorów Graficznych Programowanie Procesorów Graficznych Wykład 1 9.10.2012 Prehistoria Zadaniem karty graficznej było sterowanie sygnałem do monitora tak aby wyświetlić obraz zgodnie z zawartościa pamięci. Programiści pracowali

Bardziej szczegółowo

PDF stworzony przez wersję demonstracyjną pdffactory

PDF stworzony przez wersję demonstracyjną pdffactory gdzie: vi prędkość fali w ośrodku i, n1- współczynnik załamania światła ośrodka 1, n2- współczynnik załamania światła ośrodka 2. Załamanie (połączone z częściowym odbiciem) promienia światła na płaskiej

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 1. Ciała Definicja 1. Układ { ; 0, 1; +, } złożony ze zbioru, dwóch wyróżnionych elementów 0, 1 oraz dwóch działań +:, : nazywamy ciałem

Bardziej szczegółowo

1 Geometria analityczna

1 Geometria analityczna 1 Geometria analityczna 1.1 Wektory na płaszczyźnie Wektor to uporządkowana para punktów, z których pierwszy nazywa się początkiem, a drugi końcem wektora. Jeżeli wprowadzimy prostokątny układ współrzędnych,

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1. Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego. Zdający

Bardziej szczegółowo

rgbf<składowa_r,składowa_g,składowa_b,filter>. Dla parametru filter przyjmij kolejno wartości: 0.60, 0.70, 0.80, 0.90, 1.00, np.:

rgbf<składowa_r,składowa_g,składowa_b,filter>. Dla parametru filter przyjmij kolejno wartości: 0.60, 0.70, 0.80, 0.90, 1.00, np.: Temat 2: Przezroczystość. Prostopadłościan, walec i stożek. Przesuwanie i skalowanie obiektów. Omówimy teraz przezroczystość obiektów związaną z ich kolorem (lub teksturą). Za przezroczystość odpowiadają

Bardziej szczegółowo

Elementy geometrii analitycznej w R 3

Elementy geometrii analitycznej w R 3 Rozdział 12 Elementy geometrii analitycznej w R 3 Elementy trójwymiarowej przestrzeni rzeczywistej R 3 = {(x,y,z) : x,y,z R} możemy interpretować co najmniej na trzy sposoby, tzn. jako: zbiór punktów (x,

Bardziej szczegółowo

Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy

Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Justyna Winnicka Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego. rok akademicki 217/218

Bardziej szczegółowo

Opracowanie tablic: Adam Konstantynowicz, Anna Konstantynowicz, Kaja Mikoszewska

Opracowanie tablic: Adam Konstantynowicz, Anna Konstantynowicz, Kaja Mikoszewska Opracowanie tablic: Adam Konstantynowicz, Anna Konstantynowicz, Kaja Mikoszewska Redaktor serii: Marek Jannasz Ilustracje: Magdalena Wójcik Projekt okładki: Teresa Chylińska-Kur, KurkaStudio Projekt makiety

Bardziej szczegółowo

MODELE OŚWIETLENIA. Mateusz Moczadło

MODELE OŚWIETLENIA. Mateusz Moczadło MODELE OŚWIETLENIA Mateusz Moczadło Wstęp Istotne znaczenie w modelu oświetlenia odgrywa dobór źródeł światła uwzględnianych przy wyznaczaniu obserwowanej barwy obiektu. Lokalne modele oświetlenia wykorzystują

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................

Bardziej szczegółowo

i = [ 0] j = [ 1] k = [ 0]

i = [ 0] j = [ 1] k = [ 0] Ćwiczenia nr TEMATYKA: Układy współrzędnych: kartezjański, walcowy (cylindryczny), sferyczny (geograficzny), Przekształcenia: izometryczne, nieizometryczne. DEFINICJE: Wektor wodzący: wektorem r, ρ wodzącym

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................

Bardziej szczegółowo

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Wydział Matematyki Politechniki Wrocławskiej Okrąg Okrąg jest szczególną krzywą stożkową. Wyznacza nam koło, które jest podstawą

Bardziej szczegółowo

Światła i rodzaje świateł. Dorota Smorawa

Światła i rodzaje świateł. Dorota Smorawa Światła i rodzaje świateł Dorota Smorawa Rodzaje świateł Biblioteka OpenGL posiada trzy podstawowe rodzaje świateł: światło otoczenia, światło rozproszone oraz światło odbite. Dodając oświetlenie na scenie

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy LUELSK PRÓ PRZE MTURĄ 07 poziom podstawowy Schemat oceniania Uwaga: kceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania (podajemy kartotekę zadań, gdyż łatwiej będzie

Bardziej szczegółowo

Architektura Komputerów

Architektura Komputerów Studia Podyplomowe INFORMATYKA Techniki Architektura Komputerów multimedialne Wykład nr. 9 dr Artur Bartoszewski Rendering a Ray Tracing Ray tracing (dosłownie śledzenie promieni) to technika renderowania

Bardziej szczegółowo

Przestrzenie 3D (algorytm rendering y u)

Przestrzenie 3D (algorytm rendering y u) Przestrzenie 3D (algorytmy renderingu) Rendering Rendering proces przekształcania opisu świata, uzyskanego po modelowaniu, w pełnokolorowy obraz. Wejściem do renderingu jest model świata, położenie oka,

Bardziej szczegółowo

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne

Katalog wymagań programowych na poszczególne stopnie szkolne rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa

Bardziej szczegółowo

OpenGL Światło (cieniowanie)

OpenGL Światło (cieniowanie) OpenGL Światło (cieniowanie) 1. Oświetlenie włączanie/wyłączanie glenable(gl_lighting); - włączenie mechanizmu oświetlenia gldisable(gl_lighting); - wyłączenie mechanizmu oświetlenia glenable(gl_light0);

Bardziej szczegółowo

Teselacja i uzupełnienia do grafiki

Teselacja i uzupełnienia do grafiki Teselacja i uzupełnienia do grafiki Marcin Orchel 1 Wstęp 1.1 Antyaliasing Techniki wygładzania krawędzi, usunięcie zjawiska schodków, postrzępionych krawędzi, aliasingu. Różne techniki. Wielopróbkowanie

Bardziej szczegółowo

Karta graficzna karta rozszerzeo odpowiedzialna generowanie sygnału graficznego dla ekranu monitora. Podstawowym zadaniem karty graficznej jest

Karta graficzna karta rozszerzeo odpowiedzialna generowanie sygnału graficznego dla ekranu monitora. Podstawowym zadaniem karty graficznej jest KARTA GRAFICZNA Karta graficzna karta rozszerzeo odpowiedzialna generowanie sygnału graficznego dla ekranu monitora. Podstawowym zadaniem karty graficznej jest odbiór i przetwarzanie otrzymywanych od komputera

Bardziej szczegółowo

Układy współrzędnych

Układy współrzędnych Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych

Bardziej szczegółowo

GEOMETRIA PRZESTRZENNA (STEREOMETRIA)

GEOMETRIA PRZESTRZENNA (STEREOMETRIA) GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy

Bardziej szczegółowo

Załącznik KARTA PRZEDMIOTU. KARTA PRZEDMIOTU Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010 KOMPUTEROWA

Załącznik KARTA PRZEDMIOTU. KARTA PRZEDMIOTU Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010 KOMPUTEROWA 1/1 Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010 Nazwa przedmiotu: Kierunek: Specjalność: Tryb studiów: GRAFIKA KOMPUTEROWA INFORMATYKA Kod/nr GK PRZEDMIOT OBOWIĄZKOWY DLA WSZYSTKICH

Bardziej szczegółowo

OpenGL Światło (cieniowanie)

OpenGL Światło (cieniowanie) OpenGL Światło (cieniowanie) 1. Oświetlenie włączanie/wyłączanie glenable(gl_lighting); - włączenie mechanizmu oświetlenia gldisable(gl_lighting); - wyłączenie mechanizmu oświetlenia glenable(gl_light0);

Bardziej szczegółowo

Matematyka rozszerzona matura 2017

Matematyka rozszerzona matura 2017 Matematyka rozszerzona matura 017 Zadanie 1 Liczba ( 3 + 3) jest równa A. B. 4 C. 3 D. 3 ( 3 + 3) = 3 ( 3)( + 3) + + 3 = A. 3 4 3 + + 3 = 4 1 = 4 = Zadanie. Nieskończony ciąg liczbowy jest określony wzorem

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

Treści zadań Obozu Naukowego OMG

Treści zadań Obozu Naukowego OMG STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OM 2015 rok SZCZYRK 2015 Pierwsze zawody indywidualne Treści

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne Grafika komputerowa Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności December 12, 2016 1 Wprowadzenie 2 Optyka 3 Geometria 4 Grafika rastrowa i wektorowa 5 Kompresja danych Wprowadzenie

Bardziej szczegółowo

GRAFIKA KOMPUTEROWA 7: Kolory i cieniowanie

GRAFIKA KOMPUTEROWA 7: Kolory i cieniowanie GRAFIKA KOMPUTEROWA 7: Kolory i cieniowanie http://galaxy.agh.edu.pl/~mhojny Prowadzący: dr inż. Hojny Marcin Akademia Górniczo-Hutnicza Mickiewicza 30 30-059 Krakow pawilon B5/p.406 tel. (+48)12 617 46

Bardziej szczegółowo

Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner

Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Semestr I Rozdział: Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn tych samych

Bardziej szczegółowo

Ćwiczenia nr 4. TEMATYKA: Rzutowanie

Ćwiczenia nr 4. TEMATYKA: Rzutowanie TEMATYKA: Rzutowanie Ćwiczenia nr 4 DEFINICJE: Rzut na prostą: rzutem na prostą l (zwaną rzutnią) w kierunku rzutowania k (k l) nazywamy przekształcenie płaszczyzny przyporządkowujące: a) Punktom prostej

Bardziej szczegółowo

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony. Wiadomości i umiejętności

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony. Wiadomości i umiejętności WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony Funkcja wykładnicza i funkcja logarytmiczna. Stopień Wiadomości i umiejętności -definiować potęgę

Bardziej szczegółowo

Modelowanie i wstęp do druku 3D Wykład 1. Robert Banasiak

Modelowanie i wstęp do druku 3D Wykład 1. Robert Banasiak Modelowanie i wstęp do druku 3D Wykład 1 Robert Banasiak Od modelu 3D do wydruku 3D Typowa droga...czasem wyboista... Pomysł!! Modeler 3D Przygotowanie modelu do druku Konfiguracja Programu do drukowania

Bardziej szczegółowo

Geometria analityczna - przykłady

Geometria analityczna - przykłady Geometria analityczna - przykłady 1. Znaleźć równanie ogólne i równania parametryczne prostej w R 2, któr przechodzi przez punkt ( 4, ) oraz (a) jest równoległa do prostej x + 5y 2 = 0. (b) jest prostopadła

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

Przegląd architektury PlayStation 3

Przegląd architektury PlayStation 3 Przegląd architektury PlayStation 3 1 Your Name Your Title Your Organization (Line #1) Your Organization (Line #2) Sony PlayStation 3 Konsola siódmej generacji Premiera: listopad 2006 33,5 mln sprzedanych

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURA

LUBELSKA PRÓBA PRZED MATURA NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI LUBELSKA PRÓBA PRZED MATURA DLA KLAS TRZECICH POZIOM PODSTAWOWY GRUPA I 1 STYCZNIA 011 CZAS PRACY: 170 MINUT Zadania zamknięte ZADANIE 1 (1 PKT.) Liczba

Bardziej szczegółowo

Grafika komputerowa Wykład 4 Geometria przestrzenna

Grafika komputerowa Wykład 4 Geometria przestrzenna Grafika komputerowa Wykład 4 Geometria przestrzenna Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1 Geometria 3D - podstawowe

Bardziej szczegółowo

CIENIE I CIENIOWANIE W GRAFICE KOMPUTEROWEJ

CIENIE I CIENIOWANIE W GRAFICE KOMPUTEROWEJ Biuletyn Polskiego Towarzystwa Geometrii i Grafiki Inżynierskiej Zeszyt 13 (2003), str. 19 23 19 CIENIE I CIENIOWANIE W GRAFICE KOMPUTEROWEJ Maria HELENOWSKA-PESCHKE Politechnika Gdańska, Zakład Technik

Bardziej szczegółowo

Opis funkcji modułu Renderingu Profesjonalnego

Opis funkcji modułu Renderingu Profesjonalnego Opis funkcji modułu Renderingu Profesjonalnego www.cadprojekt.com.pl Kliknij na tytuł rozdziału, aby przejść do wybranego zagadnienia RENDERING PROFESJONALNY...3 Algorytm Radiosity (Metoda energetyczna)...3

Bardziej szczegółowo